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Abstract

Ž .We demonstrate that certain Virasoro characters and their linear combinations in minimal and non-minimal conformal
models which admit factorized forms are manifestly related to the ADE series. This permits to extract quasi-particle spectra
of a Lie algebraic nature which resembles the features of Toda field theory. These spectra possibly admit a construction in
terms of the W -generators. In the course of our analysis we establish interrelations between the factorized characters relatedn

to the parafermionic models, the compactified boson and the minimal models. q 1999 Elsevier Science B.V. All rights
reserved.

1. Introduction

w xIt is well known, that a large class of off-critical integrable models is related to affine Toda field theories 1
w xor RSOS-statistical models 2 , which possess a rich underlying Lie algebraic structure. Since these models can

be regarded as perturbed conformal field theories, it is suggestive to recover the underlying Lie algebraic
structure also in the conformal limit. Of primary interest is to identify the conformal counterparts of the
off-critical particle spectrum. One way to achieve this is to analyze the quasi-particle spectrum, which results

Ž .from certain expressions of the Virasoro characters x q or their linear combinations. Hitherto this analysis was
w xmainly performed 3 for formulae of the form

q l t A lqBP l
constx q sq . 1Ž . Ž .Ý

q qŽ . Ž .l . . . l1 rl

Here r is the rank of the related Lie algebra g, the matrix A coincides with the inverse of the Cartan matrix, B
Ž . l Ž k .characterizes the super-selection sector, q :sŁ 1yq , and there may be certain restrictions on thel ks1

w xsummation over l. Following the prescription of 3 one can always obtain a quasi-particle spectrum once a

1 E-mail: bytsko@pdmi.ras.ru
2 E-mail: fring@physik.fu-berlin.de

0370-2693r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
Ž .PII: S0370-2693 99 00300-7



( )A.G. Bytsko, A. FringrPhysics Letters B 454 1999 59–6960

Ž .character admits a representation in the form of Eq. 1 . It should be noted that such spectra can not be obtained
Ž .form the standard form of the Virasoro characters 10 .

In the following we will demonstrate that one also recovers Lie algebraic structures in certain Virasoro
characters or their linear combinations which admit the factorized form

q const
y qX X� 4 � 4x ; . . . ; x x ; . . . ; x , 2Ž .y y y1 N 1 M� 41 1

w xwhere we adopt the notations of 4
` n

" " "xqk y� 4 � 4 � 4x :s 1"q , x ; . . . ; x :s x .Ž .y Ł Ły y1 n a
ks0 as1

Ž w x . Ž . Ž .In many cases see 4,5 for details expressions of the type 2 can be rewritten in the form 1 , but now A is
entirely absent or, at most, is a diagonal matrix. There are no restrictions on the summation over l, and we allow

Ž y. Ž w x.terms of the form q in the denominator which may be regarded as an anionic feature 5 .l
Ž . Ž . Ž .Unlike the conventional form for the Virasoro characters 10 , formulae 1 and 2 allow to extract the

y w xleading order behaviour in the limit q™1 by means of a saddle point analysis, see e.g. 3,5 . For a slightly
Ž . Ž . Ž y.generalized version of 1 , in the sense that all q are replaced by q , this analysis leads tol l

r r6Ž .A qAi j jiyz s 1yz , c s L z . 3Ž . Ž .Ž .Ł Ýi j eff i2ypjs1 is1

This means solving the former set of equations for the unknown quantities z , we may compute the effectivei
Ž .central charge thereafter by means of the latter equation in terms of Rogers dilogarithm L x . Recall that the

effective central charge is defined as c scy24hX, where hX is the lowest conformal weight occurring in theeff
Ž .model. There exist inequivalent solutions to Eqs. 3 leading to the same effective central charge corresponding

Ž . Ž .either to the form 1 or 2 . When treating these equations as formal series, such computations give a first hint
on possible candidates for characters.

� 4"Alternatively, with regard to factorization, we can exploit the essential fact that the blocks x are closelyy

related to the so-called quantum dilogarithm and we can easily compute their contributions to the effective
w x Ž� 4y."1 Ž q."1 Ž .� 4central charge. As explained in Ref. 4 , each block x and x in expressions of type 2y y

contributes

1 1
Dc s. , and Dc s" , 4Ž .eff effy 2y

respectively. In the course of our argument, i.e. when we consider the difference of the Virasoro characters, we
will also need the notion of the secondary effective central charge

cs1y24hXX , 5Ž .˜
where hXX is the next to lowest conformal weight occurring in the model.

2. ADE structure

Let g be a Lie algebra of rank r and h be its Coxeter number. We define the following function related to g

q const
gJ x ,q s , 6Ž . Ž .y� 4x ; . . . ; x h1 r

q1
2
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Table 1
Effective central charges for minimal affine Toda field theories

Ž1. Ž1. Ž1. Ž1. Ž1. Ž2.g A D E E E An n 6 7 8 2 n

2 n 6 7 1 2 nc 1eff nq3 7 10 2 2 nq3

with x obeying the condition

x qx shr2q1 , as1, . . . ,r , 7Ž .a rq1ya

h 1
rq1and for odd r we put x s q . Our aim is to find conformal models such that their characters or possibly4 22

Ž . constlinear combinations coincide with 6 for appropriately chosen q and x. Such conformal models have
Ž .quasi-particle spectra, generated by 6 for the related sectors, with the number of different particle species equal

to the rank r.
Ž . Ž .The question arises for which conformal models can we expect 6 to be a character? Exploiting 4 , we

readily find the corresponding effective central charge

2 r 2 r 2

c g s s . 8Ž . Ž .eff hq2 dim gqr

w xOn the other hand, the analysis of the ultra-violet limit of the thermodynamic Bethe ansatz 6 for the ADE
related minimal scattering matrices of affine Toda field theory leads to the following effective central charges
Ž .see Table 1 .

3 ŽThus, we see that, upon substitution of the related Lie algebraic quantities of the simply laced algebras see
w x. Ž .e.g. 7 , Eq. 8 recovers all the effective central charges in Table 1. Furthermore it turns out that for g from this

g Ž .table corresponding to minimal models or cs1 models we are always able to identify several J x,q with
single Virasoro characters or specific linear combinations of them.

Ž .In addition, there exist characters which exhibit even stronger Lie algebraic features. They are given by 6
Ž Ž ..with the values of x chosen as follows which is a particular case of 7a

2 x y1se , as1, . . . ,r , 9Ž .a a

� 4where e stands for the set of the exponents of the Lie algebra g. We denote this particular character asa
g Ž .J q .

2.1. Minimal models

w x Ž .The minimal models 8 are parameterized by a pair s,t of co-prime positive integers and the corresponding
Ž .2 Ž .2 Ž .2s, t6 syt ntyms y sytŽ .central charge is c s,t s1y . Labeling the highest weights as h s , with then,m

st 4 st
restrictions 1FnFsy1 and 1FmF ty1, the usual form of the characters of irreducible highest weight

w xrepresentations reads 9
`

2 Ž . Ž .s , t s , t s tk k ntym s k ntqm s qnmx q sh q q yq . 10Ž . Ž .Ž .Ýn ,m n ,m
ksy`

Ž .c s , ts, t ys, t h yn ,m 24 � 4Here we abbreviated the ubiquitous factor h :sq r 1 by an analogy with the eta-function. Then,m 1
Ž . Ž w x.secondary effective central charge is easy to find see e.g. 4

6 24
c s,t s1y , c s,t s1y . 11Ž . Ž . Ž .˜eff st st

3 Ž k . Ž k . Ž . Ž2.For a twisted affine Lie algebra of type X one introduces h – the Coxeter number and h s kh. We should use h in 8 for A .N 2 n
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Thus, the values of c which are less than 1 can be matched as followseff

c AŽ1. sc EŽ1. sc 3,4 , 12Ž . Ž .Ž . Ž .eff 1 eff 8 eff

c AŽ1. sc 5,6 sc 3,10 sc 2,15 , 13Ž . Ž . Ž . Ž .Ž .eff 2 eff eff eff

c EŽ1. sc 6,7 sc 3,14 sc 2,21 , 14Ž . Ž . Ž . Ž .Ž .eff 6 eff eff eff

c EŽ1. sc 4,5 , 15Ž . Ž .Ž .eff 7 eff

c AŽ2. sc 2,2 nq3 . 16Ž . Ž .Ž .eff 2 n eff

Ž .We see, that the matching is, in general, not unique. For 16 it depends on n – the first non-unique
Ž . Ž .representations occur for ns6 and ns9 and coincide with 13 and 14 , respectively. Therefore we might

have for instance relations between AŽ1.;AŽ2. and EŽ1.;AŽ2.. Some of these apparent ambiguities are easily2 12 6 18
Ž .explained as the consequence of a symmetry property of the characters. For instance we observe that Eq. 10

a s, t Ž . s,a t Ž . 6,5 Ž . 3,10 Ž .possesses the symmetry: x q sx q , for instance x q sx q .a n,m n,a m 2,m 1,2 m
Ž . Ž .Of course Eqs. 12 – 16 are only to be understood as a first hint on a possibility for characters in the

g Ž .corresponding models to be of the form J x,q . In order to make the identifications more precise, we have to
w xresort to more stringent properties of the characters. We shall be using previously obtained results 4,10 on

Ž . w xrepresentation of characters of minimal models in the form 2 . In Ref. 10 it was proven, that for Ms0 and
Ž .x /x for i/ j in 2 the only possible factorizable single characters arei j

y2 n , t 2 n , t � 4x q sh nm;nt ;ntynm , 17Ž . Ž .ntn ,m n ,m

y y3n , t 3n , t � 4 � 4x q sh 2nt ;nm;2ntynm 2nty2nm;2ntq2nm . 18Ž . Ž .2 nt 4 ntn ,m n ,m

Combining now characters in a linear way, the property to be factorizable remains still exceptional. It was
w xargued in Ref. 4 that

x s , t q "x s , t q 19Ž . Ž . Ž .n ,m n , tym

Ž .are the only combinations of characters in the same model which have a chance to acquire the form 2 with
y Ž .reasonably small N and M. The limit q™1 of the upper and lower signs in 19 is governed by c and c,˜eff

w xrespectively, which can be seen form their properties with respect to the S-modular transformation 4 .
Ž . w xThe following factorizable combinations of type 19 where found in Ref. 4

y "nt nty2nm ntq2nmy3n , t 3n , t 3n , t ;� 4 nt ntx q "x q sh nm;ntynm , 20Ž . Ž . Ž .ntn ,m 2 n ,m n ,m ½ 5 ½ 52 4 4
2 2

ynt nt
4 n , t 4 n , t 4 n , tx q yx q sh ; ynm;nm , 21Ž . Ž . Ž .ntn ,m 3n ,m n ,m ½ 52 2

2

qnt nt nty4 n , t 4 n , t 4 n , t � 4x q qx q sh nm;nt ;ntynm , 22Ž . Ž . Ž .ynm; qnm;ntn ,m 3n ,m n ,m ½ 52 2 2 nt

y y6 n , t 6 n , t 6 n , t � 4 � 4x q yx q sh nt ;nm;ntynm nty2nm;ntq2nm . 23Ž . Ž . Ž .nt 2 ntn ,m 5n ,m n ,m
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Table 2
Ž . Ž . Ž . � 4yRepresentation of characters in the form of 6 and for differences of the type 23 in the form 24 . The replacement of the blocks x

� 4qtyped in bold by x yields the corresponding differences of characters
y

� 4g sectors x ; . . . ; x1 r y

3,4 y� 4E x 2;3;4;5;11;12;13;148 1,1 16
3,4 y� 4x 1;3;5;7;9;11;13;151,2 16
3,4 y� 4x 1;4;6;7;9;10;12;151,3 16
3,4 y� 4A x 11 1,2 2
4,5 y� 4E x 1;3;4;5;6;7;97 2,1 10
4,5 y� 4x 1;2;3;5;7;8;92,2 10

35,6 5,6 y� 4A x q x 1;2 1,2 1,4 5r22
15,6 5,6 y� 4x q x ;22,2 2,4 5r22

5,6 5,6 y� 4x y x 2;81,1 1,5 10
5,6 5,6 y� 4x y x 4;62,1 2,5 10

5 96,7 6,7 y� 4E x q x 1; ;3;4; ;66 2,1 4,1 72 2
3 116,7 6,7 y� 4x q x 1; ;2;5; ;62,2 4,2 72 2

1 136,7 6,7 y� 4x q x ;2;3;4;5;2,3 4,3 72 2
6,7 6,7 y� 4x y x 2;3;4;10;11;121,1 1,6 14
6,7 6,7 y� 4x y x 1;4;6;8;10;131,2 1,5 14
6,7 6,7 y� 4x y x 2;5;6;8;9;121,3 1,4 14
3,4 y� 4G x 1;32 1,2 4
2,7 y� 4F x 2;3;4;54 1,1 7
2,7 y� 4x 1;3;4;61,2 7
2,7 y� 4x 1;2;5;61,3 7

Ž . Ž .Remarkably, as we demonstrate in Table 2, all identifications presented in 12 – 16 can be realized in terms
Ž . Ž . g Ž .of characters with the help of 17 – 23 . In particular, we identify J q with the following characters

J A1
Ž1.

q sx 3,4 q , J A2 n
Ž2.

q sx 2,2 nq3 q ,Ž . Ž . Ž . Ž .1,2 1,nq1

J A2
Ž1.

q sx 5,6 q qx 5,6 q sx 3,10 q qx 3,10 q ,Ž . Ž . Ž . Ž . Ž .1,2 1,4 1,2 1,8

J E6
Ž1.

q sx 6,7 q qx 6,7 q sx 3,14 q qx 3,14 q ,Ž . Ž . Ž . Ž . Ž .2,1 2,6 1,2 1,12

J E7
Ž1.

q sx 4,5 q , J E8
Ž1.

q sx 3,4 q .Ž . Ž . Ž . Ž .2,1 1,3

Since these identifications hint on the connection with massive models, i.e. affine Toda field theories, it is
somewhat surprising that also the non-simply laced algebras G and F occur in Table 2 4. No connection is2 4

Ž . Ž .known between G - and F -affine Toda models and 3,4 and 2,7 minimal models, respectively. At present it2 4

seems to be just an intriguing coincidence.
Ž .It is interesting to notice that, as seen from Table 2, the differences of type 23 can also be of the form

q const

. 24Ž .y� 4x ; . . . ; x1 r b

5,6Ž . 5,6Ž . Ž . 6,7Ž . 6,7Ž .For instance, x q yx q corresponds to bs2hq4, x s2 e q1 , and x q yx q corresponds1,1 1,5 a a 1,2 1,5
� 4to bshq2, x se q1, where h and e are the Coxeter number and exponents of A and E , respectively.a a a 2 6

4 w x G 2Ž . 3,4Ž . F4Ž . 2,7Ž .We thank W. Eholzer for pointing out to us that our formulae in Ref. 5 may include J q s x q and J q s x q as1,2 1,2

well.
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Ž .Eq. 6 does not exhaust all manifest Lie algebraic functions in which combinations of characters of the type
Ž .19 can be represented. For instance, the following representation

qhq2
hq2½ 58

4g constJ w ,q sq 25Ž . Ž .y� 4w ; . . . ;w h1 ry1
q1

2

Ž .with w obeying the condition w qw shr2q1 also occurs see Table 3 .a rya

2.2. Compactified free Boson

In general the Fock space of a free boson may simply be constructed from a Heisenberg algebra and the
ˆŽ Ž . .corresponding Virasoro central charge equals cs1. The character of the Heisenberg module U 1 -Kac–Moody

y1r24 � 4yis simply the inverse of the h-function, q r 1 . When compactifying the boson on a circle of rational1
ˆŽ .'square radius Rs 2 srt one can associate highest weight representations of a U 1 -Kac–Moody algebra tok

ˆŽ . w xthis theory. The U 1 -algebra has an integer level, which is ksst. The corresponding characters read 7k

`
2 y qk k k l qml k � 4 � 4x q sh q sh 2k kym;kqm , 26Ž . Ž .ˆ ˆ ˆÝ 2 k 2 km m m

lsy`

1 2k y mk h y km 24 � 4where we denoted h :sq r 1 . The highest weight may take on the values h s with ms0,1, . . . ,kˆm m 4k1

y1.
As Table 1 indicates, the D -affine Toda models are related to compactified bosons. In order to recover then

D nŽ . Ž .D -structure at the conformal level, we shall find realizations of J q in terms of 26 . Similar to the case ofn
Ž .minimal models, it will be helpful to study factorization of combinations of the Kac–Moody characters.

1nŽ .First, choosing the constant in 6 as h y we identify for even n24n r2

y q qn� 4n nn y yD n n n nn n� 4 � 4J q sh sh n sh 2n sx q . 27Ž . Ž . Ž .ˆ ˆ ˆ ˆy ½ 5n 2 nn r2 n r2 n r2 n r2½ 5n 2 2 n2½ 52 n

Formally this expression also holds for odd n, albeit in this case the right hand side may not be interpreted as
D nŽ .the character related to a compactified boson. Therefore we need another way to construct J q in case n is

nŽ . n Ž . Ž .odd. For this purpose we consider the combinations x q "x q which are analogues of 19 . Inˆ ˆm nym
y Ž .particular, the q™1 limit of these sums and differences is governed by c scs1 and c. According to 5˜eff

and the possible values for the highest weights we have cs1y6rn.˜

Table 3
Ž .Representation of characters in the form of 25 . For the arguments in bold the same convention applies as in Table 2, including the

numerator
y

� 4g sectors w ; . . . ;w1 ry1 y

3,4 3,4A x q x 11 1,1 1,3
3 7 13 174,5 4,5 y� 4E x q x ;2; ; ;8;7 1,1 1,4 102 2 2 2
1 9 11 194,5 4,5 y� 4x q x ;4; ; ;6;1,2 1,3 102 2 2 2
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Ž . w x Ž .Exploiting the identity 2.31 obtained in Ref. 4 , we find for 0-m-nr2
y "n n m n m

n n n n ny ; qx q "x q sh . 28Ž . Ž . Ž .ˆ ˆ ˆ ½ 5 ½ 5m nym m 2 4 2 4 22 2

Ž .The counting, based on 4 , gives the expected values of c and c. Notice that for the upper sign the r.h.s. can be˜
Ž .identified as the product side of 26 :

x n q qx n q sx n r4 q . 29Ž . Ž . Ž . Ž .ˆ ˆ ˆm nym m r2

Ž . D nŽ .Comparison with 27 then yields a formula for J q valid for both odd and even n

J D n q sx 4 n q qx 4 n q . 30Ž . Ž . Ž . Ž .ˆ ˆn 3n

Ž . Ž . Ž . Ž .Finally, it is interesting to observe that, employing 17 – 20 , we may express 26 and 28 entirely in terms
of the minimal Virasoro characters:

x 2,3n qŽ .1,nn 3,nx q sx q , 31Ž . Ž . Ž .ˆm 1,m 2,nx qŽ .1,m

x 2,3n qŽ .1,nn n 3,n 3,nx q "x q s x q "x q . 32Ž . Ž . Ž . Ž . Ž .ˆ ˆ Ž .m nym 1,m 2,m 2,nx qŽ .1,m

Here ns6 l"1, lgN if we really regard all components on the r.h.s. as characters of irreducible Virasoro
Ž . Ž .representations. This restriction can be omitted if we regard 17 – 20 just as formal series. With regard to the

Ž . Ž .central charge Eqs. 31 - 32 imply

c DŽ1. sc 3,n qc 2,3n yc 2,n . 33Ž . Ž . Ž . Ž .Ž .eff n eff eff eff

Thus, the connection with minimal models is more subtle than one would expect at first sight from a simple
Ž Ž1.. Ž .matching of the central charges, e.g. c D s2c 3,4 .eff n eff

2.3. Parafermions

Ž1. Ž w x.The A -series of affine Toda theories is known to be related in the ultra-violet limit see e.g. 6 to then
w x Ž . Ž . Ž .Z -parafermions 11 . The corresponding central charge, c k s2 ky1 r kq2 and characters may benq1
ˆ ˆ kŽ . Ž . Ž . Ž .obtained from the SU 2 rU 1 -coset, where ksnq1. Introducing the quantity D s j jq1 r kq2 yky1 j,m

m2rk the characters of the highest weight representation, which appear as branching functions in the coset,
w xacquire the form 12

k ` Ž . Ž .r rq1 s sq1h̃j ,m rqsk r sŽkq1.q qx q s y1 qŽ . Ž .˜ 2 2Ýyj ,m � 41 1 r , ss0

= Ž . Ž .r jqm qs jym r kq1yjym qs kq1yjqm qkq1y2 jŽ . Ž .q yq , 34Ž .Ž .
Ž .c kkk D y yj, m 24 � 4 Ž .where h :sq r 1 . The labels are restricted as yjFmFky j, 0F jFkr2 and jym gZ. In˜ j, m 1

k Ž . kparticular the x q are the characters of the parafermionic currents c . The characters possess the˜0, m m

symmetries

x k q sx k q sx k q . 35Ž . Ž . Ž . Ž .˜ ˜ ˜j ,m j ,ym k r2yj ,k r2ym

From our observations made above for characters of the ADE related conformal models one may expect that
Ž . Žexpressions 34 exhibit A -type structures e.g. possess n quasi particles and moreover acquire the form of then

A nŽ ..type J q in some of the cases when they admit a factorized form. We shall now discuss this issue in detail
for several of the lowest ranks.
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As we have seen above, factorization of linear combinations of characters occurs usually only for the specific
Ž . k Ž . k Ž . ytype of combinations. Now the analogue of 19 is x q "x q . One expects that the q™1 limit of˜ ˜j, m j,2 kym

Ž . XX k Ž .these sums and differences is governed by c sc k and c, respectively. Since h sD , Eq. 5 yields˜eff 1,1
Ž .Ž .csc k ky6 rk. This is confirmed by all the examples given below.˜

Ž . ŽFor the parafermionic formulae 34 we do not have such powerful analytical tools analogues to the
Ž . Ž . .factorization formulae 17 - 23 at hand as in the case of the minimal models. Therefore, as a first step, we

resort to an analysis with Mathematica. Typically we expand the characters up to q100.
Ž Ž ..A : In this case there are only three distinct up to the symmetries 35 characters and they can be matched1

Ž .with those of the 3,4 minimal model:

x 2 q sx 3,4 q , x 2 q sx 3,4 q , 36Ž . Ž . Ž . Ž . Ž .˜ ˜0,0 1,1 0,1 1,3
2 3,4 A1x q sx q sJ q . 37Ž . Ž . Ž . Ž .˜ 1 1 1,2

,
2 2

A1Ž .Thus, all the characters in this case are factorizable and moreover J q is present among them.
Ž .A : There are four distinct characters in this case and they can be matched with those of the 5,6 minimal2

model:

x 3 q sx 5,6 q qx 5,6 q , x 3 q sx 5,6 q , 38Ž . Ž . Ž . Ž . Ž . Ž .˜ ˜0,0 1,1 1,5 0,1 1,3
3 5,6 3 5,6 5,6x q sx q , x q sx q qx q . 39Ž . Ž . Ž . Ž . Ž . Ž .˜ ˜1 1 1 32,3 2,1 2,5

, ,
2 2 2 2
3 Ž . 3 Ž . Ž .1 1Only x q and x q are factorizable see subsection II.A .˜ ˜0,1 ,2 2

A : Since cs1, it is suggestive to try to relate the characters to those of the compactified bosons. This turns3
Ž .out to be possible for all the characters thus factorizability is guaranteed :

x 4 q sx 12 q , x 4 q qx 4 q sx 3 q , 40Ž . Ž . Ž . Ž . Ž . Ž .˜ ˆ ˜ ˜ ˆ0,1 6 0,0 0,2 0

x 4 q sx 3 q , x 4 q sx 3 q , 41Ž . Ž . Ž . Ž . Ž .˜ ˆ ˜ ˆ1,0 2 1,1 1
4 4 4 4x q sx q , x q sx q . 42Ž . Ž . Ž . Ž . Ž .˜ ˆ ˜ ˆ1 1 1 31 3

, ,
2 2 2 2

Ž .Furthermore, some of linear combinations can be expressed in terms of the characters of the 3,4 minimal
Ž Ž . .model notice that cs1, csy1r2 for A and cs1r2, csy1 for the 3,4 minimal model :˜ ˜3

y14 4 3,4x q yx q s x q , 43Ž . Ž . Ž . Ž .˜ ˜ Ž .0,0 0,2 1,2

y14 4 3,4 3,4x q "x q s x q .x q . 44Ž . Ž . Ž . Ž . Ž .˜ ˜ Ž .1 31 1 1,1 1,3
,,

2 22 2

A : No characters or linear combinations factorize.4
Ž .A : Several characters and combinations are factorizable and can be expressed via those of the 3,4 minimal5

model and D , for instancen
6 3,4 24 24
3 1x q sx q x q yx q ,Ž . Ž . Ž . Ž .˜ ˆ ˆŽ ., 1 ,2 6 182 2

6 3,4 24 24
1 3x q sx q x q yx q ,Ž . Ž . Ž . Ž .˜ ˆ ˆŽ ., 1 ,2 8 162 2

x 6 q "x 6 q s x 3,4 q "x 3,4 q x 24 q .x 24 q ,Ž . Ž . Ž . Ž . Ž . Ž .˜ ˜ ˆ ˆŽ . Ž .0,1 0,2 1,1 1,3 9 15

x 6 q "x 6 q s x 3,4 q "x 3,4 q x 24 q .x 24 q .Ž . Ž . Ž . Ž . Ž . Ž .˜ ˜ ˆ ˆŽ . Ž .1,1 1,2 1,1 1,3 3 21
6 Ž . 6 Ž . 5r96
1 1 1 5Also we notice that x q yx q sq . Such an identity can occur only in this parafermionic model˜ ˜, ,2 2 2 2

since it requires cs0.˜
A : – no combinations factorize and the only factorizable single characters are6

y y� 4 � 43 m;7ym;73 77 7x q sh , ms1,2,3. 45Ž . Ž .˜ ˜ y y1,m 1,m � 4 � 41 3m;21y3m1 21
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Ž .Summarizing these data, we see that, apart from the A case, none of the factorizable combinations of1
Ž . A nŽ .characters provided by Eq. 34 for A can be identified as J x,q . However, it is plausible to speculate thatn

A nŽ .in general the J x,q might be identifiable as characters of other conformal models having the central charge
Ž . Ž .2nr nq3 . This conjecture is supported by the A case see Table 2 and A case, in which we can identify2 3

J A3 q sx 12 q qx 12 q . 46Ž . Ž . Ž . Ž .ˆ ˆ3 9

To conclude the discussion on factorizable parafermionic characters, we notice an intriguing fact – some
Ž .characters in the A case exhibit an E structure cf. Tables 2 and 3 :7 7

28 8 4,5x q qx q s x q ,Ž . Ž . Ž .˜ ˜ Ž .0,1 0,3 2,1

28 8 4,5x q qx q s x q ,Ž . Ž . Ž .˜ ˜ Ž .1,1 1,3 2,2

28 8 8 4,5 4,5x q "2 x q qx q s x q "x q ,Ž . Ž . Ž . Ž . Ž .˜ ˜ ˜ Ž .0,0 0,2 0,4 1,1 1,4

28 8 8 4,5 4,5x q "2 x q qx q s x q "x q .Ž . Ž . Ž . Ž . Ž .˜ ˜ ˜ Ž .1,0 1,2 1,4 1,2 1,3

This is the first case in which we have to combine three characters in order to obtain a factorized form. A more
detailed account on the factorization of A -related characters will be presented elsewhere.n

3. One particle states

1q� 4 Ž . ŽyThe functions x and can be written as double series in q with coefficients being PP n,m or� 4y x y

Ž .. Ž .QQ n,m – the number of partitions of an integer nG0 into m distinct or smaller than mq1 non-negative
Ž w x.integers see e.g. 13,4 .

Ž .Applying this fact to a character of the type 2 with x /x , we obtain it in the form of a seriesi j
Ž . ` k i a Žx q sÝ m q , where the level k admits the partitioning, ksÝ Ý p , into parts of a specific form e.g.ks0 k a i aa

Ž . Ž . . i a47 and 48 below . The interpretation of the p as momenta of massless particles gives rise to aa
Ž Ž . w x.quasi-particle picture developed originally for characters of the form 1 in Ref. 3 , where a character is

Ž . yb Ek y2 pb Õr Lregarded as a partition function, x q sÝ m e . Here qse , with Õ being the speed of sound, andk k

L – the size of the system. A quasi-particle spectrum constructed in this way is in one-to-one correspondence to
the corresponding irreducible representations of the Virasoro algebra or some modules related to linear
combinations. It is crucial to stress that this procedure is not applicable to the standard representation of the

Ž Ž .. Ž . Ž .characters i.e. of the type 10 and is a very specific feature of the representations 1 and 2 . Note that the
Ž . Žmodules which are of the form 1 do in general if they do, they give rise to Rogers–Ramanujan type identities

w x. Ž .4 not factorize, such that the spectra related to 2 do not only differ in nature from the ones obtainable from
Ž .1 , but are also related to different sectors.

As just explained, a quasi-particle representation can be constructed for any factorizable character of the type
Ž . Ž .2 provided that x /x . For instance, the characters 27 related to a compactified boson admit a representa-i j

Ž .tion with 2kq1 particles. However, since we are particularly interested in spectra with Lie algebraic features,
g Ž .it is most natural to perform the quasi-particle analysis for the characters which admit the form J x,q . In

Ž Ž ..this way we obtain the following fermionic spectrum if we employ the series involving PP n,m in the units of
2prL

h h
1 ii q 1ym q q1 Np m sx q , 47Ž .Ž . Ž .a a2a a ž / ž /4 2
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Table 4
5,6Ž . 5,6Ž .Bosonic spectrum for x q q x q . k denotes the level and m its degeneracy1,2 1,4 k

5 i 3 5 ii ik m p s1q , p s qk 1 22 2 2

1 0 –-2
0< :1 1 p1

3 0< :1 p22
0 0< :2 1 p , p1 1

5 0 0< :1 p , p1 22
0 0 0 0 0< : < :3 2 p , p , p , p , p1 1 1 2 2

7 0 0 0 1< : < :2 p , p , p , p1 1 2 12
0 0 0 0 0 0 0 1< : < : < :4 3 p , p , p , p , p , p , p , p1 1 1 1 1 2 2 2

Ž Ž ..or bosonic spectrum if we use the series with QQ n,m

h
ii q1 Np sx q . 48Ž .aa a ž /2

Ž . iHere x,m and N parameterize the possible states. In Eq. 47 the numbers N are distinct positive integers sucha
m a i Ž .that Ý N sN , whereas in Eq. 48 they are arbitrary non-negative integers. Notice that for the combinationis1 a a

of characters the levels may be half integer graded, such that also the momenta take on half integer values in
this case. A sample spectrum is presented in Table 4 which illustrates how the available momenta of the form
Ž .48 are to be assembled in order to represent a state at a particular level.

Naturally the questions arise if we can interpret these spectra more deeply and if we can possibly find
alternative representations for the related modules. First of all we should give a meaning to the particular

w xcombinations which occur in our analysis. In Ref. 4 we provided several possibilities. In particular the
5,6Ž . 5,6Ž .combination x q qx q is of interest in the context of boundary conformal field theories, since this1,2 1,4

combination of characters coincides with the partition function Z for the critical 3-state Potts model withA, F
w x Ž .boundaries 14 F denotes the free boundary condition . It is intriguing that this combination possesses a

5,6Ž . 5,6Ž .manifestly Lie algebraic quasi-particle spectrum. The combination x q qx q , which coincides with2,2 2,4

Z in the same model possesses a slightly weaker relation to A .BC, F 2

To answer the question concerning possible representations, we recall the fact that the fields corresponding to
w xthe highest weight states satisfy the quantum equation of motion of Toda field theory 15 . It is therefore very

w x g Ž .suggestive to try to identify the presented spectra in terms of the W-algebras 16 . For J q we can make this
Ž .more manifest. Changing the units of the momenta to prL, we obtain from 48

pi se q1q hq2 N i . 49Ž . Ž .a a a

Here e belongs to the exponents of the Lie algebra. Since the generators of the W-algebras W are graded bya sq1
w xthe exponents plus one 17 , we may associate the following generators to this quasi-particle spectrum

N ii ap ;W W W . 50Ž . Ž .a a a rya

In particular, the critical 3-state Potts model with boundaries would be related to the W -algebra. We leave it for3

the future to investigate this conjecture in more detail.
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