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Abstract

We compute for various perturbed conformal field theories the vacuum energies by me
the thermodynamic Bethe ansatz. Depending on the infrared and ultraviolet divergencies
models, governed by the scaling dimensions of the underlying perturbed conformal field the
the ultraviolet, the vacuum energies exhibit different types of characteristics. In particular, f
homogeneous sine-Gordon models we observe that once the conformal dimension of the pe
scalar field is smaller or greater than 1/2, the vacuum energies are positive or negative, respecti
This behaviour indicates the need for additional ultraviolet counterterms in the latter case.
transition points we obtain an infinite vacuum energy, which is partly explainable with the pre
of several free fermions in the models studied.
 2004 Published by Elsevier B.V.

PACS: 11.10.-z; 11.55.Ds; 11.10.Kk

1. Introduction

According to the ideas developed first in [1] a large class of massive quantum
theories in 1+ 1 space–time dimensions can be viewed as perturbed conforma
theories (CFT) with Euclidian action

(1.1)S = SCFT + λ

∫
d2x ϕ(x).
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HereSCFT denotes a fixed point action,ϕ(x) a scalar field with (left, right) conforma
dimension(∆,∆) andλ a coupling constant, scaling with(1−∆,1−∆). The great virtue
of such theories is that very often they are integrable and can be solved exactly, that is
all orders in perturbation theory. Since the original formulation various non-perturb
techniques have been developed to study suchtheories with great success. Nonethele
once the CFT is well investigated one may also employ standard perturbative argu
and unravel the meaning of certain types of behaviour in that more traditional lang
Accordingly, the vacuum expectation value of any local operatorO can then be compute
as

(1.2)

〈
O(z, z̄)

〉 = Z−1
∞∑

n=0

(−λ)n

n!
∫

d2z1 · · ·d2zn

〈
O(z, z̄)ϕ(z1, z̄1) · · ·ϕ(zn, z̄n)

〉
CFT.

Here the normalization factor is in generalZ = 〈exp−λ
∫

d2zϕ (z, z̄)〉CFT, with 〉CFT
denoting the vacuum state related toSCFT. In quantum field theories such expressions
plagued by various types of divergencies. First of all one encounters the infinities due to t
self-contraction of the fields, which can be regularized fairly easily by a normal ord
prescription. Second, one might haveultraviolet (UV) singularities for(z − zi) → 0.
Here the caseO =ϕ will be important, for which we can approximate with the help
standard CFT operator product expansion the integrals in (1.2) as∼ ∫

dzi |z − zi |−2∆.
Thus for∆ < 1/2 the integrals in (1.2) remain finite, whereas for∆ > 1/2 we require in
general counterterms to eliminate the divergencies. Third, one might have infrare
singularities for(z − zi) → ∞. In the infinite plane it is usually an intricate issue to han
them [2,3]. However, when formulating the theory from the very beginning on a cyli
instead of an infinite plane the integrals in (1.2) will automatically be IR finite for∆ > 0,
as the cylinder radiusR constitutes a natural cut off. The fourth singularity occurring
related to the fact, that even when the individual integrals in (1.2) are finite the entire
will in general be IR divergent for largeR.

Supposing now that one is able to compute (1.2) exactly, that is to all orde
perturbation theory, the different types of renormalization quantities should be tracta
in that context. In fact, the thermodynamic Bethe ansatz (TBA) [4] is a method w
allows such identifications whenO is taken to be the energy operator. The above mentio
arguments hold when recalling [5] that this operator is proportional to the perturbing
field ϕ. Defining then for the ground state energyE(R) the scaling functionc(R) =
−6RE(R)/π one encounters several types of general behaviours, which can all be b
into the generic form

(1.3)c(r) = ceff + E0r
2 + E ′

0r
2 ln r +

∞∑
n=1

Enλ
nfn(r).

Usually one uses the dimensionless parameterr = R/m with m being a mass scale an
E0, E ′

0 being finite real numbers. The functionc(r) is normalized in such a way tha
c(r = 0) coincides with the effective central chargeceff = c − 24∆min, with c being the

Virasoro central charge of the underlying ultraviolet conformal field theory and∆min the
smallest conformal scaling dimension in the model. This constantc has the well-known
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interpretation as the Casimir energy, which is the vacuum energy on the cylinde
becomes zero when mapped onto the plane. Viewing (1.2) as resulting from a pa
function, the termE0r

2 has to be present in (1.3), since thermodynamics dictates
for large r the energy has to be proportional to the volume. In quantum field theo
terms bothE0r

2 andE ′
0r

2 ln r are related to renormalization issues, characterized by
conformal dimension∆ as described above. These terms are also needed in order to
that limr→∞ c(r) = 0, which one expects for a purely massive model. Finally, thefn(r)

result from the integrals in (1.2) and takes on various general forms depending
regime in which∆ is valued.

In this paper we will discuss more concretely the precise nature of the expansion
We will first recall in Section 2 how the TBA can be used to compute the vacuum ene
and in the following sections we discuss the different regimes for different types of con
theories, the homogeneous sine-Gordon (HSG) models [6,7] and affine Toda field th
(ATFT) [8,9]. These theories probe several regimes for∆ and exhibit different types o
behaviours. In particular for the HSG-models, which are defined in the entire re
0 < ∆ < 1, our results will be new. Our conclusions are stated in Section 6.

2. Vacuum energies from the TBA

Let us briefly recall the main steps of howvacuum energies may be computed
(more details on the arguments can also be found in [10]) non-perturbatively wit
help of the TBA. One considers a relativistic theory in which the scattering mat
Sij (θ) for the particles of the typei, j with massesmi , mj are known as functions o
the rapidityθ . Then the entire TBA analysis can be formulated with only two inp
first the dynamical interaction, which enters via the logarithmic derivative of the S-m
ϕij (θ) = −i d lnSij (θ)/dθ and an assumption on the statistical interaction, which
choose here to be of fermionic type. The thermodynamic Bethe ansatz equations a
a set of coupled non-linear integral equations

(TBA)rmi coshθ = εi(θ, r) +
∑
j

[
ϕij ∗ ln

(
1+ e−εj

)]
(θ, r),

where the pseudo-energiesεi(θ, r) are the unknown quantities. We denote as usual th
convolution of two functions by(f ∗ g)(θ) := 1/(2π)

∫
dθ ′ f (θ − θ ′)g(θ ′). The scaling

parameter is related to the inverse temperatureT asr = m/T , ml → ml/m, with m being
an overall mass scale. In [4] it was shown that when taking the sum and difference
derivativesd/dr(TBA) andd/dθ (TBA)/r one may derive a set of coupled linear integ
equations for the quantities

(2.1)ψi±(θ, r) = ∂εi(θ, r)

∂r
± 1

r

∂εi(θ, r)

∂θ
,

respectively, namely

i ±θ
∑[

1 j

]

(2.2)ψ±(θ, r) = mie +

j

ϕij ∗
eεj ± 1

ψ± (θ, r).
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The strategy is now to solve first the equations (TBA) forεi(θ, r) and thereafter (2.2) fo
ψi±(θ, r). Once one has carried out the first step, one can already compute the s
function

(2.3)c(r) = 3r

π2

∑
i

mi

∞∫
−∞

dθ coshθ Li(θ, r),

with Li(θ, r) = ln(1 + e−εi(θ,r)). Concerning the status of analytical solutions for (2
it is similar as for the TBA itself, that is only for free theories [10] a closed solu
was found and for interacting theories (2.2) was only solved in the extreme ultra
limit. Numerical solutions exist even less. Once it is solved, one may compute the va
expectation value of the trace of the energy–momentum tensor, i.e., vacuum energi

(2.4)
〈
T µ

µ

〉 = −π2

3r

d

dr
c(r) = 1

2

∑
i

mi

(
T i+ + T i−

)

(2.5)= 1

2

∑
i

mi

∞∫
−∞

dθ
1

1+ eεi(θ,r)

[
ψi+(θ, r)e−θ + ψi−(θ, r)eθ

]
.

In a parity invariant theory we haveεi(θ, r) = εi(−θ, r) and consequentlyψi+(θ, r) =
ψi−(θ, r), T i+ = T i− = T i such that matters simplify. We like to keep the treatment h
generic for a while as we will also considerbelow the homogeneous sine-Gordon mod
which are not parity invariant.

There exists no systematic way to solve the equations (TBA) and (2.2) analyt
albeit, numerically this is a solvable problem. Nonetheless, it is well known that at the
points approximations can be made, such that one can solve (TBA) analytically and
also obtain analytic expressions for (2.3) at these points (r = 0 is one of them). Likewise w
expect to be able to solve (2.2) for these values and compute〈T µ

µ〉 analytically. Following
now essentially the argumentation of [4,10], we need to make only two assumptions

(i) The logarithmic derivative of the scattering matrix in (TBA) admits an expansio
the form

(2.6)ϕij (θ) = −
∑

s

ϕ
(s)
ij e−s|θ |.

The first coefficient in (2.6) is used to define a functionρij by extracting fromϕ
(1)
ij the

masses

(2.7)ϕ
(1)
ij = ρijmimj .

The functionρij is specific to the particular theory.
(ii) One assumes that
(2.8)ε̂i (θ) − εi � eθ for θ � 0
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where theεi are the pseudo-energies of the constant TBA equation and theε̂i (θ) are
quantities in ther-independent TBA-equation

(2.9)ϕij ∗ L̂j (θ) = −ε̂i (θ) + mie
θ

obtained from (TBA) by the shiftθ → θ + ln(r/2), εi(θ, r) → ε̂i (θ). This assumption
is usually difficult to justify a priori, but is sustained in hindsight by meaningful res
or supported by numerical data.

For θ → −∞ one can now derive with (2.8) the equation

(2.10)ϕij ∗ L̂j (θ) = −εi + 1

2π
eθϕ

(1)
ij T

j
+ +O

(
eηθ

)
whereη � 2. Comparing then (2.9) and (2.10) for the parity invariant case, it foll
directly with (2.8) that

(2.11)mi = 1

2π
ϕ

(1)
ij T j .

Finally we deduce the expression for the vacuum expectation value for the en
momentum tensor with (2.8) and (2.4) to

(2.12)
〈
T µ

µ

〉 = 2π
∑
i,j

ρ−1
ij .

This quantity is of course sensitive to above mentioned renormalization issues and p
exhibits the distinction between the different regimes quoted. Furthermore, one h
possibility of comparison, as there are various other methods toobtain the vacuum
energies, such as the truncated conformal space approach [11] or a matching between
high-energy behaviour of the scattering matrix with a Feynman diagramatic analysis

Let us briefly comment on the different regimes:

0 < ∆ < 1/2: As mentioned in the introduction, in this regime the individual integral
the expansion (1.2) are UV and IR convergent term by term when formulat
the cylinder. From general arguments one finds for the behaviour in (1.3
E ′

0 = 0 andfn(r) = r2n(1−∆) [13]. From (1.3) and (2.4) follows also that we c
identify 〈T µ

µ〉|r=0 = −π2/3E0. Thermodynamically this term can be seen as
infinite volume energy and field theoretically this corresponds to the sum
infrared substractions, which achieve the convergence of the sums (1.3) fo
r.

1/2< ∆ < 1: Now the individual integrals in the expansion (1.2) are still IR converg
but cease to be UV convergent. We may still deduce Eq. (2.12) from (2.
this just requires the validity of the assumptions (i)–(ii). Less obvious is if
can still make the identification〈T µ

µ〉|r=0 = −π2/3E0. If in the series (1.3) the
coefficientsEn vanish for alln for which ∆ > (2n − 2)/2n then we may still
take E ′

0 = 0 and the identification of〈T µ
µ〉|r=0 with the bulk term still holds
in the same manner as in the previous case. Unfortunately, at present explicit
examples for the series in this regime are not available. In any case, now the field
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theoretic interpretation of this term changes. Since we require in this cas
counterterms to make the individual integrals finite, theE0-term corresponds now
to the sum of these UV counterterms and all infrared substractions, which ac
the convergence of the sums (1.3) for larger. Indeed, for the concrete mode
studied below this becomes visible in a change of sign in the transition from
regime∆ < 1/2 to ∆ > 1/2.

∆ < 0: Now the individual integrals in the expansion (1.3) are still UV convergent
cease to be IR convergent even on a cylinder. General arguments now yie
the behaviour in (1.3) thatE0 	= 0,E ′

0 	= 0 andfn(r) = (α + ln(r))−n with α being
some constant [14–18]. One still finds that〈T µ

µ〉|r=0 = −π2/3E0, e.g., [12], but
now the interpretation is less obviousas some counterterms also accumulate
theE ′

0-term.
∆ = 1/2: In this case one usually finds free fermions in the model andE0 	= 0, E ′

0 	= 0,
fn(r) = rn. Now the vacuum energy is divergent, see, e.g., [10] for an analy
expression.

We will investigate some concrete theories.

3. 0 < ∆ < 1/2, minimal affine Toda field theories

These theories have been studied before [10,19], nonetheless, we recall them here
they are easy examples which illustrate the working of the above formulae and we
also point out some novel features. We recall first that minimal affine Toda field theorie
can be realized as perturbations of the coset conformal field theoriesg1 ⊗ g1/g2, with gk

being a simply laced Kac–Moody algebra of rank� and levelk [20,21]. The correspondin
Virasoro central chargesc and conformal dimension of the perturbing operator∆ are

(3.1)c = 2�

2+ h
and ∆ = 2

2+ h
,

respectively. Apart fromh = 2, i.e., the free fermion withg = A1, we always have fo
the Coxeter numberh > 2 and are therefore in the stated regime 0< ∆ < 1/2. The
renormalization issues are handled mosteasily in this case and the vacuum energ
are computable with the above arguments. With regard to assumption (i), we recall
expansion of the TBA-kernel for these theories [10,22,23]

(3.2)ϕij (θ) = −4
∑
s∈E

cot
sπ

h
xi(s)xj (s)e

−s|θ |,

with E = {s + nh}, s being an exponent ofg, n ∈ N0 andxi(s) are the left eigenvector
of the Cartan matrix. In particular, we havexi(1) = mi/m, with m being an overall mas
scale, which is needed for the assumption (ii) to hold. Having therefore the quantitϕ

(1)
ij

in the form (2.7), we deduce immediately with the help of (2.12)
(3.3)
〈
T µ

µ

〉 = m2π

2
tan

π

h
.
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Obviously apart from the free fermion withh = 2, when〈T µ
µ〉 → ∞, we have〈T µ

µ〉 > 0.

This result agrees with a similar formula obtained in [10] in terms of the coefficientsϕ
(1)
11

without explicit evaluation and “1” referring to the lightest particle. More concrete c
by-case studies were carried out in [19] for perturbations ofgl ⊗ gk/gk+l-coset CFT’s
(see formulae (3.14) therein). When using the overall mass scale to perform su
normalizations the formula fork = l = 1 in there can be brought into the universal form
(3.3), which is not obvious at first sight. The formulae in [19] are expressed in term
mass scaleM whose relation with ourm varies for every theory as

A�: M = msin
π

� − 1
,

D�: M = m/
√

2,

E6: M = m

√√
3

2
sin

π

12
,

E7: M = m

√
sin

π

18

/
sin

2π

9
,

(3.4)E8: M = m

√
2 sin

π

30
sin

π

5
.

The advantage of our formulation relies on the fact that the masses are normalize
respect to the same general mass scalem for all simply laced Lie algebras, which allows
for the very compact and generic expression (3.3). Alternatively these results were al
confirmed in [24].

4. 0 < ∆ < 1, gk-homogeneous sine-Gordon models

Let us now consider a theory which is more interesting with regard to the a
mentioned problematic, namely thegk-HSG model [6,7], withg being a simple Lie algebr
of rank� and levelk. These models can be viewed as perturbed Wess–Zumino–Nov
Witten (WZNW) [25] coset-models

(4.1)SHSG= SWZNW + m2

πβ2

∫
d2x

〈
Λ+, g(
x)−1Λ−g(
x)

〉
.

Here〈 , 〉 denotes the Killing form ofg andg(
x) a group valued bosonic scalar field.Λ±
are arbitrary semi-simple elements of the Cartan subalgebraassociated with the maxima
Abelian torush ⊂ g, which have to be chosen not to be orthogonal to any root ofg. The
parametersm andβ are the bare mass scale and the coupling constant, respectivel
Virasoro central charge of the coset model and the dimension of the perturbing op
are computed to

∨ ∨

(4.2)c = �

kh − h

k + h∨ and ∆ = h

k + h∨ ,
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with (h∨) h being the (dual) Coxeter number ofg. We note that now the constraint∆ < 1/2
does not automatically hold for each level and the above mentioned complications could
arise for some theories in this series when changing fromk > h∨ to k < h∨. Up to now no
indication for a different behaviour of the theories in this two different regimes have
found in the literature. We treat the simply laced and non-simply laced cases separate

4.1. Simply laced HSG-models

As in the original formulation of these models, the algebrag is assumed to be simpl
laced. Since for this case the expansion of the kernelϕ does not appear in the literatur
we will start with the scattering matrix, which was found originally in [26] (see [27] fo
integral representation). We cast the matrix describing the scattering between the p
of typeA = (a, ã) andB = (b, b̃), with 1� ã, b̃ � �; 1 � a, b < k into the form

(4.3)Sãb̃
ab (θ) = ηãb̃

ab exp
∫

dt

t
K̃

ãb̃(t)
sinh(at/k)sinh[(k − b)t/k]

sinh(t/k)sinht
e−it (θ+σ

ãb̃
)/π .

Here ηãb̃
ab = exp[iπεãb̃(2 − IAk−1)

−1
āb ] are constant phase factors not relevant for

analysis,K̃ãb̃(t) = 2δãb̃ cosht/k − Iãb̃ with I being the incidence matrix ofg and the
σ ’s are the resonance parameters, which indicate the presence of unstable particles
models. In order to evaluate the expansion forϕ, we can employ the residue theorem fo
contour along the real axis closing up in the positive half of the complex plane enci
all poles on the imaginary axis in the upper half plane. Noting that in (4.3)t = iπn are
simple poles, except fort = iπnk which constitute double poles forn ∈ N, we deduce for
σãb̃ = 0

(4.4)

ϕãb̃
ab(θ) = 2πi

∞∑
s=1;s 	=nk

Res
t=iπs

(
− 1

π

)
K̃ãb̃(t)

sinh(at/k)sinh[(k − b)t/k]
sinh(t/k)sinht

e−itθ/π

(4.5)= −2
∞∑

s=1;s 	=nk

K̃
ãb̃(iπs)

sin(aπs/k)sin(bπs/k)

sin(πs/k)
e−s|θ |.

The desired coefficient (2.7) follows from this directly to

(4.6)ϕ
(1)

ãb̃
= 2K̃ãb̃(iπ)mamb/m2 sin(π/k)

wheremã
a = mam

ã with ma = sinaπ/k being the masses ofAk−1-affine Toda field theory
andmã are� free mass scales. We choose them here to be all equalmã = m ∀ã. Finally
we derive from this a closed expression for the vacuum expectation value for the tr
energy–momentum tensor

(4.7)
〈
T µ

〉 = πm2 sin(π/k)

�∑ [
K̃−1(iπ)

]
.
µ

ã,b̃=1
ãb̃
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We are not aware of a generic formulation for̃K−1(iπ) and analyze therefore th
expression (4.7) below in more detailcase-by-case. We can summarize our findings as

(4.8)
〈
T µ

µ

〉 {> 0 for k > h ≡ ∆ < 1/2,

→ ∞ for k = h ≡ ∆ = 1/2,

< 0 for k < h ≡ ∆ > 1/2.

In many cases we can attribute the divergence for∆ = 1/2 to the presence of free fermion
The change of sign when going from∆ < 1/2 to∆ > 1/2 reflects the fact that besides t
IR counterterms, which achieve the convergence of the sums (1.2) for larger, needed in
both cases in the latter we also require UV counterterms to make the individual int
in (1.2) finite.

4.1.1. (A�)k-HSG model
For A� the Coxeter number ish = � + 1. The inverse of the matrix relevant in (4.7) c

be cast in this case into a simple formula

(4.9)
[
K̃−1

A�
(iπ)

]
ãb̃

= sin(ãπ/k)sin[(h − b̃)π/k]
sin(π/k)sin(hπ/k)

for ã � b̃.

Computing the sums over both entries then yields after some algebra

(4.10)
〈
T µ

µ

〉 = πm2

2 tan2 π/2k

[
tan

hπ

2k
− h tan

π

2k

]
.

Hence, the condition〈T µ
µ〉 > 0 becomes

(4.11)tan
hπ

2k
> h tan

π

2k

or equivalently, when expanding the tan,

(4.12)
4

π

h

k

∞∑
n=1

1

(2n − 1)2 − (h/k)2 > h
4

π

1

k

∞∑
n=1

1

(2n − 1)2 − (1/k)2 .

It is easily seen that (4.12) holds term by term onceh/k < 1, hence establishing the fir
inequality in (4.8). Similar arguments show that the oppositeinequality holds in the regim
h/k > 1. We comment more on the casek = h below.

4.1.2. (D�)k-HSG model
For D� the Coxeter number ish = 2� − 2 and by evaluating (4.7) similarly as in th

previous subsection, we find

(4.13)
〈
T µ

µ

〉 = πm2 sin π
k
[2− (2+ h)coshπ

2k
] + 2πm2 sin hπ

2k

sin2 π
2k

coshπ
2k

.

The condition〈T µ
µ〉 > 0 is now equivalent to

(4.14)sin
π

k

[
(2+ h) − 2

coshπ
2k

]
< 2 tan

hπ

2k
.

Expanding the left- and right-hand side of this inequality yields by similar arguments as in
the previous subsection once more the relation (4.8).
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4.1.3. (E6)k-HSG model
For E6 the Coxeter number ish = 12 and we find

(4.15)
〈
T µ

µ

〉 = 2πm2

∑4
p=1 τp sinpπ/k

2 cos4π/k − 1
, 
τ = (4,4,5,3).

We see that the numerator is< 0 for k = 2 and> 0 for k > 2. The denominator is> 0 for
k = 2, k > 12 and< 0 for 2< k < 12. The denominator vanishes fork = 12. Hence the
relation (4.8) holds.

4.1.4. (E7)k-HSG model
For E7 the Coxeter number ish = 18 and we find

(4.16)
〈
T µ

µ

〉 = πm2 ∑7
p=1 τp sinpπ/k

cosπ/k(4 cos6π/k − 2)
, 
τ = (9,18,20,22,17,12,7).

We observe now that the numerator is< 0 for k < 4 and> 0 otherwise. The denominato
on the other hand is> 0 for k = 3, k > 18 and< 0 otherwise except fork = 2,18 in which
case it is zero. Hence (4.8) holds also in this case.

4.1.5. (E8)k-HSG model
For E8 the Coxeter number ish = 30 and we find

〈
T µ

µ

〉 = πm2 ∑7
p=1 τp sinpπ/k

cos 8π/k + cos6π/k − cos2π/k − 1/2
,

(4.17)
τ = (4,8,12,12,13,10,7,4).

We see that the numerator is< 0 for k < 5 and> 0 otherwise. The denominator is> 0 for
k = 2,3,4; k > 30 and< 0 otherwise except fork = 30 in which case it is zero. Henc
(4.8) holds also in this case.

4.2. Non-simply laced HSG-models

Now we allow the algebrag to be also non-simply laced. In this case the scatte
matrix is slightly more complicated as the symmetry between the exchange of lon
short roots is lost. It can be restored by the use of the symmetrizerstã of the incidence
matrix of g, i.e., tãIãb̃ = tb̃Ib̃ã

, with tã = 2/α2
ã

and the length of long roots normalized

α2
l = 2. In [28] the scattering between the particle of typeA = (a, ã) andB = (b, b̃), with

1 � ã, b̃ � �; 1� a, b < kã = tãk was proposed to be described by

(4.18)Sãb̃
ab (θ) = ηãb̃

ab exp
∫

dt

t
K̃ãb̃(t)

sinh(at/kã)sinh[(1− b/kb̃)t]
sinh(t/kãb̃)sinht

e−it (θ+σ
ãb̃

)/π .

Hereηãb̃
ab are once more constant phase factors not relevant for our analysis. Furthe

one needs the quantitykãb̃ = k max(tã,tb̃) and the matrixK̃ with entries K̃ãb̃(t) =

2δãb̃ cosht/kã − Iãb̃tb̃/max(tã,tb̃). Note that in comparison with [28] we interchanged the
long and short roots, that is we have taken thet ’s to be left and not the right symmetrizers
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of the incidence matrix. A similar analysis as in the previous subsection leads now
following expansion of the TBA-kernel

(4.19)ϕãb̃
ab(θ) = −2

∞∑
s=1;s 	=nk

ãb̃

K̃ãb̃(iπs)
sin(aπs/kã)sin(bπs/kb̃)

sin(πs/kãb̃)
e−s|θ |,

such that

(4.20)ϕ
(1)

ãb̃
= 2K̃ãb̃(iπ)mã

am
b̃
b/m2 sin(π/kãb̃).

Here the masses are assumed to renormalize with an overall factor and are th
expected to be the same as in the semi-classical analysis [29], that ismã

a = msinaπ/kã .
The overall mass scales associated with each colour are once more chosen to be th
Thus we finally deduce

(4.21)
〈
T µ

µ

〉 = πm2
�∑

ã,b̃=1

[
K̂−1]

ãb̃
,

whereK̂ãb̃ = K̃ãb̃(iπ)sin(π/kãb̃). As in the previous case, we are not aware of a gen

formulation forK̂−1 and analyze therefore (4.21) in more detail case-by-case. Our fin
are summarized as

(4.22)
〈
T µ

µ

〉
> 0 for k > h∨ ≡ ∆ < 1/2,

→ ∞ for k = h∨ ≡ ∆ = 1/2,

< 0 for k < h∨ ≡ ∆ < 1/2,

with similar interpretations as in (4.8). We establish (4.22) in more detail case-by-ca

4.2.1. (G2)k-HSG model
The dual Coxeter number for G2 is h∨ = 4 and the symmetrizers are taken to

t1 = 3, t2 = 1. With these data we compute from (4.21)

(4.23)
〈
T µ

µ

〉 = 2πm2sinπ/k + sin 4π/3k

2 cos4π/3k − 1
.

Obviously, the numerator is> 0 for k � 2, whereas the denominator is< 0 for k = 2,3
and otherwise> 0 except fork = 4 when it is zero. Evidently this agrees with (4.22).

4.2.2. (F4)k-HSG model
The dual Coxeter number for F4 is h∨ = 9 and the symmetrizers are taken to

t1 = t2 = 1 andt3 = t4 = 2. From (4.21) we compute

(4.24)
〈
T µ

µ

〉 = 2πm2
2
∑6

p=1 sinpπ/2k − sin3π/2k

2 cos3π/k − 1
.

The numerator is> 0 for k � 2, whereas the denominator is< 0 for 2 � k < 9 and
otherwise> 0 except fork = 9 when it is zero. Evidently this agrees with (4.22).
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4.2.3. (B�)k-HSG model
The dual Coxeter number for B� is h∨ = 2� − 1 and the symmetrizers are taken to

t1 = t2 = · · · = t�−1 = 2 andt� = 1. We find now for even rank�

〈
T µ

µ

〉 = − πm2

cos π
2k

(4.25)

×
∑h∨−1

p=2 sin πp
2k

+ �
2 sin πh∨

2k
+ 2 cosπ

2k

∑(�−2)/2
p=1 (� − 2p − 1)sin π(1+h∨−4p)

2k

1+ 2
∑�/2

p=1(−1)p cosπp
k

,

whereas for odd� we obtain

〈
T µ

µ

〉 = πm2

cos π
2k

(4.26)

×
∑h∨−1

p=1 sin πp
2k

+ �
2 sin πh∨

2k
+ 2 cosπ

2k

∑(�−3)/2
p=1 (� − 2p − 1)sin π(1+h∨−4p)

2k

1+ 2
∑�/2

p=1(−1)p cosπp
k

.

Once more we confirm (4.22). As the details are rather involved we drop them here.

4.2.4. (C�)k-HSG model
The dual Coxeter number for C� is h∨ = � + 1 and the symmetrizers are taken to

t1 = t2 = · · · = t�−1 = 1 andt� = 2.

(4.27)
〈
T µ

µ

〉 = πm2(i)�

cos π
2k

[∑h∨−1
p=1 (p − 1)sin πp

2k
+ �

2 sin πh∨
2k

1+ 2
∑�/2

p=1(−1)p cosπp
k

]
, for � even,

(4.28)
〈
T µ

µ

〉 = πm2

cosπh∨
2k

[
h∨−1∑
p=2

(p − 1)sin
πp

2k
+ �

2
sin

πh∨

2k

]
, for � odd.

Once more we confirm (4.22) and drop the details for the same reasons as in the p
subsection.

5. ∆ = 1/2, gh∨ -homogeneous sine-Gordon model

The case∆ = 1/2 is very special as then the vacuum energy diverges in the ext
UV limit. Such type of behaviour is well known from free fermions in form of logarithm
ultraviolet singularities, meaning that (2.4) yields〈T µ

µ〉 → ∞ for r → 0. Explicit analytic
formulae for the free fermionc(r)-function can be found in [10]. Indeed in many cases

can make this connection quite explicit. It suffices to present an examples to illustrate this
point.
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5.1. (A�)�+1-HSG theories

Let us have a closer look at the(A�)�+1-HSG theories in order to see how the fermio
arise in there. Obviously forh = k the expression (4.10) yields〈T µ

µ〉 → ∞. Already in
[27] it was noticed that the(A2)3-HSG model decomposes into four free fermions wh
the resonance parameter vanishes. From the fact that the central charge (4.2) becomes i
general�2/2 for (A�)�+1-HSG models, one might suspect that they always decom
completely into�2 free fermions for vanishing resonance parameters, such that
fermion contributes 1/2 to the central charge. However, this is not quite the case a
following argument shows.

In order to count the fermions, identified here simply with the amount of particles w
contribute 1/2 to the central charge, we recall the constant TBA equations, which
from (TBA) after some standard manipulations. For the(A�)�+1-HSG models they take o
the form

(5.1)xã
a =

�∏
b,b̃=1

(
1+ xb̃

b

)Nãb̃
ab with Nãb̃

ab = δabδãb̃ − (
K−1

A�

)
ãb̃

(KA�)ab.

Solving these equations for thexã
a = exp(−εã

a) yields the effective central charge as

(5.2)ceff = 6

π2

�∑
a,ã=1

L
(

xã
a

1+ xã
a

)
= �2

2
,

with L(x) = ∑∞
n=1 xn/n2 + lnx ln(1 − x)/2 denoting Rogers dilogarithm. The solutio

of (5.1) are very simple in this case

(5.3)xã
a = sin[πã/(1+ �)]

sin[πa/(1+ �)] .

Therefore we havexa
a = x�+1−a

a = 1 and sinceL(1/2) = π2/12 it follows from this that
each of the particles(a, a), (a, � + 1 − a) for 1 � a � � contributes 1/2 to the effective
central charge in (5.2). Hence in the(A�)�+1-HSG models we have always 2� or 2� − 1
free fermions when� is odd or even, respectively. The remaining particles can be orga
without exceptions in pairs(a, ã), (ã, a). Noting with (5.3) that obviouslyxã

a = (xa
ã
)−1 and

recalling the fact thatL(x) +L(1− x) = π2/6 explains then that the central charge ha
be an integer or a semi-integer for these models.

In general, it is less straightforward for the other algebras to identify particles w
directly contribute 1/2 to the central charge. In fact, mostly the particles occur in p
triplets or higher multiplets contributing integers or semi-integer values toc.

6. ∆ < 0, affine Toda field theories

Affine Toda field theories related to simply laced and non-simply laced Lie algebr

have a quite different behaviour due to the fact that in the first case all masses renormalize
with an overall factor, which is not the case in the latter (see, e.g., [30]). As a result of this,
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the strong–weak duality observed for ATFT related to simply laced algebras is brok
those associated with non-simply laced Lie algebras. Despite the fact that there exist
uniform formulation, we will treat them here separately as this will be more transpar

6.1. Simply laced

ATFT are quite well studied examples of integrable models, which can be viewed
spirit of (1.1) which was noted first in [20,21]

(6.1)SATFT=
∫

d2x
1

2
(∂µ 
ϕ)2 + µ

�∑
i=0

nie
β 
αi · 
ϕ.

The fixed point part of the actionSCFT corresponds to the conformal Toda field theor
when the sum over the simple roots
αi starts ati = 1. Theµ, β are real parameters an
theni are the Kac labels related to the negative of the highest root
α0 = −∑�

i=1 ni 
αi . The
Virasoro central charge of the conformal Toda field theories and the conformal dime
of the perturbing operatorV = µn0e

β 
α0· 
ϕ have been computed in [21]

(6.2)c = � + 4�h(h + 1)

B(2 − B)
and ∆ = 1− 2h

2− B
,

where we use the effective coupling1 0 � B = 2β2/(β2 + 4π) � 2. Since 2h > 1 − B/2
is always true we are in the regime∆ < 0 and expect the above mentioned complicati
with regard to renormalization to arise. To establish that, we recall first [10,22,23]

(6.3)ϕij (θ) = −2
∑
s∈E

sin
sπB

2h
sin

sπ(2− B)

2h

/
sin

sπ

h
xi(s)xj (s)e

−s|θ |,

and deduce thereafter from (2.7) and (2.12)

(6.4)
〈
T µ

µ

〉 = πm2 sin(π/h)

sin(πB/2h)sin[π(2− B)/2h] .

Clearly, as 0� B � 2 we have〈T µ
µ〉 > 0. Up to an overall mass re-scaling ofm → 2m,

this agrees precisely with the results in [12], which were obtained by matching the
energy behaviour of the scattering matrix with a Feynman diagramatic analysis.

It is very interesting to note that by an analytic continuation from real to purely com
coupling we can also reach the regime for∆ > 0 for (6.4) and observe similar phenome
as for the HSG-models.2 For h = 2 this means we continue from sinh-Gordon to si
Gordon. Following for this case the argumentation of Destri and De Vega [12], we
the sinh-Gordon couplingβ to the sine-Gordon coupling̃β via β → iβ̃/

√
2 according to

the standard conventions. Also we replace the breather mass scalem with the soliton mass

1 Confusion arises sometimes due to different conventions. For instance, we can relate our notations to
ones used in [31] by a simple rescaling of the fieldsϕ = ϕF /

√
4π compensated by a scaling of the coupli√
constantβ = bF / 4π . In addition, one takes the effective coupling constant to beB = 2BF .
2 We are grateful to Al.B. Zamolodchikov for pointing this out to us.
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scalem̃ via m2 → 4m̃2 sin2 πB/2 such that we end up with the simple formula

(6.5)
〈
T µ

µ

〉 = πm̃2 tan
π

2

(
∆

∆ − 1

)
,

where∆ = β̃2/8π is the conformal dimension of the perturbing cos-term in the mo
This agrees also with [32]. Note that in the previous argument we considered sinh-G
as a perturbed Liouville theory, whereas now we perturb the free theory rathe
complex Liouville. Analyzing (6.5) in more detail one observes

(6.6)
〈
T µ

µ

〉



< 0 for 2n−2
2n−1 < ∆ < 2n−1

2n
,

→ ∞ for ∆ = 2n−1
2n

,

> 0 for 2n−1
2n

< ∆ < 2n
2n+1,

= 0 for ∆ = 2n
2n+1,

with n ∈ N. Note that in particular forn = 1 we have as for the homogeneous sine-Gor
model at∆ = 1/2 a transition point at which the sign changes by passing throu
singularity. Moreover, precisely this value corresponds to the free fermion point, wh
this case is a very explicit example for the free fermion picture advocated above. Howev
in this case the structure is more complicated as first of all we have an infinite num
such points rather than just one as in the HSG-models. In addition〈T µ

µ〉 is not always
divergent at these points, but can also vanish. One should keep in mind here, that
we obtained (6.6) simply by an analytic continuation from the sinh-Gordon expres
Starting from first principles the TBA works quite differently for the sine-Gordon the
due to the non-diagonal nature of the scattering matrix.

6.2. Non-simply laced

It is known, that the above mentioned complication of mass renormalizatio
reconciled if one views ATFT’s in terms of dual pairs of Lie algebras. Since simply lace
Lie algebras are self-dual, this picture does not yield anything new for that case
dual pairs of non-simply laced Lie algebras are(G(1)

2 ,D(3)
4 ), (F(1)

4 ,E(2)
6 ), (B(1)

� ,A(2)
2�−1) and

(C(1)
� ,D(2)

�+1). Each algebra of these pairs allows for a description of the form (6.1) re
to each other by the strong–weak duality transformationβ → 4π/β , where the untwisted
algebras relate to the weak coupling limit. The vacuum energies associated to a
simply laced affine Toda theories were stated in[18]. As in there no details were present
on how they were obtained, it will be instructive to show that the procedure outlin
Section 2, also holds in this case.

Let us first of all see what we have to expect with regard to the arguments outlined
and compute the Virasoro central charge and the dimension of the perturbing op
According to [18] we have

(6.7)c = � + 12 
Q2 with 
Q = β 
ρ + 1

β

ρ ∨,
with ( 
ρ ∨) 
ρ being the (dual) Weyl vector of the untwisted Lie algebra given by half the
sum of the positive (co)roots. Note that whenevaluating (6.7) for the simply laced case
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yields precisely (6.2), but for the non-simply laced case it differs from the expressio
in [21] by the use of
ρ ∨ rather than always
ρ. The conformal dimension of a spinle

primary fieldV
a(x) = e( 
Q+
a)· 
ϕ(
x) in the underlying CFT is∆(
a) = ( 
Q2 − 
a 2)/2, such
that the perturbing fieldµn0V(β 
α0− 
Q)

(x) has conformal dimension

(6.8)∆(β 
α0 − 
Q) = β 
α0 . 
Q − β2
α 2
0

2
,


α0 defined as in the previous section, that is being the negative of the highest root.
turn out that these dimension will always be smaller zero. We will compute the pr
values for some concrete examples below.

Unlike to the previous cases the expansion for the kernelϕ does not appear in th
literature, we therefore start here with the scattering matrix, which can be cast in
universal form [33,34]

(6.9)Sij (±θ > 0) = exp

[
∓8

∫
dt

t
sinh(ϑht)sinh(tj ϑH t)

[
K−1(t)

]
ij
e±itθ/π

]
,

whereϑh = (2 − B)/2h, ϑH = B/2H with h being the Coxeter number of the untwist
algebra andH its dual Coxeter numberh∨ multiplied by the twist of the second algebr
The effective coupling is now generalized toB = 2Hβ2/(Hβ2 + 4πh). The ti are the
symmetrizers of the incidence matrix of the untwisted algebrati Iij = tj Iji , with ti = 2/
α 2

i

and the length of long roots normalized to
α 2
l = 2. Also needed in (6.9) is the inver

of theq-deformed Cartan matrixKij (t) = (qq̄tj + q−1q̄−tj )δij − [Iij ]q̄ with deformation
parametersq = exp(tϑh), q̄ = exp(tϑH ) and[Iij ]q̄ = (q̄Iij − q̄−Iij )/(q̄ − q̄−1).

In order to evaluate the expansion forϕ, we can employ once again the resid
theorem for a contour along the real axis closing up in the positive half of the com
plane encircling all poles on the imaginaryaxis in the upper half plane. Recalling th
detK(t) = ∏

s∈E 4 cosh[(t + iπs)/2h]cosh[(t − iπs)/2h], we know the positions of a
poles and it follows from the integral representation (6.9) that the TBA kernels ad
series expansion of the form

(6.10)ϕij (θ) = 16i
∑
s∈E

Res
t→iπs

[
sinh(ϑht)sinh(tj ϑH t)Ǩ(t)ij /detK(t)eitθ/π

]
.

We do not have a closed formula for the cofactorsǨ , but for the sake of our argument
will be sufficient here to present some examples.

6.2.1. (G(1)
2 ,D(3)

4 )-ATFT
Let us first compute (6.7) and (6.8). We carry out the computations in terms o

quantities of the untwisted algebra G(1)
2 for which we have two simple roots
α1 and 
α2

normalized as
α 2
2 = 2 = 3
α 2

1 . Furthermore, the Weyl vector, its dual and the negativ
the highest root are given by
(6.11)
ρ = 5
α1 + 3
α2, 
ρ ∨ = 5
α1 + 
α2 and α0 = −3
α1 − 2
α2.
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These realizations allow to compute the quantities needed in (6.7) and (6.8), t
3
ρ 2 = 14, 3
ρ ∨ . 
ρ ∨ = 26 and 3
ρ . 
ρ ∨ = 3
ρ ∨ . 
ρ = 8. It follows therefore

(6.12)c = 2+ 32

[
13+ 3B(B − 3)

B(2− B)

]
and ∆ = 3B + 2

B − 2
.

Clearly for 0< B < 2 we have−∞ � ∆ � −1.
To proceed further we need the (generalized) Coxeter number for this theory, which a

h = 6 andH = 12. The symmetrizers aret1 = 3 andt2 = 1. Evaluating (6.10) and readin
off the first order coefficient we obtain

(6.13)ϕ
(1)
ab = −8

√
3

sin (2−B)π
12 sin Bπ

8

cosπ
6 (1− B

4 )

mamb

m2 , a, b = 1,2,

where we normalized the masses to

(6.14)m1 = mcos
π

6

(
1+ B

4

)
and m2 = m.

We deduce then with (2.12)

(6.15)
〈
T µ

µ

〉 = πm2 cosπ
6 (1− B

4 )

4
√

3sin (2−B)π
12 sin Bπ

8

.

Agreement with the results in [18] is achieved by changing to the conventions us
there. For this one needs to re-define the effective coupling toB → B ′ = 3B/(4+ B) and
introduce a “floating” Coxeter numberH ′ = (1− B ′)h + B ′h∨.

6.2.2. (F(1)
4 ,E(2)

6 )-ATFT

For F(1)
4 we normalize the four simple roots to
α 2

1 = 
α 2
2 = 2
α 2

3 = 2
α 2
4 = 2. The Weyl

vector, its dual and the negative of the highest root are in this case given by


ρ = 16
α1 + 30
α2 + 42
α3 + 22
α4,

(6.16)
ρ ∨ = 
ρ + 22
α4 and 
α0 = −2
α1 − 3
α2 − 4
α3 − 2
α4

such that
ρ 2 = 39, 
ρ ∨ . 
ρ ∨ = 402 and
ρ . 
ρ ∨ = 
ρ ∨ . 
ρ = 55. With this we find

(6.17)c = 4+ 12

[
1608+ B(331B − 1388)

(2− B)B

]
and ∆ = 16+ B

B − 2
.

Therefore−∞ � ∆ � −8.
For this theory we haveh = 12,H = 18, t1 = t2 = 1 andt3 = t4 = 2. The ratios between

the masses of the four particles in the theory are

m4

m1
= 2 sin

π

4

(
1+ B

18

)
,

m3

m1
= 1+ 2 cos

π

6

(
1− B

6

)
,

m π
(

B
)

(6.18)
2

m1
= 2 cos

12
1−

6
.
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We choose the normalization such thatm1 = m and obtain from (6.10)

(6.19)ϕ
(1)
ab = −8

√
3

sin (2−B)π
24 sin Bπ

18

cosπ
4

(
1− B

18

) mamb

m2 , a, b = 1,2,3,4.

Therefore with (2.12) we get 894/4= 447
2

(6.20)
〈
T µ

µ

〉 = πm2 cosπ
4 (1− B

18)

4
√

3sin (2−B)π
24 sin Bπ

18

.

We can match with the formulae in [18] byB → B ′ = 4B/(6 + B), H̃ = 3(4 − B ′),
m1 → m′

1, m2 → m′
3, m3 → m′

4 andm4 → m′
2.

6.2.3. (B(1)
2 ,A(2)

3 )-ATFT

Let us now present the simplest example of the family(B(1)
� ,A(2)

2�−1). In general, we

choose for the algebra B(1)
� the normalizations
α 2

i = 2 for i = 1, . . . , � − 1 and 
α 2
� = 1.

Then we have

(6.21)2
ρ = 3
α1 + 4
α2, 2
ρ ∨ = 3
α1 + 8
α2 and 
α0 = −
α1 − 2
α2,

from which we compute 12
ρ 2 = 30, 
ρ ∨ . 
ρ ∨ = 
ρ 2 + 72 and
ρ . 
ρ ∨ = 
ρ 2 + 4. Therefore

c = 2+ 8

[
447+ 24B(4B − 17)

B(2 − B)

]
and ∆ = B + 4

B − 2
.

Hence−∞ � ∆ � −2.
For this theory we haveh = 4, H = 6, t1 = 1 andt2 = 2. The masses satisfy

(6.22)
m1

m2
= 2 sin

π

4

(
1+ B

6

)
,

and we choosem1 = m. Evaluating (6.10) we obtain now

(6.23)ϕ
(1)
ab = −8

sin (2−B)π
8 sin Bπ

6

sin π
4 (1+ B

4 )

mamb

m2
, a, b = 1,2,

and therefore with (2.12)

(6.24)
〈
T µ

µ

〉 = πm2 sin π
4 (1+ B

4 )

4 sin (2−B)π
8 sin Bπ

6

.

Defining once moreB → B ′ = 4B/(6 + B) and H = 4 − B ′ we find agreement with
[18]. The previous results also hold for the(C(1)

2 ,D(2)
3 )-theory by exchanging the role

of particles 1 and 2, since the Dynkin diagrams of B(1)
2 and C(1)

2 are identical up to the
exchange of the short and the long root.
These examples are sufficient to support the validity of the approach outlined in
Section 2.
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7. Conclusions

We used the thermodynamic Bethe ansatz to compute vacuum energies〈T µ
µ〉 for

various types of perturbed conformal field theories. Despite the fact, that the m
considered exhibit different general behaviours, the assumption (i)–(ii), needed f
validity of the approximations in the TBA, hold in all cases.

The general behaviour of〈T µ
µ〉 is shown to be sensitive to IR- and UV-counterterm

whose presence can be characterized by the conformal scaling dimension∆ of the
perturbing operator. In the regime 0< ∆ < 1/2, realized by minimal ATFT andgk-
HSG models fork > h∨, the quantity〈T µ

µ〉 can be identified with the IR-counterterm
needed to compensate the divergencies in the perturbative series expansion (1.2
viewed on a cylinder. In contrast, in the regime 1/2 < ∆ < 1, realized bygk-HSG models
for k < h∨, the quantity〈T µ

µ〉 can be associated to the sum of the aforementione
counterterms and UV counterterms needed to guarantee the finiteness of the ind
integrals in the expansion. In the models studied here these additional counterterm
passing from∆ < 1/2 to ∆ > 1/2 show up in a change of sign in〈T µ

µ〉. It would be
extremely interesting to verify this assertion by some explicit perturbative computa
for the HSG-models. For the regime∆ < 0, realized here by the ATFT (simply laced
well as non-simply laced)〈T µ

µ〉 constitutes a mixture of several types of counterter
less obvious to disentangle. The divergence of〈T µ

µ〉 at ∆ = 1/2 can be attributed to th
occurrence of free fermions, for which such type of behaviour is well known from ex
analytical expressions. However, we werenot able to identify the free fermions in allgh∨ -
HSG models, which can be viewed as perturbed CFT’s with∆ = 1/2. This needs furthe
investigations.
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