
Andreas Fring

Programming Excel/VBA MA1603 1

7777

e) Produce a table which labels columns by heights from 1.55m
to 1.95m in steps of 5 cm and rows by weights from 50kg to
95kg in steps of 5kg. At each intersection compute the
corresponding body mass index. Write then a UDF which
uses this table as a Vlookup table to determine the body mass index
from a given height and weight.

e.g. D6 contains =bmi($A6,$D$4)

- The table should look like:
(Use the autofill function to produce it. Only type row 5.)

7878

Function bmitable(weight As Single, height As Single) As Single

Dim x As Integer

If height >= 1.55 Then x = 2

If height >= 1.6 Then x = 3

If height >= 1.65 Then x = 4

If height >= 1.7 Then x = 5

If height >= 1.75 Then x = 6

If height >= 1.8 Then x = 7

If height >= 1.85 Then x = 8

If height >= 1.9 Then x = 9

If height >= 1.95 Then x = 10

bmitable = WorksheetFunction.VLookup(weight, [a5:j14], x)

End Function

This function gives wrong results
for heights >2.00 and heights <1.55.

Andreas Fring

Programming Excel/VBA MA1603 2

7979

f) Produce two tables which label columns and rows in the same way
as in e). At each intersection compute the meaning for the body mass
index for male and female in the tables. Write then a UDF which uses
either of these tables as a Vlookup table to determine the meaning of
the body mass index from a gives height, weight and gender.

In the latter case D32 contains =bmimean($D7,"female")

- The tables (part of them) should look like:

You can either compute the body mass index or use the table
from e) to look up the values.

8080

Function BT(weight As Single, height As Single, mf As String) As String
Dim x As Integer
If height >= 1.55 Then x = 2
If height >= 1.6 Then x = 3
If height >= 1.65 Then x = 4
If height >= 1.7 Then x = 5
.........
If height >= 1.95 Then x = 10
If mf = "female" Then

BT = WorksheetFunction.VLookup(weight, [a30:j39], x)
ElseIf mf = "male" Then

BT = WorksheetFunction.VLookup(weight, [a18:j27], x)
Else

BT = "Specify gender!"
End If

End Function

Decide here which table to take:

Andreas Fring

Programming Excel/VBA MA1603 3

8181

• The SELECT CASE structure is another branching structure
provided by VBA. It is a more elegant and transparent version
of an IF-structure, which tests always the same variable.

The SELECT CASE-structure

For instance (determine the sign of a number):
Function sig(x As Single) As String

If x > 0 Then
sig = "positive"

ElseIf x < 0 Then
sig = "negative" =

Else
sig = "zero"

End If
End Function

Select Case x
Case Is > 0: sig = "positive"
Case Is < 0: sig = "negative"
Case Else: sig = "zero"

End Select

8282

Syntax: Select Case testvariable
[Case expressionlist

[statements]]...
[Case Else
[elsestatements]]

End Select

can be repeated many times

- testvariable ≡ a numeric or string expression

- expressionlist ≡ list of one or more expressions separated by a comma

· expression

· expression To expression

· Is comparisonoperator expression

- statements ≡ executed when one condition from expressionlist is true

- elsestatements ≡ executed when no previous condition is true

Andreas Fring

Programming Excel/VBA MA1603 4

8383

• Examples (Select case):
a) Function si(x)

Select Case x
Case 0: si = 1
Case Else: si = Sin(x) / x

End Select
End Function

b) Function F(x As Single) As Single
Select Case x

Case Is < 0: F = 0
Case 0 To 4: F = 3 * x
Case Else: F = 12

End Select
End Function
· Note that "a To b" means "a § x § b"

8484

c) Function G(x As Single) As Single
Select Case x

Case -4 To 4: G = 1
Case Else: G = 0

End Select
End Function
· Note that "a To b" means "a § x § b"

d) Function entry(age As Integer) As Variant
Select Case age

Case 0 To 5, Is > 65: entry = 0
Case 6 To 15: entry = 2
Case 15 To 65: entry = 5
Case Else: entry = "Age not valid!"

End Select
End Function

Andreas Fring

Programming Excel/VBA MA1603 5

8585

e) Function price(product As String) As Variant
Select Case product

Case "Mangoes": price = 2.5
Case "Bananas": price = 1.8
Case "Pears", "Apples": price = 0.9
Case Else: price = "Fruit not in price list!"

End Select
End Function
· Note that the test variable can also be of string type
· Note that price is of type Variant, as it could be a number
or a string

· Note that the test is case sensitive, e.g.
=price("mangoes") Ø "Fruit not in price list!"

· Note that when the "Case Else" line is dropped
=price("Papayas") Ø 0

f) Function pricec(product As String, country As String) As Variant
Select Case country

Case "Brasil"
Select Case product

Case "Mangoes" , "Papayas": pricec = 2.5
Case "Bananas": pricec = 1.3
Case Else: pricec = "Fruit not in the list!"

End Select
Case "Thailand"

Select Case product
Case "Mangoes": pricec = 2.2
Case "Papayas": pricec = 2.8
Case Else: pricec = "Fruit not in the list!"

End Select
Case Else: pricec = "Country not the list!"

End Select
End Function 8686

· One can also nest
the SELECT structure
similar to the IF-structure

