Geometry & Vectors

Coursework 1

(Hand in the solutions to all questions by Tuesday 26/02/08 16:00)

1) (20 marks)

 \overrightarrow{ABC} and \overrightarrow{DEF} are two triangles oriented in space such that the lines \overrightarrow{AD} , \overrightarrow{BE} and \overrightarrow{CF} intersect in the same point P. The lines \overrightarrow{AB} and \overrightarrow{DE} intersect in the point G, the lines \overrightarrow{AC} and \overrightarrow{DF} intersect in the point H and the lines \overrightarrow{BC} and \overrightarrow{EF} intersect in the point I.

- i) Draw the corresponding figure.
- ii) Employ vectors to show that the points G, H and I are collinear. Hint: Show first by using vectors that the three points A, B and C are collinear, i.e. $C \in \overrightarrow{AB}$, if the position vectors $\vec{a} = \overrightarrow{OA}, \vec{b} = \overrightarrow{OB}$ and $\vec{c} = \overrightarrow{OC}$ are related as

$$\vec{c} = \lambda \vec{b} + (1 - \lambda) \vec{a} \quad \text{with } \lambda \in \mathbb{R}.$$

2) (15 marks)

The vectors $\vec{\imath}, \vec{\jmath}, \vec{k}$ constitute an orthonormal basis in an Euclidean space. Given are the vectors

$$\vec{u} = -\frac{44}{7}\vec{i} + \lambda\vec{j} + \sqrt{11}\vec{k}$$
, and $\vec{v} = -2\vec{i} + \vec{j} + \sqrt{11}\vec{k}$ with $\lambda \in \mathbb{R}$.

- i) Determine the constant λ such that the angle between \vec{u} and \vec{v} becomes $\pi/6$.
- ii) Take now $\lambda = 1$ and construct all unit vectors which are perpendicular to both vectors \vec{u} and \vec{v} .
- iii) Verify the polarization identity for the vectors \vec{u} and \vec{v} with $\lambda = 0$.
- iv) Compute $(7/\sqrt{11}) \vec{u} \times \vec{v}$ for $\lambda = 22/7$.
- **3)** (15 marks)

Consider two lines $\mathcal{L}_1 : \vec{l}_1 = \vec{a} + \lambda \vec{u}$ and $\mathcal{L}_2 : \vec{l}_2 = \vec{b} + \mu \vec{v}$ with $\lambda, \mu \in \mathbb{R}$. (Do not use components in the task.)

i) Show that if the lines \mathcal{L}_1 and \mathcal{L}_2 intersect, the relation

$$\vec{v} \cdot (\vec{b} \times \vec{u}) = \vec{v} \cdot (\vec{a} \times \vec{u})$$

holds.

ii) Show that the position vector for the point of intersection is

$$\vec{r} = \vec{a} + \frac{\vec{a} \cdot (\vec{b} \times \vec{v})}{\vec{v} \cdot (\vec{b} \times \vec{u})} \vec{u}.$$
 (r)

iii) Solve the equation (r) for the vector \vec{a} .