| e) Produce a table which labels columns by heights from 1.55m |                                                                     |          |         |       |       |       |      |        |        |       |       |       |    |   |
|---------------------------------------------------------------|---------------------------------------------------------------------|----------|---------|-------|-------|-------|------|--------|--------|-------|-------|-------|----|---|
| to 1.                                                         | to 1.95m in steps of 5 cm and rows by weights from 50kg to          |          |         |       |       |       |      |        |        |       |       |       |    |   |
| 95kg                                                          | 95kg in steps of 5kg. At each intersection compute the              |          |         |       |       |       |      |        |        |       |       |       |    |   |
| corre                                                         | corresponding body mass index. Write then a LIDF which              |          |         |       |       |       |      |        |        |       |       |       |    |   |
| 11565                                                         | uses this table as a Vleakup table to determine the body mass index |          |         |       |       |       |      |        |        |       |       |       |    |   |
| u303                                                          | uses this table as a violokup table to determine the body mass much |          |         |       |       |       |      |        |        |       |       |       |    |   |
| trom                                                          | ag                                                                  | given h  | eight   | and   | wei   | ght.  |      | (      |        |       |       |       |    |   |
| - Th                                                          | - The table should look like:                                       |          |         |       |       |       |      |        |        |       |       |       |    |   |
| (U                                                            | se t                                                                | the auto | ofill f | uncti | ion 1 | to pi | rodu | ice it | t. Onl | y typ | be ro | w 5.) |    |   |
|                                                               | _                                                                   | A        | В       | С     | D     | E     | F    | G      | Н      |       | J     |       |    |   |
|                                                               | 2                                                                   |          |         |       |       | -     |      |        |        |       |       |       |    |   |
|                                                               | 4                                                                   |          | 1.55    | 16    | 1.65  | 17    | 1.75 | 1.8    | 1.85   | 19    | 1 95  |       |    |   |
|                                                               | 5                                                                   | 50       | 20.8    | 19.5  | 18.4  | 17.3  | 16.3 | 15.4   | 14.6   | 13.9  | 13.1  |       |    |   |
|                                                               | 6                                                                   | 55       | 22.9    | 21.5  | 20.2  | 19    | 18   | 17     | 16.1   | 15.2  | 14.5  |       |    |   |
|                                                               | 7                                                                   | 60       | 25      | 23.4  | 22    | 20.8  | 19.6 | 18.5   | 17.5   | 16.6  | 15.8  |       |    |   |
|                                                               | 8                                                                   | 65       | 27.1    | 25.4  | 23.9  | 22.5  | 21.2 | 20.1   | 19     | 18    | 17.1  |       |    |   |
|                                                               | 9                                                                   | 70       | 29.1    | 27.3  | 25.7  | 24.2  | 22.9 | 21.6   | 20.5   | 19.4  | 18.4  |       |    |   |
|                                                               | 10                                                                  | 75       | 31.2    | 29.3  | 27.5  | 26    | 24.5 | 23.1   | 21.9   | 20.8  | 19.7  |       |    |   |
|                                                               | 11                                                                  | 80       | 33.3    | 31.2  | 29.4  | 27.7  | 26.1 | 24.7   | 23.4   | 22.2  | 21    |       |    |   |
|                                                               | 12                                                                  | 85       | 35.4    | 33.2  | 31.2  | 29.4  | 27.8 | 26.2   | 24.8   | 23.5  | 22.4  |       |    |   |
|                                                               | 13                                                                  | 90       | 37.5    | 35.2  | 33.1  | 31.1  | 29.4 | 27.8   | 26.3   | 24.9  | 23.7  |       |    |   |
|                                                               | 14                                                                  | 95       | 39.5    | 37.1  | 34.9  | 32.9  | 31   | 29.3   | 27.8   | 26.3  | 25    |       | 77 | ) |
| e.g.                                                          | e.g. D6 contains =bmi( $A6,D$ ) /                                   |          |         |       |       |       |      |        |        |       |       |       |    |   |

| Function bmitable(weight As Single, height As Single) As Single |                                      |  |  |  |  |
|-----------------------------------------------------------------|--------------------------------------|--|--|--|--|
| Dim x As Integer                                                |                                      |  |  |  |  |
| If height $\geq 1.55$ Then x = 2                                |                                      |  |  |  |  |
| If height $\geq 1.6$ Then x = 3                                 |                                      |  |  |  |  |
| If height $\geq 1.65$ Then x = 4                                | This function gives wrong results    |  |  |  |  |
| If height $\geq 1.7$ Then x = 5                                 | for heights >2.00 and heights <1.55. |  |  |  |  |
| If height $\geq 1.75$ Then x = 6                                |                                      |  |  |  |  |
| If height $\geq 1.8$ Then x = 7                                 |                                      |  |  |  |  |
| If height $\geq 1.85$ Then x = 8                                |                                      |  |  |  |  |
| If height $\geq 1.9$ Then x = 9                                 |                                      |  |  |  |  |
| If height $\geq 1.95$ Then x = 10                               |                                      |  |  |  |  |
| bmitable = WorksheetFunction                                    | n.VLookup(weight, [a5:j14], x)       |  |  |  |  |
| End Function                                                    | 78                                   |  |  |  |  |

| f) Produce two tables which label columns and rows in the same  | way     |
|-----------------------------------------------------------------|---------|
| as in e). At each intersection compute the meaning for the bod  | y mass  |
| index for male and female in the tables. Write then a UDF whi   | ch uses |
| either of these tables as a Vlookup table to determine the mean | ing of  |
| the body mass index from a gives height, weight and gender.     |         |

- The tables (part of them) should look like:

| 29                                                          | female | 1.55          | 1.6           | 1.65          | 1.7           | 1.75          |    |  |  |
|-------------------------------------------------------------|--------|---------------|---------------|---------------|---------------|---------------|----|--|--|
| 30                                                          | 50     | normal weight | normal weight | underweight   | underweight   | underweight   | u  |  |  |
| 31                                                          | 55     | normal weight | normal weight | normal weight | normal weight | underweight   | u  |  |  |
| 32                                                          | 60     | overweight    | normal weight | normal weight | normal weight | normal weight | u  |  |  |
| 33                                                          | 65     | overweight    | overweight    | normal weight | normal weight | normal weight | n  |  |  |
| 34                                                          | 70     | obese         | overweight    | overweight    | overweight    | normal weight | n  |  |  |
| 35                                                          | 75     | obese         | obese         | overweight    | overweight    | overweight    | n  |  |  |
| 36                                                          | 80     | obese         | obese         | obese         | overweight    | overweight    | 01 |  |  |
| You can either compute the body mass index or use the table |        |               |               |               |               |               |    |  |  |
| from e) to look up the values.                              |        |               |               |               |               |               |    |  |  |

In the latter case D32 contains =bmimean(\$D7,"female")







3

| • Examples (Select case):                        |                                                       |  |  |  |  |  |
|--------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|
| a) Examples (Select case).                       |                                                       |  |  |  |  |  |
| a) runchon si(x)                                 |                                                       |  |  |  |  |  |
| Select Case x $Si(x) = \langle$                  | $\frac{\sin x}{x}$ for $x \in \mathbb{R} \setminus 0$ |  |  |  |  |  |
| Case 0: $si = 1$                                 | 1 for $x=0$                                           |  |  |  |  |  |
| Case Else: $si = Sin(x) / x$                     |                                                       |  |  |  |  |  |
| End Select                                       |                                                       |  |  |  |  |  |
| End Function                                     |                                                       |  |  |  |  |  |
| b) Function F(x As Single) As Single             |                                                       |  |  |  |  |  |
| Select Case x                                    | for $x < 0$                                           |  |  |  |  |  |
| Case Is < 0: $F = 0$ $F(x) = \langle 3, \rangle$ | x for $0 \le x \le 4$                                 |  |  |  |  |  |
| Case 0 To 4: $F = 3 * x$ 12                      | 2 for $x > 4$                                         |  |  |  |  |  |
| Case Else: $F = 12$                              |                                                       |  |  |  |  |  |
| End Select                                       |                                                       |  |  |  |  |  |
| End Function                                     |                                                       |  |  |  |  |  |
| • Note that "a To b" means "a $\leq x \leq b$ "  | 83                                                    |  |  |  |  |  |

| c) Function G(x As Single) A                   | As Single                                                  |                 |  |  |  |  |  |
|------------------------------------------------|------------------------------------------------------------|-----------------|--|--|--|--|--|
| Select Case x                                  |                                                            |                 |  |  |  |  |  |
| Case -4 To 4: $G = 1$                          | $\int 1$ for $-4$                                          | $\leq x \leq 4$ |  |  |  |  |  |
| Case Else: $G = G$                             | $0  G(x) = \begin{cases} 0 & \text{otherwise} \end{cases}$ | 3               |  |  |  |  |  |
| End Select                                     | C C                                                        |                 |  |  |  |  |  |
| End Function                                   |                                                            |                 |  |  |  |  |  |
| • Note that "a To b" means " $a \le x \le b$ " |                                                            |                 |  |  |  |  |  |
| d) Function entry(age As Integer) As Variant   |                                                            |                 |  |  |  |  |  |
| Select Case age                                |                                                            |                 |  |  |  |  |  |
| Case 0 To 5, Is > 65:                          | entry = 0                                                  |                 |  |  |  |  |  |
| Case 6 To 15:                                  | entry = 2                                                  |                 |  |  |  |  |  |
| Case 15 To 65:                                 | entry = 5                                                  |                 |  |  |  |  |  |
| Case Else:                                     | entry = "Age not valid!"                                   |                 |  |  |  |  |  |
| End Select                                     |                                                            | 0.4             |  |  |  |  |  |
| End Function                                   |                                                            | 84              |  |  |  |  |  |

| e) Function price(product As String) As Variant                     |                                               |  |  |  |  |
|---------------------------------------------------------------------|-----------------------------------------------|--|--|--|--|
| Select Case product                                                 |                                               |  |  |  |  |
| Case "Mangoes":                                                     | price $= 2.5$                                 |  |  |  |  |
| Case "Bananas":                                                     | price $= 1.8$                                 |  |  |  |  |
| Case "Pears", "Apples":                                             | price $= 0.9$                                 |  |  |  |  |
| Case Else:                                                          | <pre>price = "Fruit not in price list!"</pre> |  |  |  |  |
| End Select                                                          |                                               |  |  |  |  |
| End Function                                                        |                                               |  |  |  |  |
| $\cdot$ Note that the test variable can also be of string type      |                                               |  |  |  |  |
| $\cdot$ Note that price is of type Variant, as it could be a number |                                               |  |  |  |  |
| or a string                                                         |                                               |  |  |  |  |
| • Note that the test is case sensitive, e.g.                        |                                               |  |  |  |  |
| =price("mangoes") $\rightarrow$ "Fruit not in price list!"          |                                               |  |  |  |  |
| • Note that when the "Case Else" line is dropped                    |                                               |  |  |  |  |
| $= price("Papayas") \rightarrow 0$                                  |                                               |  |  |  |  |

| f) Function pricec(product As String, country As String) As Variant |  |  |  |  |  |  |
|---------------------------------------------------------------------|--|--|--|--|--|--|
| Select Case country                                                 |  |  |  |  |  |  |
| Case "Brasil"                                                       |  |  |  |  |  |  |
| Select Case product                                                 |  |  |  |  |  |  |
| Case "Mangoes", "Papayas": pricec = 2.5                             |  |  |  |  |  |  |
|                                                                     |  |  |  |  |  |  |
| Case Else: pricec = "Fruit not in the list!"                        |  |  |  |  |  |  |
| End Select                                                          |  |  |  |  |  |  |
| · One can also nest                                                 |  |  |  |  |  |  |
| the SELECT structure                                                |  |  |  |  |  |  |
| similar to the IF-structure                                         |  |  |  |  |  |  |
|                                                                     |  |  |  |  |  |  |
| Case Else: pricec = "Fruit not in the list!"                        |  |  |  |  |  |  |
| End Select                                                          |  |  |  |  |  |  |
| ist!"                                                               |  |  |  |  |  |  |
|                                                                     |  |  |  |  |  |  |
| 86                                                                  |  |  |  |  |  |  |
|                                                                     |  |  |  |  |  |  |