Geometry \& Vectors

Coursework 1

(Hand in the solutions to all questions by Tuesday 27/02/07 16:00)

1) (20 marks) The vectors $\vec{\imath}, \vec{\jmath}, \vec{k}$ constitute an orthonormal basis in Euclidean space. A and B are points with position vectors $\overrightarrow{O A}=6 \vec{\imath}+4 \vec{\jmath}$ and $\overrightarrow{O B}=12 \vec{\imath}+16 \vec{\jmath}$.
i) Find the position vector for a point C on the line through A and B, i.e. $C \in \overleftrightarrow{A B}$ such that $A C: C B=2: 1$.
ii) Find the position vector for a point D, such that C and D divide $A B$ harmonically. [Two points X and Y on a line \mathcal{L} are said to divide $A B$ harmonically if the ratios $A X: X B$ and $A Y: Y B$ are the same except for a sign, i.e. there exist two scalars λ and μ such that $A X: X B=\lambda: \mu$ and $A Y: Y B=-\lambda: \mu]$
2) (10 marks) Let \vec{e} be a unit vector. For any vetor \vec{v} we define a new vector

$$
\sigma(\vec{v})=\vec{v}-2(\vec{v} \cdot \vec{e}) \vec{e}
$$

i) Show that $\sigma(\sigma(\vec{v}))=\vec{v}$.
ii) Show that for any two vectors \vec{u} and \vec{v} the relation $\sigma(\vec{v}) \cdot \vec{u}=\vec{v} \cdot \sigma(\vec{u})$ holds.
iii) Show that $|\sigma(\vec{v})|=|\vec{v}|$.
iv) Take $\vec{e}=\frac{1}{\sqrt{2}}(\vec{\imath}+\vec{\jmath})$ and compute $\sigma(\vec{v})$ for $\vec{v}_{1}=5 \vec{\imath}+4 \vec{\jmath}, \vec{v}_{2}=2 \vec{\imath}$ and $\vec{v}_{3}=\vec{\imath}+$ $\vec{\jmath}+\vec{k}$. Use the properties i)-iii) and your explicit examples to give a geometrical interpretation for the transformation $\sigma(\vec{v})$.
3) (10 marks) The vectors $\vec{\imath}, \vec{\jmath}, \vec{k}$ constitute an orthonormal basis in Euclidean space. A, B, C, D are points with position vectors

$$
\overrightarrow{O A}=2 \vec{\imath}+3 \vec{\jmath}+5 \vec{k}, \overrightarrow{O B}=\vec{\imath}-\vec{\jmath}+\vec{k}, \overrightarrow{O C}=\vec{\imath}+\vec{\jmath}-2 \vec{k}, \overrightarrow{O D}=2 \vec{\imath}+5 \vec{\jmath}+2 \vec{k}
$$

i) Show that all points are coplanar.
ii) For all possible lines through A, B, C and D determine which pairs are parallel.
4) (10 marks) An electron with charge q moving with velocity \vec{v} in a magnetic field is subject to the Lorentz force

$$
\vec{F}=q(\vec{v} \times \vec{B}),
$$

where \vec{B} is the magnetic induction. In three experiments, in which the electron is send into different directions, the force \vec{F} is measured.

$$
\begin{array}{lll}
\text { Experiment 1: } & \vec{v}=\vec{\imath} & \text { with } \vec{F}=q(-4 \vec{\jmath}+2 \vec{k}) \\
\text { Experiment } 2: & \vec{v}=\vec{\jmath} & \text { with } \vec{F}=q(4 \vec{\imath}-\vec{k}) \\
\text { Experiment } 3: & \vec{v}=\vec{k} & \text { with } \vec{F}=q(-2 \vec{\imath}+\vec{\jmath})
\end{array}
$$

Use these measurements to determine \vec{B}. Is it possible to design an experiment such that only one measurement is required to find \vec{B} ?

