5) Curve fitting:

On many occasions one has sets of ordered pairs of data (x<sub>1</sub>,...,x<sub>n</sub>, y<sub>1</sub>,...,y<sub>n</sub>) which are related by a concrete function Y(X) e.g. some experimental data with a theoretical prediction
suppose Y(X) is a linear function

 $\mathsf{Y} = \alpha \; \mathsf{X} \; + \; \beta$ 

 Excel offers various ways to determine α and β
 i) SLOPE, INTERCEPT - functions based on the method of least square

$$\min = \sum_{i=1}^{n} \left[ \mathbf{y}_{i} - (\beta + \alpha \mathbf{x}_{i}) \right]^{2}$$
  
SLOPE(y<sub>1</sub>,...,y<sub>n</sub>,x<sub>1</sub>,...,x<sub>n</sub>,)  $\rightarrow \alpha$ 

INTERCEPT $(y_1,...,y_n,x_1,...,x_n,) \rightarrow \beta$ 

49

- How does Excel compute this? (see other courses for derivation)  

$$\cdot$$
 mean values:  $\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$   $\bar{\mathbf{y}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{y}_{i}$   
 $\cdot$  slope:  $\alpha = \sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}}) (\mathbf{y}_{i} - \bar{\mathbf{y}}) / \sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}})^{2}$   
 $\cdot$  intercept:  $\beta = \bar{\mathbf{y}} - \alpha \bar{\mathbf{x}}$   
 $\cdot$  regression coefficient:  
 $\mathbf{r} = \sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}}) (\mathbf{y}_{i} - \bar{\mathbf{y}}) / \sqrt{\sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}})^{2} \sum_{i=1}^{n} (\mathbf{y}_{i} - \bar{\mathbf{y}})^{2}}$   
A good linear correlation between the x<sub>i</sub> and y<sub>i</sub> -values is  $r \approx 1$ .  
With VBA we can write a code which does the same job,  
see Lab-session 5 of Part II. 50







