Geometry \& Vectors

Coursework 2

(Hand in the solutions to all questions by Tuesday 15/04/08 16:00)

1) (15 marks)

Given the four points $A(1,-1,0), B(4,5,1), C(6,0,3), D(4,2,1)$
i) find the equations of the lines passing through A, B and C, D in Cartesian form;
ii) determine the point of intersection of the line $\overleftrightarrow{A B}$ with the $x y$-plane and the point of intersection of the line $\overleftrightarrow{C D}$ with the $y z$-plane;
iii) find the coordinates of the points in which the lines $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ intersects the plane

$$
\mathcal{P}: \quad 3 x-4 y+z=21 .
$$

2) (15 marks)
$A B C D$ constitutes a parallelogram. The point W is the midpoint of the line segment $B C$. The lines $\overleftrightarrow{A W}$ and $\overleftrightarrow{B D}$ intersect in the point X.
i) Sketch the corresponding figure.
ii) State the similarity axiom.
iii) Use the similarity axiom to show that

$$
D X: X B=2: 1
$$

3) (10 marks)

Determine the equation of the line of intersection of the planes

$$
\begin{aligned}
& \mathcal{P}_{1}: \quad x-4 y+9 z=1 \\
& \mathcal{P}_{2}:
\end{aligned}
$$

in Cartesian form.
4) (10 marks)

Given the three points $A(5,-1,1), B(-7,2,0)$ and $C(-1,1,-1$, $)$, find the equation of the plane containing these three points. Is this plane unique?

