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1. Introduction

Supersymmetry is a natural concept in particle physics changing bosons into fermions and

vice versa in a well controlled manner. The original idea traces back over thirty years and its

discovery is attributed to Golfand and Likhtman [1]. Initially the understanding was mainly

developed in the context of string theory [2, 3, 4], where supersymmetry plays the important

role of a two-dimensional symmetry of the world sheet. Thereafter it became a more

widely, albeit not universally, accepted principle when the two dimensional symmetry was

generalized to four dimensions for the Wess-Zumino model [5]. Whereas most symmetries

lead to trivial scattering theories, as a consequence of the Coleman-Mandula theorem [6],

supersymmetry is a very special one in the sense that it can be present and still does

not prevent the theory to be non-trivial. This holds even in higher dimensions. Hence,

supersymmetry is regarded as one of the concepts worthwhile studying in 1+1 dimensions

as it might even have a direct bearing on higher dimensional theories.

The first scattering matrices for N=1 supersymmetric integrable quantum field theo-

ries in 1+1 dimensions were constructed by Witten and Shankar in the late seventies [7]

for theories with degenerate mass spectra. In a systematic manner these results were gen-

eralized by Schoutens twelve years later to theories with non-degenerate mass spectra [8],

see also [9]–[14]. S-matrices for some specific cases of N = 2 supersymmetric theories
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were constructed by Köberle and Kurak [15] in the late eighties and thereafter general-

ized [16, 17, 18]. Up to now all the constructed S-matrices invariant under supersymmetry

involve exclusively stable particles in their spectra.

Even though it has been commented upon the occurrence of unstable particles in

integrable quantum field theories in 1+1 dimensions as early as the late seventies [19], only

recently such type of theories have been investigated in more detail. There is a particularly

interesting class of models, the homogeneous sine-Gordon models, for which the spectrum

of unstable particles can be associated directly to a classical lagrangian. It is these model

we deal with in this manuscript. For such type of theories scattering matrices have been

constructed [20, 21, 22], their ultraviolet behaviour has been analyzed by means of the

thermodynamic Bethe ansatz [23]–[27] and also form factors have been constructed which

were used to compute correlation functions needed in various quantities [28]–[31].

The purpose of this note is to propose and analyze the class of scattering matrices

associated to the homogeneous sine-Gordon models which are invariant under supersym-

metry transformations and contain besides stable particles also unstable particles in their

spectra.

Resonances can also be introduced by an analytic continuation of the effective coupling

constant [32]–[42]. We shall only briefly comment on these models as their supersymmetric

version is trivial to obtain, albeit it would be interesting to investigate their renormalization

group flows, whose interpretation is less direct as for the homogeneous sine-Gordon models.

The manuscript is organized as follows: in the next section we briefly recall some of

the main features of N = 1 supersymmetry relevant for the development of a scattering

theory. In section 3 we present the bootstrap construction for supersymmetric theories

and in section 4 a proposal which implements in addition unstable particles into such

type of theories. In section 5 we investigate the ultraviolet limit for some of the proposed

S-matrices. The conclusions are stated in section 6.

2. N = 1 supersymmetry, generalities

We commence by fixing the notation and briefly recall the key features of N = 1 supersym-

metry which will be relevant below. The prerequisite for a supersymmetric theory is the

existence of two conserved supercharges Q and Q̄ together with a fermion parity operator

Q̂. The N = 1 superalgebra obeyed by these charges reads in general

{Q̂,Q} = {Q̂, Q̄} = 0 , Q2 = P1 , Q̄2 = P−1 , Q̂2 = I and {Q, Q̄} = T , (2.1)

where P±1 are charges of Lorentz spin ±1 and T is the topological charge operator. Here we

restrict ourselves to the case T = 0 (see [8] for some examples with T 6= 0). Next we note

that in a massive N = 1 supersymmetric theory one can arrange all particles in multiplets

(bi, fi) with internal quantum numbers 1 ≤ i ≤ ` containing a boson bi and a fermion fi
with equal masses mbi = mfi = m

i
. An asymptotic boson or fermion is characterized by a

creation operator Zµj (θ) depending on the rapidity θ, which parameterizes the momenta

as p0 = m cosh θ, p1 = m sinh θ. In agreement with (2.1), one [7, 8] can specify the action
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of the charges on asymptotic n-particle states. In particular, on a one-particle asymptotic

state they act as

Q
∣

∣Zµj (θ)
〉

in/out
=
√
mje

θ/2
∣

∣Zµ̂j (θ)
〉

in/out
for µ = b, f ; 1 ≤ i ≤ ` , (2.2)

Q̄
∣

∣Zµj (θ)
〉

in/out
= i(−1)Fµj√mje

θ/2
∣

∣Zµ̂j (θ)
〉

in/out
for µ = b, f ; 1 ≤ i ≤ ` , (2.3)

Q̂
∣

∣Zµj (θ)
〉

in/out
= (−1)Fµj

∣

∣Zµj (θ)
〉

in/out
for µ = b, f ; 1 ≤ i ≤ ` , (2.4)

where we defined

µ̂ =

{

b for µ = f

f for µ = b
and Fµ =

{

1 for µ = f

0 for µ = b .
(2.5)

For the generalization to an action on n-particle asymptotic states one defines

Q(n) =

n
∑

k=1

(

k−1
⊗

l=1

Q̂l

)

Qk , Q̄(n) =

n
∑

k=1

(

k−1
⊗

l=1

Q̂l

)

Q̄k , Q̂(n) =

n
⊗

k=1

Q̂k . (2.6)

As we want to construct two-particle scattering amplitudes, we require in particular the

action of these charges on two-particle states. From the above definitions one obtains

Q̂(2)
∣

∣Zµj (θ)Zνk(θ
′)
〉

in/out
= eiπ(Fµj+Fνk)

∣

∣Zµj (θ)Zνk(θ
′)
〉

in/out

Q(2)
∣

∣Zµj (θ)Zνk(θ
′)
〉

in/out
=
√
mje

θ
2

∣

∣Zµ̂j (θ)Zνk(θ
′)
〉

in/out
+
√
mke

θ′

2

∣

∣Zµj (θ)Zν̂k(θ
′)
〉

in/out

Q̄(2)
∣

∣Zµj (θ)Zνk(θ
′)
〉

in/out
= i
√
mje

θ
2
+iπFµj

∣

∣Zµ̂j (θ)Zνk(θ
′)
〉

in/out
+

+i
√
mke

θ′

2
+iπ(Fµj+Fνk )

∣

∣Zµj (θ)Zν̂k(θ
′)
〉

in/out
. (2.7)

This is sufficient information to determine the consequences on the scattering theory of an

integrable quantum field theory when demanding it to be supersymmetric.

3. The bootstrap construction

Next recall briefly the key steps of the bootstrap construction carried out by Schoutens [8]

with some minor differences. As a general structure for S one assumes usually [7, 8] the

factorization into a purely bosonic part Ŝ and a factor Š which incorporates the boson-

fermion mixing. Hence

∣

∣Zαi(θ)Zβj (θ
′)
〉

in
=
∑̀

k,l=1

∑

γ,δ=b,f

Ŝkl
ij (θ − θ′)Šγkδl

αiβj
(θ − θ′)

∣

∣Zγk(θ
′)Zδl(θ)

〉

out
. (3.1)

We use here the notation that the Latin indices are the internal quantum numbers relating

to the particle type and the Greek indices distinguish fermions f from bosons b. This

means by construction Ŝ commutes trivially with all supercharges Q, Q̄ and Q̂, whereas the

requirement of invariance under supersymmetry constrains only the boson-fermion mixing

factor Š. It seems there is no compelling reason for demanding the factorization (3.1) and

one could envisage more general constructions, but we follow here [7, 8] and take S = ŜŠ

as a working hypothesis. One can now invoke consecutively the consistency equations from

the bootstrap program [43]–[46] in order to determine the precise form of S.
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3.1 Constraints from supersymmetry

Following the most systematic treatment [8], one can first of all analyze the constraints

resulting from the requirement that the theory should be supersymmetric, which means the

supercharges should commute with the scattering matrix. Paying attention to the fact that

S intertwines the asymptotic states it follows with (2.7), that the boson-fermion mixing

matrix Š has to obey

[

Q̂⊗ Q̂
]

Š(θ12) = Š(θ12)
[

Q̂⊗ Q̂
]

(3.2)
[

m
1
2
k e

θ2
2 Q⊗ I+m

1
2
j e

θ1
2 Q̂⊗Q

]

Š(θ12) = Š(θ12)

[

m
1
2
j e

θ1
2 Q⊗ I+m

1
2
k e

θ2
2 Q̂⊗Q

]

(3.3)

[

m
1
2
k e

−θ2
2 Q̄⊗ I+m

1
2
j e

−θ1
2 Q̂⊗ Q̄

]

Š(θ12) = Š(θ12)

[

m
1
2
j e

−θ1
2 Q̄⊗ I+m

1
2
k e

−θ2
2 Q̂⊗ Q̄

]

. (3.4)

As usual we abbreviated the rapidity difference θ12 := θ1 − θ2. With the explicit realiza-

tion [7, 8] for the N = 1-superalgebra

Q =

(

0 1

1 0

)

, Q̄ =

(

0 −i
i 0

)

and Q̂ =

(

1 0

0 −1

)

, (3.5)

one can solve (3.2)–(3.4). First one notices that (3.2) implies that the fermion parity

has to be the same in the in- and out-state such that only the eight processes bb →
(bb, ff), bf → (bf, fb), fb → (bf, fb) and ff → (bb, ff) can possibly be non-vanishing.

Invoking then also the relations (3.3)–(3.4) fixes the S-matrix up to two entries. Instead

of leaving two amplitudes unknown at this stage, it is convenient to introduce [8] two

unknown functions fij(θ) and gij(θ). These functions carry only two indices when one

makes the further assumption that the bosonic S-matrix describes a theory with a non-

degenerate mass spectrum such that backscattering is absent and Ŝ is diagonal in the sense

of Ŝkl
ij (θ) = δliδ

k
j Ŝij(θ). Even though, when taking the bosonic factor of S to be diagonal,

the mass degeneracy between bosons and fermions of the same type forces Š to be of the

form

Šij(θ) =













Š
bjbi
bibj

(θ) 0 0 Š
fjfi
bibj

(θ)

0 Š
bjfi
bifj

(θ) Š
fjbi
bifj

(θ) 0

0 Š
bjfi
fibj

(θ) Š
fjbi
fibj

(θ) 0

Š
bjbi
fifj

(θ) 0 0 Š
fjfi
fifj

(θ)













, for 1 ≤ i, j ≤ ` . (3.6)

To avoid the occurrence of additional phase factors one can include them directly into the

asymptotic states and change Zfj (θ) → exp(−iπ/4)Zfj (θ). In this new basis Schoutens

found [8] as solutions to (3.2)–(3.4)

Šij(θ) =
2fij(θ)

ρ+ij + cosh θ
2











ρ+ij 0 0 −i sinh θ
2

0 cosh θ
2 −ρ−ij 0

0 ρ−ij cosh θ
2 0

−i sinh θ
2 0 0 ρ+ij











+ gij(θ)











1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1











(3.7)

– 4 –



J
H
E
P
0
1
(
2
0
0
5
)
0
3
0

with ρ±ij =
[

(mi/mj)
1/2 ± (mj/mi)

1/2
]

/2. One observes that the requirement of supersym-

metry invariance puts severe constraints on the general structure of the S-matrix, albeit it

does not fix it entirely. Thus leaving fortunately enough freedom to incorporate also other

necessary features.

3.2 Constraints from the Yang-Baxter equations

Next we invoke the equations which are the consequence of the factorizability of the n-

particle S-matrix into two particle scattering amplitudes. Since we have mass degeneracy

between bosons and fermions of the same type backscattering is possible and the Yang-

Baxter equations [47, 48]
∑

κ1,κ2,κ3

Sκ1κ2
µ1µ2 (θ12)S

κ3ν1
κ2µ3(θ13)S

ν3ν2
κ1κ3(θ23) =

∑

κ1,κ2,κ3

Sκ1κ2
µ2µ3 (θ23)S

ν3κ3
µ1κ1(θ13)S

ν2ν1
κ3κ2(θ12) (3.8)

will impose further non-trivial constraints on S. It was noted in [8], that in order to

satisfy (3.8) with (3.7) one can fix the ratio between the functions fij(θ) and gij(θ) up to

an unknown constant κ

fij(θ) =
κ
√
mimj

2

(

ρ+ij + cosh θ
2

sinh θ

)

gij(θ) , (3.9)

such that

Šij(θ) = gij(θ)











κ
√
mimj

sinh θ











ρ+ij 0 0 −i sinh θ
2

0 cosh θ
2 −ρ−ij 0

0 ρ−ij cosh θ
2 0

−i sinh θ
2 0 0 ρ+ij











+











1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1





















.

(3.10)

If we were dealing with a lattice model we would have already solved the problem to find

a consistent supersymmetric R-matrix in that case. However, aiming at the description of

a quantum field theory we also have to incorporate all the analytic properties.

3.3 Constraints from hermitian analyticity, unitarity and crossing

A scattering matrix belonging to a proper quantum field theory has to be hermitian ana-

lyticity [49, 50], unitarity and crossing invariant [51, 43, 44, 45]

Skl
ij (θij) =

[

Sij
kl(−θ∗ij)

]∗
,

∑

kl

Skl
ij (θ)

[

Skl
nm(θ)

]∗
= δinδjm , Skl

ij (θij) = Sl̄
k̄i
(iπ − θij) .

(3.11)

It is easy to convince oneself that hermitian analyticity and crossing are satisfied when

κ ∈ R and in addition

gkj(θ) = g∗jk(−θ) and gkj(θ) = gk̄j(iπ − θ) (3.12)

hold. The unitarity requirement is satisfied once we fulfill the functional relation

gij(θ)gji(−θ) =






1− κ2mimj







(

ρ+ij

)2
+ sinh2 θ

2

sinh2 θ













−1

=: χij(θ) . (3.13)
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In order to solve the set of equations (3.12)–(3.13) we assume now first parity invariance

for g and self-conjugacy for the particles involved

gkj(θ) = gjk(θ) and gjk(θ) = gjk̄(θ) . (3.14)

Following a standard procedure to solve functional equations of the above type we make

the general ansatz

gij(θ) = λ
∞
∏

l=1

ρij[θ + 2πil]ρij [−θ + 2πi(l + 1/2)]

ρij [θ + 2πi(l + 1/2)]ρij [−θ + 2πi(l + 1)]
. (3.15)

At this stage λ ∈ C is some arbitrary constant and the ρij are some functions which still

need to be determined. The ansatz (3.15) solves the crossing relation (3.12) by construction

when also (3.14) holds. Substituting (3.15) into (3.13) we then find that

χij(θ) = λ2ρij (θ + 2πi) ρij (2πi − θ) (3.16)

has to be satisfied. Hence, we have reduced the problem of simultaneously solving (3.12)

and (3.13) to a much simpler problem of just factorizing the function χ. Unfortunately,

(3.13) can not yet be compared directly with (3.16), but it was noted in [8] that when

introducing two auxiliary equations which parameterize the masses and κ in terms of the

new quantities ηij , η̂ij

κ2

2
mimj = cos ηij + cos η̂ij and − κ2

4

(

m2
i +m2

j

)

= 1 + cos ηij cos η̂ij , (3.17)

one can bring χ into a more suitable form

χij(θ) =
sinh2 θ

2 cosh
2 θ
2

sinh 1
2 (θ + iηij) sinh

1
2 (θ − iηij) sinh

1
2 (θ + iη̂ij) sinh

1
2 (θ − iη̂ij)

. (3.18)

Comparing now (3.16) and (3.18) there are obviously various solutions. Starting by pro-

ducing the factors π2/ sinh 1
2 (θ + iη) sinh 1

2 (θ − iη) for η = ηij ,η̂ij , we have the possibilities

ρ
(1/2)
ij (θ + 2πi, η) = Γ

(

iθ ∓ η

2π

)

Γ

(

1 +
iθ ± η

2π

)

, (3.19)

ρ
(3/4)
ij (θ + 2πi, η) = Γ

(−iθ ∓ η

2π

)

Γ

(

1− iθ ∓ η

2π

)

, (3.20)

ρ
(5/6)
ij (θ + 2πi, η) = ±π/ sinh 1

2
(θ ± iη) . (3.21)

We can now substitute these solutions back into (3.15) in order to assemble gij(θ, η). When

restricting w.l.g. the parameters 0 < ηij, η̂ij < π, we observe that all functions gij(θ, η)

have poles inside the physical sheet, that is 0 < Im θ ≤ π, except the one constructed

from ρ
(4)
ij (θ, η). Thus only for this solution the boson-fermion mixing factor Š does not

introduce new bound states (see next subsection for more details on fusing), such that the

fusing structure is entire contained in the bosonic factor Ŝ. Selecting out this particular

solution we can write

gij(θ) =
1

2i

sinh θ

sinh 1
2(θ + iηij) sinh

1
2 (θ + iη̂ij)

g(θ, ηij)g(θ, η̂ij) (3.22)
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where we defined the function

g(θ, η) = i

∞
∏

k=1

Γ
(

k − iθ+η
2π

)

Γ
(

k + 1
2 + iθ−η

2π

)

Γ
(

k − iθ−η
2π

)

Γ
(

k − 1
2 + iθ+η

2π

)

Γ
(

k + iθ−η
2π

)

Γ
(

k + 1
2 −

iθ+η
2π

)

Γ
(

k + iθ+η
2π

)

Γ
(

k − 1
2 −

iθ−η
2π

)

= exp

[

∫ ∞

0

dt

t

[

sinh t
(

1
2 −

η
π

)

2 sinh t
2 cosh

2 t/2
− 1

]

sinh
tθ

2πi

]

. (3.23)

Clearly it would be very interesting to investigate also the solutions resulting from the

functions (3.19)–(3.21) other than ρ
(4)
ij . Further solutions can be expected when one relaxes

the assumptions (3.14).

3.4 Constraints from the boundstate bootstrap equations

The last remaining constraint arises when we consider the consequences of the factorization

of the S-matrix in conjunction with the possibility of a fusing process, say µi + νj → κ̄k,

for µ, ν, κ = b, f and 1 ≤ i, j, k ≤ `. For this to happen the scattering matrix must posses

a simple order pole in the physical sheet at some fusing angle iη κ̄k
µiνj with ηκ̄kµiνj ∈ R+. The

residue of S at this angle is related to the three-point couplings Γκ̄k
µiνj via

i Res
θ→iη

κ̄k
µiνj

Sρlτm
µiνj (θ) =

∑

κ̄k

(

Γκ̄k
ρlτm

)∗
Γκ̄k
µiνj . (3.24)

Then the following boundstate bootstrap equation [43, 52, 53, 46]

∑

δd,γg ,ρn

Γβb
δdρn

Sαaδd
µiγg (θ + iη̄

ν̄j
κkµi)S

γgρn
νjλl

(θ − iη̄µ̄iνjκk) =
∑

κ̄k

Sαaβb
κ̄kλl

(θ)Γκ̄k
µiνj (3.25)

has to be satisfied. Here the η̄ is related to the fusing angle η as η̄ = π − η. Taking the

factorization ansatz (3.1) for S into account and assuming further that the bosonic part of

the scattering matrix is diagonal Ŝkl
ij (θ) = δliδ

k
j Ŝij(θ), the relation (3.25) simplifies to

∑

δ,γ,ρ

Γβb
δiρj

Sαlδi
µiγl

(θ + iη̄
ν̄j
κkµi)S

γlρj
νjλl

(θ − iη̄µ̄iνjκk) =
∑

κ̄

Sαlβb
κ̄bλl

(θ)Γκ̄b
µiνj . (3.26)

It is not difficult to convince oneself that (3.26) results from the formal equation

Zµi

(

θ + iη̄
µ̄j
µkµi

)

Zνj

(

θ − iη̄µ̄iµjµk

)

=
∑

κ̄k

Γκ̄k
µiνjZκ̄k(θ) . (3.27)

together with the assumption that the Zs obey a Zamolodchikov algebra [54], i.e. when

exchanging (braiding) them they will pick up an S-matrix as a structure constant. Acting

on (3.27) with Q̂ one notices first of all that only the following fusing processes are allowed

to occur

bi + bj → bk , fi + fj → bk , bi + fj → fk , fi + bj → fk . (3.28)
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Furthermore when acting with Q and Q̄ on (3.27) one finds a powerful constraint for the

three point couplings
(

Γbk
bibj

Γbk
fifj

)2

=
mk +mi +mj

mi +mj −mk
. (3.29)

Computing then the residues of S by means of (3.24) for the processes bi + bj → bk and

fi + fj → bk yields for the constant κ in (3.10) the relation

κ =
sin ηkij√
mimjρ

+
ij







(

Γbk
bibj

)2
+
(

Γbk
fifj

)2

(

Γbk
bibj

)2
−
(

Γbk
fifj

)2






=

2 sin ηkij
mk

. (3.30)

Notice that this is quite a severe constraint as the right hand side of (3.30) has to hold

universally for all possible values of i, j, k.

4. Implementing unstable particles

As a consequence of the factorizing ansatz (3.1) for S and the choice for Š which does not

possess poles inside the physical sheet, the pole structure responsible for fusing processes

is entirely confined to the bosonic factor Ŝ. One may therefore search the large reservoir of

diagonal S-matrices to find suitable solutions. In the original paper Schoutens [8] noticed

that one may satisfy (3.30) with Ŝ equal to the scattering matrix of minimal A
(2)
2` -affine

Toda field theory [55]

Sab(θ) =

(

a+ b

2n+ 1

)

θ

( |a− b|
2n+ 1

)

θ

min(a,b)−1
∏

k=1

(

a+ b− 2k

2n+ 1

)2

θ

(4.1)

for 1 ≤ a, b ≤ ` and with (x)θ := tanh 1
2(θ + iπx)/ tanh 1

2(θ − iπx). Thereafter, Hollowood

and Mavrikis [12] showed that when taking the bosonic factor Ŝ to be the minimal A
(1)
` ,

D
(1)
` or (C

(1)
` |D(2)

`+2)-affine Toda S-matrix, the ansatz (3.1) also satisfies (3.30) together

with the bootstrap equations, thus leading to consistent supersymmetric S-matrices.

Based on these results it is straightforward to extend the ansatz and also include

unstable particles into the spectrum of these theories. We may take the bosonic factor

of Ŝ to belong to the large class of models which can be referred to conveniently as g|g̃-
theories. In these models each particle carries two quantum numbers (a, i), one associated

to the algebra g with 1 ≤ a ≤ ` = rankg and the other related to the algebra g̃ with

1 ≤ i ≤ ˜̀= rank g̃. We then argue that scattering matrices of the general form

S
γ(b,j)δ(a,i)
α(a,i)β(b,j)

(θ, σij) = Ŝij
ab(θ, σij)Š

γbδa
αaβb

(θ) (4.2)

will also satisfy all the above mentioned constraints and constitute therefore consistent

scattering matrices which are by construction invariant under supersymmetry and allow

unstable particles in their spectrum.
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The general formula for g|g̃-scattering matrices in form of an integral representa-

tion [21] is

Ŝij
ab(θ, σij) = ηijab exp

∫ ∞

−∞

dt

t
Φ̂(t, h)e−it(θ+σij ) , ηijab = exp

(

iπεij [K
−1]āb

)

(4.3)

Φ̂ij
ab(t) = δabδij −

(

2 cosh
πt

h
− Ĩ

)

ij

(

2 cosh
πt

h
− I

)−1

ab

. (4.4)

Here we denote by I (Ĩ) and K (K̃) the incidence and Cartan matrices for the simply

laced g (g̃)-Lie algebra, respectively. The Coxeter number of g (g̃) is h (h̃) and εij = −εji
is the Levi-Civita pseudo-tensor. The special cases A`|g̃ and g|A1 correspond to the

g̃`+1-homogeneous sine-Gordon models [20] and g -minimal affine Toda field theories (see

e.g. [56] for a complete list), respectively. In the ultraviolet limit these models reduce to

conformal field theories, which were discussed in [57], possessing Virasoro central charges

cg|g̃ = `˜̀h̃/(h + h̃). Besides simply laced Lie algebras, we will here also allow g and g̃ to

be the twisted algebra A
(2)
2` . These cases have not been considered previously. We have

verified here for various examples that the previous formula for the Viasoro central charge

also applies when including A
(2)
2` with rank ` and h = 2`+ 1 (see below).

The novel feature in S-matrices of the type (4.3) is the occurrence of the resonance

parameters σij = −σji. Besides the first order poles in the physical sheet which can be

interpreted as bound states of stable particles, there are also simple order poles in the

second Riemann sheet at θab = −iηc̄ab+σc̄
ab with η

c̄
ab, σ

c̄
ab ∈ R+. Poles of this type admit an

interpretation as unstable particles of type c̄ with finite lifetime τ c̄. The relations between

the masses of the stable particles ma, mb, the mass of the unstable particle mc̄ and the

fusing angles ηc̄ab, σ
c̄
ab are the Breit-Wigner equations [58]

m2
c̄ −

1

(4τ2c̄ )
= m2

a +m2
b + 2mamb coshσ

c̄
ab cos η

c̄
ab , (4.5)

mc̄

τc̄
= 2mamb sinhσ

c̄
ab sin η

c̄
ab . (4.6)

The ansatz (4.2) for the choices g = {A(2)
2` , A

(1)
` , D

(1)
` , (C

(1)
` |D(2)

`+2)} and g̃ being any

simple Lie algebra satisfies all consistency conditions, in particular the bootstrap equa-

tion. When including non-simply laced Lie algebras, but A
(2)
2` , we also need to take some

modifications into account [22], from which we refrain here in order to keep the notation

simple.

The procedure to obtain the supersymmetic version for models which are constructed

by an analytic continuation of the effective coupling constant [32]–[42] is staightforward,

as one simply has to carry out this continuation for the supersymmetric theory with real

coupling.

5. The ultraviolet limit, a TBA analysis

Let us now carry out the ultraviolet limit by means of a thermodynamic Bethe ansatz

(TBA) analysis [59] for the above mentioned scattering matrices by following the work of
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Ahn [60], Moriconi and Schoutens [61]. In general the TBA is technically very complicated

when involving non-diagonal S-matrices. Fortunately, for the case at hand matters simplify

drastically due to the fact that Ŝ satisfies the so-called free fermion condition [60, 61] (this

is a rather misleading terminology as we are evidently not dealing with free fermions). Here

we are only interested in the extreme ultraviolet limit for which there exists a standard

analysis [59], which can be adapted to the supersymmetric case [61]. We restrict the

following analysis to the ansatz (4.2) for a g|g̃-supersymmetric S-matrix with unstable

particles where we take g = A
(2)
2` . Following [60, 61] it is straightforward to derive the

constant TBA equation for the S-matrix (4.2) with the quoted choice of the algebras and

all resonance parameters σij set to zero

xia = (1+xi0)
M̌a

˜̀
∏

j=1

∏̀

b=1

(1+xjb)
N ij
ab xi0 =

∏̀

b=1

(1+xib)
M̌b for 1 ≤ i ≤ ˜̀, 1 ≤ a ≤ ` . (5.1)

The matrices in (5.1) are computed from

N̂ ij
ab =

1

2π

∫ ∞

−∞
dθΦ̂ij

ab(θ) = δabδij −min(a, b)K̃ij , (5.2)

Ňab =
1

2π

∫ ∞

−∞
dθΦ̌ab(θ) =

1

2
, (5.3)

M̌a =
1

2π

∫ ∞

−∞
dθϕa(θ) = 1 , (5.4)

N ij
ab = N̂ ij

ab + Ňab −
1

2
M̌aM̌b = δabδij −min(a, b)K̃ij , (5.5)

with kernels

Φ̌ab(θ) = Im
∂

∂θ
ln

[

gab(θ)

sinh θ

]

, (5.6)

ϕa(θ) = 2 Im
∂

∂θ
ln

[

sinh
1

2

(

θ − iπa

h

)

cosh
1

2

(

θ +
iπa

h

)]

. (5.7)

The expression (5.2) results directly from (4.3), (4.4) when noting that the entries of inverse

Cartan matrix of A
(2)
2` are min(a, b) with 1 ≤ a, b ≤ `. From the solution for the function

g(θ) in the form (3.23) we compute the constant (5.3). Note that the final answer does

not depend on the quantities ηij , η̂ij which were introduced in (3.17) to parameterize the

masses and the constant κ. The constants M̌a are obtained by direct computation and

hold for all 1 ≤ a ≤ ` . Assembling then all quantities in (5.5) one observes that all

contributions resulting from the supersymmetric factor of the S-matrix have cancelled out,

such that N ij
ab = N̂ ij

ab. Hence (5.1) resembles very closely the conventional, that is non-

supersymmetric, constant TBA equations with the modification of the factor involving an

additional particle, named 0, which results from the diagonalization procedure.

Having solved (5.1) one can compute the effective Virasoro central charge as

ceff =
6

π2

∑̀

k=0

˜̀
∑

j=1

[

L
(

xjk

1 + xjk

)

−L
(

yjk

1 + yjk

)]

, (5.8)
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with L (x) denoting Rogers dilogarithm L(x) =
∑∞

n=1 x
n/n2 + lnx ln(1 − x)/2, xi

a =

exp(−εia(0)), yia = limθ→∞ exp(−εia(θ)) and εia(θ) being the rapidity dependent pseudo-

energies.

5.1 The A
(2)
2` |g̃-theories

Even though our main goal is to discuss the supersymmetric scenario, we shall comment

first on the solutions of (5.1) and the subsequent computation of ceff in the absence of

supersymmetry involving the twisted algebra A
(2)
2` . The reason for this is that this case will

be needed below and has hitherto not been dealt with in the literature. The supersymmetry

is formally broken in (5.1) when taking the limit M̌a → 0 for all a ∈ {1, . . . , `}. Selecting

the algebra which encodes the unstable particles to be g̃ = A
(1)
˜̀ , we found the following

analytic solutions for (5.1)

xja =
sin jπ/τ sin(h̃− j)π/τ

sinaπ/τ sin(h̃+ a)π/τ
for 1 ≤ a ≤ ` , 1 ≤ j ≤ ˜̀, (5.9)

where h (h̃) is the Coxeter number of A
(2)
2` (A

(1)
˜̀ ), namely h = 2` + 1 (h = 2˜̀+ 1) and

τ = h + h̃. In fact, the solutions (5.9) for the constant TBA-equations (5.1) hold for all

four g|g̃-theories with g, g̃ ∈ {A(1)
n , A

(2)
2n }. Computing the effective central charge by means

of (5.8) yields the usual value [21] of the g|g̃-theories

ceff =
` ˜̀̃h

h+ h̃
. (5.10)

We have solved (5.1) for other A
(2)
2` |g̃-theories involving various simply laced algebras g̃

and obtained (5.10) in all cases. So far we have not found simple closed expressions for the

xja as in (5.9) for these cases and will not present here more case-by-case results.

5.2 The N = 1 supersymmetric A
(2)
2` |g̃-theories

We shall now turn to the full supersymmetric version of the constant TBA-equations (5.1)

describing the A
(2)
2` |g̃-theories. In general, we may write (5.1) as

xia = (1 + xi0)

˜̀
∏

j=1

(1 + xj1)
N ij
a1

˜̀
∏

j=1

∏̀

b=2

(1 + xjb)
N ij
ab for 1 ≤ i ≤ ˜̀, 1 ≤ a ≤ ` . (5.11)

Excluding a = 1 and noting the simple fact that min(a, b) = min(a− 1, b− 1) + 1 we may

re-write (5.11) for the theories at hand as

xia = (1 + xi0)

˜̀
∏

j=1

(1 + xj1)
−Kij

∏̀

b=2

(1 + xjb)
−Kij (1 + xjb)

N ij

(a−1)(b−1) for 2 ≤ a ≤ ` . (5.12)

Taking the limit xi
1 →∞ of this equation leads to

xia = lim
xi1→∞



xi1

˜̀
∏

j=1

(xj1)
−Kij

∏̀

b=2

(1 + xib)(1 + xjb)
−Kij (1 + xjb)

N ij

(a−1)(b−1)



 . (5.13)
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For g̃ = A
(1)
2 we may assume that x1a = x2a, such that (5.13) simplifies to

xia =

˜̀
∏

j=1

∏̀

b=2

(1 + xjb)
N ij

(a−1)(b−1) for 1 ≤ i ≤ ˜̀, 2 ≤ a ≤ ` . (5.14)

which is precisely the system for an A
(2)
2(`−1)|A

(1)
2 -theory when renaming the particles a = 2

to a = 1, a = 3 to a = 2, . . . , a = ` to a = ` − 1. The solutions for the constant

TBA equations (5.1) are therefore in this case x10 = x20 = x11 = x12 → ∞ and x1k = x2k for

1 ≤ k ≤ `− 1 given by (5.9). Taking further y10 = y20 = 1, y1k = y2k = 0 for 1 ≤ k ≤ ` − 1

the effective central charge is then computed by means of (5.8)

ceff =
6

π2





`−1
∑

k=1

2
∑

j=1

L
(

xjk
1 + xjk

)

+ 4L (1)− 2L
(

1

2

)



 =
3(`− 1)

`+ 1
+ 3 =

6`

`+ 1
. (5.15)

We may also investigate the behaviour of these theories for large resonance parameters.

As the bosonic part of the theory decouples in this case into two separate non-interacting

theories [23, 31, 25], the two N = 1 supersymmetric theories will behave analogously due

to the factorization ansatz for S. Accordingly we have

lim
σ12→∞

A
(2)
2` |A

(1)
2 → A

(2)
2` |A

(1)
1 ⊗A

(2)
2` |A

(1)
1 . (5.16)

The resulting A
(2)
2` |A

(1)
1 -theories are the N = 1 supersymmetric theories discussed in [8, 61].

The effective Virasoro central charge is then simply obtained as the sum of the known

effective central charges of the supersymmetric minimal SM(2, 4` + 4) conformal field

theories

ceff =
3`

2`+ 2
+

3`

2`+ 2
=

3`

`+ 1
. (5.17)

Thus we observe that the effective central charge for the theory with vanishing resonance

parameter is twice the one with large resonance parameter.

Clearly it is interesting to carry out the TBA analysis for other algebras g̃. Here it

suffices to have demonstrated that the proposed scattering matrices of the type (4.2) have

a meaningful ultraviolet behaviour, which in the presented cases can even be obtained

analytically.

6. Conclusion

We have shown that our S-matrix proposal (4.2) consistently combines N = 1 supersym-

metry with the requirement to have unstable particle in the spectrum of the theory. The

S-matrix satisfies all the constraints imposed by the bootstrap program and possesses a

sensible ultraviolet limit.

There are various open issues which would be interesting to address in future. The

proposal (4.2) constitutes the first concrete example for a non-diagonal scattering matrix

corresponding to a theory which contains unstable particles. It would be interesting to

construct further non-diagonal scattering matrices of this type for which the supersymmetry

is broken or possibly enlarged to greater values of N .
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Clearly it would be interesting to complete the detailed analysis involving also other

algebras on the bosonic side. More challenging is to modify the boson-fermion mixing part.

So far the entire fusing structure of the model was confined to the bosonic factor. However,

we also provided solutions for the function g(θ) which has simple poles in the physical sheet,

which can be interpreted as stable bound states possibly leading to consistent solutions for

the bootstrap equations. Concerning the implementation of unstable particles, it should

also be possible to extend the ansatz (4.2) to the form

S
γ(b,j)δ(a,i)
α(a,i)β(b,j)

(θ, σij) = Ŝij
ab(θ, σij)Š

γ(b,j)δ(a,i)
α(a,i)β(b,j)

(θ, σij) . (6.1)

This would means that the unstable particles are be no longer of a purely bosonic nature.

More general alterations such as taking the bosonic factor to be non-diagonal or relaxing

the factorzation ansatz into a purely bosonic and boson-fermion mixing factor altogether

have not even been considered in the absence of unstable particles.
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