

The lecture material, i.e. notes, task sheets and solutions can be found on the webpage:

http://www.staff.city.ac.uk/~fring/ExcelVBA/index.html

2

► <u>Literature</u>	
• Excel 2000, An Introductory Course for Students, J. Muir	
(Leaning Matters Ltd, 2001)	
• Excel 2000 VBA, A Programmer's Reference, J. Green	
(Wrox Press Ltd, 2000)	
• Excel 2002, with Visual Basic Applications, L. Friedrichsen	
(Thomson Course Technology, 2002)	
► <u>Getting Started</u>	
 Log into the City University system 	
• Select Excel in the following way	
$\rightarrow Start$	
\rightarrow Programs	
\rightarrow B: Spreadsheets and Databases	
\rightarrow Microsoft Office Excel 2003 \Rightarrow	4

► Formatting the cell entries:				
• For presentational reasons one can change the format in which				
the cell entries are displayed: Format \rightarrow Cells \rightarrow				
Format Cells				
Number Alignment Font Border Patterns Protection Category: Sample 3.142 3.142 Number Ourrency Decimal places: The Use 1000 Separator (,) Percentage Fraction Scientific Text Special Custom Used for general display of numbers. Currency and Accounting offer specialized formatting for monetary value. Number is used for general display of numbers. Currency value. Number is used for general display of numbers. Currency value. Special conting offer specialized formatting for monetary value. Percentary value. 				
OK Cancel				
- One can change the category (type of data) and its associated				
properties. 14				

- Alignment allows to change the horizontal or vertical position and the orientation of the text.
- Font gives options to change the typeface and the colour of the displayed entry.
- Border provides possibilities to change the style of the frame surrounding a cell.
- Pattern changes the background of the cell.
- Protection allows to protect cells from being changed.
- **•** Formatting the cell size:
 - Position the pointer on the dividing line between the name of the row/column (e.g. 5|6 / E|F) and drag the line to the desired size.
 - Alternatively use the menu bar:

Format \rightarrow Row \rightarrow Height or Format \rightarrow Column \rightarrow Width and change the numerical value, e.g. Row height: 12175 15

Cance

► The Autofill function:

- The Autofill function determines automatically the entries of some cells given some starting values. Avoids lots of typing!
- Expl.: Fill the column C1-C20 with 50-1000 with step 50, i.e.

 $50 \rightarrow C1, 100 \rightarrow C2, 150 \rightarrow C3, \dots, 1000 \rightarrow C20$

- fill in some starting values: $50 \rightarrow C1$, $100 \rightarrow C2$
- select the range of the starting values C1:C2
- while on top of the selected area the cursor will be 🕂
- move the cursor to the lower right corner of the selection, until the cursor changes from + to +
- drag the "fill handle" down (or to the right) and the new cells will be filled based on the initial selection, e.g. $150 \rightarrow C3,...$
- verify that Excel really filled in the sequence you wanted!!!
- Alternatively write just 50 into C1. Use Edit \rightarrow Fill \rightarrow Series with "Step value"=50, "Stop value"=1000 17

- In Excel and other major programming languages expres	ssions
are evaluated following a specific order of precedence f	or the
arithmetic operators.	
- The order is:	
• negation: "-"	
• exponentiation: "^"	
 multiplication and division: "*", "/" 	
• addition and subtraction: "+", "-"	
- The order of precedence can be overwritten by parenthe	ses.
Expl.: $-4^2 \rightarrow 16$	
$-(4^{2}) \rightarrow -16$	
$3^*(5+6) \rightarrow 33$	
$3*5+6 \rightarrow 21$	
$3^2 + 7 \rightarrow 16$	20
$3^{(2+7)} \rightarrow 19683$	۷۷

11

• Examples:					
	copy cell reference	paste cell reference	relative difference	formula being copied	final formula pasted cell
	C5	D6	add one column add one row	=F4 =\$F\$4 =\$F4	=G5 =\$F\$4 =\$F5
	C5	D3	add one column subtract 2 rows	=K7*B\$7 =A3+\$B7	=L5*C\$7 =B1+\$B5
	C5	F11	add 3 columns add 6 rows	f(A1:B5) f(A\$3:A7)	f(D7:E11) f(D\$3:D13)
	C5	F1	add 3 columns subtract 4 rows	=A3 =Z5	=#REF! =AC1
 - f() indicates some function see below =#REF! is an error message = cell reference not valid 23 					

• There are some special functions called array functions which					
need to be entered in a particular way (see below).					
• There are various ways to make errors when using functions.					
Excel will give the following error messages:					
#DIV/0! = division by zero					
$\#NAME? \equiv a$ formula contains an undefined variable or function					
name, or the function syntax is not valid					
$\#N/A \equiv$ value is not available, that is when formulae refer					
to cells which do not contain the appropriate data					
#NULL! = a result has no value					
#NUM! = numerical overflow, e.g. SQRT(A1) for A1 is -5					
$\text{#VALUE!} \equiv \text{invalid argument type, e.g. SQRT(A1) for A1}$					
containing text					
$#REF! \equiv invalid cell reference$					
circular error \equiv a formula contains a reference to its own					
location 21					

Expl.: You deposit £1,500 into a savings account at a monthly
interest rate of 0.6%. You plan to deposit £150 at the
beginning of every month for the next 2 years.
How much money will be in the account after 2 years? $FV(0.6\%, 24, -150, -1500, 1) \rightarrow \pounds 5,614.42$
• Information Functions
- These are functions which return informations about the cell
data, format etc, e.g.
=TYPE(A1) = returns a number which stands for the data type
contained in cell A1: $1 =$ number, $2 =$ text,
4 = logical value, 16 = error value, 64 = array
Logical Functions
- These functions handle boolean values, i.e. TRUE or FALSE.
There are 6 functions of this type, IF, NOT, AND, OR,
FALSE() and TRUE(). 30

• IF-functions can be nested up to seven times, which means that inside the argument of an IF-function (as condition or returned value) you can have further IF-functions. Expl.: - =IF(A1>-5, IF(A1<=5,1,0), 0) produces the function: $f(A1) = \begin{cases} 0 & \text{for } A1 \le -5 \\ 1 & \text{for } -5 < A1 \le 5 \\ 0 & \text{for } A1 > 5 \end{cases}$ • Several Excel functions contain implicit IF- statements, e.g. =SUMIF(range, condition, sum_range) range = The range to be evaluated. condition = A criterium which select out certain values. sum_range = The range which will actually be evaluated It is optional. When omitted it corresponds to range. 322

• The OR-function can also be used to produce more complex tests. It returns the logical value TRUE if at least one condition in its argument is true. Syntax: =OR(condition1,condition2,condition3,...) Expl.: -=OR(A1>5, A2>5, B1>5, D11>5)Returns TRUE if any of the values in A1, A2, B1, D11 is greater than 5 and otherwise FALSE. $-=IF(OR(A1 \le 5, A1 \ge 5), 0, 1)$ Produces the same function f(A1) as the example for the nested IF-function. • The NOT-function reverses the values of its logical argument, i.e. TRUE is changed into FALSE and vice versa. Syntax: =NOT(condition) Expl.: -=IF(NOT(OR(A1 < = -5, A1 > 5)), 1, 0)35 Produces again the function f(A1).

• There are useful combinations of AND, OR and NOT: NAND : =NOT(AND(A,B)) = not both are true NOR: =NOT(OR(A,B)) \equiv neither is true XOR: = OR(AND(A, NOT(B)), AND(B, NOT(A))) \equiv only one is true • The boolean values TRUE or FALSE can be entered as: TRUE, =TRUE, =TRUE() and similar for FALSE. • Lookup & Reference Functions Lookup functions can be used for various purposes. They can be used to retrieve information from a reference list of data and use them in some other part of the WS or WB. In general they are equivalent to some combination of multivalued IF-functions. **Reference functions** return informations about the cell reference as text values, such as the entire address, the row or column. 36

Syntax:
=VLOOKUP(lookup_value, table_array, column_index,match)
=HLOOKUP(lookup_value, table_array, row_index,match)
lookup_value = The value to be located in the first column of a
vertical table (or the first row of a horizontal
table). It can be numeric, text or a cell reference.
table_array \equiv The range reference or name of the lookup table.
$column(row)_index \equiv The column (row) of the table from which$
the value is to be returned.
match \equiv Is a logical value, i.e. TRUE or FALSE, which specifies
whether you want an exact or approximate value. It is
optional with default value TRUE. In that case the
functions returns the next largest value which is less
than the lookup value. For FALSE it only returns
exact matches. If there is no exact match $\rightarrow \#N/A$ 37

• A geologist wants to grade some ore samples found on four different sites based on their rare metal content. Ore with a rare metal content of 50-59 ppm is given a low grade, 60-79 ppm is medium grade, 80-99 ppm is high grade and anything greater or equal 100 ppm is very high grade.

The following worksheet performs this task.

	А	В	C	D	F	- The lookup values are in row
1			Quality			
2	ppm	50	60	80	100	B6:B14.
3	grade	low	medium	high	very high	T1 . 1 . 1
4						The lookup_table is the range
5	site	ppm	grade			
6	A	55	low			B2:E3.
7	D	111	very high			
8	С	60	medium			The values to be selected
9	В	77	medium			
10	A	44	#N/A			depending on the grade are in
11	В	88	high			
12	С	99	high			the column B3:E3.
13	С	56	low			
14	D	102	very high			The HLOOKUP functions are
coduce this WS in Lab-session 2. in the column C6:C14. 40						

- Use the help option to find out how reference functions work.
- Protecting and hiding worksheet informations:
- When writing workbooks or worksheets you may want to protect parts of them to make sure that your work will not be changed by accident (or deliberately). Possibly some of the informations on the WS might be confidential and should only be visible to certain users.

You set a protection by: Tools \rightarrow Protection \rightarrow Protect Sheet You can choose now which type of date you want to protect either contents, scenarios or objects on the WS. Optionally you can type a password, such that only with the use of this password the entire WS will be unprotected.

Unlock a protection by: Tools \rightarrow Protection \rightarrow Unprotect Sheet \rightarrow Password 41

User-defined (Custom) Functions

- Excel is equipped with the powerful programming language Visual Basic for Applications (VBA). VBA allows you to write your own programs, such as user-defined functions (UDF) and subroutines (see later in the course).
 - What is a UDF? Just like a built-in function, a UDF is a pre-defined formula which can be executed in the same way. The difference is that you design the definition exploiting the flexibility of VBA.
- When and why do you use a UDF? You use a UDF for the same reason as a built in function, namely to make calculations (operations) which are repeated
- more efficient.
- Before writing a UDF make sure that it or parts of it do not already exist as built-in Excel functions. 43

The Module Window might not be visible when you open VBE. VBE menu bar: Insert → Module (LC)
The Immediate Window is made visible by VBE menu bar: View → Immediate Window (LC)
You return to the Excel window by:
LC on the Excel icon in the windows toolbar.
LC on the Excel icon in the VBE toolbar.
Use the keyboard shortcut Alt+F11.
Writing any kind of computing program consists of three basic principal steps:

i) Design an algorithm which will perform the task you want.
ii) Translate the algorithm into a computer language (code) with a certain syntax, e.g. VBA in our case.
iii) Test (debug) your program thoroughly.

46

 \cdot Each statement has to begin in a new line.

- In case the statement is longer than the line you can split it by typing "_" (i.e. space and underscore). You can not split VBA commands this way!
- A program (function) is read from top to bottom, that is each line is executed after the next. There might be branches, loops etc which you can design.
- When **End Function** or **Exit Function** is reached the calculation terminates and the value last assigned to the function's name is returned.
- An assignment is done by an equation, which has to be read from the right to the left, i.e. the value on the right hand side of the equation is assigned to the name on the left hand side
- The arguments are the Input and the function name contains the Output. 48

Andreas Fring

• Examples:		
a) Function F(x)	- You can now use this function on a	an Excel
F = 2 * x + 5	WS in the same way as you use a	built-in
End Function	function, e.g. "= $F(5)$ " $\rightarrow 15$	
b) Function FF(x)	- The variable h only exists tempora	arily
h = 2 * x	inside the function FF.	
FF = h + 5	- Note: $F(x)$ is the same function as	FF(x)
End Function		
c) Function G(x,y,z)	- As for built-in functions you can	have
$\mathbf{G} = \mathbf{y} \mathbf{*} \mathbf{x} + \mathbf{z}$	more than one input variable (arg	ument).
End Function	- Note: $G(x,2,5)$ gives the same as	F(x)
d) Function Q(a,b,c,	x) - You can add comments to enha	ance the
' quadratic equat	ion readability. VBA does not exe	cute text
$Q = a^*x^2 + b$	x + c following a single quote.	40
End Function	"=Q(2,3,10,2)" → 24	49

- Comments on the names of UDF
 - The first character in the name has to be a letter.
 - The names are not case sensitive.
 - Names are not allowed to contain spaces, @, \$, #,... or be identical to VBA commands.
- ► A few comments on debugging
 - Inevitably you will make some mistakes either just typos or structural ones and you need some strategy to eliminate them.
 - Some mistakes block the entire WS, e.g. suppose you type: Function Err(x)

Err = 2 * Sqr (Here the brackets are missing in Sqr) End Function

- Call this function on the WS (Recalculation of the WS is F9) \rightarrow an error message will be displayed \rightarrow LC on OK \rightarrow the mistake will be highlighted \rightarrow Unlock with "Reset" = 51
- Declaration of the variable type
 Recall: Function name [(arguments) [As type]] [As type]
 The first type refers to the variable type of the arguments and the second type to the variable type of the function.
 You can also declare variables used inside the program:

 Syntax: Dim variable_name as type

 When you do not declare the type it will be "variant" by default.
 Why is is useful to declare the type?
 Declaring the type avoids that different types of data get mixed up. You can trace systematically mistakes in long programs.
 The variant type takes more space than properly defined variables. Your program will run faster when you declare the types.


```
- Examples:
  a) Write a UDF which computes the weekday for a date
     Function DD(da As Date)
         DD = Weekday(da)
     End Function
     \cdot Format the cell A1 as date and enter 25/10/2005
     \cdot "=DD(A1)" \rightarrow 3
  b) Write a UDF which calculates the age in years given the
     birthdate.
     Function age(birthdate As Date)
                age = Int((Now() - birthdate) / 365)
     End Function
     \cdot (Now() - birthdate) = the age in days
     \cdot Int(x) = extracts the integer part of x
                                                            55
     ·age
              = the age in integer numbers of years
```


c) Write a UDF which determines whether a certain date falls on a weekend or not!
Function WE(x As Date) As String

Dim temp As Integer
temp = Weekday(x)
If temp = 1 Or temp = 7 Then
WE = "That day falls on a weekend."

Else

WE = "That day is a weekday."
End If

Format the cell A1 as date and enter 01/11/2005 or Now()

"=WE(A1)" → That day is a weekday.
Note that we declared all variable types.

- Test the rough structure on the Excel sheet:				
$=bmi(70, 1.71) \rightarrow 23.93898977$				
· What if nothing happens or someth	ning strange?			
Check if you typed in the correct p	place, i.e. the module.			
Check your spelling and other possible typos, e.g.				
Function bmi(weight, height)				
bm = weight / (height) 2	$=bmi(70, 1.71) \rightarrow 0$			
End Function				
Function bmi(w, h)				
$bmi = v / (h) \wedge 2$	$=bmi(70, 1.71) \rightarrow 0$			
End Function				
Function bmi(weight height)				
bmi = weight / (height) 2	$=$ bmi(70, 1.71) \rightarrow crash			
End Function				
	68			

- Implement the other tasks:
· Declare the variables:
weight and height are of type Single
bmi is of type Double when working with ROUND
bmi is of type Integer when working to integer precision
Function bmi(weight as Single, height as Single) as Single
$bmi = weight / (height)^2$
End Function
Test your function
$=bmi(70, 1.71) \rightarrow 23.93898964$
there is a small difference in the last two digits $77 \rightarrow 64$
Function bmi(weight as Single, height as Single) as Double
$bmi = Round(weight / (height)^2, 1)$
End Function
$=bmi(70, 1.71) \rightarrow 23.9 = bmi(70, 1.71) \rightarrow 23.9 $ 69

```
Now integer precision:
Function bmi(weight as Single, height as Single) as Integer bmi = Round( weight / (height) ^ 2 )
End Function or
Function bmi(weight as Single, height as Single) as Integer bmi = weight / (height) ^ 2
End Function =bmi(70, 1.71) → 24
Test your function with some more values to make sure that the answer was not accidental.
Try to judge whether the output makes sense at all. Do you expect very small numbers 0.1, 0.0001 or very large numbers 653542.2? This information is not given yet. 70
```


d) The ideal body mass index is 21 and 22 for female and male,					
respectively. Given the height of a person in meters and					
the gender write a UDF which computes the	the gender write a UDF which computes the ideal weight in				
kilograms to a precision of one digit. Decla	kilograms to a precision of one digit. Declare all your				
variables. Function Idealweight(height As Single, mf As String) As Double					
If mf = "male" Then Idealweight = Round(22 * height ^ 2, 1) ElseIf mf = "female" Then Idealweight = Round(21 * height ^ 2, 1) Else	Formula: - BMI= w/h^2 - BMI = 21 (22) \Rightarrow w = 21(22) h^2				
Idealweight = "Specify gender!"					
End If					
End Function	75				

- keep the "outer" If-structure
Function bmitab(bmin, mf)
If mf = "male" Then
<pre>bmitab = WorksheetFunction.VLookup(bmin,[b2:d6], 3)</pre>
ElseIf mf = "female" Then
<pre>bmitab = WorksheetFunction.VLookup(bmin, [c2:d6], 2)</pre>
Else
<pre>bmitab = "Specify gender!"</pre>
End If
End Function
\cdot Note the change of the range for the two tables.
• Note that ranges in VBA are of the format [c2:d6]. 76
Using c2:d6 or (c2:d6), as possible on the WS, will not work.

>>> The progress test will be:

11-th of January 2006 14:30-16:00

Find out in time the room where you have to go!

- The test is open book, that means you can take all your notes, Lab-sheets and solutions.
- You will have a computer at your disposal, which you can use to verify and develop your answer.
- You have to write down your answer into an answer booklet which will be provided to you.
- There are two of these tests (exams) each one counting 50% towards your final mark for this course module.
- The questions will be similar in style to the ones of the Lab-sessions.

e) Produce a table which labels columns by heights from 1.55m														
to 1.95m in steps of 5 cm and rows by weights from 50kg to														
95kg in steps of 5kg. At each intersection compute the														
corresponding body mass index. Write then a UDF which														
uses	this	s table	as a '	Vloo	kup	tab	le to	dete	ermin	e the	e bod	y mas	ss in	dex
from	ิลร	viven h	eight	and	wei	oht						5		
- Th	e ta	ble sho	ould 1	ook	like	:								
Œ	se t	he auto	ofill f	ùncti	ion 1	to n	rodu	ice if	Onl	v tvr	e ro	w 5)		
(0		A	B	C	D	F	F	G	H	<u> </u>				
	2		_		-	_					-			
	3													
	4		1.55	1.6	1.65	1.7	1.75	1.8	1.85	1.9	1.95			
	5	50	20.8	19.5	18.4	17.3	16.3	15.4	14.6	13.9	13.1			
	6	55	22.9	21.5	20.2	19	18	17	16.1	15.2	14.5			
		60 CE	25	23.4	22	20.8	19.6	18.5	17.5	10.6	15.8			
	a	70	27.1	25.4	25.9	22.5	21.Z	20.1	20.5	10 /	17.1			
	10	75	31.2	29.3	27.5	24.2	24.5	23.1	20.5	20.8	19.7			
	11	80	33.3	31.2	29.4	27.7	26.1	24.7	23.4	22.2	21			
	12	85	35.4	33.2	31.2	29.4	27.8	26.2	24.8	23.5	22.4			
	13	90	37.5	35.2	33.1	31.1	29.4	27.8	26.3	24.9	23.7			
	14	95	39.5	37.1	34.9	32.9	31	29.3	27.8	26.3	25			
e.g. D6 contains =bmi(\$A6,\$D\$4) 78														

```
Function bmitable(weight As Single, height As Single) As Single

Dim x As Integer

If height \geq 1.55 Then x = 2

If height \geq 1.6 Then x = 3

If height \geq 1.65 Then x = 4

If height \geq 1.65 Then x = 4

If height \geq 1.7 Then x = 5

If height \geq 1.7 Then x = 5

If height \geq 1.75 Then x = 6

If height \geq 1.8 Then x = 7

If height \geq 1.85 Then x = 8

If height \geq 1.9 Then x = 9

If height \geq 1.95 Then x = 10

bmitable = WorksheetFunction.VLookup(weight, [a5:j14], x)

End Function 79
```

f) Produce two tables which label columns and rows in the same way as in e). At each intersection compute the meaning for the body mass index for male and female in the tables. Write then a UDF which uses either of these tables as a Vlookup table to determine the meaning of the body mass index from a gives height, weight and gender. - The tables (part of them) should look like: 29 female 1.55 1.6 1.65 1.7 1.75 30 50 normal weight normal weight underweight underweight underweight 31 55 normal weight normal weight normal weight normal weight underweight 32 normal weight normal weight normal weight u 60 overweight normal weight 33 65 overweight overweight normal weight normal weight normal weight n normal weight n 34 70 obese overweight overweight overweight 35 75 obese obese overweight overweight overweight 36 80 obese obese obese overweight overweight You can either compute the body mass index or use the table from e) to look up the values. In the latter case D32 contains =bmimean(\$D7,"female") 80

► The SELECT CASE-structure							
• The SELECT CASE structure is another branching structure							
provided by VBA. It is a more elegant and transparent version							
of an IF-structure, which tests always the same variable.							
For instance (determine the sign of a number):							
Function sig(x As Single)	As S	tring					
If $x > 0$ Then							
sig = "positive"		Select Case x					
ElseIf x < 0 Then		Case Is > 0: sig = "positive"					
sig = "negative"	=	Case Is < 0: sig = "negative"					
Else		Case Else: sig = "zero"					
sig = "zero"		End Select					
End If							
End Function		87					
		04					

• Examples (Select case):	
a) Function si(x)	
Select Case x $Si(x) = \begin{cases} \frac{\sin x}{x} \end{cases}$	for $x \in \mathbb{R} \setminus 0$
Case 0: $si = 1$	for $x=0$
Case Else: $si = Sin(x) / x$	
End Select	
End Function	
b) Function F(x As Single) As Single	
Select Case x	for $x < 0$
Case Is < 0: $F = 0$ $F(x) = \langle 3x \rangle$	for $0 \le x \le 4$
Case 0 To 4: $F = 3 * x$ 12	for $x > 4$
Case Else: $F = 12$	
End Select	
End Function	0.4
• Note that "a To b" means "a $\leq x \leq b$ "	84

```
c) Function G(x As Single) As Single
     Select Case x
        Case -4 To 4: G = 1
Case Else: G = 0 G(x) = \begin{cases} 1 & \text{for } -4 \le x \le 4 \\ 0 & \text{otherwise} \end{cases}
     End Select
  End Function
  • Note that "a To b" means "a \leq x \leq b"
d) Function entry(age As Integer) As Variant
     Select Case age
        Case 0 To 5, Is > 65: entry = 0
                                  entry = 2
        Case 6 To 15:
        Case 15 To 65:
                                  entry = 5
                                 entry = "Age not valid!"
        Case Else:
     End Select
                                                                      85
  End Function
```

e) Function price(product As Str	ing) As Variant
Select Case product	
Case "Mangoes":	price $= 2.5$
Case "Bananas":	price $= 1.8$
Case "Pears", "Apples":	price = 0.9
Case Else:	<pre>price = "Fruit not in price list!"</pre>
End Select	
End Function	
• Note that the test variable can	also be of string type
• Note that price is of type Vari	iant, as it could be a number
or a string	
• Note that the test is case sensiti	ve, e.g.
=price("mangoes") \rightarrow "Fruit	not in price list!"
• Note that when the "Case Else"	' line is dropped
=price("Papayas") $\rightarrow 0$	86

f) Function pricec(product As String, country A	s String) As Variant
Select Case country	
Case "Brasil"	
Select Case product	
Case "Mangoes", "Papayas": price	c = 2.5
Case "Bananas": $pricec = 1.3$	
Case Else: pricec = "Fruit not in the	list!"
End Select	
Case "Thailand"	· One can also nest
Select Case product	the SELECT structure
Case "Mangoes": pricec = 2.2	similar to the IF-structure
Case "Papayas": $pricec = 2.8$	
Case Else: pricec = "Fruit not in the	list!"
End Select	
Case Else: pricec = "Country not the list!	"
End Select	
End Function	87

Chart Wizard - Step 3 of 4 - Chart (Options ? ×	Chart Wizard - Step 3 of 4 - Ch	art Options
Titles Axes Gridlines Lege	end Data Labels	Titles Axes Gridlines	Legend Data Labels
Chart title: Trigonometric function	Trigonometric function	Value (X) axis	Trigonometric fu
Value (X) axis: X Value (Y) axis: Cos(x) exp(-x) Second category (X) axis: Second value (Y) axis:	12 14 0.6 0.4 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0	Minor gridines	1.2 1.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Can	cel < <u>B</u> ack <u>N</u> ext > <u>F</u> inish		Cancel < <u>B</u> ack <u>N</u> ex
• specify the tit	les, axes, gridlines, leg	gend, etc \rightarrow Nex	xt ₊
Chart Wi Place cha	izard - Step 4 of 4 - Chart Location rt: As new sheet: Chart1	? ×	
	As gbject in: Sheet1		
			D ¹ 1 1
• specify the loc	cation where the chart	should stored \rightarrow	+ Finish $-$ 02
\Rightarrow a chart wi	ill appear in the location	on you specified	93

 iii) Formatting the axis select the axis ⇒ the "Format A use it to change the axis pattern to change the axis pattern 	Axis" window opens and scale
OK Cancel	OK Cancel
 iv) Modifying the chart options right select the chart area ⇒ Ch use it to change titles, axes propand data labels 	hart Options ↓ perties, gridlines, legends 96

3) Data input:
• There are various ways to fill in the cells with data:
i) You can fill in the data the pedestrian way by just typing them
ii) The data might be stored externally on some file resulting
for instance as output from another program.
- Importing the data:
\cdot select a cell on your worksheet for the first value
\cdot select Data \rightarrow Get External \rightarrow Import Text File \downarrow
\Rightarrow Text Import Wizard opens with a series of 3 dialog boxes
• answer questions about data and file type
• modify the field width
\cdot select the data format \rightarrow Finish \downarrow
\cdot confirm the location where the data should be stored
iii) Use the fill function (recall page 17 and more see lecture on
Macros in part II)
iv) Use a VBA program to fill in the data 98

```
Sub fill()
                                        Function f(x)
                                          f = Exp(-x) * Cos(x)
Const pi = 2 * 3.1415
                                        End Function
Range("a1").Value = 0 * pi
Range("a2").Value = 0.1 * pi
Range("a3").Value = 0.2 * pi
    . . . . . . . . . . .
Range("a10").Value = 0.9 * pi
Range("a11").Value = pi
Range("b1").Value = f(Range("a1").Value)
Range("b2").Value = f(Range("a2").Value)
     . . . . . . . . . . . .
Range("b10").Value = f(Range("a10").Value)
Range("b11").Value = f(Range("a11").Value)
End Sub
                                                      99
```


• Examples, examples, examples:

1a) Compute the future value of an investment using the Excel built-in function FV. For an initial deposit of 2500 pounds in a savings account the bank pays an interest rate of 0.18%. For the next years you deposit 150 pounds at the beginning (end) of every month into the account. How much money is in the account after 5 years. Provide the exact command line for an Excel built-in function with all its arguments.
=FV(0.18%,60,-150,-2500,1) → £12,296.91 beginning
=FV(0.18%,60,-150,-2500,0) → £12,279.82 end
- do not forget the %-sign (or write 0.0018)
- even though you pay in you need to write -150 and -2500
- the 60 corresponds to 60 month from 5 years times 12 month

Andreas Fring

1c) Write down the functions which are produced by the following combinations of Excel built-in functions i) =IF(x<=0, SIN(x)-1/8, x^3 -7 *x) ii) =IF(Not(AND(x<>1, x<>-2)),"infinity",1/(x-1)/(x+2)) i) $f(x) =\begin{cases} \sin x - 1/8 & \text{for } x \le 0 \\ x^3 - 7x & \text{for } x > 0 \end{cases}$ ii) $f(x) =\begin{cases} \frac{1}{(x-1)(x+2)} & \text{for } x \ne 1, -2 \\ \text{infinity} & \text{for } x = 1, -2 \end{cases}$ 105

2) Write a user defined function with the name MinAv, which for an arbitrary number of input variables computes the minimum, the maximum, the average of the input and the sum of these three numbers. When the average plus 7 is smaller or equal than the sum, the function should return the sum and otherwise the average. Declare all your variables. Implement your function on an Excel spreadsheet to complete the following tables: В C E MinAv Z MinAv Z W 4 34 -11 2 2 3 34 4 -11 54 -5 34 3 111 12 -5 12 3 5 _4 5 -3 1 2 -1 - As the number of input variables is arbitrary you have to call the function as MinAv(range) rather than MinAv(x,y,z)100


```
Function MinMax(range) As Integer
      Dim x, y as Integer
      x = WorksheetFunction.Max(range)
      y = WorksheetFunction.Min(range)
      If y < 0 Then
        MinMax = y + 10
      Else
        MinMax = x
      End If
    End Function
4) For the table below complete the command line and the output.
   Then write a function which uses the select case structure and
   choses for a country by means of an HLOOKUP table the
   capital, the number of inhabitants, the area or the birthrate
   depending on whether the second input parameter is "Capital",
   "Inhabitants", "Area" or "Birth rate". Declare all variables! 109
```

		А	В	С	D	E	F	
	1	Country	UK	Germany	India	China	Brasil	
	2	Capital	London	Berlin	New Delhi	Beijing	Brasilia	
	3	Inhabitants	60.3 Mio	82.4 Mio	1065 Mio	1298 Mio	184 Mio	
	4	Area/km^2	244820	357021	3287590	9595960	8511965	
	5	Birth rate	10.88	8.45	22.8	12.98	17.25	
	6							
=HLOC	0K	UP("UF	K",A1:	F5, * ,F	ALSE)	$\rightarrow 60.$	3 Mio	* = 3
=HLOC	K	UP("Ne	w Dell	hi", * ,	4,FALS	$SE) \rightarrow 2$	2.8	* = A2:F5
=HLOC) K	UP("Gr	eat Bri	tain", A	A1:F6,2	$2) \rightarrow *$		* = Brasilia
	17		(D ·				*	Diasilia
=HLOC	ж	UP("Gr	eat Bri	tain'', 1	A1:F6,2	2,False)	\rightarrow *	* = #N/A
=HLOC	K	UP("12	98 Mic	o", *) -	→ 12.98			* = F3·F5 3
						a T \		LJ.1 J,J
=VLOC)K	UP("Ca	pital",	A1:F5	,3,FAL	$SE) \rightarrow$	*	* = Berlin
=VLOC	K	UP(357	021, *	$) \rightarrow 959$	95960			* = C1:F5,3
=HLOC	0K	UP(500	0000,	A4:F5,	2) → *			* = 22.8
=HI OC	ĸ		1.E2 3	FAIS	$(F) \rightarrow 1$	065 M	io	* = "India"
	17	OI(, r	· · · · J,.	, $,$ $,$ $,$ $,$ $,$ $,$ $,$ $,$ $,$		005 101	10	1 1 <i>(</i>
=HLOC	K	UP("Lo	ndon",	A2:F6	6,*,FAI	LSE)→	10.88	*=4 110

Function Cof(Co As String, command As String) As Variant Select Case command Case "Capital": Cof = WorksheetFunction.HLookup(Co, [A1:F5], 2, False) Case "Inhabitants": Cof = WorksheetFunction.HLookup(Co, [A1:F5], 3, False) Case "Area": Cof = WorksheetFunction.HLookup(Co, [A1:F5], 4, False) Case "Birth Rate": Cof = WorksheetFunction.HLookup(Co, [A1:F5], 5, False) Case Else: Cof = "Command not found" End Select End Function