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Abstract

We describe a general construction principle which allows to add colour values to a coupling constant dependent
scattering matrix. As a concrete realization of this mechanism we provide a new type of S-matrix which generalizes the one
of affine Toda field theory, being related to a pair of Lie algebras. A characteristic feature of this S-matrix is that in general
it violates parity invariance. For particular choices of the two Lie algebras involved this scattering matrix coincides with the
one related to the scaling models described by the minimal affine Toda S-matrices and for other choices with the one of the
Homogeneous sine-Gordon models with vanishing resonance parameters. We carry out the thermodynamic Bethe ansatz and
identify the corresponding ultraviolet effective central charges. q 2000 Elsevier Science B.V. All rights reserved.

PACS: 11.10.Kk; 11.55.Ds

1. Introduction

w xThe bootstrap principle 1 has turned out to be a successful method to compute scattering matrices in
1q1-dimensions. Solving the set of bootstrap equations and giving a consistent explanation to the singularity
structure in the complex rapidity plane, the scattering matrices are determined uniquely up to the so-called

w xCDD-factors 2 . The latter factors are constituted in such a way that they solve the bootstrap equations but do
not introduce additional poles in the physical sheet. Therefore they are neglected in most situations. However,
they may also by utilized in order to include coupling constants into the scattering matrices, as for instance in
w x3 . We will show in the following that the CDD-factors can also be employed consistently to add colour values
to the scattering matrices. In the context of the Homogeneous sine-Gordon models Fernandez-Pousa and´

w xMiramontes 4 proposed a new type of S-matrix which violates parity invariance and describes the scattering of
particles which carry two quantum numbers. The main quantum number governs the fusing structure while for
certain values of the colour quantum numbers the particles interact solely via a CDD-factor, which could be
trivial in some cases. We will provide a systematic construction principle for colour valued scattering matrices

w xand give explicit realizations which include the ones of 4 as a particular case. These type of theories are related
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to two different Lie algebras g and g, where the former relates to the main and the latter to the colour quantum˜
number. We refer to these theories by gNg.˜

Our manuscript is organized as follows: In Section 2 we describe the general construction principle which
attaches colour values to an S-matrix and provide a concrete realization of this. In Section 3 we carry out a
TBA-analysis in order to identify the corresponding ultraviolet effective central charges. We provide an explicit
example in Section 4. In Section 5 we state our conclusions.

2. Construction principle

We recall that the two-particle S-matrix which describes the scattering between particles of type a and b as a
3 Ž . minŽ . CDDŽ . minŽ .function of the rapidity difference u is often of the general form S u sS u S u , B . Here S u isab ab ab ab

w xthe so-called minimal S-matrix, related for instance to scaling theories of statistical models 7 , which satisfies
the unitarity, crossing and fusing bootstrap equations

S u S yu s1, S u sS ipyu , S uqh s1 , 1Ž . Ž . Ž . Ž . Ž . Ž .Łab b a ab b a dl l
lsa ,b ,c

CDDŽ .with h being the fusing angles. The CDD-factor S u , B depends on the effective coupling constant and isl ab

chosen in such a way that it also satisfies these equations without introducing additional poles in the physical
sheet, i.e. 0F ImuFp . We may now modify the usual expression to

ˆi j min CDDS u sS u S u , B . 2Ž . Ž . Ž .Ž .ab ab ab i j

Here we have introduced an additional dependence of the effective coupling constant on the quantum numbers i
ˆi j Ž .and j, which we refer to as colours. It is clear by construction that S u also satisfies the crossing, unitarityab

Ž .and fusing bootstrap equations, but now each particle carries two quantum numbers a,i , which may take their
˜ ˜values in different ranges, for definiteness say 1FaF ll and 1F iF ll . This means, now we have in total ll= ll

different particle types. Alternatively, we can define an S-matrix which coincides with one or the other factor in
Ž .2 for certain colour values

y1min C D D°S u s S u , B s0 for is jŽ . Ž .Ž .ab ab i ii j ~S u s . 3Ž . Ž .ab C D D¢S u , B for i/ jŽ .ab i j

˜This means whenever is j we simply have ll copies of theories which interact via a minimal scattering matrix
Ž .and for i/ j the particles interact purely via a CDD-factor. Clearly by construction also 3 satisfies the

Ž . Ž . Ž .consistency equations 1 . It should be noted here that 2 and 3 still describe scattering processes for which
backscattering is absent. Hence, these type of colour values play a different role as those which occur for

w x w xinstance in S-matrices related to affine Toda field theories 9 with purely imaginary coupling constant, e.g. 10 .
Ž .Despite the fact that the relative mass spectra related to 3 are degenerate, this is consistent when we encounter

l̃l different overall mass scales or the particles have different charges.
w xWe will now generalize the structure just outlined, which we already encountered in 8 , and provide a

i j Ž .concrete realization for S u , which is of affine Toda field theory type, involving a pair of simply laced Lieab
Ž . Ž .algebras. It is clear, however, from our previous comments that the forms 2 and 3 are of a more general

nature. We associate the main quantum numbers a,b to the vertices of the Dynkin diagram of a simply laced
Lie algebra g of rank ll and the colour quantum numbers i, j to the vertices of the Dynkin diagram of a simply

˜ 4laced Lie algebra g of rank ll and refer from now on to these theories as gNg .˜ ˜

3 This is not necessarily the case as for instance for affine Toda field theories related to non-simply laced Lie algebras, which was first
w x w xworked out in 5 . See also 6 and references therein for a recent treatment of these type of theories.

4 This should of course not be understood as a coset.
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We define now the general building blocks

1r2
1 1

ip x´ i j sinh uq ip xy1qB rh sinh uq ip xq1yB rhŽ . Ž .Ž . Ž .
2 2hw xx , B se . 4Ž .u , i j 1 1� 0sinh uy ip xy1qB rh sinh uy ip xq1yB rhŽ . Ž .Ž . Ž .
2 2

with ´ being the anti-symmetric tensor, i.e. ´ sy´ . It is this property of the ´ ’s which is responsible fori j i j ji

the parity breaking of the S-matrix. This block has the obvious properties

w x w x w x w xx , B x , B s1 and hyx , Bs1 s x , Bs1 . 5Ž .u , i j yu , ji u , i j ipyu , ji

We understand here in a slightly loose notation that in the second equality we first take the square root and
thereafter perform the shifts in the arguments. Note further that the order of the colour values is relevant. From
Ž .4 we construct the gNg-scattering matrix˜

K̃ i jh qy l Ps ga bi j 2˜S u s 2 qy c qc r2 , I . 6Ž . Ž . Ž .Ž .Łab a b i j u , i j
qs1

Ž .This is of the form 3 apart from a phase factor and a square root taken when i/ j. Here the l ’s area

fundamental weights, the g ’s are simple roots times a colour value c s"1, h is the Coxeter number and s isa a
˜ ˜ ˜the Coxeter element related to the Lie algebra g. K is the Cartan matrix and Is2yK the incidence matrix of

the g related Dynkin diagram. For more details on the notation and properties of the quantities involved see˜
˜ ˜w x11,6 . For is j we recover with I s0 and K s2 the known form of the minimal scattering matrix of affinei i i i

Toda field theory. Whenever i and j are not linked on the g-Dynkin diagram S becomes 1, i.e. the particles˜
˜ ˜interact freely. Instead when i and j are linked on the g-Dynkin diagram, we have I s1 and K sy1 such˜ i j i j

Ž .that the corresponding blocks are inverted. Comparing 4 with the conventional minimal blocks, we have
introduced the parity breaking phase factor and also taken the square root to minimize the powers of the poles

w xsince in x , Bs1 the two factors in the denominator and as well as in the numerator coincide. Hence foru , i j
Ž .i/ j the expression 6 corresponds to the square root of the usual affine Toda field theory CDD-factor for

Bs1. It is this operation of taking the square root which is the reason for the occurrence of the phase factor in
Ž .4 , since only with its presence the consistency equations are satisfied.

Ž . Ž .There is no need to introduce the phase to satisfy the unitarity equation in 1 , since the first property in 5 is
satisfied with or without it. However, already in order to satisfy the crossing relation the introduction of the

Ž .phase factor is crucial since the second property in 5 , which is needed to establish it, only holds when it is
included. Assuming the validity of the ADE-fusing rules one may verify by the usual shifting arguments, e.g.
w x Ž . w x11,6 , that the fusing bootstrap equations are satisfied. It is further clear that 6 is hermitian analytic 12 .

For many applications, like the thermodynamic Bethe ansatz or form factors, it is most convenient to employ
Ž . w xthe scattering matrix in form of an integral representation instead of the blockform 4 . In 13,6 it was

demonstrated how to derive one formulation from the other and by specifying the analysis in there to the present
Ž .situation it follows immediately that we can express the scattering matrix 3 alternatively as

y1
` dt p t p ty1i j ip´ K yi tui j ab ˜S u se exp 2cosh y I 2cosh y I e . 7Ž . Ž .Hab ž / ž /t h hy` i j ab

w xThe pre-factor results from a similar computation as may be found in Section 4.2.1 of 13 .
We note that when we choose g to be A the colour values become identical for all particles and the system˜ 1

minŽ . Ž . Ž .reduces to the one described by S u . This is the only example for which 6 , 7 does not violate the parityab
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invariance. Choosing instead g to be A we recover the S-matrix of the Homogeneous sine-Gordon models forn
Ž . w xvanishing resonance parameter at level nq1 4,8 .

Ž .Similar as in the case for which the universal scattering matrix 6 coincides with models already known, also
all S-matrix elements which belong to the new theories are well-behaved meromorphic functions. At first sight

Ž .the power 1r2 in the definition of the building block 4 seems to suggest the presence of square root branch
w x Ž .cuts. For the gNA -model the 1r2 is familiar for instance from 11 where it is kept as a power in relation 6 . A1

detailed analysis which explains how the building blocks combine to meromorphic functions may be found in
˜ Ž . Ž .there. For the case Bs I s1 the square root can be taken directly in 4 and the remaining power 1r2 in 6 isi j

w xonce again compensated by the same mechanism as in 11 .
Ž . Ž .It is straightforward to include also resonance parameters into the scattering matrix 6 , 7 which could in

w xprinciple be colour value dependent and may also break the parity invariance 4,8 .

3. TBA analysis for the gNg S-matrix˜

w xAccording to the standard arguments of the thermodynamic Bethe ansatz 14 the TBA-equations for a
Ž .system which interacts dynamically via the scattering matrix 7 and statistically via Fermi statistics read

˜ll ll ` Xj
X X Ž .i i i j y´ ubrm coshus´ u q du w uyu ln 1qe . 8Ž . Ž . Ž .Ž .Ý Ý Ha a ab

y`bs1 js1

i Ž .Here r is the inverse temperature and m the mass of particle a,i . The pseudoenergies are denoted as usual bya
iŽ . Ž .´ u and the kernels are obtained from 7a

y1
`d p t p t

i j i j yi tu˜w u syi lnS u s dt d d y 2cosh y I 2cosh y I e . 9Ž . Ž . Ž .Hab ab ab i j ž / ž /du h hy` i j ab

One of the most direct informations the thermodynamic Bethe ansatz provides is the effective central charge
c scy24h of the underlying ultraviolet conformal field theory, with c being the Virasoro central chargeeff 0

and h the smallest conformal dimension of the theory. Then, provided that the solutions of the TBA-equation0
5 w x iŽ . idevelop the usual ‘‘plateau behaviour’’ , e.g. 14 , one may approximate ´ u s´ sconst in a large regiona a

w xfor u when r is small. By standard TBA arguments 14 follows that the effective central charge is expressible
as

˜ ill ll6 xa
c s LL 10Ž .Ý Ýeff 2 iž /p 1qxaas1 is1

Ž . ` n 2 Ž . w x i Ž i.with LL x sÝ x rn q ln x ln 1yx r2 denoting Rogers dilogarithm 15 where the x sexp y´ arens1 a a

obtained as solutions from the constant TBA-equations in the form
˜ll ll

i jNi j abx s 1qx . 11Ž .Ž .Ł Ła b
bs1 js1

The matrix N i j is defined via the asymptotic behaviour of the scattering matrix which for the case at hand mayab
Ž .be read off directly from 9

`1
i j i j y1 ˜N s du w u sd d yK K . 12Ž . Ž .Hab ab ab i j ab i j2p y`

5 w xThis is not always the case as for instance in affine Toda field theories with generic effective coupling constant 13 .



( )A. Fring, C. KorffrPhysics Letters B 477 2000 380–386384

Ž .In regard to finding explicit solutions for the set of coupled equations 11 , it turns out to be convenient to
introduce new variables because they may be related to Weyl characters of the Lie algebra g or g. Following˜
w x16,17 we define

ll ll
y1 KK ababi i i iQ s 1qx m x s Q y1 13Ž .Ž . Ž .Ł Ła b a b

bs1 bs1

Ž .such that the constant TBA-equations 11 acquire the more symmetric form

˜ll ll
˜I 2Iab i ji j iQ q Q s Q . 14Ž .Ž . Ž . Ž .Ł Łb a a

bs1 js1

Ž .The effective central charge 10 is then expressible in various equivalent ways

˜ ˜ ˜ll ll ll ll ll ll6 6 ˜yK yKab i jg < g i j˜ ˜c s LL 1y Q s ll lly LL 1y Q 15Ž .Ž . Ž .Ý Ý Ł Ý Ý Łeff b a2 2ž / ž /p pbs1 js1as1 is1 as1 is1

˜ ˜ ˜ll ll ll ll ll ll6 6 ˜yK yKab i ji j˜s ll lly LL Q s LL Q , 16Ž .Ž . Ž .Ý Ý Ł Ý Ý Łb a2 2ž / ž /p pbs1 js1as1 is1 as1 is1

Ž . Ž . 2 w xwhere we used the well-known identity LL x qLL 1yx sp r6, see e.g. 15 . It is also clear that having
Ž .solved Eqs. 14 for the case gNg we have immediately a solution for the case gNg simply by interchanging the˜ ˜

g < g̃ g̃ < grole of the two algebras. Supposing now that c sm c for some unknown constant m, it follows directlyeff eff
g < g̃ ˜ ˜Ž . Ž . Ž .from 15 and 16 that c sm ll llr 1qm . We conjecture now this constant to be mshrh such thateff

˜ ˜ll ll h
g < g̃c s . 17Ž .eff ˜hqh

As expected from the observations concerning the scattering matrix we recover several known cases when we
g < A1 Ž .fix some of the algebras. For instance we obtain c s2 llr hq2 which is the well known formula for theeff

effective central charge of the minimal affine Toda theories. Furthermore we recover the effective central charge
A < g̃ ˜n ˜ ˜Ž . w xfor the Homogeneous sine-Gordon models c sn ll hr nq1qh 8 . It should be noted that this iseff

independent of whether a resonance parameter is present or not despite the fact that the TBA-equation are not
w x Ž .parity invariant in that case, see 8 . Numerically we also solved 14 explicitly for numerous examples with

Ž . Ž .g /A and confirmed 17 see Table 1 .n

Table 1
g < g̃Effective central charges c of the gNg-theories˜eff

gNg A D E E E˜ m m 6 7 8

Ž . Ž .nm mq1 nm 2 my2 72 n 126 n 240 nAn
nq mq2 nq2 my1 nq13 nq19 nq31

Ž . Ž .nm mq1 nm my1 36 n 63 n 120 nDn
2nq my1 nq my2 nq5 nq8 nq14

Ž . Ž .6 m mq1 6 m my1 126 240E 186
mq13 mq5 5 7
Ž . Ž .7 m mq1 7 m my1 84 49E 357

mq19 mq8 5 2
Ž . Ž .8 m mq1 8 m my1 96E 21 328

mq31 mq14 7



( )A. Fring, C. KorffrPhysics Letters B 477 2000 380–386 385

<4. An explicit example: D D4 4

In order to illustrate the working of our general formulae it is instructive to evaluate them for a concrete
<model. We chose the D D -model which is an example for a theory hitherto unknown. The model contains 164 4

Ž .different particles labeled by a,i with 1Fa,iF4. The Coxeter number is 6 for D . Naming the central4
Ž .particle in the D -Dynkin diagram by 2 the S-matrix elements according to 6 are computed to4

2 2i i i i i i w x w xS u sS u sS u s 1,0 5,0 for is1,2,3,4 ,Ž . Ž . Ž . u , i i u , i i11 33 44

2 2i i i i i i w x w xS u sS u sS u s 2,0 4,0 for is1,2,3,4 ,Ž . Ž . Ž . u , i i u , i i12 23 24

2i i i i i i w xS u sS u sS u s 3,0 for is1,2,3,4 ,Ž . Ž . Ž . u , i i13 14 34

2 4 2i i w x w x w xS u s 1,0 3,0 5,0 for is1,2,3,4 ,Ž . u , i i u , i i u , i i22

y2 y22 j 2 j 2 j w x w xS u sS u sS u s 1,1 5,1 for js1,3,4 ,Ž . Ž . Ž . u ,2 j u ,2 j11 33 44

y2 y22 j 2 j 2 j w x w xS u sS u sS u s 2,1 4,1 for js1,3,4 ,Ž . Ž . Ž . u ,2 j u ,2 j12 23 24

y22 j 2 j 2 j w xS u sS u sS u s 3,1 for js1,3,4 ,Ž . Ž . Ž . u ,2 j13 14 34

2 4 22 j w x w x w xS u s 1,1 3,1 5,1 for js1,3,4 ,Ž . u ,2 j u ,2 j u ,2 j22

i jS u s1 for a,bs1,2,3,4; i/ j; i , j/2 .Ž .ab

Ž .The solutions to the constant TBA-equations 11 read

x1 sx1 sx1 sx 3 sx 4 sx 3 sx 4 sx 4 sx 4 sx 2 s1 , 18Ž .1 3 4 1 1 3 3 3 4 2

x1 sx 3 sx 4 s1r2 , 19Ž .2 2 2

x 2 sx 2 sx 2 s2 20Ž .1 3 4

Ž .such that the effective central charge according to 10 is

6
1 2 1c s 10 LL q3 LL q3 LL s8 . 21Ž .Ž . Ž . Ž .Ž .eff 2 3 32p

Ž .This result confirms the general formula 17 .

5. Conclusions

Ž . Ž .We have shown that the proposed scattering matrices 6 , 7 provide consistent solutions of the bootstrap
Ž . Ž .equations 1 . In comparison with 3 we have taken the square root of the CDD-factor which lead to the

introduction of the non-trivial parity breaking phase factors. The main motivation for this was to recover the
known scattering matrices which were mentioned at the end of Section 2. It is clear though that when we view
Ž .2 as the usual affine Toda field theory scattering matrix related to simply laced algebras we can write down
immediately colour valued S-matrices related to two different algebras. When we do not take the square root
this is straightforward and also works for theories related to non-simply laced algebras. We leave a systematic
investigation of these type of theories for future investigations.

A further open question is to identify the corresponding Lagrangian for the gNg-theories. The knowledge of˜
Ž .the ultraviolet central charge 17 will certainly be useful in this search since it provides the renormalization

<fixed point. As we know from the Homogeneous sine-Gordon models the A g-theory may be viewed as˜n˜m ll˜ Ž .perturbed G rU 1 -coset WZNW theories. In analogy, we could view for instance the ‘‘dual’’ theory ofnq1
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˜ mŽnq1. ˜this, i.e. the gNA -theory, formally as perturbed G rG -coset WZNW theory. Besides the identification˜ n 1 nq1

of the fixed point theory for the situation in which g /A , it remains open to find the precise form of then

perturbing operators. We do not expect that they will turn out to be irrelevant, since the colour giving
w xCDD-factors are different in nature than the ones recently discussed in 18 .
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