e) Produce a table which labels columns by heights from 1.55 m to 1.95 m in steps of 5 cm and rows by weights from 50 kg to 95 kg in steps of 5 kg . At each intersection compute the corresponding body mass index. Write then a UDF which uses this table as a Vlookup table to determine the body mass index from a given height and weight.

- The table should look like:
(Use the autofill function to produce it. Only type row 5.)

	A	B	C	D	E	F	G	H	।	J
2										
3										
4		1.55	1.6	1.65	1.7	1.75	1.8	1.85	1.9	1.95
5	50	20.8	19.5	18.4	17.3	16.3	15.4	14.6	13.9	13.1
6	55	22.9	21.5	20.2	19	18	17	16.1	15.2	14.5
7	60	25	23.4	22	20.8	19.6	18.5	17.5	16.6	15.8
8	65	27.1	25.4	23.9	22.5	21.2	20.1	19	18	17.1
9	70	29.1	27.3	25.7	24.2	22.9	21.6	20.5	19.4	18.4
10	75	31.2	29.3	27.5	26	24.5	23.1	21.9	20.8	19.7
11	80	33.3	31.2	29.4	27.7	26.1	24.7	23.4	22.2	21
12	85	35.4	33.2	31.2	29.4	27.8	26.2	24.8	23.5	22.4
13	90	37.5	35.2	33.1	31.1	29.4	27.8	26.3	24.9	23.7
14	95	39.5	37.1	34.9	32.9	31	29.3	27.8	26.3	25

e.g. D6 contains $=$ bmi $(\$ A 6, \$ D \$ 4)$

```
Function bmitable(weight As Single, height As Single) As Single
    Dim x As Integer
    If height \(>=1.55\) Then \(x=2\)
    If height \(>=\) 1.6 Then \(x=3\)
    If height \(>=\) 1.65 Then \(x=4\) This function gives wrong results
    If height \(>=1.7\) Then \(x=5 \quad\) for heights \(>2.00\) and heights \(<1.55\).
    If height \(>=1.75\) Then \(x=6\)
    If height \(>=1.8\) Then \(x=7\)
    If height \(>=1.85\) Then \(x=8\)
    If height \(>=1.9\) Then \(x=9\)
    If height \(>=1.95\) Then \(x=10\)
    bmitable \(=\) WorksheetFunction.VLookup(weight, [a5:j14], x)
End Function
f) Produce two tables which label columns and rows in the same way as in e). At each intersection compute the meaning for the body mass index for male and female in the tables. Write then a UDF which uses either of these tables as a Vlookup table to determine the meaning of the body mass index from a gives height, weight and gender.
- The tables (part of them) should look like:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 29 & female & 55 & 1.6 & 65 & 1.7 & . 75 \\
\hline 30 & & 50 normal weight & normal weight & underweight & underweight & underweight u \\
\hline 31 & & 55 normal weight & normal weight & normal weight & normal weight & underweight ut \\
\hline 32 & & 60 overweight & normal weight & normal weight & normal weight & normal weight \(u\) \\
\hline 33 & & 65 overweight & overweight & normal weight & normal weight & normal weight \(n\) \\
\hline 34 & & 70 obese & overweight & overweight & overweight & normal weight \(n\) \\
\hline 35 & & 75 obese & obese & overweight & overweight & overweight \\
\hline 36 & & 80 obese & obese & obese & overweight & overweight \\
\hline
\end{tabular}

You can either compute the body mass index or use the table from e) to look up the values.

In the latter case D32 contains =bmimean(\$D7,"female")
```

Function BT(weight As Single, height As Single, mf As String) As String
Dim x As Integer
If height $>=1.55$ Then $x=2$
If height $>=1.6$ Then $x=3$
If height $>=1.65$ Then $x=4$
If height $>=1.7$ Then $x=5$
Decide here which table to take:
........
If height $>=1.95$ Then $\mathrm{x}=1$

```

```

 BT = WorksheetFunction.VLookup(weight, [a30:j39], x)
 ElseIf \(\mathrm{mf}=\) "male" Then
 BT = WorksheetFunction.VLookup(weight, [a18:j27], x)
 Else
 BT = "Specify gender!"
 End If
 End Function

```
The SELECT CASE-structure
- The SELECT CASE structure is another branching structure provided by VBA. It is a more elegant and transparent version of an IF-structure, which tests always the same variable.
For instance (determine the sign of a number):
Function \(\operatorname{sig}(x\) As Single) As String
    If \(x>0\) Then
        \(\operatorname{sig}=\) "positive" \(\quad\) Select Case x
    ElseIf \(\mathrm{x}<0\) Then \(\quad\) Case Is \(>0:\) sig \(=\) "positive"
        sig \(=\) "negative" \(\quad=\quad\) Case Is \(<0:\) sig \(=\) "negative"
        Else
        sig = "zero"
    Case Else: sig = "zero"
    End Select
        End If
End Function
```

Syntax: Select Case testvariable
[Case expressionlist
[statements]]... } can be repeated many times
[Case Else
[elsestatements]]
End Select
- testvariable \equiv a numeric or string expression
- expressionlist \equiv list of one or more expressions separated by a comma
- expression
- expression To expression
- Is comparisonoperator expression
- statements \equiv executed when one condition from expressionlist is true
- elsestatements \equiv executed when no previous condition is true

- Examples (Select case):
a) Function $\operatorname{si}(x)$
Select Case x
Case 0: $\quad \mathrm{si}=1$

$$
\operatorname{Si}(x)=\left\{\begin{array}{clc}
\frac{\sin x}{x} & \text { for } & x \in \mathbb{R} \backslash 0 \\
1 & \text { for } & x=0
\end{array}\right.
$$

Case Else: $\mathrm{si}=\operatorname{Sin}(\mathrm{x}) / \mathrm{x}$
End Select
End Function
b) Function F(x As Single) As Single
Select Case x
Case Is $<0: \quad \mathrm{F}=0 \quad . \quad F(x)= \begin{cases}0 & \text { for } x<0 \\ 3 x & \text { for } 0 \leq x \leq 4 \\ 12 & \text { for } x>4\end{cases}$
Case 0 To 4: $\mathrm{F}=3 * \mathrm{x}$
Case Else: $\mathrm{F}=12$
End Select
c) Function G(x As Single) As Single

Select Case x
$\begin{array}{ll}\text { Case -4 To 4: } & \mathrm{G}=1 \\ \text { Case Else: } & \mathrm{G}=0\end{array} \quad G(x)= \begin{cases}1 & \text { for }-4 \leq x \leq 4 \\ 0 & \text { otherwise }\end{cases}$
End Select
End Function

- Note that "a To b" means "a $\leq \mathrm{x} \leq \mathrm{b}$ "
d) Function entry(age As Integer) As Variant

Select Case age
Case 0 To 5, Is >65 : entry $=0$
Case 6 To 15: entry $=2$
Case 15 To 65: entry $=5$
Case Else: entry = "Age not valid!"
End Select
End Function
e) Function price(product As String) As Variant

Select Case product
Case "Mangoes": \quad price $=2.5$
Case "Bananas": price = 1.8
Case "Pears", "Apples": price $=0.9$
Case Else: price = "Fruit not in price list!" End Select
End Function

- Note that the test variable can also be of string type
- Note that price is of type Variant, as it could be a number or a string
- Note that the test is case sensitive, e.g.
$=$ price("mangoes") \rightarrow "Fruit not in price list!"
- Note that when the "Case Else" line is dropped
=price("Papayas") $\rightarrow 0$

```
f) Function pricec(product As String, country As String) As Variant
    Select Case country
        Case "Brasil"
            Select Case product
            Case "Mangoes" , "Papayas": pricec = 2.5
            Case "Bananas": pricec = 1.3
            Case Else: pricec = "Fruit not in the list!"
            End Select
        Case "Thailand" · One can also nest
            Select Case product
            Case "Mangoes": pricec = 2.2
            Case "Papayas": pricec = 2.8
            Case Else: pricec = "Fruit not in the list!"
            End Select
        Case Else: pricec = "Country not the list!"
    End Select
End Function```

