Geometry \& Vectors

Coursework 2

(Hand in the solutions to all questions on Thursday 24/03/05 14:00)

1) (30 marks) Prove that the distance d of a point $P\left(x_{0}, y_{0}\right)$ from a line \mathcal{L} described by the equation $a x+b y+c=0$ is

$$
d=\left|\frac{a x_{0}+b y_{0}+c}{\sqrt{a^{2}+b^{2}}}\right|
$$

2) (25 marks) Find the equations (in normal form) of
(i) the ellipse with foci $F(0, \pm 2)$ which passes through the point $\mathrm{P}(1,0)$,
(ii) the hyperbola with asymptotes $y= \pm 2 x$ and directrices $x= \pm 1$,
(iii) the ellipse consisting of all points P such that $|\mathrm{PA}|+|\mathrm{PB}|=7$, where $\mathrm{A}=(0,3)$ and $\mathrm{B}=(0,-3)$.
3) (15 marks) Find the equations of the tangents to the ellipse with equation

$$
\frac{x^{2}}{36}+\frac{y^{2}}{20}=1
$$

which pass through the point $P(8,0)$.
4) (10 marks) Find the equation of the plane through the points $\mathrm{A}(3,1,1), \mathrm{B}(1,1,0)$ and $\mathrm{C}(1,0,3)$. Determine the point of intersection of this plane with the line

$$
\frac{x-1}{2}=\frac{y}{2}=\frac{1-z}{3} .
$$

5) (10 marks) Determine the equation of the line of intersection of the planes

$$
\begin{aligned}
& \mathcal{P}_{1}: \quad 5 x+4 y+7 z=26 \\
& \mathcal{P}_{2}:
\end{aligned} \quad 2 x+3 y+2 z=11
$$

in Cartesian form.
6) (10 marks) Find the equation of the plane which contains the line with equation

$$
\frac{x-2}{2}=\frac{y-1}{3}=\frac{z-1}{-2}
$$

and which is parallel to the line with equation

$$
\frac{x+1}{3}=\frac{y-1}{2}=\frac{z+1}{1} .
$$

