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Constructing infinite particle spectra
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We propose a general construction principle which allows us to include an infinite nhumber of resonance
states into a scattering matrix of hyperbolic type. As a concrete realization of this mechanism we provide new
S matrices generalizing a class of hyperbolic ones, which are related to a pair of simple Lie algebras, to the
elliptic case. For specific choices of the algebras we propose elliptic generalizations of affine Toda field
theories and the homogeneous sine-Gordon models. For the generalization of the sinh-Gordon model we
compute explicitly renormalization group scaling functions by means of theorem and the thermodynamic
Bethe ansatz. In particular we identify the Virasoro central charges of the corresponding ultraviolet conformal
field theories.
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I. INTRODUCTION the ¢ theorem and the thermodynamic Bethe ansagA)
for the generalization of the sinh-Gordon model. Our conclu-
Treating quantum field theories in+1l dimensions as a sions and an outlook towards open problems are stated in
test laboratory for realistic theories in higher dimensions, thisSec. IV.
paper is concerned with the general question of how to en-
large a given finite particle spectrum of a theory to an infinite ll. CONSTRUCTION PRINCIPLE

one. In general, the bootstrp], which is the construction Let us consider the huge class of two-partiSlenatrices
principle for the scattering matrix, is assumed to close after ghat describe the scattering between particles of tyesdb

finite number of steps, which means it involves a finite nUM-35 5 function of the rapidity differencé, of the general
ber of particles. However, from a physical as well as from &y m!

mathematical point of view, it appears to be natural to extend _
the construction in such a way that it would involve an infi- San(0)=SI"(6)SSPP(6). (1)
nite number of particles. The physical motivation for this is min L )
string theories, which admit an infinite particle spectrum.H€re Sap(6) denotes the so-called minim& matrix that
Mathematically the infinite bootstrap would be an analogy tosatisfies the consistency relatid3, namely unitarity, cross-
infinite dimensional groups, in the sense that two entries ofd and the fusing bootstrap equations and possibly possess
the S matrix are combined into a third, which is again a Poles on the imaginary axis in the sheetbné< , which
member of the same infinite set. It appears to us that it i Physical for asymptotic states. Tg‘D% Castillejo-Dalitz-
impossible to construct an infinite bootstrap system involv-Dyson (CDD) factor [9], referred to asS;;,™(6), also satis-
ing asymptotic states and find the mathematical analogue fides these equations, but has its poles in the sheet
infinite groups in this sensésee also footnote 2 and the <Im#=<0, which is the “physical one” for resonance states.
discussion before Sec. I)AHowever, it is possible to intro- SSPP(6) might depend on additional constants like the effec-
duce an infinite number of unstable particles into the spective coupling constant or a resonance parameter. A simple
trum. Scattering matrices that would allow such a type ofprescription to introduce now an infinite number of reso-
interpretation have occurred in the literat(ite-4], although  nance poles is to replace the CDD factor in EL. by
only Ref.[4] has a reference to unstable particles been made. N
In [3,4] these matrices were found to be expressible in terms &CDD, _ CDD
of elliptic functions, a feature very common in the context of Sab (6’,N)—nEN Sab (04 Nw), @
lattice models, e.g[5]. The main purpose of this paper is to ) ]
suggest a general construction principle for such typ& of Wherew is taken to be real. By construction the n&ma-
matrices starting from some known theory with a finite par-trix, S,,(6,N)=SIV(6)SP°(6,N) satisfies the bootstrap
ticle spectrum of a special, albeit quite generic, form. Asconsistency equations and possible poles in the sheet
particular examples we provide elliptic generalizations of<Im#<0 have now been duplicated\2times within this
scattering matrices related to a pair of Lie algebfs  sheet, such that they admit an interpretation as unstable par-
which contain the affine Tod& matrices[7] and homoge- ticles. Therefore, wheN— o we have an infinite number of
neous sine-Gordo® matrices[8] for particular choices of resonance poles. Since, as a consequence of crossing and
the algebras. unitarity, theS matrix is known to be a 2i-periodic func-

Our paper is organized as follows: In Sec. Il we provide a
general principle for the construction of scattering matrices—
that involve an infinite number of unstable particles and ‘Exceptions to this factorization are, for instance, the scattering
present some explicit examples. In Sec. Il we construciatrices of affine Toda field theories related to non-simply laced
renormalization grougRG) scaling functions by means of Lie algebras, which was first noted [iti0].
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tion, a property shared individually b§5P°(6,N), we ex-

pect to recover a double periodic function in the linit

NN

lim SSPP(6,N) = lim SSP°(6+ w2 i + vew,N)

N— o0

)

N— oo

for u,v e Z. At this stage it is not clear whether the prescrip-
tion (2) is meaningful at all, in the sense that it leads to

meaningful quantum field theories, and in particular one has
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d kflﬁ 1+2g%" tcog wx/K,)+q*" 2
nxX= ’
n=11—20%"" lcog wx/K|)+q*" 2

8
with k=(1—1)"Y* and q=exp(—w). Recalling the well
known limits "mpoKIZW/Z and IirqHOK(l,D:oo we ob-
tain

lim x5, = x5
|—0

9

to be concerned about the convergence of the infinite product

in Eq. (3). Since lim__S{P°(6,N) is a double periodic

function we expect that it is somehow related to elliptic func-
tions (see, e.g.[11] for their properties Let us therefore
now look concretely at the building blocks that can be use
to make up the entire scattering matrix in the non-elliptic
case, when backscattering is absent. In that casg thatri-
ces are diagonal and knowfh2] to be of the general form

tan @—imXx+ o)/2
tanh 0+imx+0)/2’

Sa(0= 11 {xt5=11 (4)

xe A xe A

with xe () ando € R. A specific theory is then characterized
by the finite set4.? This means, if we demonstrate that the
prescription(3) is meaningful for each individual building
block {x}§ as defined in Eq(4), in particular we need to

This means in the limil —0 the elliptic S matrix éab(e)
collapses to the hyperbolic one, thatSg,(6). Notice that
due to the general identity pg/qgr(x)=pq(x), we could

Iso write Eq.(5) in terms of various other combinations of

lliptic functions. For instance, replacing sc by sn/cn is prob-
ably most intuitive, since it allows an alternative prescription
to Eqg. (3) for the construction of elliptic scattering matrices:
Replace sinkssn, cosh-cn and correct the consistency
equations by a factor dn, which reduces always to 1 in the
hyperbolic limit, in such a way that no resonance poles are
left inside the physical sheet. Defining now the function

demonstrate the convergence of the infinite product, we have

established that it is sensible for the entire scattering matrix.

For this purpose we note the identity

” sch_dné
rne” seh, dng_

Dage= 111 (5)

Here we abbreviated. = (0ximx+ 0)iK, /7 and used the
Jacobian elliptic functions in the standard notatipq(z)
with p,qe{s,c,d,n} (see, e.g.[11]). The quarter periodK,
depending on the parametet [ 0,1] are defined in the usual
way through the complete elliptic integral

w2
K|=fo (1—1sire) " Y2de. (6)

The period of{x}y, is chosen to bev=7K_) /K. The
last identity in Eq.(5) is easily derived from the infinite

product representations of the elliptic functions which can be

found in various places as, for instance[id]

ctan™ © 1-2qg%"cog wx/K,)+g*"
sx=ktan;, ~ '
Kin=1 1+ 29?"cog wx/K,) +q*"

()

0,,.,(X,0,0):=2m(v+X2)+20pu—0 (10

the singularities ofx}} | are easily identified as
zerosy, ,(X,0,0), 0, ,(1-X,0,0), (11
polesd, ,(—X,0,0), 0, ,(X—10,0). (12

Note that when taking €x=1 the poles are situated in the
non-physical sheet.

This brings us to the question of how to interpret these
poles and how can we characterize the physical properties of
the related particles? Considering tBeatrix S,,( 6), which
describes the scattering of two particles of typandb with
massesn, andm,, we assume that there is a resonance pole

situated atdgr=o—io. According to the Breit-Wigner for-
mula[13] (see also, e.g[14]) the massMt and the decay
width T'; of an unstable particle of type can be conve-
niently expressed as

ME=\2+ Y4y, Ti2=\y*+7%-y, (13
where

y=m2 +mZ + 2m,mycosho cosr, (14)

y=2m,mysinh | sinc. (15

We keep here in mind that this description, although fre-
quently used, e.g[8,4,15, is not entirely rigorous and re-
quires additional investigation. This caution is based on vari-
ous facts. First, the relation€l3) are simply derived by

2The fact thak e () together with the bootstrap leads to a finite set CIrying over a prescription from usual quantum mechanics
A and therefore a finite number of asymptotic states. Taking insteatP quantum field theory, i.e., complexifying the mass of a
xe R could possibly lead to an infinite number, but a consistentStable particle. Second, solving the Breit-Wigner formula for
closure of the bootstrap is not known up to now. the quantitiesviz, I'z and treating them literally as mass and
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Thus the scattering matrix becomes a combination of elliptic
"""""""""""""" W T and hyperbolic functions.

A. Examples

ra)

It is clear by construction that our prescription includes all
affine Toda field theories related to simply laced Lie alge-
bras, since they all factorize as Ed) and may be repre-
sented in the forn{4), see, e.g.[7]. Taking the resonance
parametefo to be zero and the set={t} for 0<t<1, we
recover as a special case the elliptic version of the sinh-
Gordon model proposed i#]. Reintroducingo, its scatter-
ing matrix reads

56)— ﬁ tant( §—i mx+nw+0)/2
FIG. 1. The poles of the blockx}, are the crosses in the sheet n==w tanh( 0 +imx+nw+0)/2’
—m7<Im#=<0. The crosses on the positive part of the imaginary

axis are associated, as usual, with stable particles. For equal mass&gcording to Eq.(13) the masses and decay width of the
of the stable particles the threshold6) is o,=arccosh(3 unstable particles are

(19

—cosmx)/(1+cosmx)].
. . L L . 0, .Y ,onw)
decay width is somewhat problematic since this is in conflicty 7N — m\/Ecos adi . y=—%xx—1 (20)
with Heisenberg’s uncertainty principle, because apparently " 2
we know simultaneously the energy and the time. Third, the
Breit-Wigner relations presume an exponential decay in mo- 0,,.,(Y,0,nw)

mentum space, which is in fact incompatible with the generall s = M2 \/Esmhf, y=—xx-1 (21
principles of quantum field theory and therefore might pos-
sibly be a problem in this contek16]. Nonetheless, we em-
ploy these quantities and try to find evidence to support thaﬁ/I
they are indeed meaningful. When takikt; to be the mass

of the unstable particle there should be a threshold for ener-

herem denotes the mass of the stable particle. The thresh-
ds (16) and(17) translate in this case into

getic reasons of the type sir? m(2x+11)
. 3% cosmX =4 4
Mz=m,+m,, (16) coslinw+0)= T ooy T=4m m(2x+1+1) "
co 7
with the consequence that the decay width is bounded by (22)
F§>8mamb(1_005h0 cowr). (17 As a further example we consider the elliptic generalization

of the A;|Ay_i-theory [=SU(N),-homogeneous sine-
So far evidence for these thresholds has not been found i@ordon moddl The two-particleS matrix describing the
the literature. One reason for this is that the unstable particlescattering of two stable particles of tygeand b, with 1
enter the bootstrap principle in a more passive way than thesa,b<N—1, related to the non-elliptic version of this
stable particles, whose properties are directly used in thenodel, was proposed {8]. In our notation it may be written
construction procedure. Hence one expects that signs fas
these thresholds will emerge in a more indirect way.

A A §umm§ry of.our. statements about the pole structure of Sauf H,Uab)z(—l)‘sab[ca\/ﬂT}‘;“]'ab. (23)
S(6) is depicted in Fig. 1.

Since the poles inside the sheet Ind=< 7 are associated
with S1p'(6), it is also obvious from Fig. 1 why the prescrip-
tion (2) may not be employed for this part of ti®matrix,
since it would lead to a pole structure which is, according t
Eq. (13), nonphysical foiMz andI;.

To summarize our findings of this section, note that th
newly constructed scattering matrix will be of the general

form San(0,0ap,1) = (— 1) co\{1/2} 3] 0. (24)

Here | denotes the incidence matrix of tt&U(N)-Dynkin
diagram, the resonance parameters have the propgpty

— opa andc,= + 1 depending on whethex is even or odd.
0According to our prescription outlined in the previous para-
egraph, the elliptic generalization of ER3) is

Note that despite the appearance of the square $at,well

Sap(0)=Sm"(6)SSPP(9) = x}ox}g,. (18 .
il 0) = Seb (0)S57(0) XI;[A{ Fo Xy, (18 as$S are still meromorphic functions if.
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Ill. RG-SCALING FUNCTIONS 5

Having established that our prescription leads to sensible 5
solutions of the bootstrap consistency equations, we would
also like to know what kind of quantum field theories these
scattering matrices correspond to. Up to now all known so-
lutions to the on-shell consistency equations have led to sen- fON)
sible quantum field theorie®QFT'’s), albeit a rigorous proof
which would establish that indeeall solutions are well- i
defined local QFT'’s is still an outstanding issue. Some cru-
cial characteristics of the theory are contained in the renor-
malization group scaling functions, which we now want to
determine. In particular, we want to identify in the extreme ol
ultraviolet limit the Virasoro central charges of the corre-
sponding conformal field theories.

22277
2 B b

FIG. 2. Absolute value squared of the two particle form factors
f(6,N)=|F5(6,N)/27|? as functions of the rapidity for different
A. The c theorem values ofN for o=1.3 andx=0.1.

We carry out this task by evaluating tbeheorem[17] in

the version presented [15] 46 26

3
im c#(r) = 2)o"" costte

r—0

F IF9(20)|2

- doy. oy .

c(n=3> >

=1 pypn == nl(2m)" It is here crucial to note that besides the formulatiorSof
terms of elliptic functions foN— oo, it can also be expressed

xRy, 6] | i i i
n ' ' equivalently in terms of the usual sinh-Gord8matrix (5).
(6+6rE +3r2E2+r3€3) When trying to solve now the form factor consistency equa-
X . (25 tions [18], we can exploit this observation. Since for the

2E* model at hand there is neither a kinematic nor a bound state
pole in F(e), the only equations to be solved are Watson'’s
o equations. The two particle form factor is then easily ob-
The sum of the on-shell energies is here denotedEby t5ined to be
=Zi”:1mﬂicosh6i, with m,, being the masses of the theory
and the correlation function for the trace of the energy mo- ~6 Fmin(0+Nw)
mentum tenso® has been expanded in termsmparticle FO(ON)=27 HN F (mtne)’ 27
form factors F?'“l"'“”(el, ....0,) (see[18] for general " e
properties and19] for explicit sinh-Gordon formulas We  \yhereF ,,,(6) is the minimal form factor of the sinh-Gordon
normalized® andm,, by an overall mass scale, such that model obtained if19]
as well as the renormalization group parameatdsecome
dimensionless. In particular, Iirnloc(r) is the ultraviolet Vi-

N

rasoro central charge. =dt to . [t6
Let us now start with the evaluation ofr) as defined in Fimin( 0) = €Xp 4f0 t COS{? cotht +isin ;H
Eq. (25) for the elliptic version of the sinh-Gordon model. As
the input for this we need to know theparticle form fac- o [tx=1)) (x| [t
tors. Since so far it is not known how to compute the sum in SW( > )smf‘(i sml‘(z)
n analytically, we have to resort to a numerical treatment and Sin(t) (28)

it is clear that we have to terminate the series at a certain ) o _
value of n. Fortunately, it was observed explicitly {19, Using the infinite product representation #f,n(6) [19]
that in fact the expression far=2 is already very close to the solution(27) for N—co coincides with Eq(5.3) in [4].

the exact answer for the sinh-Gordon model. We assume hefyoceeding now to the evaluation of E@5), we require
that the convergence behavior is still true when we generalF5 (6,N)|?, whose characteristics are captured in Fig. 2.
ize the scattering matrix to E¢L9). Note that in general one We observe that for a certain valueMthe function starts
has to be careful with this approximation, since the higheito converge, which is of course important from a technical
particle contributions are crucial in some models in order tgpoint of view when we want to compute the limiting case
obtain a good approximation &(r) [20,15,21. In the two- N—o. The other observation we make in Fig. 2, see also
particle approximation, indicated by the superscript, one cafrig. 5 in[19], is thatf(6,N=0) always has a distinct maxi-
perform one of the integrations analytically and E2p) ac-  mum, which we refer to a8,,. From Eq.(28) follows that it
quires the simple form is determined by the solution of
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g6.v)

FIG. 3. Absolute value squared of minimal form factors
9(8,0)=Ilim_ | Fin(8,N)? as functions of the rapidity for differ-
ent values ofw andx=0.1.

PHYSICAL REVIEW B4 085005

FIG. 4. that is h(68,w)=Ilim

|E min(0,N)|2/cosH6 as a function of the rapidity for different val-
ues ofw andx=0.1.

Integrand of Eq.(26),

N— oo

40 0 is i iti i ith i (0=
mcoshemsinwx+cosh 2choth?m (9) and is in addition compatible with I|(57LOCme(0) 1.
m The values for the extremal points were already quoted in
30 [4]; however, we also observe that the function is not mono-
coshz—rn
:—0+2(2x—1)003wx sinhé,, . (29 18 : : , : : : :
sinh"
2 e =15
16k = 0=25 i
& . . . . . o . =45 [ .
Solving this equation for various valuesxfwe find thaté,, 5 . . o-55
is always slightly greater than the smallest threshold bound © 0‘2 v i0=ED |
obtained from Eq{(22). For instance, fox=0.1 we obtain ' T e
0,=1.439 andnw+ 0>0.315 and forx=0.5 we haved,, )
=2.040 andnw+ 0>1.763. We interpret this as an indica- W 5 o 0 0 0 0 o o O o o o o of
tion that the form factors “know” about the threshol¢z2). °
We support this now by considering ljm _f(6,N) for vari- Ao e e o R
ous values of. . . . . . . .
We observe that in the region in which the factor ® 2 i 5N I v =

1/cosh(6), emerging in Eq.26), is still nonvanishing the
integrals lim,__fd 6|F min(B:N)|? are decreasing functions of

o (see Fig. 3 This behavior is changed once we take
<6, as we can explicitly extract from Fig. 4.

Naturally these features are also reflected in the scaling : ' : : ' ' '

functions. Presuming that for each value Mfwe have a
consistent theory, we would like to know which ultraviolet

central charges these models possess and in addition we war

to identify a value ofN for which the related model consti-

tutes reasonably good approximation for the elliptic models. P,

That such an identification is possible is exhibited in Fig. 5
In addition we observe, that for fixed and x the scaling
function is monotonically increasing whéis varied.

Focussing now on the elliptic case, that is we select a
large enoughN such that this case is well approximated, we

compute the scaling function in dependenceodbr various
values ofr. Our results are depicted in Fig. 6.
In the extreme limits we obtain Iiar)rL0 c(r,v)=0 and

for large w we recover the values of the sinh-Gordon model,

Iimwaxc(r,w)zcse(r). The latter limit follows from Eqg.

FIG. 5.
N.

20

1.5

1.0

0.5

0.0 [ 1 1 1 it L 1 1

FIG. 6. Ultraviolet Virasoro central charg#? as a function of

.
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tonically increasing between these points as claimed in there.
In fact, in the physical region, that is for values of

o . . 121 . =03 T
>0.315, the function is monotonically decreasing and does A ce--r=04
not take on values between 0 and 1. Remarkably, the thresh: 1ok Lo =10 I

. . o . . \ ‘ r=17
old is quite clearly exhibited by a drastic change in the be- ¢'(r,w) % s FEDI0
havior ofc, that is the onset of a small plateau as is visible in os| s -
Fig. 6. s

We performed the same computation for different values o6 .

of x and observed that this onset moves in the direction pre-

dicted by Eq.(22). ol k

B. The thermodynamic Bethe ansatz T

Let us now compare the results of the previous section
with an alternative method, namely the thermodynamic Be-
the ansatZ22]. For this we first have to solve the TBA

. FIG. 7. TBA scaling function.
equations

R With these expression we carry out our humerical analysis,
rmicoshd+In(1—e MD)=> o*Li(§) (300 that is we solve iteratively Eq(30) and evaluate Eq(31)

! thereafter. The results of this investigations are presented in
for the functionL;(8). The information of the scattering ma- FlgUerortunately for very small values ab andr our nu-
trix is captured in the kemnel;;(6) = —idIn §;(6)/dé of the  ericql iteration procedure does not converge reliably. How-
rapidity convolution, which is denoted as usual BY9(6)  ever, we will be content at this stage with the data obtained
’=fd9'_/127_7f(9_.9')9(9')- The dimensionless parameter s far, since they already support qualitative ottheorem
=m,T""is the inverse temperatutietimes the overall mass analysis. They confirm that above threshold the scaling func-
scale of the lightest particlm,. Also all masses have been tion is monotonically decreasing as a functioneofind also
normalized in this way, i.em;=m;/m;. Having determined that values greater than 1 may be reached, even for finite
theL;(#) functions, we may compute the scaling function by values ofr.
means of

IV. CONCLUSIONS

3r -~ [
c'(r)= - E mif décoshL;(6). (31 Starting from a given scattering matrix of hyperbolic type,
™ 0 we have demonstrated that it is possible to include consis-
o ) ) tently an arbitrary number of unstable particles into the spec-
Once again lim_c’(r) is the ultraviolet Virasoro central {rym of the theory. In particular when this number becomes
charge. We would like to recall here that the scaling func-infinite the CDD part of the scattering matrix may be ex-
tions c(r) andc’(r) are not identical, but contain qualita- pPressed in terms of elliptic functions. The minimal partSof
tively the same information in the RG sense. remains unchanged such that the entire matrix becomes a
In order to carry out this analysis we need to know in Eq.combination of elliptic and hyperbolic functions.
(30) the kernelp(#) as input. For the model under consid- ~ For the generalization of the sinh-Gordon model we com-
eration we can exploit the factorization propefiy9) for a  puted RG scaling functions. Within these analyses we found

finite product and trivially obtain clear evidence for the thresholds which constrain the masses
of the unstable particles. Above threshold, the values the
N ultraviolet Virasoro central charges may take are between 1
on( )= E esa(0+nw+o), (32 and 2 (possibly slightly greater than)2and not between 0
n=—N

and 1 as suggested[if]. The theories are consistent for each
finite value ofN. For fixed resonance parameters&indo the

where pgg(6) is the sinh-Gordon kernel, e.423] scaling functions are non-decreasing for increasing
Concerning the investigation of thetheorem, it would
4 sin(wx)coshé be desirable to refine the analysis. In particular one should
¢scl 0) = cosi26) —cog2mx) (33 include highem-particle form factors into the expansion. For

the elliptic version some of them were already presented in
[4], but in general it remains a challenge to find closed ex-
pressions for arbitrary particle numbers. At present the TBA
analysis is the least conclusive exploration and deserves fur
K, dcé, SN, ther cons_ideration in future. I_n particular the regions«of
lim en(0)= — > | ——=+1(1—1)=—~|. (34  andr, which were not accessible to us, should be explored
7 k==, + [ SO dce and might possibly lead to a further, more concrete, indica-

Using alternatively the representation of tBenatrix (19) in
terms of elliptic functions, we compute the kernel directly to

N— o0
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tion of the thresholds also in this context. In regard to this, itapproximation already existing for theories with different
will be useful develop existence criteria for the solution of characteristic features.

the TBA equations analogue to the one derivedi28]. The

one presented there cannot be taken over directly, since it

makes use of the fact thfitl 6| ¢( )| equals 2r, whereas for
the model investigated here this isrRl. It would be desir-

able to develop analytic approximations for the TBA solu-

tions in the extreme ultraviolet limit, i.et =0, similar to the
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