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Abstract

We demonstrate that certain Virasoro characters (and their linear combinations) in minimal and non-minimal conformal
models which admit factorized forms are manifestly related to the ADE series. This permits to extract quasi-particle spectra
of a Lie algebraic nature which resembles the features of Toda field theory. These spectra possibly admit a construction in
terms of the W,-generators. In the course of our analysis we establish interrelations between the factorized characters related
to the parafermionic models, the compactified boson and the minima models. © 1999 Elsevier Science B.V. All rights
reserved.

1. Introduction

It is well known, that a large class of off-critical integrable models is related to affine Toda field theories [1]
or RSOS-statistical models [2], which possess a rich underlying Lie algebraic structure. Since these models can
be regarded as perturbed conformal field theories, it is suggestive to recover the underlying Lie algebraic
structure aso in the conformal limit. Of primary interest is to identify the conformal counterparts of the
off-critical particle spectrum. One way to achieve this is to analyze the quasi-particle spectrum, which results
from certain expressions of the Virasoro characters x(q) or their linear combinations. Hitherto this analysis was
mainly performed [3] for formulae of the form

ql YAl+B-I
x(Q) =) —————. )
| (q)|1...(q)|r

Here r isthe rank of the related Lie algebra g, the matrix A coincides with the inverse of the Cartan matrix, B
characterizes the super-selection sector, (q),: =IT,_,(1—g"), and there may be certain restrictions on the
summation over |. Following the prescription of [3] one can always obtain a quasi-particle spectrum once a
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character admits a representation in the form of Eq. (1). It should be noted that such spectra can not be obtained
form the standard form of the Virasoro characters (10).

In the following we will demonstrate that one also recovers Lie algebraic structures in certain Virasoro
characters or their linear combinations which admit the factorized form

qconST . . - /. VAR T
—{Xg . axa)y IXG Xy (2)

{1}

where we adopt the notations of [4]

{x}yi:=k11(1iqx+kv), (xaieixddi= TT ()5 -

In many cases (see [4,5] for details) expressions of the type (2) can be rewritten in the form (1), but now A is
entirely absent or, at most, is a diagonal matrix. There are no restrictions on the summation over |, and we allow
terms of the form (qY), in the denominator (which may be regarded as an anionic feature [5]).

Unlike the conventional form for the Virasoro characters (10), formulae (1) and (2) alow to extract the
leading order behaviour in the limit g — 1~ by means of a saddle point analysis, see e.g. [3,5]. For a dightly
generalized version of (1), in the sense that all (q), are replaced by (gY),, this anadysis leads to

r 6 r
(A +AD
z/=11(1-2) o Ceff=_2_z L(z). (3)
=1 YT~ i-1

This means solving the former set of equations for the unknown quantities z;, we may compute the effective
central charge thereafter by means of the latter equation in terms of Rogers dilogarithm L(x). Recall that the
effective central charge is defined as cy; = ¢ — 24K, where IV is the lowest conformal weight occurring in the
model. There exist inequivalent solutions to Egs. (3) leading to the same effective central charge corresponding
either to the form (1) or (2). When treating these equations as formal series, such computations give a first hint
on possible candidates for characters.

Alternatively, with regard to factorization, we can exploit the essential fact that the blocks {x}," are closely
related to the so-called quantum dilogarithm and we can easily compute their contributions to the effective
central charge. As explained in Ref. [4], each block ({ x}y‘)il and ({ x};)il in expressions of type (2)
contributes

1
i ~ 1
2y
respectively. In the course of our argument, i.e. when we consider the difference of the Virasoro characters, we
will also need the notion of the secondary effective central charge
¢=1-24h", (5)
where h’ is the next to lowest conformal weight occurring in the model.

(4)

1

2. ADE structure

Let g bealLiealgebraof rank r and h be its Coxeter number. We define the following function related to g

const
q

B )=y (6)

{X4.. % }n
—+1
2
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Table 1

Effective central charges for minimal affine Toda field theories

g AD DY & £ Ep 3
Ceft iy 1 3 15 3 i3

with x obeying the condition
X+ X4,_,=h/2+1, a=1,. , (7)

and for odd r we put X..: =} "+ 1. Our aimisto find conformal models such that their characters or possibly
linear combinations coincide W|th (6) for appropriately chosen gq®™ and x. Such conformal models have
quasi-particle spectra, generated by (6) for the related sectors, with the number of different particle species equal
to the rank r.

The question arises for which conformal models can we expect (6) to be a character? Exploiting (4), we

readily find the corresponding effective central charge

2r 2r? g
h+2 dimg+r"’ (8)
On the other hand, the analysis of the ultra-violet limit of the thermodynamic Bethe ansatz [6] for the ADE
related minimal scattering matrices of affine Toda field theory leads to the following effective central charges
(see Table 1).

Thus, we see that, upon substitution of the related Lie algebraic quantities * of the simply laced algebras (see
eg. [7D, Eqg. (8) recovers all the effective central chargesin Table 1. Furthermore it turns out that for g from this
table corresponding to minimal models or ¢ = 1 models we are aways able to identify several = ¢(x,q) with
single Virasoro characters or specific linear combinations of them.

In addition, there exist characters which exhibit even stronger Lie algebraic features. They are given by (6)
with the values of x, chosen as follows (which is a particular case of (7))

2x,—1=e,, a=1,...,r, (9)
where {e,} stands for the set of the exponents of the Lie algebra g. We denote this particular character as
Z9(q).

2.1. Minimal models

Car( Q) =

The minimal models[8] are parameterized by apair (s,t) of co-prime positive integers and the corresponding
central charge is c(st)=1— 6(5 V*. Labeling the highest weights as h3t, = ‘MZ, with the

restricions 1<n<s—1and 1< m< t —1, the usual form of the characters of |rredUC|bIe highest weight
representations reads [9]

Xn m(q) _ nnm Z qs,tk (qk(nt ms)_qk(nt+ms)+nm) (10)

k= — o
c(s,t)

Here we abbreviated the ubiquitous factor 7y, = g~ %" /{1}; by an analogy with the eta-function. The
(secondary) effective central charge is easy to find (see e.g. [4])

6 24
Ceﬂ(S,t)=1—§, 6(S,t)=1—g. (11)

% For a twisted affine Lie algebra of type X{ one introduces h — the Coxeter number and h® = kh. We should use h in (8) for AQ.
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Thus, the values of ¢y which are less than 1 can be matched as follows

Carr ( AD) = Cerr (ESY) = C(3.4) (12)
Cur ( A) = Cu(5.6) = €ur (3:10) = 0y (2,19), (13
Carr ( E6”) = Cetf (6,7) = Crs(3,14) = c(2,21) (14)
Car (EV) = Cart(4.5) (15)
Car( A) = (2,20 + 3) . (16)

We see, that the matching is, in general, not unique. For (16) it depends on n — the first non-unique
representations occur for n=6 and n=9 and coincide with (13) and (14), respectively. Therefore we might
have for instance relations between AP ~ A2 and E{Y ~ AQ). Some of these apparent ambiguities are easily
explained as the consequence of a symmetry property of the characters. For instance we observe that Eg. (10)
possesses the symmetry: x25H(q) = x2ot(q), for instance x£3(q) = x229(a).

Of course Egs. (12)—(16) are only to be understood as a first hint on a possibility for characters in the
corresponding models to be of the form 5 9(x,q). In order to make the identifications more precise, we have to
resort to more stringent properties of the characters. We shall be using previously obtained results [4,10] on
representation of characters of minimal models in the form (2). In Ref. [10] it was proven, that for M = 0 and
x; # X; for i #j in (2) the only possible factorizable single characters are

Xam () = nam' {nm;nt;nt — nm} .. (17)
xont(q) = nent{2nt;nm;2nt — nm},, {2nt — 2nm;2nt + 2nm} 4, . (18)

Combining now characters in a linear way, the property to be factorizable remains still exceptional. It was
argued in Ref. [4] that

Xn, m(q) +Xnt m(q) (19)

are the only combinations of characters in the same model which have a chance to acquire the form (2) with
reasonably small N and M. The limit g — 1~ of the upper and lower signsin (19) is governed by cy; and €,
respectively, which can be seen form their properties with respect to the S-modular transformation [4].

The following factorizable combinations of type (19) where found in Ref. [4]

ant ot ant _(nt)  (nt—2nm nt+2nm)*
Xnm(q)iXZn,’m(q)_nnm{nm;nt_nm}nt E nt 4 ; 4 nt, (20)
2
4n,t 4n,t 4n,t nt nt )
Xnm(q) X3n, m(q) Th,m E E nm;nm; nt , (21)
2
_(nt nt nt
R () A = nf (ot { o o) (22)
nt

Xont(q) — xame(q) = 2% nt;nm;nt — nm}, {nt — 2nm;nt + 2nm} ,,,, . (23)
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Table 2
Representation of characters in the form of (6) and for differences of the type (23) in the form (24). The replacement of the blocks {x}~
typed in bold by {x}* yields the corresponding differences of characters

g sectors {xs5 o}y
Eg X2t {2;3,4;5;11;12;13,;14) ;¢
x5 {1,3,5,7;9;11;13;15} ;¢
x5 {1,4,6,7,9;10,12;15};
A x5 {1},
E X271 {1:3:4,5:6,7:9%
X33 {1,2.35,7:8,9,
A, Xis + X4 1.3,
X35 + X34 (51252
XIT ~ XTh {2810
/\/25,16 - XZS,E? {4;6}10
B X3+ X3t (1:3:3:4:3:6)7
X33+ X473 (1,325,368}
X33+ Xig (323457},
x]; - Xis (2:3:41011,12);,
e Qi
X13 ~ X14 {2,5,6;8,9;12};,
G, Xi3 L3y
Fy xif {2:345);
Xis (134,67
Xi3 {1,25:6);

Remarkably, as we demonstrate in Table 2, all identifications presented in (12)—(16) can be redized in terms
of characters with the help of (17)—(23). In particular, we identify & 9(q) with the following characters

EX(a) =x5(a), EM () =xiTi%(a),

E®'(a) =x25(a) +x25(a) = x23°(a) + x5°(a) ,

E(a) = x$(a) + x5{(a) = x3* () + x35 (),

ES () =xsi(a). F%'(q) = x35(a).
Since these identifications hint on the connection with massive models, i.e. affine Toda field theories, it is
somewhat surprising that also the non-simply laced algebras G, and F, occur in Table 2 *. No connection is
known between G,- and F,-affine Toda models and (3,4) and (2,7) minimal models, respectively. At present it

seems to be just an intriguing coincidence.
It is interesting to notice that, as seen from Table 2, the differences of type (23) can also be of the form
qCOFISt
_— . (24)
{X; % )
For instance, x;7(q) — x;2(q) correspondsto b= 2h + 4, x, = 2(e, + 1), and x{5(q) — x;¢(q) corresponds
tob=h+2, x,=e,+ 1, where h and {e,} are the Coxeter number and exponents of A, and E;, respectively.

* We thank W. Eholzer for pointing out to us that our formulae in Ref. [5] may include 5 ®2(q) = x{4(q) and 5 F4(q) = x2J(q) as
well.
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Eg. (6) does not exhaust all manifest Lie algebraic functions in which combinations of characters of the type
(19) can be represented. For instance, the following representation

h+2
8

4

h+2}+

Eg w, — const _ 25
(w,q) =4 (W (25)

2

with w obeying the condition w, + w, _, =h/2 + 1 also occurs (see Table 3).

2.2. Compactified free Boson

In general the Fock space of a free boson may simply be constructed from a Heisenberg algebra and the
corresponding Virasoro central charge equals ¢ = 1. The character of the Heisenberg module (U(1)-K ac—Moody)
is simply the inverse of the n-function, q~*/**/{1},. When compactifying the boson on a circle of rational
square radius R= y/2s/t one can associate highest weight representations of a U(l)k Kac—Moody algebra to
this theory. The U(l)k algebra has an integer level, which is k = st. The corresponding characters read [7]

Xm(0) = i Z a4 ™ = A 2K}l k= mik+ m) (26)

|=—x

where we denoted 7X: = g~ % /{1} ;. The highest weight may take on the values h% = ™ with m=0,1,...,k
-1

As Table 1 indicates, the D,-affine Toda models are related to compactified bosons. In order to recover the
D,-structure at the conformal level, we shall find redlizations of = °r(q) in terms of (26). Similar to the case of
minimal models, it will be helpful to study factorization of (combinations of) the Kac—Moody characters.

First, choosing the constant in (6) as hy ,, — >3 we identify for even n

+

=°(a) - nn/z%ﬁn”/z{n}n{g}g"?;n"/z{Zn}zn{g}n - R0 (21)
2,

Formally this expression also holds for odd n, albeit in this case the right hand side may not be interpreted as
the character related to a compactified boson. Therefore we need another way to construct = °r(q) in case n is
odd. For this purpose we consider the combinations yn(q) + x,".(q) which are analogues of (19). In
particular, the g — 1~ limit of these sums and differences is governed by c4 = c =1 and €. According to (5)
and the possible values for the highest weights we have €=1—6/n.

Table 3
Representation of characters in the form of (25). For the arguments in bold the same convention applies as in Table 2, including the
numerator

g sectors {wpoow_q}y
Ay Xt + xis 1

3. 7 13 17
E; Xf,'ls + Xf'f 3:2,3:5:8% o

X1z + xi5 Gz
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Exploiting the identity (2.31) obtained in Ref. [4], we find (for 0<m< n/2)
. . . ny - (n m n my £
R R () =8 { 5 )03~ 55 T 70 (28)

The counting, based on (4), gives the expected values of ¢ and €. Notice that for the upper sign ther.h.s. can be
identified as the product side of (26):

Xm(4) + Xa-m(9) = Xm/2(Q) - (29)
Comparison with (27) then yields a formula for = °r(q) valid for both odd and even n
EP(q) =x"(a) + xsn(a) - (30)

Findly, it is interesting to observe that, employing (17)—(20), we may express (26) and (28) entirely in terms
of the minimal Virasoro characters:

o S"(q)
o o S”(q)
Xm(q) anfm(q):(Xl m(q) X2, m( )) (q) (32)

Here n=61+ 1, | N if we redly regard all components on the r.h.s. as characters of irreducible Virasoro
representations. This restriction can be omitted if we regard (17)—(20) just as formal series. With regard to the
central charge Egs. (31)-(32) imply

Cerr( DY) = Ct (3,N) + Cgr(2,3n) — Ce(2,10) . (33)

Thus, the connection with minimal models is more subtle than one would expect at first sight from a simple
matching of the central charges, e.g. 4 (D) = 2¢4(3,4).

2.3. Parafermions

The A-series of affine Toda theories is known to be related in the ultra-violet limit (see e.g. [6]) to the
Z,. 1 paraferm|ons [11]. The corresponding central charge, c(k) =2(k—1)/(k+ 2) and characters may be
obtained from the SU(Z)k 1/U(l) -coset, where k= n + 1. Introducing the quantity AX =j(j +1)/(k+2) —
m?/k the characters of the highest weight representation, which appear as branchi ng funct|ons in the coset,
acquire the form [12]

~k o0
- nj,m r+s rr+l) s(s+1)
G =% T (- e z
1 r,s=0
(qr(j+m)+s(j7m)_qr(k+1fjfm)+s(k+17j+m)+k+172j) (34)

where 7 n =14 Afn= 24)/{1}1 The labels are restricted as —j <m<k—j, O<j <k/2and (j—m)eZ In
partlcular the o k (q) are the characters of the parafermionic currents X. The characters possess the
symmetries

)?jl,(m(Q) :/l{/jl,(—m(q) Z)?kk/Z—j,k/Z—m(q) . (35)
From our observations made above for characters of the ADE related conformal models one may expect that
expressions (34) exhibit A -type structures (e.g. possess n quasi particles and moreover acquire the form of the

type Z"(q)) in some of the cases when they admit a factorized form. We shall now discuss this issue in detail
for several of the lowest ranks.
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As we have seen above, factorization of linear combinations of characters occurs usually only for the specific
type of combinations. Now the analogue of (19) is )?jfm(q) + )?j,ka,m(q). One expects that the g — 1~ limit of
these sums and differences is governed by cy = c(k) and €, respectively. Since h' = Af,, Eq. (5) yields
€ =c(k)(k—6) /k. This is confirmed by all the examples given below.

For the parafermionic formulae (34) we do not have such powerful analytical tools (analogues to the
factorization formulae (17)-(23) ) at hand as in the case of the minimal models. Therefore, as a first step, we
resort to an analysis with Mathematica. Typically we expand the characters up to g'%.

A;: In this case there are only three distinct (up to the symmetries (35)) characters and they can be matched
with those of the (3,4) minimal model:

X6o(Q) =x27(a), X§i(a) = x5(a), (36)
¥ 1(a) =xiz(a) = E"(a). (37)

Thus, all the characters in this case are factorizable and moreover = "1(q) is present among them.
A,: There are four distinct characters in this case and they can be matched with those of the (5,6) minimal
model:

Xoo(@) =xr7(a) + xr5(a), Xou(a) = xr5(a), (38)
¥ia(a) =x23(a), ¥ a(a) =x2r(a) + x25(0) - (39)

Only ¥5.(@) and %2 .(q) are factorizable (see subsection I1.A).
Ag: Since c = 1, it is suggestive to try to relate the characters to those of the compactified bosons. This turns
out to be possible for all the characters (thus factorizability is guaranteed):

Xo1(a) = X:°(9),  Xoo(A) + Xo2(a) = X5(q), (40)
X10() =x3(q), Xiia)=x3(q), (41)
Xia(a) =Ri(a). ¥1a(a)=ks(a). (42)

Furthermore, some of linear combinations can be expressed in terms of the characters of the (3,4) minimal
model (noticethat c=1, €= —1/2for A; and c=1/2, €= —1 for the (3,4) minimal model):

~ ~ -1
Xé,o( d) — Xoo(9) = (X1324(Q)) ,
X11(9) £ %1 s(a) = (x25(a) Fxis(a)
2'2 2'2
A,: No characters or linear combinations factorize.

A.: Several characters and combinations are factorizable and can be expressed via those of the (3,4) minimal
model and D, for instance

() = X2z (a) (%' (a) — x5 (),
X 2(a) = x25(a) (X' (a) — xis(a)).
X01() £ Xo2(a) = (x1(a) £ x25(a))(xs*(a) F xis (a)).
}ia(0) + xi2(a) = (x27(a) £ x25()(xé*(a) F x3(a))-
Also we notice that ¥ 1(q) — ¥2 s(q) = g*°. Such an identity can occur only in this parafermionic model

since it requires ¢ = 0.
Ag: — no combinations factorize and the only factorizable single characters are

{3}s {m7—m7},
(1}, {3m;21-3m},,

(43)
(44)

-1

~7

il,m(q) = T’l,m m= 11213' (45)
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Summarizing these data, we see that, apart from the A, case, none of the factorizable (combinations of)
characters provided by Eq. (34) for A, can be identified as = *+(x,q). However, it is plausible to speculate that
in general the Z *(x,q) might be |dent|f|ableas characters of other conformal models having the central charge
2n/(n+ 3). This conjecture is supported by the A, case (see Table 2) and A, case, in which we can identify

E%(q) = 23%(q) + x5°(q) - (46)

To conclude the discussion on factorizable parafermionic characters, we notice an intriguing fact — some
characters in the A, case exhibit an E, structure (cf. Tables 2 and 3):

X01(Q) + X55(a) = (X (q))
X11(9) + X1a(q) = (ng(q))
%80() + 2%8,(a) + ¥8u(a) = (x9(a) + xi2(a))

REo(a) £ 278,(q) + ¥84(a) = (x£2(a) + x45(q))’.

This is the first case in which we have to combine three characters in order to obtain a factorized form. A more
detailed account on the factorization of A, -related characters will be presented elsewhere.

3. One particle states

The functions {x}; and 5~ can be written as double series in q with coefficients being 2(n,m) (or
@(n,m)) — the number of partitions of an integer n> 0 into m distinct (or smaller than m+ 1) non-negative
integers (see e.g. [13,4)).

Applying this fact to a character of the type (2) with x; # X;, we obtain it in the form of a series
x(@) =Xi_, m g, where the level k admits the partitioning, k = Z Y pa, into parts of a specific form (e.g.
(47) and (48) below). The interpretation of the p,» as momenta of massless particles gives rise to a
quasi-particle picture (developed originally for characters of the form (1) in Ref. [3]), where a character is
regarded as a partition function, x(q) = £, u,.e #5. Here q=e 27#*/L with v being the speed of sound, and
L — the size of the system. A quasi-particle spectrum constructed in this way is in one-to-one correspondence to
the corresponding irreducible representations of the Virasoro algebra or some modules related to linear
combinations. It is crucia to stress that this procedure is not applicable to the standard representation of the
characters (i.e. of the type (10)) and is a very specific feature of the representations (1) and (2). Note that the
modules which are of the form (1) do in general (if they do, they give rise to Rogers—Ramanujan type identities
[4]) not factorize, such that the spectra related to (2) do not only differ in nature from the ones obtainable from
(1), but are also related to different sectors.

As just explained, a quasi-particle representation can be constructed for any factorizable character of the type
(2) provided that x; # x;. For instance, the characters (27) related to a compactified boson admit a representar
tion with (2k + 1) particles. However, since we are particularly interested in spectra with Lie algebraic features,
it is most natural to perform the quasi-particle analysis for the characters which admit the form 5 9(x,q). In
this way we obtain the following fermionic spectrum (if we employ the series involving .%2(n,m)) in the units of
2m7/L

pa(m) =x, + (2+%)(1—ma)+(g+l N, (47)
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Table 4

Bosonic spectrum for x5(q)+ x22(q). k denotes the level and w, its degeneracy

k ™ Pi=1+3, pa=3+%
2 0 —

1 1 IpD>

3 1 PS>

2 1 |p?, pD>

3 1 P2, p3)

3 2 2,022, | p2. p2)

3 2 |p?.pi P3), | PD)

4 3 [P, P2 P2 P> P2, P2, P2, I P2

or bosonic spectrum (if we use the series with @(n,m))
_ h .
p;=xa+(5+1)N;. (48)

Here x,m and N parameterize the possible states. In Eq. (47) the numbers N, are distinct positive integers such
that X", N! = N,, whereas in Eq. (48) they are arbitrary non-negative integers. Notice that for the combination
of characters the levels may be half integer graded, such that also the momenta take on half integer values in
this case. A sample spectrum is presented in Table 4 which illustrates how the available momenta of the form
(48) are to be assembled in order to represent a state at a particular level.

Naturally the questions arise if we can interpret these spectra more deeply and if we can possibly find
alternative representations for the related modules. First of al we should give a meaning to the particular
combinations which occur in our analysis. In Ref. [4] we provided several possibilities. In particular the
combination x;2(q) + x5(q) is of interest in the context of boundary conformal field theories, since this
combination of characters coincides with the partition function Z,  for the critical 3-state Potts model with
boundaries [14] (F denotes the free boundary condition). It is intriguing that this combination possesses a
manifestly Lie algebraic quasi-particle spectrum. The combination x35(q) + x55(q), which coincides with
Zgc ¢ in the same model possesses a slightly weaker relation to A,.

To answer the question concerning possible representations, we recall the fact that the fields corresponding to
the highest weight states satisfy the quantum equation of motion of Toda field theory [15]. It is therefore very
suggestive to try to identify the presented spectrain terms of the W-algebras [16]. For & %(q) we can make this
more manifest. Changing the units of the momenta to 7 /L, we obtain from (48)

pi=e,+1+(h+2)N.. (49)

Here e, belongs to the exponents of the Lie algebra. Since the generators of the W-algebras W, ; are graded by
the exponents plus one [17], we may associate the following generators to this quasi-particle spectrum

p; ~ Wa( Wavvr—a) N : (50)

In particular, the critical 3-state Potts model with boundaries would be related to the W;-algebra. We leave it for
the future to investigate this conjecture in more detail.

Acknowledgements
We would like to thank W. Eholzer for useful discussions. A.B. is grateful to the members of the Institut fur

Theoretische Physik, FU-Berlin for hospitality. A.F. is grateful to the Deutsche Forschungsgemeinschaft
(Sfb288) for partial support.



A.G. Bytsko, A. Fring / Physics Letters B 454 (1999) 59-69 69

References

[1] A.V. Mikhailov, M.A. Olshanetsky, A.M. Perelomov, Commun. Math. Phys. 79 (1981) 473; G. Wilson, Ergod. Th. Dyn. Syst. 1
(1981) 361; D.I. Olive, N. Turok, Nucl. Phys. B 257 (1985) 277.

[2] G. Andrews, R. Baxter, P. Forrester, J. Stat. Phys. 35 (1984) 193.

[3] R. Kedem, T.R. Klassen, B.M. McCoy, E. Méelzer, Phys. Lett. B 304 (1993) 263; B 307 (1993) 68.

[4] A.G. Bytsko, A. Fring, Factorized Combinations of Virasoro Characters, hep-th /9809001 (1998).

[5] A.G. Bytsko, A. Fring, Nucl. Phys. B 521 (1998) 573.

[6] T.R. Klassen, E. Melzer, Nucl. Phys. B 338 (1990) 485.

[7] V.G. Kac, Infinite dimensional Lie algebras, CUP, Cambridge, 1990.

[8] A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov, Nucl. Phys. B 241 (1984) 333.

[9] B.L. Feigin, D.B. Fuchs, Funct. Anal. Appl. 17 (1983) 241; A. Rocha-Caridi, in: J. Lepowsky et a. (Eds.), Vertex Operators in
Mathematics and Physics, Springer, Berlin, 1985.

[10] P. Christe, Int. J. Mod. Phys. A 6 (1991) 5271.

[11] V.A. Fateev, A.B. Zamolodchikov, Sov. Phys. JETP 62 (1985) 215; Nucl. Phys. B 280 (1987) 644.

[12] V.G. Kac, D. Petersen, Adv. Math. 53 (1984) 125; J. Distler, Z. Qiu, Nucl. Phys. B 336 (1990) 533.

[13] G.E. Andrews, The Theory of Partitions, CUP, Cambridge, 1984.

[14] JL. Cardy, Nucl. Phys. B 324 (1989) 581.

[15] A. Bilal, J.L. Gervais, Nucl. Phys. B 318 (1989) 579; Z. Bajnok, L. Palla, G. Takacs, Nucl. Phys. B 385 (1992) 329; T. Fujiwara, H.
Igarashi, Y. Takimoto, Phys. Lett. B 430 (1998) 120; Y. Takimoto, H. Igarashi, H Kurokawa, T. Fujiwara, ‘‘ Quantum Exchange
Algebra and Exact Operator Solution of A,-Toda Field Theory’’, hep-th,/9810189.

[16] V.A. Fateev, S.L. Lukyanov, Int. J. Mod. Phys. A 3 (1988) 507; Sov. Phys. JETP 67 (1988) 447.

[17] V.A. Fateev, A.B. Zamolodchikov, Int. J. Mod. Phys. A 5 (1990) 1025.



