Geometry \& Vectors

Coursework 1

(Hand in the solutions to all questions by Tuesday 28/02/06 16:00)

1) (5 marks) What is meant by an axiom, a theorem, a lemma, a corollary and a proposition? Provide a short definition for each of these notions.
2) (15 marks) The vectors $\vec{\imath}, \vec{\jmath}, \vec{k}$ constitute an orthonormal basis. Given are the two arbitrary vectors

$$
\vec{u}=-\vec{\imath}+\lambda \vec{\jmath}+\vec{k} \quad \text { and } \quad \vec{v}=2 \vec{\jmath}-\vec{k} \quad \text { with } \lambda \in \mathbb{R} .
$$

i) Find all vectors which are perpendicular to the plane which contains \vec{u} and \vec{v}. Subsequently determine λ such that these vectors have length 3 .
ii) Determine the constant λ, such that the angle between the vectors \vec{u} and \vec{v} is $\pi / 6$.
iii) For $\lambda=1$ verify the Cauchy-Schwarz and the triangle inequality

$$
-|\vec{u}||\vec{v}| \leq \vec{u} \cdot \vec{v} \leq|\vec{u}||\vec{v}| \quad \text { and } \quad|\vec{u}+\vec{v}| \leq|\vec{u}|+|\vec{v}|,
$$

respectively. Can one find a λ such that the equal signs holds in these identities?
3) (10 marks) Given are three arbitrary vectors \vec{u}, \vec{v} and \vec{w}.
i) Prove that

$$
\vec{u} \times \vec{v} \cdot \vec{u}=0
$$

ii) Use the identity in i) to simplify the expression

$$
(\vec{u}+\vec{v}) \cdot(\vec{v}+\vec{w}) \times(\vec{w}+\vec{u})
$$

4) (10 marks) By evaluating the cross product between two unit vectors prove the two identities

$$
\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta
$$

5) (10 marks) $A B C$ constitutes a triangle. The point D is on the line $\overleftrightarrow{B C}$ between the points B and C, the ponit E is on the line $\overleftrightarrow{A C}$ between the points A and C and the point F is on the line $\overleftrightarrow{A B}$ between the points A and B . The following ratios hold

$$
\frac{B D}{B C}=\frac{C E}{C A}=\frac{A F}{A B}=\frac{2}{3} .
$$

Sketch the corresponding figure and show that

$$
\overrightarrow{A D}=\overrightarrow{E B}+\overrightarrow{F C}
$$

