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Abstract

We apply arecently introduced reduction procedure based on the embedding of
non-crystallographic Coxeter groups into crystallographic ones to Calogero—
Moser systems. For rational potentials the familiar generalized Calogero
Hamiltonian is recovered. For the Hamiltonians of trigonometric, hyperbolic
and elliptic types, we obtain novel integrable dynamical systems with a second
potential term which is rescaled by the golden ratio. We explicitly show for the
simplest of these non-crystallographic models, how the corresponding classical
equations of motion can be derived from a Lie algebraic Lax pair based on the
larger, crystallographic Coxeter group.

PACS numbers: 02.20.—a, 02.30.1k, 45.05.+x

1. Introduction

The generalized Calogero—Moser models [1-12] constitute one of the most prominent and
widely studied class of classical and quantum integrable systems describing ¢ particles moving
on a line. In this work, we will concentrate on the classical mechanics models. Given a set
of dynamical variables in terms of a coordinate vector ¢ € R’ and the canonically conjugate
momenta p € R the classical Calogero-Moser Hamiltonians take the following forms:

1/ u?, rational
H p? N 1 Z 2y ) V) 1/sin’u, trigonometric (1)
= —_— - o - = .
2 24~ 8a P ! 1/ sinh?® u, hyperbolic
1/sn’u, elliptic.

The sum in the potential runs over a root system A C R’ associated with a finite Coxeter group
W; see for instance [13] for details. g, are coupling constants which must at least coincide
on vectors « of the same length, i.e. g, = g for @> = B2, if one demands the Hamiltonian to
be invariant under W. In the literature, the elliptic potential in (1.1) is often also expressed in
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terms of the Weierstrass go-function, both choices only differ by a rescaling of the argument
and an additive constant [14, 15]. In fact, all other types of potentials can be obtained from
the elliptic one through special limits. In the rational case, one often also adds a confining
harmonic potential ~¢g2 which we omit from our discussion for simplicity.

If the root system A is crystallographic, i.e. 2(a - 8) /B> € Z for any pair of roots a, 8 € A,
the associated Coxeter group W is connected with semi-simple Lie algebras [16]. Integrability
of the Calogero—Moser models (1.1) can be proved via the standard technique of Lax pairs
{L, M} [17]: if the classical equations of motion resulting from (1.1) are equivalent to the Lax
equation L =[L, M], the quantities [ = Tr L* are conserved. In contrast to other integrable
models associated with Lie algebras, as for instance (affine) Toda models [18-20], a generic
Lie algebraic formulation of the Lax pair is missing and a variety of alternative approaches
have been put forward in the literature; see e.g. [9, 11, 21-24]. In this paper, we will only
use a Lie algebraic Lax construction for the A, or su(£ + 1) series in order to exemplify our
reduction procedure for the simplest model. However, we stress that in the aforementioned
literature Lax pair constructions have been carried out for all algebras and for all four types of
potentials in (1.1).

For the non-crystallographic Coxeter groups, W = I,(m), Hs, Hy, with root systems
A one has in general 2(& - B)/B> ¢ Z and the connection with Lie algebras ceases to be
valid. Due to the latter fact the Lax construction now becomes even more difficult and only
the rational potential in (1.1) has been considered using an alternative formulation based on
reflection operators [24]. Other concepts such as ‘exact solvability’ [25, 26], based on the
computation of invariants, also run into problems for non-rational potentials; see the discussion
of an exactly solvable Sutherland model based on Hj in [27].

In this paper, we overcome these difficulties by introducing for the root systems A of
the non-crystallographic Coxeter groups H, = I,(5), H3, Hy an extension of the Calogero—
Moser Hamiltonian (1.1) which allows us to tie the proof of integrability for all four types
of potentials to that of certain crystallographic groups specified below (1.4). Namely, we
consider the Hamiltonians

. P 7 1+4/5
A=2 S e pevea ) p=¢-1=-00 (1.2)

aeA

The constant ¢ entering the second potential term is the well-known golden ratio'. Clearly, in
the case of the rational potential adding the extra term in (1.2) amounts to a simple rescaling
of the coupling constant in (1.1) and we have

V) =u? H@EH =H((1+¢ g%, (1.3)

Thus, we recover the familiar generalization of the Calogero model to non-crystallographic
root systems A. For the remaining cases, the insertion of the extra potential term might appear
ad hoc at first sight but we will explain in the text that it occurs naturally in light of the
following embeddings of non-crystallographic Coxeter groups into crystallographic ones:

H, — Ay, H; — Dg and H, — Eg. (1.4)

Employing a reduction procedure recently introduced in the context of affine Toda field
theory [28] the models (1.2) are obtained from the Hamiltonians (1.1) of the corresponding
crystallographic groups given in (1.4). See also [29] and references therein for similar
reduction procedures. Close analogies also exist with the folding procedure of crystallographic

! Instead of ¢ one can also use its inverse ¢~!. Since this change does not affect the defining relations of the
respective non-crystallographic Coxeter groups [13] we may restrict our discussion to the common choice ¢ without
loss of generality.
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Coxeter groups linked with simply laced algebras into those corresponding to non-simply laced
ones (see [20, 30] in the context of affine Toda and [31] for Calogero—Moser models). However,
there are several differences in the mathematical structure. We will comment on this further
in the text.

Our main result in this paper is the extension of the non-crystallographic Calogero—-Moser
models from the rational case treated so far to trigonometric, hyperbolic and elliptic potentials.
However, our reduction procedure also puts a new perspective on the familiar rational case, it
enables one to connect the non-crystallographic models to Lie algebras through the embeddings
(1.4). The proof of Liouville integrability of the models (1.2) can be carried out by employing
the structure of the Lax pairs associated with the crystallographic root systems in (1.4). We
explicitly demonstrate this for the simplest model, the one associated with H,, by exploiting a
known Lie algebraic Lax pair related to A4 = su(5), despite the fact that one is dealing with
a non-crystallographic Coxeter group on the level of the Hamiltonian.

The paper is structured as follows. In section 2, we review the embeddings (1.4) and
introduce the necessary mathematical formalism for our reduction procedure. In section 3,
it is then explained how to reduce the crystallographic Hamiltonians (1.1) and the associated
equations of motion to the non-crystallographic systems (1.2). We address the question of
integrability in section 4 by showing the existence of a Lax pair for the simplest model
associated with H,. This Lax pair is obtained through the reduction of a Lie algebraic pair for
A4. Comparison with other Lax pair formulations [23, 24] is made in the appendix. Section 5
contains our conclusions.

2. Embedding of non-crystallographic into crystallographic Coxeter groups

The details of the embeddings (1.4) have been presented previously in the literature [32—34]
and in particular in [28] which we follow in our notation. We therefore omit proofs and only
present the necessary formulae for the reduction. Throughout this paper quantities related
to the two different types of Coxeter groups in (1.4) will be distinguished by putting an
additional tilde on top of the non-crystallographic quantities. In light of (1.4), we henceforth
limit ourselves to the simply laced case.

Recall [13] that any Coxeter group W is generated by the reflections associated with a set
of simple roots {o;} C A:

o

o) =x—22% 6  for 1<i<t xecR' .1
o; - O
This set of reflections generates the Coxeter group }V subject to the relations
(oio)"i =1, 1<i, j<¢, 2.2)
where the order m;; € N of the group elements is defined through the Cartan matrix K,
2a; -
mj; = 1/ arccos(—Ki; /2), K= —"% 2.3)
' Sy

Relations (2.1), (2.2) and (2.3) apply also to the non-crystallographic group WW. Since we
are only dealing with root systems A, A where all elements have equal length, we adopt
henceforth the normalization convention ozl.2 = &iz =2

Introducing a special labelling of the simple roots {;} depicted in figure 1 allows for

combining the different embeddings in (1.4) into a single formula [28]:

W W: i > 00,5 = 0,,70i for 1<i<U. (2.4)
Note that the rank £ of the non-crystallographic group and the rank £ of its crystallographic
counterpart in (1.4) are always related by a factor 2, £ = 2¢. Furthermore, our labelling of
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Figure 1. Coxeter graphs, root labelling and the map (2.7) for the Coxeter groups in (1.4).

the simple roots is such that the roots «;, o;,; are always orthogonal whence the associated
reflections commute. The embedding (2.4) is to be understood in the sense of a group
homomorphism, i.e. it preserves the Coxeter relations (2.2).

In order to realize (2.4) in the context of the Calogero—Moser models (1.1), we need to
know how this embedding manifests itself on the level of the corresponding root spaces A and
A which are left invariant by  and W, respectively. This is achieved by defining a pair of
maps

w:A— AUPA and d: A= ADPA, (2.5)
which intertwine the embedding (2.4), i.e.

Giw = w0;0;,7 and 06, = 0;0;,7;®. (2.6)
The first map w has been previously considered in the literature, see e.g. [28, 33], and is
defined as follows:
o1 for 1<i<l=1¢/2

@
Oa;_; for ¢ <i<U{. 2.7

o — a)(a,-) = {
The second map @, introduced in [28] and paramount to our reduction procedure, realizes the
simple root system {&;} of the non-crystallographic Coxeter group W in R¢ by identifying

@ > @) = o + da,,; for 1<i<U@. 2.8)

The images of the non-crystallographic roots have now length @(@;)* = 2(1 + ¢*) according
to our earlier convention &> = 2. Thus, @ preserves the inner product only up to a factor
(1+¢%).

As the simple roots {¢;} and {@;} are linearly independent the maps (2.7) and (2.8) can
be linearly extended to the whole vector spaces R’ respectively R®. We will make use of
this fact when reducing the crystallographic Calogero—Moser systems to non-crystallographic
ones below. Note that the defining relations (2.7) and (2.8) also apply to the fundamental
weights [28].

Using the pair w, @ we are in the position to relate inner products in A to inner products
in A by means of the identity

(o) - &; = o; - &(@;) for 1<j<t 1<i<{t. (2.9)
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From this relationship as well as (2.5) and (2.6), we infer that @ plays the role of a ‘quasi-
inverse’ to the map w, in fact we have that

I ol
- 2 ey —
wd = (1+¢)I and Ow = (‘PH ¢2H) , (2.10)
with T denoting the ¢ x £ identity matrix. As an immediate consequence of (2.9) we
obtain a crucial relationship between the non-crystallographic Cartan matrix K and the
crystallographic one K. Namely, introducing the £ x £ matrices x and £ through the following
block decomposition of the crystallographic Cartan matrix

P (!f KA>, Q.11
K K+ K
we have the matrix equation
K=k+¢k =¢ 'R +Kk +k. (2.12)

Employing definitions (2.7) and (2.8) together with identities (2.9) and (2.12) the intertwining
relations (2.6) now follow from a straightforward computation. Similar identities also hold
for the inverse Cartan matrices [28].

3. Reduction of crystallographic Calogero—Moser models

Having introduced the necessary mathematical set-up we are now in the position to introduce
our reduction map. We start from a dynamical system defined in terms of the Hamiltonian (1.1)
based on any of the three crystallographic Coxeter groups in (1.4). Such a system depends on
£ independent dynamical variables ¢ = (g, ..., g¢) and £ independent conjugate momenta
p = (p1,..., pe). We now replace this set of variables by a new one which only contains
{ independent coordinates and ¢ independent momenta by defining the following reduction
map [:

(. p) = (u(g), n(p)) = (@(q), @(p)). (3.1
Here the action of @ on the simple roots &; is defined in (2.8). The vectors § = (g1, - - -, §z)
and p = (py, ..., py) in the Euclidean basis will become the dynamical variables with respect
to the non-crystallographic Hamiltonian (1.2) resulting from the reduced Hamiltonian:

H(q, p) = H*' := H@@), ®(p)). (3.2)

Our particular choice for the definition of the reduction map (3.1) in terms of the map
@ will allow us to discuss the reduction procedure without making reference to a specific
representation of the root spaces A and A. By exploting the identity (2.9), the reduction
(3.1) can be carried out in terms of the root systems instead of the dynamical variables and
momenta.

Let us further motivate (3.1) by comparing it to the reduction when folding a simply laced
Lie algebra by a non-trivial Dynkin diagram automorphism t to a non-simply laced algebra
[20]. In that context the reduction occurs when the coordinates ¢ and momenta p are projected
onto the invariant subspaces under t. This decreases the number of independent variables.
The reduced or folded Calogero-Moser Hamiltonian [31] is then obtained by inserting the
projected variables into the original ‘simply laced’ Hamiltonian (1.1) and rewriting it in terms
of the t-invariant root subspace A; C A. The latter can be identified with the root system A™
of a non-simply laced algebra. We will comment further on this analogy below; see (3.10).

We proceed here analogously and now explain how the reduced Hamiltonian (3.2) can be
expressed in terms of the non-crystallographic root system A only.
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3.1. The reduced Hamiltonian

As may be seen in (1.4) all the Lie algebras relevant to our reduction procedure are simply
laced and we set g, = g in (1.1). Then the reduced Hamiltonian (3.2) can be rewritten as
follows:

2H™ = a(p)’ + ¢ ) V(- &@) (3.3)
aeA
=(1+Hp+8* ) V(@ §)
aceA
=+ P +F DY V@ -+ Yy Vga-g) { =201+¢)H. (3.4)
aeA aeA

In the last line all data belong to the non-crystallographic root system and we have arrived
at (1.2). Let us first explain the reduction of the potential term. To obtain the second line
we have used the inner product identity (2.9) which replaces crystallographic roots by non-
crystallographic ones. Exploiting that the map w defined in (2.7) is surjective we arrive at the
third line (3.4). Here the sum over the crystallographic root system A is now replaced by sums
over the two copies of the non-crystallographic root space A appearing in the target space of
w; compare with (2.5). In the last line we have also defined a rescaled coupling constant by
setting

g=v1+¢23. (3.5)
This scaling factor arises from the kinetic energy term and is due to the fact that @ is not an
isometry. Expanding p = ), 7'&; we compute

l 7
B(p) - B(P) = (1+¢>) Y Fkij + pki)F = (1+¢7) Y FR7 = (1+¢M)p>,  (3.6)
i,j=1 i,j=1

where «, & have been defined in (2.11). Furthermore, we have used the normalization

convention & = o = 2.

3.2. Invariance under the non-crystallographic Coxeter group

It is apparent from the explicit form of the Hamiltonian (3.4) that the reduced Calogero—
Moser model is invariant under the non-crystallographic Coxeter group W. Employing the
intertwining property (2.6) and the fact that Coxeter transformations preserve the inner product,
we see that the action of JV in the ‘crystallographic variant’ (3.3) of the new Hamiltonian (1.2)
is realized through the embedding (2.4). For instance, we have for the potential

Y V@@Eg) @) =Y V(00,0@) @) =Y V(@@) - ). 3.7)

acA acA acA
A similar identity holds for the kinetic term. We can use this fact to show that the coupling
constants in front of the two potential terms in (3.4) can be chosen independently without
violating invariance under the non-crystallographic Coxeter group W. This is apparent from
the variant (3.4), but as a preparatory step for the reduction of a crystallographic Lax pair
below it is instructive to directly verify this also in terms of the reduced Hamiltonian (3.3).

First, we need to split the crystallographic root system A into the following disjoint

subsets:

A=A UA" with w(A)=A and w(A") = pA. (3.8)



Non-crystallographic reduction 1121

In order to see that these sets are indeed disjoint, note that for any root &@ € A the vector
& ¢ A. Otherwise, there had to be a group element @ € W which maps & into ¢&, as the
action of the Coxeter group exhausts the entire root space. If such an element would exist,
we had the identity W (&)?> = ¢>&> # 2 which contradicts the fact that the Coxeter group
W preserves the inner product. We can therefore conclude that A N ¢ A = @ and therefore
A'"N A" = &. This then implies that A" and A” must be left invariant under the action of the
non-crystallographic Coxeter group with respect to the embedding (2.4). Namely, according
to (2.6) we have for any root o’ € A’ that

Giw(a) = w(oio;5a) € A,
which entails that ;0;,; A’ = A’ foralli = 1,..., £. A similar argument holds for A”. Taking
invariance under the Coxeter group W as a guiding principle, we can therefore generalize (3.3)
by introducing the following modified reduced crystallographic Hamiltonian:
@(p)*
2

2 2
H™ = +LY V@ a@)+ L Y v o@). (3.9)
aen’ a’en”
where g;, g» are now arbitrary. The appearance of an additional free coupling constant in the
reduction is very reminiscent of the folding procedure [20] in the context of Calogero—Moser

models [31] already mentioned previously.

3.3. Comparison with folding

The structure of the Calogero—-Moser Hamiltonian (3.9) is similar to that obtained by folding
a simply laced root system A into a non-simply laced one A™ via a Dynkin diagram
automorphism 7. The potential term in the ‘folded” Hamiltonian [31] also splits into two
parts:

—7"'?2 (01'61)"‘72 (@-q), (3.10)

a€Ag aEN]

one running over the short roots Ay, the other over the long roots A;, each constituting an
independent Weyl group orbit. Note the absence of the scaling factor in the second term in
comparison to (3.9).> Similar as in our initial calculation leading to (3.4) the coupling constants
gs, & are not independent but related by |t | due to the folding procedure. However, outside the
framework of folding one can often choose the two couplings independently without violating
integrability [9, 11, 23, 29, 31]. An exception in the framework of Lie algebraic Lax pairs
is the By series [29] and G, [36]. We will verify below whether we can retain in the present
context the two independent couplings in (3.9) for the reduction of a Lie algebraic Lax pair.

3.4. The equations of motion

Before the construction of a Lax pair we first apply our reduction procedure to the classical
equations of motion. Let V, denote the gradient operator with respect to the Euclidean basis
in g-space (= R%). Then the equations of motion originating from the crystallographic variant
(3.9) of the Hamiltonian are

. . 1
6(p) =0@)  ad ()= —V,H™ =3 gagiw(a (), (3.11)

2 'We only mention here the case which has been referred to as ‘untwisted’ in [31], i.e. T is an automorphism related
to the non-extended Dynkin diagram; see [31, 35] for other possibilities.
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where we set g, = g foro € A’ and g, = g, for @ € A”. Acting on both sides of these
two equations with the map w defined in (2.7) together with the identities (2.9) and (2.10) we
obtain the reduced system

P=gq and p=-V;H= —% > {agivi@-g) +oanV'da - )} (3.12)

aeA

corresponding to the non-crystallographic Hamiltonian (3.4). Here g; = g;/(1 + ¢>)'/?,i =
1, 2 and Vj; is now the gradient operator with respect to the Euclidean basis in §-space (= RY).
Note that system (3.11) is more restrictive than (3.12), i.e. any solution to (3.11) yields a
solution of (3.12) but the converse is not necessarily true. To see this, one can apply the map
@ on both sides of (3.12) using that ®(&) = o’ +¢a” witha = w(a’) = ¢~ 'w(@”). A similar
observation applies in the context of folding.

The first crucial step to show integrability of our reduced systems is to show that (3.12)
can be equivalently formulated in terms of a Lax pair. In this context, our ability to express the
non-crystallographic Hamiltonian (3.4) and the equations of motion (3.12) in crystallographic
terms, (3.3) and (3.11), will be essential.

4. A Lie algebraic Lax pair for the H, model

As pointed out in the introduction there is no generic Lie algebraic formulation for the Lax
pairs of the generalized Calogero—Moser models. Instead a variety of different constructions
for Lax pairs have been put forward in the literature, see e.g. [9, 11, 21-24, 29], which
will not be discussed in detail. We focus on the simplest model associated with H,, where
according to (1.4) the corresponding crystallographic system is related to A4 respectively
su(5). The original construction of the Lax pair for the A, series goes back to Calogero [21].
We shall adopt here its formulation in the Cartan—Weyl basis (as it can be found for instance in
[9, 29, 37]), since in this setting the computation is more general. For the moment we keep
the rank £ arbitrary, such that one can easily adopt our discussion to the cases in (1.4) omitted
here. We shall specialize to the relevant case £ = 4 below.
Consider the Cartan—Weyl basis defined through the commutation relations (e.g. [16])

[Hi, Eq]l = &' Eq, [Ea, E¢]=a-H, [Ea, Egl = €a.pEqsp- 4.1

In the last commutator it is understood that @ # —f and ¢, g = 0 whenever « + 8 is not an
element of the root space A. The compatible choice of the trace is

Tr(H; H;) = 8 and Tr(EgE_o) = 1, 4.2)

which implies together with our previous convention o = 2 that the structure constants &, g
only assume the values 0, =1. In addition, they satisfy the following general identities:

Ea,p = —EBa = —E—a—pB.B- (43)
We require E] = E_, which implies the further constraint &, 3 = —¢&_, . The Lax pair is
now expressed in terms of the Cartan—Weyl basis as follows:
L=p~H+iZgax(oz~q)Ea and M=z-H+iZgax/(a~q)Ea. (4.4)
a€EA a€EA

Here we have once more introduced the root-dependent coupling constants g, = g; for
a € A'and g, = g, fora € A” in light of our reduced Hamiltonian (3.9). For the original A,
Calogero—Moser model one has g, = g. The vector z = z(q) € R’ in (4.4) will be specified
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momentarily. Let us first define the coefficient function x = x (), which can take one of the
following forms for the various types of potentials in (1.1) [9, 11, 15, 29]:

1/u, rational
1/sinu, trigonometric
= 4.
x() 1/ sinhu, hyperbolic @.5)
1/snu, elliptic.

There are other possible choices for the coefficient functions [29] which can also depend on a
spectral parameter [22, 24, 38]. For our disucssion of the reduction procedure we picked the
present ones, because they are the simplest, but our results do also apply to the more general
cases. The coefficient functions (4.5) satisfy a number of identities

x(u) = —x(—u), x(w)x(—u) = =V(u), (4.6)
and crucially [9, 15]
x()x'(w) = x' (wx(w) =[Vwu) — V(w)lxu +w). 4.7
Using the first two relations (4.6) one shows that
TrL? = p? — Zxax_a =2H (4.8)
aeA

with x, being shorthand notation for x,(q) = g4x(« - ¢). The third identity (4.7) comes into
play when showing the equivalence of the classical equations of motion to the aforementioned
Lax equation:

L =[L,M]. 4.9)
Comparing the coefficients of the Cartan—Weyl basis in (4.9) one deduces
p-H=-Y a Hxx, and > (@ Eq =Y (p-a)x,Ey. (4.10)
aeA acA acA
which are equivalent to the equations of motion p = —V,H and ¢ = p. In addition certain

‘unwanted’ terms must cancel which lead to a functional equation [9, 15] for the as yet
unspecified vector z. This equation can be simplified using (4.7)

a-z=i Z €p.y

XX, ] xpx, . x},xa,ﬁ
’ i Y ey et —Neh

B.yeA o BeA Yo
a=p+y
= 2 e By (g ). @.11)
pen 8a
Here we have used gg = g_g, V(u) = V(—u) as well as the symmetries eg , = —¢&, 8 = €_q4.8
and e_y g = —€_q,0—p = —Eq,—p for the structure constants. It is not clear a priori that such a

vector z always exists, but if it does, it must be unique as the functional equation (4.11) applies
among others also to the simple roots {«;} which are linearly independent. Ambiguities arise
when the root space is realized as a hyperplane in a higher-dimensional space. Then we might
add an arbitrary vector 7’ which is orthogonal on A, i.e. 7’ - « = 0 for all roots . Employing
the fundamental weights A;, which form the dual basis to the simple roots, A; - o; = §;;, it is
immediate to derive that

¢
dq)=-20) V(-9 Zsm,ﬁ""’lf'—“f*ﬁxi. (4.12)

BeA i=1 i
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Table 1. Root decompositions and Lie algebraic structure constants for A4.

(B €a;.p1) (B2 €a;.55) (B3 €a;.83)
o (a2 +a3 + oy, +1) (a3 +aq,+1) (ag, +1)
ay:  (ar+oz+ag,—1)  (az+oaq,—1) (a3,—1)
az: (o +ag, —1) (ag, —1) (a2, +1)
s (az+as, +1) (a3, +1) (o1, —1)

For an explicit computation of the vector z and checking its consistency with (4.11) for all
roots o € A one needs to fix the signs of the structure constants &, g in a consistent manner.
To this end we now specialize to a specific representation and set £ = 4.

4.1. The Lax pair in the vector representation of Ay,

Let {e; }?=1 be the orthonormal basis in the Euclidean space R>. Then a standard representation
of the simple roots is [13]

ap =e; — ey, a4 =e) —es, a3z =e3 — ey, o) = ey — es. 4.13)

Note that our labelling of the simple roots differs from the common one due to our convention
for the embedding (2.4). The entire root system consists of the vectors

A=A,U—-A,, Ay={a=¢ —¢;:1<i<j<5} 4.14)
and the Cartan—Weyl basis is given in terms of the unit matrices (e;;);x = 8;;8jx by identifying
I‘Ii = ¢;; and Ea = ¢ if ax=¢€ —e;j. (415)

For each simple root o; one finds six non-vanishing structure constants &y, g only three of
which are independent due to the symmetries &y, 8 = —6g4, = 6—o,—pov = —Eay,—ai—p-
Choosing B to be positive the root decompositions « = § + y and the corresponding structure
constants in (4.11) can be inferred from table 1.

In order to accommodate the possibility of two independent coupling constants in the
reduced Hamiltonian (3.9) we need to identify the subsets (3.8). Setting A, = A’ N A, and
Al = A" N AL, we have

/
A, = {ay, oz, a1 + o, ap + a3, 03 + 04}
and
"
A+= {Ol3,0l4,0ll+013+0l4,(12+053 +Ol4,0[1+0€2+0l3+0[4}.

Making the same replacement in the dynamical variables (3.1) as in the previous reduction
of the Hamiltonian (3.3) respectively (3.9), we consider the crystallographic Lax pair with
coordinates

q = u(g) = d(q) = $1, =51 + 52, (1 = §2), —=Pp51 + 52, =5). (4.16)
Here ¢ = ), gie;, i.e. the dynamical variables g; are the coordinates with respect to the
Euclidean basis {e;}. §;, on the other hand, are the components with respect to the simple
roots, § = Y, §;@;, and we have inserted the explicit representation (4.13) for the simple roots
«;. Note, however, that the dynamical variables §; are those with respect to the Euclidean basis.
Both are related by a simple linear transformation, i.e. §; is a linear function of the Euclidean
coordinates §; = §;(g1, §»), whose explict form depends on the particular representation one
chooses for the non-crystallographic roots. For instance, if we set [13]

=750./3-¢) ad  Gm=- L V3+eT) (4.17)
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then

=2 < t2”~> A 5= ( t”~) (4.18)
ST = —= — COol — an S = ——= — Col — . .

1 NG q1 56]2 2 NG q1 56]2

A similar replacement holds for the conjugate momenta, p — u(p) = @(p). None of the
algebraic properties of the Lax pair is changed and one therefore verifies immediately that
analogues of (4.8) and (4.10) hold for the reduced, non-crystallographic Hamiltonian. The
latter imply the reduced crystallographic equations of motion (3.11)

a-o@x (@) §) =a-dP)x(ww-§) = &G =ap) 419
and

2 2

o(p) = AX (o)X =& aV'a - d@)) — 2 aV'(e - &@)). 4.20
) XAj @ o =~ Z;‘ (@ &@) - XAj (o - (@) (4.20)

As discussed above a simple application of the map @ on both sides then yields (3.12). The

non-trivial part of the reduction of the Lax pair is the cancellation of the unwanted terms, i.e.

solving the functional equation (4.11). The root decomposition & = 8 + y mixes elements in

the two subsets A’, A”. For instance, we find for o = «,

B8,
= e 5PV (B g) = 22{V(g13) + V (q1a) — V(q23)
BeA 8a,

—V(g)} + & /g1{V(qis) — V(gas)}

with ¢;; = g; — g;. Taking into account the reduced coordinates (4.16) one can solve (4.12),
but finds upon inserting the solution into (4.11) for arbitrary roots « that one is forced to set

s1=8=g 4.21)
That is, one has g, = g for all crystallographic roots « € A. With this restriction we recover
after subtracting the superfluous vector (since z’ - « = 0 for all roots «)

5 5
, e +---+es .
= ——2i Vg, — qi) (4.22)
> i ng k=§#/‘ v
from (4.12) the familiar solution of the A, series (see e.g. [29])
5
zj=2ig Y V(g —a), (4.23)
k=1,k#]

albeit in our case the coordinates g; have to be replaced by (4.16). Thus, we can conclude that
the dynamical system defined through the Hamiltonian (1.2) allows for a Lax pair formulation
and hence the quantities I; = Tr L* are conserved, i.e. d(Tr L¥)/dt = 0. This is usually a
strong indication that the model is indeed Liouville integrable. It remains to show that the
aforementioned integrals of motion mutually Poisson commute and that at least £ = 2 of them
are non-vanishing and algebraically independent.

4.2. Integrals of motion

Having established the existence of the Lax operator L we may now use its explicit form

pi1/ig  x(q2) x(q13) x(q1a) x(q15)
x(q21)  p2/ig  x(q23) x(qaa) x(q2s)
L=ig|x(gs1) x(g32) p3/ig x(qaa) x(g3s) |, (4.24)
x(qa1) x(qa2) x(qa3) pa/ig x(qas)
x(gs1) x(gs2) x(gs3) x(qsa) ps/ig



1126 A Fring and C Korff

to compute the integrals of motion. From examples of the crystallographic Calogero—Moser
models it is known that the algebraically independent integrals of motion occur when the
power k of I, = Tr L matches the degrees {d,»}f:1 of the Coxeter group. For A4, the degrees
are d; = 2, 3,4, 5, while in our case of interest, H,, they are d; = 2,5 [13]. For instance, in
the case of A4 one verifies indeed that I», I, 14, Is are algebraically independent, while for /¢
we have the relation

Ig=32DLI+ 113 — 113, (4.25)
where we have used the centre-of-mass constraints ), p; = >, ¢; = 0.

One might anticipate that due to the additional dependences in (4.16) some of the higher
integrals of motion from the non-reduced A4 theory must become algebraically dependent in
the reduction. For instance, consider the integral of motion of degree 3 of the non-reduced
model:

Lp, @) =TeL’(p,q) =Y pl+3¢Y pi Y Vigi —aq). (4.26)
i i i
Since for the non-reduced as well as the reduced theories we have
TrL=p+-+ps=0, (4.27)

one might expect the reduced integral of motion of degree 3 13red = I3 (u(p), n(q)) to vanish.
For purely algebraic reasons, we find the following simplification:

I =3¢ wp)i ) V(@) — u(@)))- (4.28)
i J#

Because of the reduction (4.16) the purely kinetic term ), u( p)i3 is zero. The remainder,
however, does not vanish in general. The reason might be that the reduced set of
crystallographic equations of motion (3.11) is more restrictive than (3.12) and that the non-
vanishing of this integral of motion is a remnant of the reduction procedure. Consulting the
literature we found that this issue is also not addressed in the context of folding. It certainly
requires a deeper investigation of the model, for instance finding the explicit solutions of
the equations of motion. In comparison, the non-crystallographic reduction of affine Toda
field theories [28] involved two sets of complementary degrees, whose union gives again the
degrees of A4. We leave this question for future work.

In this context, it is also noteworthy that the match between the degrees of the Coxeter
group and the powers of the integrals of motion, k = d;, appears to be an observation based on
examples rather than a rigorous mathematical theorem which applies to all known Calogero—
Moser models. In particular, as its verification depends on the explicit form of a given Lax
pair. For example, we followed for H, the Lax pair construction given in [24], which is based
on the Coxeter group and the root system alone; see the appendix. One verifies in the case of
the root-type representation, as stated in [24], that the Lax equation only holds for the rational
potential; see our earlier remarks in the introduction. Explicit computation of the quantities
Tr L* shows that they vanish for k = 1,3, 5. A similar analysis for the A4 theory based on
the root-type Lax pair gives an algebraically dependent expression for Tr L3. Thus, while
one might expect the existence on an algebraically independent integral of motion at a certain
degree d;, not every Lax pair will provide one at the same power k = d;.

5. Conclusions

The purpose of this paper has been to extend a recent reduction procedure [28] based on the
embedding of non-crystallographic Coxeter groups into crystallographic ones to Calogero—
Moser models. This leads us to propose new integrable systems based on H, 3 4 by extending
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from the known rational potential to the trigonometric, hyperbolic and elliptic cases. The
new feature has been the appearance of an additional term in the potential energy, where the
argument of the potential function is rescaled by the golden ratio. It is this extra term which is
difficult to identify in the rational case, where it corresponds to a simple rescaling of the overall
coupling constant. As we have discussed in the text the additional potential term can only be
fully appreciated through the analysis of the underlying structure of the Coxeter groups.

While there are mathematical differences between the embeddings (1.4) and the folding
[20] of a simply laced Lie algebra by a Dynkin diagram automorphism, we motivated our
procedure by pointing out similarities and differences in the outcome. In particular, we
showed that the reduced crystallographic Hamiltonian, which originally depends only on one
coupling constant, still preserves invariance under the non-crystallographic Coxeter group if a
second, independent coupling constant in front of the additional potential term is introduced.
This is in close analogy with folding, where one also starts from a Hamiltonian incorporating
only one coupling constant [31], while the folded Hamiltonian then allows for two independent
couplings in front of the two Weyl group orbits corresponding to short and long roots [9-12].

We addressed the question of Liouville integrability of the new models by reducing the
associated crystallographic Lax pair for the simplest case, namely H,, and found that (1.2)
indeed possesses higher conserved integrals of motion. We explained in detail where in the
Lax pair construction a consistency requirement forces one to set the two coupling constants
in front of the two potential terms equal. This does not preclude the possibility that another
Lax pair construction might be possible which enables one to keep the two coupling constants
independent, as it is the case with the models based on non-simply laced Lie algebras. The only
basis on which to expect such an extension of the result found here is the Coxeter invariance
of the Hamiltonian (3.4). While the latter does not necessarily imply Liouville integrability,
it is the central, although not exclusive, criterion for exact solvability. However, the models
(3.4) with g» = 0 have been previously discussed in the literature from both conceptual points
of view, Lax pairs [24] and exact solvability [27], neither of these two approaches appears to
have been successful beyond the rational potential®. This seems to indicate that the second
potential term in (1.2) is indeed essential.

Despite the fact that we have focused for the Lax pair construction on the simplest model
only, it should be evident from this example calculation that similar results are possible for the
two other cases. In particular, the reduction procedure does not change any of the algebraic
properties of the crystallographic Lax pairs. Moreover, our analysis of the mathematical
structure associated with the embeddings (1.4) presented in section 2 of this paper allows
one to accommodate also other formulations of Lax pairs [23, 24]; see the appendix. In
this context, it would be interesting to verify whether also for these cases the two coupling
constants in (3.9) have to be equal to ensure a consistent Lax pair.

To complete the proof of Liouville integrability one needs to verify that sufficiently many
of the conserved quantities [ are algebraically independent and Poisson commute. The latter
step can be carried out using the concept of r-matrices [37, 40—44]. For the aforementioned
reasons we expect that similar constructions based on the crystallographic r-matrices will
carry through to the non-crystallographic models. What will be different is the number of
algebraically independent integrals of motion, only half as many are needed due to the relation
¢ = 27 for the ranks of the two Coxeter groups in (1.4). That such a decrease in the number of

3 In [39], a complete proof of Liouville integrability is presented for the classical Calogero-Moser models based on
all root systems (including the non-crystallographic ones) and for all types of potentials. This proof makes use of the
Lax pair formulation based on reflection operators of the Coxeter group in [24], which for the non-crystallographic
groups only applies to the rational potential; see e.g. the comment after equation (4.43) and solution (4.44) to the
functional equation.
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independent integrals of motion occurs is to be expected from the change of variables (3.1) in
the reduction procedure, which introduces additional dependences. We postpone these more
involved questions to future work.

Starting from the results in this paper one can now proceed further and discuss the
corresponding quantum-mechanical systems as well. In this context new aspects arise, such
as invariant theory and Dunkl operators [45]. In the case of the rational quantum Calogero
model it is customary to add a confining harmonic potential in order to obtain a discrete
spectrum. Since we omitted this case from our discussion let us briefly mention that the
reduction procedure applies then as well and by a computation along the same lines as that
in section 3, one finds that the frequency of the harmonic oscillator is rescaled in the same
manner as the coupling constant of the crystallographic Hamiltonian, compare with (3.5).

We conclude by emphasizing once more the general nature of the reduction from
crystallographic to non-crystallographic Coxeter groups. Its possible applications are as
widespread as that of the folding procedure [20]. The significant difference is that the non-
crystallographic reduction not only yields an alternative description but achieves to maintain a
connection with the theory of semi-simple Lie algebras whose rich mathematical structure has
found applications in many physical areas beyond that discussed here. A prominent example
where this connection might be relevant is the correspondence between Calogero—Moser
models and supersymmetric Yang—Mills theory in four dimensions, see e.g. [46].
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Appendix. Comparison with the root-type Lax pair based on Coxeter groups

Our reduction of the Lie algebraic Lax pair for A4 showed that the two coupling constants in
(3.9) cannot be chosen independently. However, there is the possibility that other construction
schemes not based on Lie algebras might be successful. If this would be the case we can
set go = 0 in (3.9) and obtain a non-crystallographic Hamiltonian (1.2) where only the
first potential term is present. These types of models have been investigated in [24] by
constructing Lax pairs based on representations of the Coxeter group. Let us briefly describe
this alternative formulation in order to compare results. We shall concentrate on the ‘root-type’
representation; see [23, 24] for other possibilities. The following description applies to both
the crystallographic and the non-crystallographic root systems.

Following [23, 24], we introduce a vector space Vx which is the linear span of the following
set of basis vectors {|a)}qea labelled by the roots, i.e. V is the direct sum Vo = @, .5 Vo
with V,, being the one-dimensional space spanned by |«). Obviously, the dimension of this
space coincides with the number of roots £/, with 4 being the Coxeter number. The Lax pair
will be represented on this space. To formulate the latter, one first introduces the following
action of the Coxeter group:

wla) = |lw(a)), forall a €A, weW. (A.1)

As the root system is invariant under W, so is V. With respect to this action the Weyl
reflections w = o, assume the role of the step operators E, in the previous Lie algebraic
formulation of the Lax pair. To mimic the Cartan elements H; one introduces the following
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set of linear operators [23, 24]:
hile) := o), forall aeA, i=1,...,¢. (A.2)

They commute among themselves, [A;, ;] = 0, and satisfy the crucial relation [24]

20!
[hi, 00l = o (a - Yo, (A3)
o

with the Weyl reflections. In addition one imposes a similar trace convention as for the Cartan
generators, Tr ;4 ; = const §;;. In terms of these operators and the Weyl reflections the Lax
pair now reads [24]

2
L=p-h+i Zgax(a-q)(a-h)aa and M =i Z ga%y(a-q)aa. (A4)

aeA, a€eA,

Similar to the calculation in the Lie algebraic construction one shows that the Lax equation (4.9)
is equivalent to the equations of motion provided y = x’ and certain unwanted terms cancel.
The latter condition again leads to a functional equation which in the present construction
reads [24]

3 gagslBx(@ - y(B - @) - 1) — a?y(e- @x(B - 90 (B) - )] = 0. (A5)

a,BeAR

Here the set Ak contains all pairs (o, B) of positive roots for which R = 0,08 € W is a
fixed rotation and i = (py, ..., (¢) can be any vector. The advantage of this formulation is
that it equally applies to crystallographic and non-crystallographic Coxeter groups. However,
for non-crystallograpic systems the functional equation (A.5) is only satisfied for the rational
potential and the Lax construction breaks down for the trigonometric, hyperbolic and elliptic
cases [24].

A.l. The case H,

This can be explicitly verified for the H, group by picking the following representation of the
roots [13]:

~ k k
,3k=\/§<cos%,sin7%), k=1,2,...,10.

In this representation, the root set for a fixed rotation R = 65,63, is given by [24]
Ag ={Biss Bjr) 1k =0,1,....4}.

One then verifies that the functional equation (A.5) does not hold beyond the rational potential.
For the conserved charges, we find the expressions

TrTL=Trl>’=TrL°>=0
and

T m o 5g8(@iead)’
0 15 T ATt 2352 s 42
(ql —10q1q2+5q1q2)

Note the absence of a non-trivial charge for degree 5.
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A.2. The case A4

Here we choose the same representation of the roots as in the context of the Lie algebraic
Lax pair. The root-type representation is now 20-dimensional. Note that we have to shift the
h;-operators by a constant, i; — h; + 1/+4/10, in order to ensure the aforementioned trace
convention. This does not affect the commutation relations.

Now the root sets in the functional equation (A.5) involve at most three pairs of roots. An
example is

Ag = {(a1, 03 + ), (a1 + a3 + 04, 1), (a3 + oy, o) + a3 +ayg)}, R = 04,00, 4+a, -

Note the mixing of roots belonging to the subsets A’, A” as in the previous construction of
the Lax pair based on the Lie algebra A4. The functional equation (A.5) for the trigonometric
case with x(u) = cotu reads explicitly

M Sin2qiy — po Sin2qos — 244 COS 14 SIN(G12 — qo4)

. . 0.
2 sin? q12 sin? q24

gi1(g1 — &)

From this and similar equations, we again infer that we need to set g; = g to satisfy the
Lax equation.
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