Andreas Fring

e) Produce a table which labels columns by heights from 1.55m
to 1.95m in steps of 5 cm and rows by weights from 50kg to
95kg in steps of Skg. At each intersection compute the
corresponding body mass index. Write then a UDF which
uses this table as a Vlookup table to determine the body mass index

from a given height and weight.

- The table should look like:
(Use the autofill function to produce it. Only type row 5.)

AT ETE e TE T EACE |
IoH
oL
|4 155 a fEs hE s s ksl) .55
&] 80 208 19I5 B 3 B 5 B k]
L& By EEEL e A 18 17 161 152 145
[&] B0 25 234 22 208 196 185 175 166 158
L Bs 271 254 238 225 212 201 19 18 171
LE | 0 291 273 2ai7ag 2 T E o B 20T 9 AE 5
10 2al gl2s 293 mana s PRSP EE R SR iaE 2R 8
11 80 333 312 294 X7 B 247 X34 232 21
12 85 3/4 332 312 294 XE B2 28 35 224
L5 Sml 37Es 353 33Nl 29 args Dei3s JAn 237
|14 951 3050 a7 3403 g w9egs ovE P53 25

e.g. D6 contains =bmi($A6,$D$4) 77

Function bmitable(weight As Single, height As Single) As Single

Dim x As Integer

If height >= 1.55 Then x = 2
If height >= 1.6 Then x =3
Ifheight >=1.65 Then X =4 5 fynction gives wrong results

If height >=1.7 Thenx =35 for heights >2.00 and heights <1.55.

If height >=1.75 Then x =6

If height >= 1.8 Then x =7

If height >=1.85 Then x = 8

If height >= 1.9 Thenx =9

If height >=1.95 Then x = 10

bmitable = WorksheetFunction.VLookup(weight, [a5:j14], x)

End Function 7 8

Programming Excel/VBA MA1603

Andreas Fring

f) Produce two tables which label columns and rows in the same way
as in e). At each intersection compute the meaning for the body mass
index for male and female in the tables. Write then a UDF which uses|
either of these tables as a Vlookup table to determine the meaning of

the body mass index from a gives height, weight and gender.
- The tables (part of them) should look like:

29 [female 1.55 16 1.65 7 7S

30 50 normal weight normal weight underweight underweight underweight o
31 55 normal weight normal weight — normal weight normal weight undenweight o
32 B0 overweight normal weight normal weight normal weight normal weight u
o B5 overweight overweight normal weight normal weight normal weight n
34 70 obese overweight overweight overweight narmal weight n
5l 75 obese ohese overweight overweight overweight n
36| 80 obese ohese obese overweight overweight o

You can either compute the body mass index or use the table
from e) to look up the values.

In the latter case D32 contains =bmimean($D7,"female")

Function BT(weight As Single, height As Single, mf As String) As String

Dim x As Integer

If height >=1.55 Then x =2
If height >= 1.6 Then x =3
If height >=1.65 Then x =4

Ifheight >= 1.7 Then x = 5 Decide here which table to take:

If height >= 1.95 Then X‘V
If mf = "female" Then

BT = WorksheetFunction. VLgokup(weight, [a30:j39], x)
Elself mf = "male" Then
BT = WorksheetFunction.VLookup(weight, [a18:j27], x)
Else
BT = "Specify gender!"
End If

End Function 8 O

Programming Excel/VBA MA1603

Andreas Fring

» The SELECT CASE-structure
» The SELECT CASE structure is another branching structure

provided by VBA. It is a more elegant and transparent version
of an IF-structure, which tests always the same variable.

For instance (determine the sign of a number):

Function sig(x As Single) As String

If x > 0 Then
sig = "positive" Select Case x
Elself x <0 Then Case Is > 0: sig = "positive"
sig = "negative" = Case Is < 0: sig = "negative"
Else Case Else: sig = "zero"
sig = "zero" End Select
End If

End Function

81

Syntax: Select Case testvariable

[Case expressionlist
[statements]]... can be repeated many times

[Case Else
[elsestatements]]
End Select

- testvariable = a numeric or string expression
- expressionlist = list of one or more expressions separated by a comma
- expression
- expression To expression
- Is comparisonoperator expression

- statements = executed when one condition from expressionlist is true

- elsestatements = executed when no previous condition is true 82

Programming Excel/VBA MA1603

Andreas Fring

» Examples (Select case):
a) Function si(x)

Select Case x Si(x) = {
Case0: si=1
Case Else: si = Sin(x) / x

End Select

End Function
b) Function F(x As Single) As Single

Select Case x 0
CaseIs<0: F=0 Flx) = 3x
Case0 To4: F=3*x 12
Case Else: F=12

End Select

End Function
- Note that "a To b" means "a< x < b"

S X
T

1

for xR0

for x=0

forx < 0
forO0<x <4

forx > 4

83

c¢) Function G(x As Single) As Single
Select Case x

Case -4To4: G=1 1
G(x) = 0

for 4 <x<4

Case Else: G=0 otherwise
End Select
End Function
- Note that "a To b" means "a < x < b"
d) Function entry(age As Integer) As Variant
Select Case age
Case 0 To 5, Is > 65: entry =0
Case 6 To 15: entry = 2
Case 15 To 65: entry =5
Case Else: entry = "Age not valid!"
End Select

End Function

84

Programming Excel/VBA MA1603

Andreas Fring

e) Function price(product As String) As Variant
Select Case product

Case "Mangoes": price = 2.5

Case "Bananas": price = 1.8

Case "Pears", "Apples": price =0.9

Case Else: price = "Fruit not in price list!"
End Select

End Function

- Note that the test variable can also be of string type

- Note that price is of type Variant, as it could be a number

or a string

- Note that the test is case sensitive, e.g.
=price(""mangoes") — "Fruit not in price list!"

- Note that when the "Case Else" line is dropped
=price("Papayas") - 0 85

f) Function pricec(product As String, country As String) As Variant
Select Case country
Case "Brasil"
Select Case product
Case "Mangoes" , "Papayas": pricec =2.5
Case "Bananas": pricec = 1.3
Case Else: pricec = "Fruit not in the list!"

End Select
Case "Thailand" - One can also nest
Select Case product the SELECT structure

Case "Mangoes": pricec = 2.2 similar to the IF-structure
Case "Papayas": pricec = 2.8
Case Else: pricec = "Fruit not in the list!"
End Select
Case Else: pricec = "Country not the list!"
End Select

End Function 8 6

Programming Excel/VBA MA1603

