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Constructing infinite particle spectra
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We propose a general construction principle which allows us to include an infinite number of resonance
states into a scattering matrix of hyperbolic type. As a concrete realization of this mechanism we provide new
S matrices generalizing a class of hyperbolic ones, which are related to a pair of simple Lie algebras, to the
elliptic case. For specific choices of the algebras we propose elliptic generalizations of affine Toda field
theories and the homogeneous sine-Gordon models. For the generalization of the sinh-Gordon model we
compute explicitly renormalization group scaling functions by means of thec theorem and the thermodynamic
Bethe ansatz. In particular we identify the Virasoro central charges of the corresponding ultraviolet conformal
field theories.
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I. INTRODUCTION

Treating quantum field theories in 111 dimensions as a
test laboratory for realistic theories in higher dimensions, t
paper is concerned with the general question of how to
large a given finite particle spectrum of a theory to an infin
one. In general, the bootstrap@1#, which is the construction
principle for the scattering matrix, is assumed to close afte
finite number of steps, which means it involves a finite nu
ber of particles. However, from a physical as well as from
mathematical point of view, it appears to be natural to exte
the construction in such a way that it would involve an in
nite number of particles. The physical motivation for this
string theories, which admit an infinite particle spectru
Mathematically the infinite bootstrap would be an analogy
infinite dimensional groups, in the sense that two entries
the S matrix are combined into a third, which is again
member of the same infinite set. It appears to us that
impossible to construct an infinite bootstrap system invo
ing asymptotic states and find the mathematical analogu
infinite groups in this sense~see also footnote 2 and th
discussion before Sec. II A!. However, it is possible to intro
duce an infinite number of unstable particles into the sp
trum. Scattering matrices that would allow such a type
interpretation have occurred in the literature@2–4#, although
only Ref.@4# has a reference to unstable particles been ma
In @3,4# these matrices were found to be expressible in te
of elliptic functions, a feature very common in the context
lattice models, e.g.,@5#. The main purpose of this paper is
suggest a general construction principle for such type oS
matrices starting from some known theory with a finite p
ticle spectrum of a special, albeit quite generic, form.
particular examples we provide elliptic generalizations
scattering matrices related to a pair of Lie algebras@6#,
which contain the affine TodaS matrices@7# and homoge-
neous sine-GordonS matrices@8# for particular choices of
the algebras.

Our paper is organized as follows: In Sec. II we provide
general principle for the construction of scattering matric
that involve an infinite number of unstable particles a
present some explicit examples. In Sec. III we constr
renormalization group~RG! scaling functions by means o
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the c theorem and the thermodynamic Bethe ansatz~TBA!
for the generalization of the sinh-Gordon model. Our conc
sions and an outlook towards open problems are state
Sec. IV.

II. CONSTRUCTION PRINCIPLE

Let us consider the huge class of two-particleS matrices
that describe the scattering between particles of typesa andb
as a function of the rapidity differenceu, of the general
form1

Sab~u!5Sab
min~u!Sab

CDD~u!. ~1!

Here Sab
min(u) denotes the so-called minimalS matrix that

satisfies the consistency relations@1#, namely unitarity, cross-
ing and the fusing bootstrap equations and possibly pos
poles on the imaginary axis in the sheet 0<Imu<p, which
is physical for asymptotic states. The Castillejo-Dalit
Dyson ~CDD! factor @9#, referred to asSab

CDD(u), also satis-
fies these equations, but has its poles in the sheet2p
<Imu<0, which is the ‘‘physical one’’ for resonance state
Sab

CDD(u) might depend on additional constants like the effe
tive coupling constant or a resonance parameter. A sim
prescription to introduce now an infinite number of res
nance poles is to replace the CDD factor in Eq.~1! by

Ŝab
CDD~u,N!5 )

n52N

N

Sab
CDD~u1nv!, ~2!

wherev is taken to be real. By construction the newS ma-
trix, Ŝab(u,N)5Sab

min(u)Ŝab
CDD(u,N) satisfies the bootstrap

consistency equations and possible poles in the sheet2p
<Imu<0 have now been duplicated 2N times within this
sheet, such that they admit an interpretation as unstable
ticles. Therefore, whenN→` we have an infinite number o
resonance poles. Since, as a consequence of crossing
unitarity, theS matrix is known to be a 2p i -periodic func-

1Exceptions to this factorization are, for instance, the scatte
matrices of affine Toda field theories related to non-simply lac
Lie algebras, which was first noted in@10#.
©2001 The American Physical Society05-1
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O. A. CASTRO-ALVAREDO AND A. FRING PHYSICAL REVIEW D64 085005
tion, a property shared individually bySab
CDD(u,N), we ex-

pect to recover a double periodic function in the limitN
→`:

lim
N→`

Ŝab
CDD~u,N!5 lim

N→`

Ŝab
CDD~u1m2p i 1nv,N! ~3!

for m,nPZ. At this stage it is not clear whether the prescr
tion ~2! is meaningful at all, in the sense that it leads
meaningful quantum field theories, and in particular one
to be concerned about the convergence of the infinite pro
in Eq. ~3!. Since lim

N→`
Ŝab

CDD(u,N) is a double periodic

function we expect that it is somehow related to elliptic fun
tions ~see, e.g.,@11# for their properties!. Let us therefore
now look concretely at the building blocks that can be us
to make up the entire scattering matrix in the non-ellip
case, when backscattering is absent. In that case theSmatri-
ces are diagonal and known@12# to be of the general form

Sab~u!5 )
xPA

$x%u
s5 )

xPA

tanh~u2 ipx1s!/2

tanh~u1 ipx1s!/2
, ~4!

with xPQ andsPR. A specific theory is then characterize
by the finite setA.2 This means, if we demonstrate that th
prescription~3! is meaningful for each individual building
block $x%u

s as defined in Eq.~4!, in particular we need to
demonstrate the convergence of the infinite product, we h
established that it is sensible for the entire scattering ma
For this purpose we note the identity

$x%u,l
s
ª )

n52`

`

$x%u1nv
s 5

scu2dnu1

scu1dnu2
. ~5!

Here we abbreviatedu65(u6 ipx1s) iK l /p and used the
Jacobian elliptic functions in the standard notationpq(z)
with p,qP$s,c,d,n% ~see, e.g.,@11#!. The quarter periodsKl
depending on the parameterl P@0,1# are defined in the usua
way through the complete elliptic integral

Kl5E
0

p/2

~12 lsin2u!21/2du. ~6!

The period of$x%u,l
s is chosen to bev5pK (12 l ) /Kl . The

last identity in Eq.~5! is easily derived from the infinite
product representations of the elliptic functions which can
found in various places as, for instance, in@11#

scx5k tan
px

2Kl
)
n51

`
122q2ncos~px/Kl !1q4n

112q2ncos~px/Kl !1q4n
, ~7!

2The fact thatxPQ together with the bootstrap leads to a finite s
A and therefore a finite number of asymptotic states. Taking ins
xPR could possibly lead to an infinite number, but a consist
closure of the bootstrap is not known up to now.
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dnx5k21)
n51

`
112q2n21cos~px/Kl !1q4n22

122q2n21cos~px/Kl !1q4n22
,

~8!

with k5(12 l )21/4 and q5exp(2v). Recalling the well
known limits lim

l→0
Kl5p/2 and lim

l→0
K (12 l )5` we ob-

tain

lim
l→0

$x%u,l
s 5$x%u

s . ~9!

This means in the limitl→0 the elliptic S matrix Ŝab(u)
collapses to the hyperbolic one, that isSab(u). Notice that
due to the general identity pr(x)/qr(x)5pq(x), we could
also write Eq.~5! in terms of various other combinations o
elliptic functions. For instance, replacing sc by sn/cn is pro
ably most intuitive, since it allows an alternative prescripti
to Eq. ~3! for the construction of elliptic scattering matrice
Replace sinh→sn, cosh→cn and correct the consistenc
equations by a factor dn, which reduces always to 1 in
hyperbolic limit, in such a way that no resonance poles
left inside the physical sheet. Defining now the function

um,n~x,s,v!ª2p i ~n1x/2!12vm2s ~10!

the singularities of$x%u,l
s are easily identified as

zeros:um,n~x,s,v!, um,n~12x,s,v!, ~11!

poles:um,n~2x,s,v!, um,n~x21,s,v!. ~12!

Note that when taking 0<x<1 the poles are situated in th
non-physical sheet.

This brings us to the question of how to interpret the
poles and how can we characterize the physical propertie
the related particles? Considering theSmatrix Sab(u), which
describes the scattering of two particles of typea andb with
massesma andmb , we assume that there is a resonance p
situated atuR5s2 i s̄. According to the Breit-Wigner for-
mula @13# ~see also, e.g.,@14#! the massMc̃ and the decay
width G c̃ of an unstable particle of typec̃ can be conve-
niently expressed as

2Mc̃
2
5Ag21g̃21g, G c̃

2/25Ag21g̃22g, ~13!

where

g5ma
2 1mb

2 12mambcoshs coss̄, ~14!

g̃52mambsinhususins̄. ~15!

We keep here in mind that this description, although f
quently used, e.g.,@8,4,15#, is not entirely rigorous and re
quires additional investigation. This caution is based on v
ous facts. First, the relations~13! are simply derived by
carrying over a prescription from usual quantum mechan
to quantum field theory, i.e., complexifying the mass of
stable particle. Second, solving the Breit-Wigner formula
the quantitiesMc̃ , G c̃ and treating them literally as mass an

t
d
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CONSTRUCTING INFINITE PARTICLE SPECTRA PHYSICAL REVIEW D64 085005
decay width is somewhat problematic since this is in confl
with Heisenberg’s uncertainty principle, because appare
we know simultaneously the energy and the time. Third,
Breit-Wigner relations presume an exponential decay in m
mentum space, which is in fact incompatible with the gene
principles of quantum field theory and therefore might p
sibly be a problem in this context@16#. Nonetheless, we em
ploy these quantities and try to find evidence to support
they are indeed meaningful. When takingMc̃ to be the mass
of the unstable particle there should be a threshold for e
getic reasons of the type

Mc̃>ma1mb , ~16!

with the consequence that the decay width is bounded b

G c̃
2
>8mamb~12coshs coss̄ !. ~17!

So far evidence for these thresholds has not been foun
the literature. One reason for this is that the unstable parti
enter the bootstrap principle in a more passive way than
stable particles, whose properties are directly used in
construction procedure. Hence one expects that signs
these thresholds will emerge in a more indirect way.

A summary of our statements about the pole structure
Ŝ(u) is depicted in Fig. 1.

Since the poles inside the sheet 0<Imu<p are associated
with Sab

min(u), it is also obvious from Fig. 1 why the prescrip
tion ~2! may not be employed for this part of theS matrix,
since it would lead to a pole structure which is, according
Eq. ~13!, nonphysical forMc̃ andG c̃ .

To summarize our findings of this section, note that
newly constructed scattering matrix will be of the gene
form

Ŝab~u!5Sab
min~u!Ŝab

CDD~u!5 )
xPA

$x%u
s$x%u,l

s . ~18!

FIG. 1. The poles of the blocks$x%u,l
s are the crosses in the she

2p<Imu<0. The crosses on the positive part of the imagina
axis are associated, as usual, with stable particles. For equal m
of the stable particles the threshold~16! is s t5arccosh@(3
2cospx)/(11cospx)#.
08500
t
ly
e
-
l
-

at

r-

in
es
e
e
or

f

o

e
l

Thus the scattering matrix becomes a combination of ellip
and hyperbolic functions.

A. Examples

It is clear by construction that our prescription includes
affine Toda field theories related to simply laced Lie alg
bras, since they all factorize as Eq.~1! and may be repre-
sented in the form~4!, see, e.g.,@7#. Taking the resonance
parameters to be zero and the setA5$t% for 0<t<1, we
recover as a special case the elliptic version of the si
Gordon model proposed in@4#. Reintroducings, its scatter-
ing matrix reads

Ŝ~u!5 )
n52`

`
tanh~u2 ipx1nv1s!/2

tanh~u1 ipx1nv1s!/2
. ~19!

According to Eq.~13! the masses and decay width of th
unstable particles are

Mm,n
s,nv5mA2cosh

um,n~y,s,nv!

2
, y52x,x21 ~20!

Gm,n
s,nv5m2A2sinh

um,n~y,s,nv!

2
, y52x,x21 ~21!

wherem denotes the mass of the stable particle. The thre
olds ~16! and ~17! translate in this case into

cosh~nv1s!>
37cospx

16cosp x
, G>4m

sin2
p~2x1161!

4

cos
p~2x1161!

4

.

~22!

As a further example we consider the elliptic generalizat
of the A1uAN21-theory @[SU(N)2-homogeneous sine
Gordon model#. The two-particleS matrix describing the
scattering of two stable particles of typea and b, with 1
<a,b<N21, related to the non-elliptic version of thi
model, was proposed in@8#. In our notation it may be written
as

Sab~u,sab!5~21!dab@caA$1/2%u
sab# I ab. ~23!

Here I denotes the incidence matrix of theSU(N)-Dynkin
diagram, the resonance parameters have the propertysab5
2sba andca561 depending on whethera is even or odd.
According to our prescription outlined in the previous pa
graph, the elliptic generalization of Eq.~23! is

Ŝab~u,sab ,l !5~21!dab@caA$1/2%u,l
sab# I ab. ~24!

Note that despite the appearance of the square root,Sas well
as Ŝ are still meromorphic functions inu.

ses
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III. RG-SCALING FUNCTIONS

Having established that our prescription leads to sens
solutions of the bootstrap consistency equations, we wo
also like to know what kind of quantum field theories the
scattering matrices correspond to. Up to now all known
lutions to the on-shell consistency equations have led to
sible quantum field theories~QFT’s!, albeit a rigorous proof
which would establish that indeedall solutions are well-
defined local QFT’s is still an outstanding issue. Some c
cial characteristics of the theory are contained in the ren
malization group scaling functions, which we now want
determine. In particular, we want to identify in the extrem
ultraviolet limit the Virasoro central charges of the corr
sponding conformal field theories.

A. The c theorem

We carry out this task by evaluating thec theorem@17# in
the version presented in@15#

c~r !53(
n51

`

(
m1 . . . mn

E
2`

` du1 . . . dun

n! ~2p!n
e2r E

3uFn
Qum1 . . . mn~u1 , . . . ,un!u2

3
~616rE13r 2E21r 3E3!

2E4
. ~25!

The sum of the on-shell energies is here denoted byE
5( i 51

n mm i
coshui , with mm i

being the masses of the theo
and the correlation function for the trace of the energy m
mentum tensorQ has been expanded in terms ofn-particle
form factorsFn

Qum1 . . . mn(u1 , . . . ,un) ~see @18# for general
properties and@19# for explicit sinh-Gordon formulas!. We
normalizedQ andmm i

by an overall mass scale, such thatE

as well as the renormalization group parameterr become
dimensionless. In particular, lim

r→0
c(r ) is the ultraviolet Vi-

rasoro central charge.
Let us now start with the evaluation ofc(r ) as defined in

Eq. ~25! for the elliptic version of the sinh-Gordon model. A
the input for this we need to know then-particle form fac-
tors. Since so far it is not known how to compute the sum
n analytically, we have to resort to a numerical treatment a
it is clear that we have to terminate the series at a cer
value of n. Fortunately, it was observed explicitly in@19#,
that in fact the expression forn52 is already very close to
the exact answer for the sinh-Gordon model. We assume
that the convergence behavior is still true when we gene
ize the scattering matrix to Eq.~19!. Note that in general one
has to be careful with this approximation, since the hig
particle contributions are crucial in some models in order
obtain a good approximation toc(r ) @20,15,21#. In the two-
particle approximation, indicated by the superscript, one
perform one of the integrations analytically and Eq.~25! ac-
quires the simple form
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lim
r→0

c(2)~r !5
3

2E0

`

du
uF2

Q~2u!u2

cosh4u
. ~26!

It is here crucial to note that besides the formulation ofŜ in
terms of elliptic functions forN→`, it can also be expresse
equivalently in terms of the usual sinh-GordonS matrix ~5!.
When trying to solve now the form factor consistency equ
tions @18#, we can exploit this observation. Since for th
model at hand there is neither a kinematic nor a bound s
pole in F2

Q(u), the only equations to be solved are Watso
equations. The two particle form factor is then easily o
tained to be

F̂2
Q~u,N!52p )

n52N

N
Fmin~u1nv!

Fmin~ ip1nv!
, ~27!

whereFmin(u) is the minimal form factor of the sinh-Gordo
model obtained in@19#

Fmin~u!5expH 4E
0

`dt

t FcosS tu

p D cotht1 isinS tu

p D G

3

sinhS t~x21!

2 D sinhS tx

2 D sinhS t

2D
sinh~ t !

J . ~28!

Using the infinite product representation forFmin(u) @19#
the solution~27! for N→` coincides with Eq.~5.3! in @4#.
Proceeding now to the evaluation of Eq.~25!, we require
uF̂2

Q(u,N)u2, whose characteristics are captured in Fig. 2.
We observe that for a certain value ofN the function starts

to converge, which is of course important from a techni
point of view when we want to compute the limiting ca
N→`. The other observation we make in Fig. 2, see a
Fig. 5 in @19#, is that f (u,N50) always has a distinct maxi
mum, which we refer to asum . From Eq.~28! follows that it
is determined by the solution of

FIG. 2. Absolute value squared of the two particle form facto

f (u,N)5uF̂2
Q(u,N)/2pu2 as functions of the rapidity for differen

values ofN for v51.3 andx50.1.
5-4
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CONSTRUCTING INFINITE PARTICLE SPECTRA PHYSICAL REVIEW D64 085005
4um

p
coshumsinpx1cosh 2xp coth

um

2

5

cosh
3um

2

sinh
um

2

12~2x21!cospx sinhum . ~29!

Solving this equation for various values ofx, we find thatum
is always slightly greater than the smallest threshold bo
obtained from Eq.~22!. For instance, forx50.1 we obtain
um.1.439 andnv1s.0.315 and forx50.5 we haveum
.2.040 andnv1s.1.763. We interpret this as an indica
tion that the form factors ‘‘know’’ about the thresholds~22!.
We support this now by considering lim

N→`
f (u,N) for vari-

ous values ofv.
We observe that in the region in which the fact

1/cosh4(u), emerging in Eq.~26!, is still nonvanishing the
integrals lim

N→`
*duuF̂min(u,N)u2 are decreasing functions o

v ~see Fig. 3!. This behavior is changed once we takev
,um as we can explicitly extract from Fig. 4.

Naturally these features are also reflected in the sca
functions. Presuming that for each value ofN we have a
consistent theory, we would like to know which ultraviol
central charges these models possess and in addition we
to identify a value ofN for which the related model const
tutes reasonably good approximation for the elliptic mode
That such an identification is possible is exhibited in Fig.
In addition we observe, that for fixedv and x the scaling
function is monotonically increasing whenN is varied.

Focussing now on the elliptic case, that is we selec
large enoughN such that this case is well approximated, w
compute the scaling function in dependence ofv for various
values ofr. Our results are depicted in Fig. 6.

In the extreme limits we obtain lim
v→0

c(r ,v)50 and

for largev we recover the values of the sinh-Gordon mod
lim

v→`
c(r ,v)5cSG(r ). The latter limit follows from Eq.

FIG. 3. Absolute value squared of minimal form facto

g(u,v)5 lim
N→`

uF̂min(u,N)u2 as functions of the rapidity for differ-

ent values ofv andx50.1.
08500
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~9! and is in addition compatible with lim
u→`

Fmin(u)51.

The values for the extremal points were already quoted
@4#; however, we also observe that the function is not mo

FIG. 4. Integrand of Eq.~26!, that is h(u,v)5 lim
N→`

uF̂min(u,N)u2/cosh4u as a function of the rapidity for different val
ues ofv andx50.1.

FIG. 5. Ultraviolet Virasoro central chargec(2) as a function of
N.

FIG. 6. Ultraviolet Virasoro central chargec(2) as a function of
v.
5-5
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tonically increasing between these points as claimed in th
In fact, in the physical region, that is for values ofv
.0.315, the function is monotonically decreasing and d
not take on values between 0 and 1. Remarkably, the thr
old is quite clearly exhibited by a drastic change in the
havior ofc, that is the onset of a small plateau as is visible
Fig. 6.

We performed the same computation for different valu
of x and observed that this onset moves in the direction p
dicted by Eq.~22!.

B. The thermodynamic Bethe ansatz

Let us now compare the results of the previous sec
with an alternative method, namely the thermodynamic B
the ansatz@22#. For this we first have to solve the TBA
equations

r m̂icoshu1 ln~12e2Li (u)!5(
j

w i j* L j~u! ~30!

for the functionLi(u). The information of the scattering ma
trix is captured in the kernelw i j (u)52 id ln Sij(u)/du of the
rapidity convolution, which is denoted as usual byf * g(u)
ª*du8/2p f (u2u8)g(u8). The dimensionless parameterr
5m1T21 is the inverse temperatureT times the overall mass
scale of the lightest particlem1. Also all masses have bee
normalized in this way, i.e.,m̂i5mi /m1. Having determined
theLi(u) functions, we may compute the scaling function
means of

c8~r !5
3r

p2 (
i

m̂iE
0

`

du coshu Li~u!. ~31!

Once again lim
r→0

c8(r ) is the ultraviolet Virasoro centra

charge. We would like to recall here that the scaling fun
tions c(r ) and c8(r ) are not identical, but contain qualita
tively the same information in the RG sense.

In order to carry out this analysis we need to know in E
~30! the kernelw(u) as input. For the model under consi
eration we can exploit the factorization property~19! for a
finite product and trivially obtain

wN~u!5 (
n52N

N

wSG~u1nv1s!, ~32!

wherewSG(u) is the sinh-Gordon kernel, e.g.,@23#

wSG~u!5
4 sin~px!coshu

cosh~2u!2cos~2px!
. ~33!

Using alternatively the representation of theSmatrix ~19! in
terms of elliptic functions, we compute the kernel directly

lim
N→`

wN~u!5
Kl

p (
k52,1

Fdcuk

snuk
1 l ~12 l !

snuk

dcuk
G . ~34!
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With these expression we carry out our numerical analy
that is we solve iteratively Eq.~30! and evaluate Eq.~31!
thereafter. The results of this investigations are presente
Fig. 7.

Unfortunately for very small values ofv and r our nu-
merical iteration procedure does not converge reliably. Ho
ever, we will be content at this stage with the data obtain
so far, since they already support qualitative ourc-theorem
analysis. They confirm that above threshold the scaling fu
tion is monotonically decreasing as a function ofv and also
that values greater than 1 may be reached, even for fi
values ofr.

IV. CONCLUSIONS

Starting from a given scattering matrix of hyperbolic typ
we have demonstrated that it is possible to include con
tently an arbitrary number of unstable particles into the sp
trum of the theory. In particular when this number becom
infinite the CDD part of the scattering matrix may be e
pressed in terms of elliptic functions. The minimal part ofS
remains unchanged such that the entire matrix become
combination of elliptic and hyperbolic functions.

For the generalization of the sinh-Gordon model we co
puted RG scaling functions. Within these analyses we fou
clear evidence for the thresholds which constrain the ma
of the unstable particles. Above threshold, the values
ultraviolet Virasoro central charges may take are betwee
and 2 ~possibly slightly greater than 2! and not between 0
and 1 as suggested in@4#. The theories are consistent for ea
finite value ofN. For fixed resonance parametersv ands the
scaling functions are non-decreasing for increasingN.

Concerning the investigation of thec-theorem, it would
be desirable to refine the analysis. In particular one sho
include highern-particle form factors into the expansion. Fo
the elliptic version some of them were already presented
@4#, but in general it remains a challenge to find closed
pressions for arbitrary particle numbers. At present the T
analysis is the least conclusive exploration and deserves
ther consideration in future. In particular the regions ofv
and r, which were not accessible to us, should be explo
and might possibly lead to a further, more concrete, indi

FIG. 7. TBA scaling function.
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tion of the thresholds also in this context. In regard to this
will be useful develop existence criteria for the solution
the TBA equations analogue to the one derived in@23#. The
one presented there cannot be taken over directly, sinc
makes use of the fact that*duuw(u)u equals 2p, whereas for
the model investigated here this is 2pN. It would be desir-
able to develop analytic approximations for the TBA so
tions in the extreme ultraviolet limit, i.e.,r 50, similar to the
z,

s.

s.
,

08500
it
f

it

-

approximation already existing for theories with differe
characteristic features.
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