5) Curve fitting:

- On many occasions one has sets of ordered pairs of data ($\mathrm{x}_{1}, \ldots, \mathrm{X}_{n}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}$) which are related by a concrete function $\mathrm{Y}(\mathrm{X})$ e.g. some experimental data with a theoretical prediction
suppose $\mathrm{Y}(\mathrm{X})$ is a linear function

$$
Y=\alpha X+\beta
$$

- Excel offers various ways to determine α and β
i) SLOPE, INTERCEPT - functions based on the method of least square

$$
\min =\sum_{i=1}^{n}\left[y_{i}-\left(\beta+\alpha x_{i}\right)\right]^{2}
$$

$\operatorname{SLOPE}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n},} \mathrm{X}_{1}, \ldots, \mathrm{x}_{\mathrm{n}},\right) \rightarrow \alpha$
INTERCEPT $\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{n},\right) \rightarrow \beta$

- How does Excel compute this? (see other courses for derivation)
- mean values:

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

- slope:

$$
\alpha=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) / \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

- intercept: $\quad \beta=\bar{y}-\alpha \bar{x}$
- regression coefficient:

$$
r=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}
$$

A good linear correlation between the x_{i} and y_{i}-values is $r \cong 1$. With VBA we can write a code which does the same job, see Lab-session 5 of Part II.
ii) LINEST - function
this function is more sophisticated than the previous one
$\operatorname{LINEST}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right.$, constant,statistics $)$

- if constant $=$ TRUE or omitted the intercept is computed otherwise it is zero
- if statistics $=$ TRUE the function returns regression statistic values with the output:

- notice that LINEST is an array function, such that you have to prepare for an output bigger than one cell:
- select a range for the output, e.g. 2×3 cells
- type the function, e.g. $=\operatorname{LINEST}(. . .$.
- complete with Ctrl + Shift Enter
iii) adding a trendline
- this option also works for nonlinear, logarithmic, exponential
... correlations between the x - and y -values
- choose an XY-chart with the subtype which has no line
- right click any of the plotted points
\Rightarrow Add Trendline windows opens
- select the type of correlation, e.g. Linear, polynomial, ...
- in Options decide if you want to add the computed equation the r -squared value etc on the chart

