Geometry & Vectors

Coursework 2

(Hand in the solutions to all questions by Tuesday 27/03/07 16:00)

1) (20 marks)

i) For given vectors \vec{a}, \vec{b} and \vec{c} and scalar $p \in \mathbb{R}$, find the general expression for \vec{x} , which solves the vector equation

$$p\vec{x} + (\vec{x}\cdot\vec{b})\vec{a} = \vec{c} \qquad p \neq 0.$$

ii) For given vectors \vec{a} and \vec{b} solve the vector equation

$$\vec{x} \times \vec{a} = \vec{b}$$

for \vec{x} . Hint: Use the result from i).

iii) For given vectors \vec{a} and \vec{b} and scalars $\lambda, \mu \in \mathbb{R}$, solve the simultaneous vector equations

$$\lambda \vec{x} + \mu \vec{y} = \vec{a}$$
 and $\vec{x} \times \vec{y} = \vec{b}$

for \vec{x} and \vec{y} . Hint: Use the result from ii).

2) (10 marks)

Prove that the tangent on a parabola $y^2 = 4ax$ at the point $P(x_0, y_0)$ is given by the equation

$$y = \frac{y_0}{2x_0}x + 2\frac{x_0}{y_0}a.$$

Do not differentiate, but rather use the fact that the tangent is defined as the line which intersects the parabola in precisely one point.

3) (10 marks)

A circle with radius 1 and with center located on the y-axis is inscribed in the parabola $y = 2x^2$. This means the circle and the parabola have the same tangent lines at the point of intersection. Determine the point of intersection.

4) (10 marks)

Given are the four points A(3,2,1), B(4,5,5), C(4,2,-2) and D(6,5,-1). Find the point of intersection of the line \overrightarrow{AB} with \overrightarrow{CD} and also the point of intersection between the lines \overrightarrow{AD} and \overrightarrow{BC} .