Geometry & Vectors

Coursework 2

(Hand in the solutions to all questions by Tuesday 15/04/08 16:00)

1) (15 marks)

Given the four points A(1, -1, 0), B(4, 5, 1), C(6, 0, 3), D(4, 2, 1)

- i) find the equations of the lines passing through A, B and C, D in Cartesian form;
- ii) determine the point of intersection of the line \overleftrightarrow{AB} with the xy-plane and the point of intersection of the line \overleftrightarrow{CD} with the yz-plane;
- iii) find the coordinates of the points in which the lines \overleftarrow{AB} and \overleftarrow{CD} intersects the plane

$$\mathcal{P}: \quad 3x - 4y + z = 21.$$

2) (15 marks)

ABCD constitutes a parallelogram. The point W is the midpoint of the line segment BC. The lines \overleftrightarrow{AW} and \overleftrightarrow{BD} intersect in the point X.

- i) Sketch the corresponding figure.
- ii) State the similarity axiom.
- iii) Use the similarity axiom to show that

$$DX: XB = 2:1.$$

3) (10 marks)

Determine the equation of the line of intersection of the planes

$$\mathcal{P}_1$$
 : $x - 4y + 9z = 1$
 \mathcal{P}_2 : $2x + 3y - 5z = 2$

in Cartesian form.

4) (10 marks)

Given the three points A(5, -1, 1), B(-7, 2, 0) and C(-1, 1, -1,), find the equation of the plane containing these three points. Is this plane unique?