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Abstract

We compute for various perturbed conformal field theories the vacuum energies by means of
the thermodynamic Bethe ansatz. Depending on the infrared and ultraviolet divergencies of the
models, governed by the scaling dimensions of the underlying perturbed conformal field theory in
the ultraviolet, the vacuum energies exhibit different types of characteristics. In particular, for the
homogeneous sine-Gordon models we observe that once the conformal dimension of the perturbing
scalar field is smaller or greater thaf] the vacuum energies are positive or negative, respectively.
This behaviour indicates the need for additional ultraviolet counterterms in the latter case. At the
transition points we obtain an infinite vacuum energy, which is partly explainable with the presence
of several free fermions in the models studied.
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PACS: 11.10.-z; 11.55.Ds; 11.10.Kk

1. Introduction

According to the ideas developed first in [1] a large class of massive quantum field
theories in 14 1 space-time dimensions can be viewed as perturbed conformal field
theories (CFT) with Euclidian action

S=SCFT+)»/d2X(p(x). 1.1)
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Here Scrr denotes a fixed point actiog,(x) a scalar field with (left, right) conformal
dimension(A, A) anda a coupling constant, scaling with — A, 1 — A). The great virtue

of such theories is that very often they argegrable and can be solved exactly, that is to

all orders in perturbation theory. Since the original formulation various non-perturbative
technigues have been developed to study shebries with great success. Nonetheless,
once the CFT is well investigated one may also employ standard perturbative arguments
and unravel the meaning of certain types of behaviour in that more traditional language.
Accordingly, the vacuum expedcian value of any local operat@ can then be computed

as

A
(O(Z Z) lz( ) /dz Zn O(Z 2)e(z1,21) - 9 (zn, Z”)>CFT'
(1.2)

Here the normalization factor is in generdl= (exp—/\fdzzgo (z,2))cFT, With YT
denoting the vacuum state relatedSgrt. In quantum field theories such expressions are
plagued by various types of divergenciessFof all one encounters the infinities due to the
self-contraction of the fields, which can be regularized fairly easily by a normal ordering
prescription. Second, one might hauttraviolet (UV) singularities for(z — z;) — O.
Here the cas&® =¢ will be important, for which we can approximate with the help of
standard CFT operator product expansion the integrals in (1.2) Agz; [z — zi| 724,
Thus forA < 1/2 the integrals in (1.2) remain finite, whereas for- 1/2 we require in
general counterterms to eliminate the divergencies. Third, one might have infrared (IR)
singularities forz — z;) — oo. In the infinite plane it is usually an intricate issue to handle
them [2,3]. However, when formulating the theory from the very beginning on a cylinder
instead of an infinite plane the integrals in (1.2) will automatically be IR finitefor O,
as the cylinder radiu® constitutes a natural cut off. The fourth singularity occurring is
related to the fact, that even when the individual integrals in (1.2) are finite the entire series
will in general be IR divergent for largg.

Supposing now that one is able to compute (1.2) exactly, that is to all orders in
perturbation theory, the different types @mnormalization quantities should be tractable
in that context. In fact, the thermodynamic Bethe ansatz (TBA) [4] is a method which
allows such identifications whefl is taken to be the energy operator. The above mentioned
arguments hold when recalling [5] that this ogr is proportionato the perturbing
field ¢. Defining then for the ground state energyR) the scaling functiorc(R) =
—BRE(R)/m one encounters several types of general behaviours, which can all be brought
into the generic form

o
c(r) = cett + Eor® + EgrPInr + Y E 0" fu (). (1.3)
n=1
Usually one uses the dimensionless parameterR/m with m being a mass scale and
&o, & being finite real numbers. The functiarir) is normalized in such a way that
¢(r = 0) coincides with the e#ictive central chargestf = ¢ — 24Amin, with ¢ being the
Virasoro central charge of the underlying ultraviolet conformal field theoryARg the
smallest conformal scaling dimension in the model. This consgtédnats the well-known
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interpretation as the Casimir energy, which is the vacuum energy on the cylinder and
becomes zero when mapped onto the plane. Viewing (1.2) as resulting from a partition
function, the term&or? has to be present in (1.3), since thermodynamics dictates that
for larger the energy has to be proportional to the volume. In quantum field theoretic
terms both&gr? andé’(’)rzlnr are related to renormalization issues, characterized by the
conformal dimensiom as described above. These terms are also needed in order to ensure
that lim._, - c(r) = 0, which one expects for a purely massive model. Finally, fhe)

result from the integrals in (1.2) and takes on various general forms depending on the
regime in whichA is valued.

In this paper we will discuss more concretely the precise nature of the expansion (1.3).
We will first recall in Section 2 how the TBA can be used to compute the vacuum energies
and in the following sections we discuss the different regimes for different types of concrete
theories, the homogeneous sine-Gordon (HSG) models [6,7] and affine Toda field theories
(ATFT) [8,9]. These theories probe several regimes4oand exhibit different types of
behaviours. In particular for the HSG-models, which are defined in the entire regime
0 < A < 1, our results will be new. Our conclusions are stated in Section 6.

2. Vacuum energiesfrom the TBA

Let us briefly recall the main steps of hovacuum energies may be computed [4]
(more details on the arguments can also be found in [10]) non-perturbatively with the
help of the TBA. One considers a relativistic theory in which the scattering matrices
Si; (0) for the particles of the type j with massesn;, m; are known as functions of
the rapidityd. Then the entire TBA analysis can be formulated with only two inputs:
first the dynamical interaction, which enters via the logarithmic derivative of the S-matrix
9ij(0) = —idInS;;(9)/d6 and an assumption on the statistical interaction, which we
choose here to be of fermionic type. The thermodynamic Bethe ansatz equations are then
a set of coupled non-linear integral equations

rm; COS) =¢;(0.r)+ Y _[@ij +In(1+e7%)](0. ), (TBA)
J

where the pseudo-energieso, r) are the unknown qumities. We denote as usual the
convolution of two functions by f * ¢)(0) := 1/(27) [d6’ f(6 — 6")g(®"). The scaling
parameter is related to the inverse temperaluesr =m/T, m; — m;/m, with m being
an overall mass scale. In [4] it was shown that when taking the sum and difference of the
derivativesd /dr(TBA) andd /dO(TBA)/r one may derive a set of coupled linear integral
equations for the quantities

. 9e:(6.r) 1960, r)
i 0.r) = 4= ,
£ or r 90

respectively, namely

(2.1)

. 1 .
Y0, r) =me*? + Z[wu * mwi](e,r). (2.2)

J
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The strategy is now to solve first the equations (TBA)4ap, r) and thereafter (2.2) for
¥4 (0,r). Once one has carried out the first step, one can already compute the scaling
function

[e¢]

c(r):%Zmi/dQCOSI‘HLi(Q,r), (2.3)

—0o0

with L; (0, r) = In(1 + ¢~%® "), Concerning the status of analytical solutions for (2.2),

it is similar as for the TBA itself, that is only for free theories [10] a closed solution
was found and for interacting theories (2.2) was only solved in the extreme ultraviolet
limit. Numerical solutions exist even less. Once it is solved, one may compute the vacuum
expectation value of the trace of the energy—momentum tensor, i.e., vacuum energies

2 d 1 o
(1) = =5, gre) =5 2omi(TL+70) (2.4)
_2 i OodH ! L@, re? + 4l ©,r)e 2.5
—EZmI/ W[M( e !+, r)e’]. (2.5)

In a parity invariant theory we haveg (6, r) = ¢;(—6,r) and consequentlwi(e, r)=

v (0,r), TL =T' =T’ such that matters simplify. We like to keep the treatment here
generic for a while as we will also consideglow the homogeneous sine-Gordon models,
which are not parity invariant.

There exists no systematic way to solve the equations (TBA) and (2.2) analytically,
albeit, numerically this is a solvable problem. Nonetheless, it is well known that at the fixed
points approximations can be made, such that one can solve (TBA) analytically and hence
also obtain analytic expressions for (2.3) at these points@ is one of them). Likewise we
expect to be able to solve (2.2) for these values and conipite) analytically. Following
now essentially the argumentation of [4,10], we need to make only two assumptions:

(i) The logarithmic derivative of the scattering matrix in (TBA) admits an expansion of

the form
0ijO) == g, (2.6)
S
The first coefficient in (2.6) is used to define a functignby extracting frompl.(jl) the
masses

The functionp;; is specific to the particular theory.
(i) One assumes that

£1(0) —e; <€ foro <0 (2.8)
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where theg; are the pseudo-energies of the constant TBA equation ang] @eare
quantities in the--independent TBA-equation

ij % L;(0) = —81(0) + m;e’ (2.9)

obtained from (TBA) by the shifi — 6 +In(/2), ¢; (0, r) — £;(8). This assumption
is usually difficult to justify a priori, but is sustained in hindsight by meaningful results
or supported by numerical data.

For9 — —oo one can now derive with (2.8) the equation

A 1 .
Qij * LJ(Q) =—& + Z—ee(pl.(:.l')Ti + O(ene) (210)
T
wheren > 2. Comparing then (2.9) and (2.10) for the parity invariant case, it follows

directly with (2.8) that

1 ..
m; = Zgoi(j)T/. (2.11)
Finally we deduce the expression for the vacuum expectation value for the energy—
momentum tensor with (2.8) and (2.4) to

(Tru)=27) " ot (2.12)
iJ

This quantity is of course sensitive to above mentioned renormalization issues and possibly

exhibits the distinction between the different regimes quoted. Furthermore, one has the

possibility of comparison, as there arerieais other methods tmbtain the vacuum

energies, such as the truncated conformatspapproach [11] or a matching between the

high-energy behaviour of the scattering matrix with a Feynman diagramatic analysis [12].
Let us briefly comment on the different regimes:

0 < A <1/2: As mentioned in the introduction, in this regime the individual integrals in
the expansion (1.2) are UV and IR convergent term by term when formulated on
the cylinder. From general arguments one finds for the behaviour in (1.3) that
&= 0andf,(r) = r2"4=4 [13]. From (1.3) and (2.4) follows also that we can
identify (T#,)|,—0 = —2/3&p. Thermodynamically this term can be seen as the
infinite volume energy and field theoretically this corresponds to the sum of all
infrared substractions, which achieve the convergence of the sums (1.3) for large
r.

1/2 < A < 1. Now the individual integrals in the expansion (1.2) are still IR convergent,
but cease to be UV convergent. We may still deduce Eq. (2.12) from (2.4) as
this just requires the validity of the assumptions (i)—(ii). Less obvious is if one
can still make the identificatiotT'#,)|,—o0 = —12/3&. If in the series (1.3) the
coefficientsE,, vanish for alln for which A > (2n — 2)/2n then we may still
take £) = 0 and the identification of7*,)|,—o with the bulk term still holds
in the same manner as in the previous case. Unfortunately, at present explicit
examples for the series in this regime are not available. In any case, now the field
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theoretic interpretation of this term changes. Since we require in this case UV
counterterms to make the individual integrals finite, £§peerm corresponds now

to the sum of these UV counterterms and all infrared substractions, which achieve
the convergence of the sums (1.3) for largdndeed, for the concrete models
studied below this becomes visible in a change of sign in the transition from the
regimeA <1/2toA > 1/2.

A < 0: Now the individual integrals in the expansion (1.3) are still UV convergent, but
cease to be IR convergent even on a cylinder. General arguments now yield for
the behaviourin (1.3) thalp # 0, £ # 0 and f,, (r) = (e +In(r)) ™" with « being
some constant [14-18]. One still finds t@t*,,)|,—0 = —72/30, €.9., [12], but
now the interpretation is less obvioas some counterterms also accumulate in
the &;-term.

A =1/2: In this case one usually finds free fermions in the model &ng 0, &, # 0,
fn(r) = r*. Now the vacuum energy is divergent, see, e.g., [10] for an analytical
expression.

We will investigate some concrete theories.

3. 0< A < 1/2, minimal affine Toda field theories

These theories have been studied befd& 9], nonetheless, we recall them here as
they are easy examples which illustrate the working of the above formulae and we shall
also point out some novel features. We recafitfthat minimal affine Toda field theories
can be realized as perturbations of the coset conformal field ther®g; /g2, with g
being a simply laced Kac—Moody algebra of rafknd levek [20,21]. The corresponding
Virasoro central chargesand conformal dimension of the perturbing operatoare

20 2

= d A= —_ 3.1
“=orn 2+ h (3.1)

respectively. Apart fromh = 2, i.e., the free fermion witly = A1, we always have for
the Coxeter numbeh > 2 and are therefore in the stated regime M < 1/2. The
renormalization issues are handled measily in this case and the vacuum energies
are computable with the abie arguments. With regard to assumption (i), we recall the
expansion of the TBA-kernel for these theories [10,22,23]

0ij (0) = =4 cotx;(s)xj(s)e 1, (3.2)
h
se&
with € = {s 4+ nh}, s being an exponent af, n € Ng andx;(s) are the left eigenvectors
of the Cartan matrix. In particular, we havg(1) = m;/m, with m being an overall mass
scale, which is needed for the assumption (ii) to hold. Having therefore the queﬁfity
in the form (2.7), we deduce immediately with the help of (2.12)

T T
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Obviously apart from the free fermion with= 2, when(T* ) — oo, we have(T#,,) > 0.

This result agrees with a similar formula obtained in [10] in terms of the coefficq'éﬂfts
without explicit evaluation and “1” referring to the lightest particle. More concrete case-
by-case studies were carried out in [19] for perturbationg;ab gy /gr+:-coset CFT’s

(see formulae (3.14) therein). When using the overall mass scale to perform suitable
normalizations the formula fdr=/ = 1 in there can be brought into the universal formula
(3.3), which is not obvious at first sight. The formulae in [19] are expressed in terms of a
mass scalé/ whose relation with oum varies for every theory as

Ay: M:msinL,
-1

Dy: M:m/\/é,

Es: M= 3sinn
6 M=y 33y
E;: M= sinn sinzn
A VAT 9"
.. T . T
Es: M=m /23|n§)smg. (3.4)

The advantage of our formulation relies on the fact that the masses are normalized with
respect to the same general mass seafer all simply laced Lie &ebras, which allows

for the very compact and generic expressior8)3Alternatively these results were also
confirmed in [24].

4. 0 < A < 1, gr-homogeneous sine-Gor don models

Let us now consider a theory which is more interesting with regard to the above
mentioned problematic, namely the-HSG model [6,7], withg being a simple Lie algebra
of rank¢ and levelk. These models can be viewed as perturbed Wess—Zumino—Novikov—
Witten (WZNW) [25] coset-models

m2 N BN
SHse = Swznw + ﬁ/dzx (A+,g(x)_lA_g(x)). (4.1)

Here(,) denotes the Killing form ofj andg(xX) a group valued bosonic scalar field..
are arbitrary semi-simple elants of the Cartan subalgelassociated with the maximal
Abelian torush C g, which have to be chosen not to be orthogonal to any rogt dhe
parameters: and 8 are the bare mass scale and the coupling constant, respectively. The
Virasoro central charge of the coset model and the dimension of the perturbing operator
are computed to

kh —hY hY

=/ and A= —,
R AY, k+hv

(4.2)
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with (2Y) h being the (dual) Coxeter numbergfWe note that now the constraint< 1/2

does not automatically hold for each level and #tbove mentioned cgptications could
arise for some theories inithseries when changing frok> 4¥ to k < 4. Up to now no
indication for a different behaviour of the theories in this two different regimes have been
found in the literature. We treat the simphcled and non-simply laced cases separately.

4.1. Smply laced HSG-models

As in the original formulation of these models, the algepia assumed to be simply
laced. Since for this case the expansion of the kepndbes not appear in the literature,
we will start with the scattering matrix, which was found originally in [26] (see [27] for an
integral representation). We cast the matrix describing the scattering between the particle
oftype A = (a,a) andB = (b, b), with 1 < a, b < ¢; 1 <a,b < k into the form

sinh(at/k) sinH (k — b)t/ k] =it 6+, /.

sinh(z/ k) sinht (4.3)

o e dt -~
Sip©) =y exp f K50

Here nfj’lj = expime,;(2 — IAkfl);bl] are constant phase factors not relevant for our
anaIysis,I%aE(t) = 28 cosh/k — I; with I being the incidence matrix af and the

o’s are the resonance parameters, which indicate the presence of unstable particles in these
models. In order to evaluate the expansiongpwe can employ the residue theorem for a
contour along the real axis closing up in the positive half of the complex plane encircling

all poles on the imaginary axis in the upper half plane. Noting that in 43)zn are

simple poles, except far= iwnk which constitute double poles fare N, we deduce for

0‘55 =0

1) - k k—Db)t/k
O =20 Y Res (2 ) gt SRS - D11E) -

Szl;#Hkt ins sinh(z/ k) sinht
(4.4)
_ 5 Z "b(l sm(an s/k) smlibn s/k)e_ylg| (4.5)
mLoseink sin(zs/ k)
The desired coefficient (2.7) follows from this directly to
(pfl) = ZKaE(in)mamb/mzsin(n/k) (4.6)

WheremZ = mym® with m, = sinar / k being the masses df;._1-affine Toda field theory
andm? aret free mass scales. We choose them here to be all eefual m Va. Finally

we derive from this a closed expression for the vacuum expectation value for the trace of
energy—momentum tensor

(T,) = wm?sin(z/ k) Z “Him)],;- 4.7)
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We are not aware of a generic formulation f&r1(ix) and analyze therefore the
expression (4.7) below in more detedse-by-case. We can summarize our findings as

>0 fork>h=A<1/2,
(TH){ > o0 fork=h=24=1/2, (4.8)
<0 fork<h=A>1/2
In many cases we can attribute the divergencetfer 1/2 to the presence of free fermions.
The change of sign when going from< 1/2 to A > 1/2 reflects the fact that besides the
IR counterterms, which achieve the convergence of the sums (1.2) forrangeded in
both cases in the latter we also require UV counterterms to make the individual integrals
in (1.2) finite.

4.1.1. (Ap)x-HSG model
For A, the Coxeter number is = ¢ 4+ 1. The inverse of the matrix relevantin (4.7) can
be cast in this case into a simple formula

o1, 1 Sin@m/k)sini(h —b)m/k] -
(el im)is = —gni o s Oa <P (4.9)

Computing the sums over both entries then yields after some algebra

2
Tm hw T

T" )= ————|tan— — htan— |. 4.10
7"%) 2tan°—7r/2k|: 2k 2k:| (4.10)

Hence, the conditiokT* ) > 0 becomes

hm T
tan— > htan— 4.11
Tk % (4.11)

or equivalently, when expanding the tan,

4h & 1 41& 1
—— h—— . 4.12
nk;(Zn—l)z—(h/k)2> nk;(Zn—l)z—(l/k)z (412)

It is easily seen that (4.12) holds term by term oh¢é < 1, hence establishing the first
inequality in (4.8). Similar yuments show that the oppositequality holds in the regime

h/k > 1. We comment more on the calse- i below.

4.1.2. (Dy)x-HSG model
For Dy the Coxeter number i8 = 2¢ — 2 and by evaluating (4.7) similarly as in the
previous subsection, we find
wm?sinE (2 — (24 h) CoSZ | + 2rm? sin 4L

(T"u)= 2 : (4.13)
Sir? 2 cosiz

The condition(T# ) > 0 is now equivalent to

sin” [(2 th)— 2h ] ~2tan'® (4.14)
k cosjﬂ 2k
Expanding the left- and right-hand side of this inequality yields by similar arguments as in

the previous subsection once more the relation (4.8).
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4.1.3. (Eg)x-HSG model
For E; the Coxeter number is = 12 and we find

) 2?9:1 T, Sinpm/k
2cos4r/k—1 "~
We see that the numerator4s0 for k = 2 and> 0 for k > 2. The denominator is- O for

k=2,k> 12 and< O for 2 < k < 12. The denominator vanishes for= 12. Hence the
relation (4.8) holds.

T=(4,4,53). (4.15)

(T“M> =2mm

4.1.4. (E7)x-HSG model
For E; the Coxeter number is = 18 and we find

r > _ wm? Z;:1 T, Sinpm/k
HI™" cosm/k(4cos6r/k —2)

We observe now that the numerato<9) for k < 4 and> 0 otherwise. The denominator
on the other hand is O fork = 3, k > 18 and< 0 otherwise except far = 2, 18 in which
case itis zero. Hence (4.8) holds also in this case.

T

(9,18,20,22,17,12, 7). (4.16)

4.1.5. (Eg)x-HSG model
For Es the Coxeter number is = 30 and we find

A wY ;
(7, = wm=y, 1 TpSinpr/k
"™ cos8r/k 4 cos6r/k —cos2r/k —1/2°
7=(4,8,12,12,13,10,7, 4). (4.17)
We see that the numerator<4s0 for k < 5 and> 0 otherwise. The denominatorisO for

k=2,3,4; k > 30 and< 0 otherwise except fat = 30 in which case it is zero. Hence
(4.8) holds also in this case.

4.2. Non-simply laced HSG-models

Now we allow the algebrg to be also non-simply laced. In this case the scattering
matrix is slightly more complicated as the symmetry between the exchange of long and
short roots is lost. It can be restored by the use of the symmetrzefsthe incidence
matrix of g, i.e.,t;1,; = t;I;,, With t; = Z/ag and the length of long roots normalized to
a? = 2. In [28] the scattering between the particle of type- (a, @) and B = (b, b), with
1<a,b<t;1<a,b<k; =13k was proposed to be described by

sinhat/kz) sSinl((1— b/ k;)t] itO+)/7
sinh(1/k;) sinht ’

o i dt ~
S4p(©) = nlp exp f —Ka® (4.18)
Hereng”,j~ are once more constant phase factors not relevant for our analysis. Furthermore,
one needs the quantity,; = kmax(; t;) and the matrixK with entries Kag(t) =
25, coshe / k; — I;t;/ max(t; t;). Note that in comparison with [28] we interchanged the
long and short roots, that is we have takensieo be left and not the right symmetrizers
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of the incidence matrix. A similar analysis as in the previous subsection leads now to the
following expansion of the TBA-kernel

- s - sin(ams/ k) sin(brrs/ k;)
ab _ (i a b’ ,—sl|0
0)=-2 K. ; 4.19
(pab( ) Z ab(lns) Sin(ﬂ’S/k~5) e ( )
s=Lis#nk;; a
such that
o = 2K 5 (imymimb fm2 sin( [k ;). (4.20)

Here the masses are assumed to renormalize with an overall factor and are therefore
expected to be the same as in the semi-classical analysis [29], tvhét:iSm sinar/k;.

The overall mass scales associated with each colour are once more chosen to be the same.
Thus we finally deduce

¢
(Tﬂu>:”m2 Z [kil]aé’ (4.21)
ia,h=1

wherelem; = I%ag(in) sin(zr/k;;). As in the previous case, we are not aware of a generic
formulation fork ~* and analyze therefore (4.21) in more detail case-by-case. Our findings
are summarized as

>0 fork>h"=A<1/2,
(T#)y > 00 fork=h"=4a=1/2, (4.22)
<0 fork<h"=A<1/2

with similar interpretations as in (4.8). We establish (4.22) in more detail case-by-case.

4.2.1. (G2)r-HSG model
The dual Coxeter number for,Gs ¥ = 4 and the symmetrizers are taken to be
t1 = 3, 1 = 1. With these data we compute from (4.21)

,Sinm/k + sin 4w /3k
2c0os4/3k—1

Obviously, the numerator is 0 for k > 2, whereas the denominator4s0 for k = 2,3
and otherwise- 0 except fork = 4 when it is zero. Evidently this agrees with (4.22).

(TH.)=27tm (4.23)

4.2.2. (Fa);-HSG model
The dual Coxeter number forsAs 1Y = 9 and the symmetrizers are taken to be
t1 =tp =1 andrz =14 = 2. From (4.21) we compute
,2Y 5y sinpm/2k — sin 3 /2%
2cos3r/k—1

The numerator is> 0 for k > 2, whereas the denominator is0 for 2< k < 9 and
otherwise> 0 except fork = 9 when it is zero. Evidently this agrees with (4.22).

(T#,)=27m (4.24)
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4.2.3. (By)r-HSG model
The dual Coxeter number for,Bs 2V = 2¢ — 1 and the symmetrizers are taken to be
n=ty=-.-=t,_1=2ands, = 1. We find now for even rank

JTWL2

3
COSﬂ

<Tﬂu>= -

n -1 =272, x4V —4
5 Y Stsingg + §sinT +2cosE >0 20 — 2p — 1) sin T —4p)

1+2 Zi/jl(—l)P cos7t

’

(4.25)

whereas for odd we obtain
JTm2

T V= 0
(7"u) cos%

Zh 1ls|n2,< + 5sinZ- -|-20052k Z(K 3)/2(£ 2p — 1)S|n”7(1+h 4p)
X .
1+22”2( 1) cos7E

(4.26)
Once more we confirm (4.22). As the details are rather involved we drop them here.

4.2.4. (Cy)r-HSG model
The dual Coxeter number for,Gs #¥ = £ + 1 and the symmetrizers are taken to be
n=tr=---=fh_1=1andy =2

27yt ( 1)S|n -|— sin -
(T“M)znm (fT) [Z” 1P 7 o } for £ even (4.27)
COsy; 1423 /5 (=1)P cosTE
¢ . whY
(%) = cos”hv [Z (r-12 sm— +5 smT], for ¢ odd (4.28)

Once more we confirm (4.22) and drop the details for the same reasons as in the previous
subsection.

5. A=1/2, g5v-homogeneous sine-Gordon model

The caseA = 1/2 is very special as then the vacuum energy diverges in the extreme
UV limit. Such type of behaviour is well known from free fermions in form of logarithmic
ultraviolet singularities, meaning that (2.4) yield3*,) — oo for »r — 0. Explicit analytic
formulae for the free fermion(r)-function can be found in [10]. Indeed in many cases we
can make this connection quite explicit. It suffices to present an examples to illustrate this
point.
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5.1. (A¢)¢+1-HSG theories

Let us have a closer look at thia,),41-HSG theories in order to see how the fermions
arise in there. Obviously fot = k the expression (4.10) yieldg'#,,) — oco. Already in
[27] it was noticed that th€A2)3-HSG model decomposes into four free fermions when
the resonance parameter vanishes. Fromdhbethat the central enge (4.2) becomes in
general¢?/2 for (A)¢+1-HSG models, one might suspect that they always decompose
completely into¢? free fermions for vanishing resonance parameters, such that each
fermion contributes A2 to the central charge. However, this is not quite the case as the
following argument shows.

In order to count the fermions, identified here simply with the amount of particles which
contribute ¥2 to the central charge, we recall the constant TBA equations, which arise
from (TBA) after some standard manipulations. Forthe),1-HSG models they take on
the form

14

~ 1)
2@ = [T @)™ with N3 = 508,5 — (K51) (K aab- (5.1)
b,b=1

Solving these equations for thé = exp(—sg) yields the effective central charge as

EZ
Ceff = ZZ <1+x“)_§7 (5-2)

with L(x) = Z,‘jo:lx”/n +InxIn(1 — x)/2 denoting Rogers dilogarithm. The solutions
of (5.1) are very simple in this case

i Sinfwa/(1+0)]

a

Y= Sinra/ 1+ 0]

Therefore we have? = x‘+17¢ = 1 and since(1/2) = 72/12 it follows from this that
each of the particle&, a), (a,£ + 1 —a) for 1 < a < £ contributes 12 to the effective
central charge in (5.2). Hence in tli&,),+1-HSG models we have alwayg &r 2¢ — 1
free fermions wheid is odd or even, respectively. The remaining particles can be organized
without exceptions in pairg, @), (d, a). Noting with (5.3) that obviously? = (xg)‘l and
recalling the fact thaf(x) + £(1 — x) = 72/6 explains then that the central charge has to
be an integer or a semi-integer for these models.

In general, it is less straightforward for the other algebras to identify particles which
directly contribute 12 to the central charge. In fact, mostly the particles occur in pairs,
triplets or higher multiplets contributing integers or semi-integer values to

(5.3)

6. A <0, affine Toda field theories

Affine Toda field theories related to simyplaced and non-simply laced Lie algebras
have a quite different behaviour due to the fact that in the first case all masses renormalize
with an overall factor, which is not the case in the latter (see, e.g., [30]). As a result of this,
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the strong—weak duality observed for ATFT related to simply laced algebras is broken for
those associated with non-simply laced Lieeddgas. Despite the fact that there exists a
uniform formulation, we will treat them here separately as this will be more transparent.

6.1. Smplylaced

ATFT are quite well studied examples of integrable models, which can be viewed in the
spirit of (1.1) which was noted first in [20,21]

¢
1. . GG
SATFTZ/de —(8M¢)2+M2nieﬁ“’ e, (6.1)
2 i=0
The fixed point part of the actioScet corresponds to the conformal Toda field theories
when the sum over the simple roats starts ati = 1. Theu, 8 are real parameters and
then; are the Kac labels related togtimegative of the highest roéy = — Zleni&i. The
Virasoro central charge of the conformal Toda field theories and the conformal dimension
of the perturbing operatdr = ungef?¢ have been computed in [21]
4¢h(h + 1) 2h
c=tt 325 2_B 6.2)
where we use the effective couplihg < B = 282/(%2 + 4r) < 2. Since 2 > 1— B/2
is always true we are in the regime< 0 and expect the above mentioned complications
with regard to renormalization to arise. To establish that, we recall first [10,22,23]

o . stB . sm(2—B) ST . —sl0|
<pl/(9)_—2§sm o sin o /S|n7x,(s)xj(s)e , (6.3)

and deduce thereafter from (2.7) and (2.12)

Tn am2sin(rr/ h)
(7"} = sin( B/2h) sin[w (2 — B)/2h]’

Clearly, as 0< B < 2 we have(T* ) > 0. Up to an overall mass re-scalingmf— 2m,
this agrees precisely with the results in [12], which were obtained by matching the high-
energy behaviour of the scattering matrix with a Feynman diagramatic analysis.

Itis very interesting to note that by an analytic continuation from real to purely complex
coupling we can also reach the regime for- O for (6.4) and observe similar phenomena
as for the HSG-modef For 1 = 2 this means we continue from sinh-Gordon to sine-
Gordon. Following for this case the argumentation of Destri and De Vega [12], we relate
the sinh-Gordon coupling to the sine-Gordon coupling via 8 — i 8/~+/2 according to
the standard conventions. Also we replace the breather massseatk the soliton mass

(6.4)

1 Confusion arises sometimes due to different cotives. For instance, we can relate our notations to the
ones used in [31] by a simple rescaling of the fiejds: ¢ /+/4r compensated by a scaling of the coupling
constant = b /+/4x. In addition, one takes the effective coupling constant t@ke2By.

2 We are grateful to Al.B. Zamolodchikov for pointing this out to us.
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scalen viam? — 4m?sir? = B/2 such that we end up with the simple formula

~2 T A
whereA = $2/8x is the conformal dimension of the perturbing cos-term in the model.
This agrees also with [32]. Note that in the previous argument we considered sinh-Gordon
as a perturbed Liouville theory, whereas now we perturb the free theory rather than
complex Liouville. Analyzing (6.5) in more detail one observes

2n—2 2n—1
<0 for5=7 < A < %5=,
(o)1 7 A= (6.6)
Iz 2n—1 2 !
>0 for =5 <A<ﬁ,
J— — n
=0 for A=51,

with n € N. Note that in particular for = 1 we have as for the homogeneous sine-Gordon
model atA = 1/2 a transition point at which the sign changes by passing through a
singularity. Moreover, precisely this value corresponds to the free fermion point, which in
this case is a very explicit example for thedrermion picture advocated above. However,

in this case the structure is more complicated as first of all we have an infinite number of
such points rather than just one as in the HSG-models. In addifiép) is not always
divergent at these points, but can also vanish. One should keep in mind here, that in fact
we obtained (6.6) simply by an analytic continuation from the sinh-Gordon expression.
Starting from first principles the TBA works quite differently for the sine-Gordon theory
due to the non-diagonal nature of the scattering matrix.

6.2. Non-simply laced

It is known, that the above mentioned complication of mass renormalization is
reconciled if one views ATFT’s in terms of dugairs of Lie algebras. Since simply laced
Lie algebras are self-dual, this picture does not yield anything new for that case. The
dual pairs of non-simply laced Lie algebras a@%l), Df’)), (Ffll), Egz)), (Bél), Aé?_l) and

(C(l), Dfﬁ:l). Each algebra of these pairs allows for a description of the form (6.1) related
to each other by the strong—weak duality transformafies 47 /8, where the untwisted
algebras relate to the weak coupling limit. The vacuum energies associated to all non-
simply laced affine Toda theories were statefil8]. As in there no details were presented
on how they were obtained, it will be instructive to show that the procedure outlined in
Section 2, also holds in this case.

Let us first of all see what we have to expect with regard to the arguments outlined above
and compute the Virasoro central charge and the dimension of the perturbing operator.
According to [18] we have

_ _ 1
c=£+120% with Q=ﬁ5+g,5v, (6.7)

with (oY) 5 being the (dual) Weyl vector of the untwisted Lie algebra given by half the
sum of the positive (co)roots. Note that whevaluating (6.7) for the simply laced case



318 O. Castro-Alvaredo, A. Fring / Nuclear Physics B 687 [FS] (2004) 303-322

yields precisely (6.2), but for the non-sitgdaced case it differs from the expressions
in [21] by the use of,BVArather than alway$. The conformal dimension of a spinless
primary field V; (x) = ¢(2+@4® in the underlying CFT isA(@) = (02 — @2)/2, such
that the perturbing fielanov(ﬁ&o_é)(x) has conformal dimension
p%as

2 9
ap defined as in the previous section, that is being the negative of the highest root. It will
turn out that these dimension will always be smaller zero. We will compute the precise
values for some concrete examples below.

Unlike to the previous cases the expansion for the kegndbes not appear in the

literature, we therefore start here with the scattering matrix, which can be cast into the
universal form [33,34]

A(Bao— Q) =Bao. O —

(6.8)

Sij(£6 > 0) = exp[¢8/ %sink(z?ht)sinh(tjz?m)[l(1(;)]ijei"’9/”}, (6.9)

whered, = (2— B)/2h, 9y = B/2H with h being the Coxeter number of the untwisted
algebra andH its dual Coxeter numbeér” multiplied by the twist of the second algebra.
The effective coupling is now generalized Bo= 2HB?/(HB? + 4rh). Ther; are the
symmetrizers of the incidence matrix of the untwisted algelifa=1;I;;, with ; = 2/541.2
and the length of long roots normalized[fg? = 2. Also needed in (6.9) is the inverse
of theg-deformed Cartan matriX;; (1) = (¢¢" + q*lé*’-f)&-j — [1;;1 with deformation
parameterg = exp(19y), § = exprdy) and[l;;]; = (@' — g~ ") /(G — ).

In order to evaluate the expansion fpr we can employ once again the residue
theorem for a contour along the real axis closing up in the positive half of the complex
plane encircling all poles on the imaginaaxis in the upper half plane. Recalling that
detK (1) = [[,cg4costi(t + ims)/2h] coshi(t — ims)/2h], we know the positions of all
poles and it follows from the integral representation (6.9) that the TBA kernels admit a
series expansion of the form

0ij(0) = 16i E Res [sinh(®,1) sinh(t; 9 1) K (1);;/ detk (1)e /). (6.10)
1—17s
se&

We do not have a closed formula for the cofact&rsbut for the sake of our argument it
will be sufficient here to present some examples.

62.1. (G5, DY)-ATFT

Let us first compute (6.7) and (6.8). We carry out the computations in terms of the
guantities of the untwisted aIgebra‘ZIGfor which we have two simple root; andaz
normalized a§522 =2= 3&12 Furthermore, the Weyl vector, its dual and the negative of
the highest root are given by

0 = 5a1 + 3o, pY =5a1+ar and og=—3a1 — 2a>. (6.11)
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These realizations allow to compute the quantities needed in (6.7) and (6.8), that is
362=14,3p" .5V =26andF .5V =35" . =8. It follows therefore
13+ 3B(B —3)
B(2— B)
Clearly for 0< B <2 we have-oco < A < —1.
To proceed further we need the (generalizedY&@er number for this theory, which are

h =6 andH = 12. The symmetrizers arg = 3 andr, = 1. Evaluating (6.10) and reading
off the first order coefficient we obtain

3B+2
d A= . 6.12
] an 57 ( )

c=2—|—32|:

s (2—B) :a B
sin sinZ2%
o ——g/zT—1Z_ 812 (6.13)
cosg(l—37) m
where we normalized the masses to
B
m1=mcos%<1-|- Z) and mo=m. (6.14)
We deduce then with (2.12)
2 T B
am<cosk(l— =
(71 ,)= 050~ ) (6.15)

= - (2—B)T i Br "
4y/3sin'= % sin B2

Agreement with the results in [18] is achieved by changing to the conventions used in
there. For this one needs to re-define the effective couplimyte B’ = 3B/(4 + B) and
introduce a “floating” Coxeter numbéf’ = (1 — B')h + B'h".

6.2.2. (F?,EP)-ATFT
For !’ we normalize the four simple roots &f = &2 = 2a2 = 242 = 2. The Wey!
vector, its dual and the negative of the highest root are in this case given by
p = 16a1 + 3002 + 4203 + 2204,
,5v=,5—|—22&4 and &02—2&1—3&2—4&3—2&4 (6.16)
such tha(p2=239, sV .5Y =402ands .Y =5V . p = 55. With this we find
1608+ B(331B — 138
+ B( 9 and A— 16+ B
(2-B)B B-2

Therefore—oo < A < —8.
For this theory we havk = 12, H = 18, 11 =t = 1 andrz = 14 = 2. The ratios between
the masses of the four particles in the theory are

my LT B m3 T B
— =2sin—(1+ — —=1+2cos—(1— —
m 4( +18)’ o 6( 6)’

. (6.17)

c=4+12[

mo T B
—=2cos—|1——). 6.18
m o0 12( 6) (6.18)
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We choose the normalization such that=m and obtain from (6.10)

(2-B)w

i~ B
sin sin87
iy =83 cos? 2‘21 B ;8 m:;:?b’ a,b=1,234. (6.19)
4\*+" 18

i 447
Therefore with (2.12) we get 894 = =~

(T, = mm?cosE(1— £)
a 4\/_5|n(2 B)x smli—g

We can match with the formulae in [18] b§ — B’ = 4B/(6 + B), H = 3(4 — B)),
my — m’y, ma — mG, m3 — my andmg — ms.

(6.20)

6.2.3. (BY, AQ)-ATFT
Let us now present the simplest example of the far(ﬁiﬁll) A(zill). In general, we

choose for the algebra, a'B the normallzanonsz2 2fori=1,...,£—1and &62 =1
Then we have

25:3&1+4&2, Zﬁv =3&1~|—8&2 and 620: —&1 — 2&2, (6.21)

from which we compute 122 =30, 5 =p2+72andg. Y = g2+ 4. Therefore
447+ 24B(4B — 1 B+4
cmpyg| MTH2BABZID] g 4B
B2 — B) B—2

Hence—oo < A < 2.
For this theory we have = 4, H =6, 11 = 1 andt; = 2. The masses satisfy

mi 4 B
— =2sin=(1+ =), 6.22
sm4< +6> (6.22)

m2

and we choosei1 = m. Evaluating (6.10) we obtain now

: (2—B)w i Bm
sin~ =32~ sinZ&
oy =88 8T p—12 (6.23)
sinz(1+7) m
and therefore with (2.12)
2ainT™ B
amesinZ(1+ 7
(TH) = 1010 (6.24)

+(2—B)w ;4 B
4smTS|nT

Defining once moreB — B’ =4B/(6 + B) and H = 4 — B’ we find agreement with
[18]. The previous results also hold for th@(l) gz))—theory by exchanging the roles
of particles 1 and 2, since the Dynkin diagrams éi‘)Bind C‘Ql) are identical up to the
exchange of the short and the long root.

These examples are sufficient to sugptbre validity of the approach outlined in
Section 2.
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7. Conclusions

We used the thermodynamic Bethe ansatz to compute vacuum en¢fdigs for
various types of perturbed conformal field theories. Despite the fact, that the models
considered exhibit different general behaviours, the assumption (i)—(ii), needed for the
validity of the approximations in the TBA, hold in all cases.

The general behaviour ¢f'#,,) is shown to be sensitive to IR- and UV-counterterms,
whose presence can be characterized by the conformal scaling dimefisafnthe
perturbing operator. In the regime<© A < 1/2, realized by minimal ATFT and-

HSG models fork > 1V, the quantity(T*,) can be identified with the IR-counterterms
needed to compensate the divergencies in the perturbative series expansion (1.2), when
viewed on a cylinder. In contrast, in the regim@k A < 1, realized byg,-HSG models

for k < kY, the quantity(T*,) can be associated to the sum of the aforementioned IR
counterterms and UV counterterms needed to guarantee the finiteness of the individual
integrals in the expansion. In the models studied here these additional counterterms, when
passing fromA < 1/2 to A > 1/2 show up in a change of sign ifT* ). It would be
extremely interesting to verify this assertion by some explicit perturbative computations
for the HSG-models. For the regime < 0, realized here by the ATFT (simply laced as

well as non-simply laced)T# ) constitutes a mixture of several types of counterterms,
less obvious to disentangle. The divergencédf, ) at A = 1/2 can be attributed to the
occurrence of free fermions, for which such type of behaviour is well known from explicit
analytical expressions. However, we werd able to identify the free fermions in ajv -

HSG models, which can be viewed as perturbed CFT's with 1/2. This needs further
investigations.
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