Geometry \& Vectors

Coursework 2

(Hand in the solutions to all questions by Tuesday 27/03/07 16:00)

1) (20 marks)
i) For given vectors \vec{a}, \vec{b} and \vec{c} and scalar $p \in \mathbb{R}$, find the general expression for \vec{x}, which solves the vector equation

$$
p \vec{x}+(\vec{x} \cdot \vec{b}) \vec{a}=\vec{c} \quad p \neq 0 .
$$

ii) For given vectors \vec{a} and \vec{b} solve the vector equation

$$
\vec{x} \times \vec{a}=\vec{b}
$$

for \vec{x}. Hint: Use the result from i).
iii) For given vectors \vec{a} and \vec{b} and scalars $\lambda, \mu \in \mathbb{R}$, solve the simultaneous vector equations

$$
\lambda \vec{x}+\mu \vec{y}=\vec{a} \quad \text { and } \quad \vec{x} \times \vec{y}=\vec{b}
$$

for \vec{x} and \vec{y}. Hint: Use the result from ii).
2) (10 marks)

Prove that the tangent on a parabola $y^{2}=4 a x$ at the point $P\left(x_{0}, y_{0}\right)$ is given by the equation

$$
y=\frac{y_{0}}{2 x_{0}} x+2 \frac{x_{0}}{y_{0}} a .
$$

Do not differentiate, but rather use the fact that the tangent is defined as the line which intersects the parabola in precisely one point.
3) (10 marks)

A circle with radius 1 and with center locatd on the y-axis is inscribed in the parabola $y=2 x^{2}$. This means the circle and the parabola have the same tangent lines at the point of intersection. Determine the point of intersection.
4) (10 marks)

Given are the four points $A(3,2,1), B(4,5,5), C(4,2,-2)$ and $D(6,5,-1)$. Find the point of intersection of the line $\overleftrightarrow{A B}$ with $\overleftrightarrow{C D}$ and also the point of intersection between the lines $\overleftrightarrow{A D}$ and $\overleftrightarrow{B C}$

