Solutions MA1607 Geometry \& Vectors (2008)

1) Given are the vectors

$$
\vec{u}=\lambda \vec{\imath}-7 \vec{\jmath}-\vec{k}, \quad \text { and } \quad \vec{v}=2 \vec{\imath}-\vec{\jmath}+2 \vec{k} .
$$

(i) In general we have

$$
\cos \theta=\frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|} .
$$

We compute

$$
\left.\begin{array}{c}
\vec{u} \cdot \vec{v}=2 \lambda+7-2 \\
|\vec{u}|=\sqrt{\lambda^{2}+49+1} \\
|\vec{v}|=\sqrt{4+1+4}
\end{array}\right\} \Rightarrow \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}=\frac{2 \lambda+5}{3 \sqrt{\lambda^{2}+50}}
$$

Therefore

$$
\frac{9}{2}=\frac{(2 \lambda+5)^{2}}{\lambda^{2}+50} \Rightarrow \frac{9}{2} \lambda^{2}+\frac{9}{2} 50=4 \lambda^{2}+20 \lambda+25 \Rightarrow \lambda=20 .
$$

(ii) Take the unknown vector to be of the general form

$$
\vec{w}=a \vec{\imath}+b \vec{\jmath}+c \vec{k} \quad \text { with } a, b, c \in \mathbb{R} .
$$

Since $\vec{u} \perp \vec{w}$ and $\vec{v} \perp \vec{w}$ we have

$$
\left.\begin{array}{c}
\vec{u} \cdot \vec{w}=-a-7 b-c=0 \\
\vec{v} \cdot \vec{w}=2 a-b+2 c=0
\end{array}\right\} \Rightarrow b=0, a=-c .
$$

The vector \vec{w} has length $\sqrt{90}$

$$
\vec{w} \cdot \vec{w}=90=a^{2}+b^{2}+c^{2} \Rightarrow 90=a^{2}+a^{2} \Rightarrow a= \pm 3 \sqrt{5} .
$$

Therefore

$$
\vec{w}= \pm 3 \sqrt{5}(\vec{\imath}-\vec{k}) \text {. }
$$

(iii) We compute

$$
\begin{aligned}
\vec{u} \times \vec{v} & =\left|\begin{array}{rrr}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
14 & -7 & -1 \\
2 & -1 & 2
\end{array}\right|=\left|\begin{array}{rrr}
\vec{\imath}+2 \vec{\jmath} & \vec{\jmath} & \vec{k} \\
0 & -7 & -1 \\
0 & -1 & 2
\end{array}\right| \\
& =(\vec{\imath}+2 \vec{\jmath})(-14-1)=-15(\vec{\imath}+2 \vec{\jmath}) .
\end{aligned}
$$

2) (i) We scalar multiply the original equation by \vec{b}

$$
\begin{align*}
& \lambda \vec{x}+(\vec{x} \cdot \vec{b}) \vec{a}=\vec{c} \tag{1}\\
& \Rightarrow \quad \lambda \vec{x} \cdot \vec{b}+(\vec{x} \cdot \vec{b}) \vec{a} \cdot \vec{b}=\vec{c} \cdot \vec{b} \tag{2}\\
& \Rightarrow \vec{x} \cdot \vec{b}=\frac{\vec{c} \cdot \vec{b}}{\lambda+\vec{a} \cdot \vec{b}}
\end{align*}
$$

Substituting this into (1) gives

$$
\lambda \vec{x}+\frac{\vec{c} \cdot \vec{b}}{\lambda+\vec{a} \cdot \vec{b}} \vec{a}=\vec{c} \Rightarrow \vec{x}=\frac{1}{\lambda}\left(\vec{c}-\frac{\vec{c} \cdot \vec{b}}{\lambda+\vec{a} \cdot \vec{b}}\right) \quad \text { for } \lambda+\vec{a} \cdot \vec{b} \neq 0 .
$$

When $\lambda+\vec{a} \cdot \vec{b}=0$ it follows from (2) that $\vec{c} \cdot \vec{b}=0$

$$
\Rightarrow \vec{x}=\frac{1}{\lambda} \vec{c}+\kappa \vec{a} \quad \text { for } \kappa \in \mathbb{R}, \lambda+\vec{a} \cdot \vec{b}=0 .
$$

(ii) We cross multiply the original equation by \vec{a} from the left

$$
\begin{equation*}
\vec{a} \times \vec{x} \times \vec{a}=\vec{a} \times \vec{b} \tag{3}
\end{equation*}
$$

Using the general identity

$$
\vec{u} \times \vec{v} \times \vec{w}=(\vec{u} \cdot \vec{w}) \vec{v}-(\vec{u} \cdot \vec{v}) \vec{w}
$$

we can re-write (3) as

$$
(\vec{a} \cdot \vec{a}) \vec{x}-(\vec{a} \cdot \vec{x}) \vec{a}=\vec{a} \times \vec{b}
$$

Comparing with (1), we identify $\lambda=\vec{a} \cdot \vec{a}$ and $\vec{b}=-\vec{a}$, such that $\lambda+\vec{a} \cdot \vec{b}=0$. The solution is therefore

$$
\vec{x}=\frac{1}{\vec{a} \cdot \vec{a}} \vec{a} \times \vec{b}+\kappa \vec{a} \quad \text { for } \kappa \in \mathbb{R} .
$$

3) (i)

(ii) The equation of the parabola is

$$
y=\frac{1}{2} x^{2}
$$

and the equation of the circle is

$$
x^{2}+(y-a)^{2}=4 .
$$

Differentiating both equations gives

$$
\frac{d y}{d x}=x \quad \text { and } \quad 2 x+2(y-a) \frac{d y}{d x}=0 .
$$

Since the tangents are the same

$$
\Rightarrow 1+(y-a)=0 \quad \Rightarrow(y-a)=-1 \quad \Rightarrow x^{2}+1=4 \quad \Rightarrow x= \pm \sqrt{3}, y=\frac{3}{2}
$$

The points of intersection are $P_{ \pm}=(\pm \sqrt{3}, 3 / 2)$.
The center results from $(3 / 2-a)=-1$, i.e. $(0,5 / 2)$.
The intersection with the y-axis is obtained from $(y-5 / 2)^{2}=4$, i.e. $y=1 / 2,9 / 2$.
4) (i) With $A(6,1,3), B(4,5,1) \Rightarrow \overrightarrow{A B}=-2 \vec{\imath}+4 \vec{\jmath}-2 \vec{k}$
\Rightarrow equation of the line through A and B

$$
\begin{aligned}
& \quad \mathcal{L}: \frac{x-6}{-2}=\frac{y-1}{4}=\frac{z-3}{-2}=\lambda \\
& \Rightarrow P(6-2 \lambda, 1+4 \lambda, 3-2 \lambda) \in \mathcal{L} \\
& \Rightarrow P \in y z \text {-plane } \Rightarrow x=0 \Rightarrow \lambda=3 \Rightarrow P(0,13,-3) .
\end{aligned}
$$

(ii) \mathcal{L} intersects \mathcal{P} for

$$
\begin{aligned}
& \begin{aligned}
& 2(6-2 \lambda)+(1+4 \lambda)-3(3-2 \lambda)=16 \\
& 4+6 \lambda=16 \Rightarrow \lambda=2 \\
& \Rightarrow P(2,9,-1)=\mathcal{L} \cap \mathcal{P} .
\end{aligned}
\end{aligned}
$$

5) (i)

(ii) Let \mathcal{L}_{1} and \mathcal{L}_{2} be two parallel lines in a plane \mathcal{P}. \mathcal{M} and \mathcal{N} are two different lines in the same plane crossing \mathcal{L}_{1} and \mathcal{L}_{2} in the points $M_{1}, N_{1}, M_{2}, N_{2}$ and intersect in the point X. Then

$$
X M_{1}: X M_{2}=X N_{1}: X N_{2}
$$

(iii) Using the similarity axiom we read off the figure

$$
\frac{B Y}{Y C}=\frac{B X}{X D}, \quad \frac{W X}{X A}=\frac{W Y}{Y B}, \quad \frac{B X}{X D}=\frac{X W}{A X}
$$

and
$\frac{1}{2}=\frac{B W}{B C}=\frac{B Y+Y W}{B Y+Y C}=\frac{1+Y W / B Y}{1+Y C / B Y}=\frac{1+W X / X A}{1+X D / B X}=\frac{1+B X / X D}{1+X D / B X}=\frac{B X}{X D}$.
Therefore

$$
\frac{D X}{X B}=2 .
$$

6) (i)

(ii) In general we have

$$
|\vec{u} \times \vec{v}|=|\vec{u}||\vec{v}| \sin \theta .
$$

For $\theta=\pi / 2$ we can use this to compute

$$
|\vec{d} \times \overrightarrow{C D}|=|\vec{d}||\overrightarrow{C D}|
$$

From figure $\overrightarrow{C D}=\lambda \overrightarrow{C B}=\lambda(\vec{b}-\vec{c})$ for some $\lambda \in \mathbb{R}$. Therefore

$$
\begin{equation*}
|\vec{d}|=\frac{|\vec{d} \times \lambda(\vec{b}-\vec{c})|}{|\lambda(\vec{b}-\vec{c})|}=\frac{|\vec{d} \times(\vec{b}-\vec{c})|}{|\vec{b}-\vec{c}|} \tag{4}
\end{equation*}
$$

We also read off the figure

$$
\begin{equation*}
\vec{d}=-\vec{a}+\vec{c}+\lambda(\vec{b}-\vec{c}) \tag{5}
\end{equation*}
$$

and compute

$$
\begin{aligned}
\vec{d} \times \vec{c} & =-\vec{a} \times \vec{c}+\vec{c} \times \vec{c}+\lambda(\vec{b} \times \vec{c}-\vec{c} \times \vec{c}) \\
\vec{d} \times \vec{b} & =-\vec{a} \times \vec{b}+\vec{c} \times \vec{b}+\lambda(\vec{b} \times \vec{b}-\vec{c} \times \vec{b})
\end{aligned}
$$

With $\vec{c} \times \vec{c}=\vec{b} \times \vec{b}=0$ we obtain

$$
\begin{aligned}
\vec{d} \times(\vec{b}-\vec{c}) & =-\vec{a} \times \vec{b}+\vec{c} \times \vec{b}-\lambda \vec{c} \times \vec{b}+\vec{a} \times \vec{c}-\lambda \vec{b} \times \vec{c} \\
& =-(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}) .
\end{aligned}
$$

Therefore with (4) follows

$$
|\vec{d}|=\frac{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}{|\vec{b}-\vec{c}|} .
$$

(iii) Compute

$$
\vec{a} \times \vec{b}=\left|\begin{array}{rrr}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
-\frac{1}{4} & 1 & 0 \\
1 & 0 & 0
\end{array}\right|=-\vec{k}, \vec{b} \times \vec{c}=\left|\begin{array}{rrr}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
1 & 0 & 0 \\
\frac{5}{4} & \frac{3}{2} & 0
\end{array}\right|=\frac{3}{2} \vec{k}, \vec{c} \times \vec{a}=\left|\begin{array}{rrr}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{5}{4} & \frac{3}{2} & 0 \\
-\frac{1}{4} & 1 & 0
\end{array}\right|=\frac{13}{8} \vec{k} .
$$

Therefore

$$
\left\{\begin{array}{l}
|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|=\frac{17}{8} \\
|\vec{b}-\vec{c}|=\left|-\frac{1}{4} \vec{\imath}-\frac{3}{2} \vec{\jmath}\right|=\frac{\sqrt{37}}{4}
\end{array}\right\} \Rightarrow|\vec{d}|=\frac{17}{2 \sqrt{37}} .
$$

(iv) From (5)

$$
\begin{aligned}
\vec{d} & =-\vec{a}+\vec{c}+\lambda(\vec{b}-\vec{c}) \\
& =\frac{1}{4} \vec{\imath}-\vec{\jmath}+\frac{5}{4} \vec{\imath}+\frac{3}{2} \vec{\jmath}+\lambda\left(-\frac{1}{4} \vec{\imath}-\frac{3}{2} \vec{\jmath}\right)=\left(\frac{3}{2}-\frac{1}{4} \lambda\right) \vec{\imath}+\left(\frac{1}{2}-\frac{3}{2} \lambda\right) \vec{\jmath}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \Rightarrow \vec{d} \cdot \vec{d}=\left(\frac{3}{2}-\frac{1}{4} \lambda\right)^{2}+\left(\frac{1}{2}-\frac{3}{2} \lambda\right)^{2}=\frac{17^{2}}{4 \cdot 37} \\
& \Rightarrow \frac{17^{2}}{4 \cdot 37}=\frac{5}{2}-\frac{9}{4} \lambda+\frac{37}{16} \lambda^{2} \Rightarrow \lambda=\frac{18}{37} \\
& \Rightarrow \overrightarrow{O D}=\vec{d}+\vec{a}=\left(\frac{3}{2}+\frac{1}{4} \frac{18}{37}\right) \vec{\imath}+\left(\frac{1}{2}-\frac{3}{2} \frac{18}{37}\right) \vec{\jmath}-\frac{1}{4} \vec{\imath}+\vec{\jmath} \\
& \Rightarrow \overrightarrow{O D}=\frac{167}{148} \vec{\imath}+\frac{57}{74} \vec{\jmath} .
\end{aligned}
$$

7) (i) We have

$$
\begin{array}{ll}
\mathcal{L}_{1}: & \frac{x+1}{2}=y-1=\frac{z-2}{3}=\lambda \\
\mathcal{L}_{2}: & -x=\frac{y+9}{3}=z+4=\mu
\end{array}
$$

with $\lambda, \mu \in \mathbb{R}$. Therefore

$$
\begin{equation*}
P(2 \lambda-1, \lambda+1,3 \lambda+2) \in \mathcal{L}_{1} \quad \text { and } \quad Q(-\mu, 3 \mu-9,3 \lambda+2) \in \mathcal{L}_{2} \tag{6}
\end{equation*}
$$

For $P=Q$ we need to solve

$$
\begin{align*}
2 \lambda-1 & =-\mu \tag{7}\\
\lambda+1 & =3 \mu-9 \tag{8}\\
3 \lambda+2 & =3 \lambda+2 \tag{9}
\end{align*}
$$

Form (7) and (8) follows $\mu=3$ and $\lambda=-1$. Equation (9) is satisfied for these values, i.e. $-1=-1$.
\Rightarrow The two lines intersect in

$$
P(-3,0,-1)=\mathcal{L}_{1} \cap \mathcal{L}_{2} .
$$

(ii) \mathcal{L}_{1} is parallel to the vector $\vec{v}_{1}=2 \vec{\imath}+\vec{\jmath}+3 \vec{k}$
\mathcal{L}_{2} is parallel to the vector $\vec{v}_{2}=-\vec{\imath}+3 \vec{\jmath}+\vec{k}$
$\Rightarrow \vec{v}_{1} \times \vec{v}_{2}$ is perpendicular to \mathcal{L}_{1} and \mathcal{L}_{2}
We compute

$$
\vec{v}_{1} \times \vec{v}_{2}=\left|\begin{array}{rrr}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
2 & 1 & 3 \\
-1 & 3 & 1
\end{array}\right|=-8 \vec{\imath}-5 \vec{\jmath}+7 \vec{k}
$$

$\Rightarrow \mathcal{P}_{1}:-8 x-5 y+7 z=d$ for some $d \in \mathbb{R}$
We have $P \in \mathcal{P}_{1}$ for say $\lambda=0$ in (6) $P(-1,1,2) \Rightarrow 8-5+14=d \Rightarrow d=17$.

$$
\Rightarrow
$$

$$
\mathcal{P}_{1}:-8 x-5 y+7 z=17 \text {. }
$$

(iii) Taking $P(x, y, z)$ to be an arbitrary point in the plane \mathcal{P}_{2}, the following vectors are in this plane:

$$
\begin{aligned}
& \overrightarrow{A B}=2 \vec{\imath}+\vec{\jmath}-\vec{k} \in \mathcal{P}_{2} \\
& \overrightarrow{A C}=3 \vec{\imath}+2 \vec{\jmath}+4 \vec{k} \in \mathcal{P}_{2} \\
& \overrightarrow{A P}=x \vec{\imath}+(y-3) \vec{\jmath}+(z-1) \vec{k} \in \mathcal{P}_{2}
\end{aligned}
$$

The vector $\overrightarrow{A B} \times \overrightarrow{A C}$ is perpendicular to the plane, such that $\overrightarrow{A P} \cdot \overrightarrow{A B} \times \overrightarrow{A C}=0$.
Compute

$$
\overrightarrow{A P} \cdot \overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{rrr}
x & y-3 & z-1 \\
2 & 1 & -1 \\
3 & 2 & 4
\end{array}\right|=0
$$

\Rightarrow The plane containing the points A, B, C is

$$
\mathcal{P}_{2}: 32+6 x-11 y+z=0 \text {. }
$$

(iv) A normal vector to \mathcal{P}_{1} is $\vec{\eta}_{1}=-8 \vec{\imath}-5 \vec{\jmath}+7 \vec{k}$.

A normal vector to \mathcal{P}_{2} is $\vec{\eta}_{2}=6 \vec{\imath}-11 \vec{\jmath}+\vec{k}$.
$\Rightarrow \vec{\eta}_{1} \times \vec{\eta}_{2}$ is parallel to $\mathcal{L}=\mathcal{P}_{1} \cap \mathcal{P}_{2}$.
Compute

$$
\vec{\eta}_{1} \times \vec{\eta}_{2}=\left|\begin{array}{rrr}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
-8 & -5 & 7 \\
6 & -1 & 1
\end{array}\right|=72 \vec{\imath}+50 \vec{\jmath}+118 \vec{k}
$$

Any point on the line has to satisfy the two equations

$$
\begin{aligned}
6 x-11 y+z & =-32 \\
-8 x-5 y+7 z & =17 .
\end{aligned}
$$

Taking $y=0$ gives as solution $x=241 / 50$ and $z=-77 / 25$.
\Rightarrow The line of intersection is

$$
\mathcal{L}: \quad \frac{x-241 / 62}{72}=\frac{y}{50}=\frac{z+77 / 25}{118} .
$$

Equivalently, taking $z=0$ gives as solution $x=-347 / 118$ and $z=-77 / 59$. \Rightarrow The line of intersection is

$$
\mathcal{L}: \quad \frac{x+347 / 118}{72}=\frac{y-77 / 59}{50}=\frac{z}{118}
$$

Equivalently, taking $x=0$ gives as solution $x=-347 / 118$ and $z=-77 / 59$. \Rightarrow The line of intersection is

$$
\mathcal{L}: \quad \frac{x}{72}=\frac{y-241 / 72}{50}=\frac{z-347 / 72}{118} .
$$

8) (i) The distance d_{1} of the centre C_{1} of \mathcal{S}_{1}, i.e. the origin to the plane \mathcal{P} is:

$$
d_{1}=\left|\frac{-6}{\sqrt{\mu^{2}+\lambda^{2}+1}}\right|
$$

For the point in \mathcal{P} to be on the sphere as well we require

$$
d_{1}=3 \Rightarrow 3 \sqrt{\mu^{2}+\lambda^{2}+1}=6 \Rightarrow \mu^{2}+\lambda^{2}=3 .
$$

(ii) The centre C_{2} of \mathcal{S}_{2} is $C_{2}(0,-6,0)$.

The distance d_{2} of C_{2} to the plane \mathcal{P} is:

$$
d_{2}=\left|\frac{-6 \mu-6}{\sqrt{\mu^{2}+\lambda^{2}+1}}\right|
$$

For this point to be on \mathcal{S}_{2} as well we need $d_{2}=6$.
$\Rightarrow 6 \sqrt{\mu^{2}+\lambda^{2}+1}=6(\mu+1) \Rightarrow \mu^{2}+\lambda^{2}+1=\mu^{2}+2 \mu+1 \Rightarrow \lambda^{2}=2 \mu$.
(iii) For the plane \mathcal{P} to be tangent to \mathcal{S}_{1} and \mathcal{S}_{2} we have to solve

$$
\mu^{2}+\lambda^{2}=3 \quad \wedge \quad \lambda^{2}=2 \mu
$$

$\Rightarrow \mu^{2}+2 \mu-3=0 \Rightarrow \mu_{ \pm}=-1 \pm 2$
Since $\lambda^{2}=2 \mu>0$ we can discard μ_{-}.
$\Rightarrow \mu=1 \Rightarrow \lambda= \pm \sqrt{2}$.
The tangent planes to \mathcal{S}_{1} and \mathcal{S}_{2} are therefore

$$
\mathcal{P}_{ \pm}: \pm \sqrt{2} x+y+z=6 \text {. }
$$

(iv) For instance the points $A(0,0,6)$ and $B(0,6,0)$ are in \mathcal{P}.

$$
\Rightarrow \overrightarrow{A B}=(0,6,-6) \in \mathcal{P}
$$

