Geometry & Vectors

Exercises 1

- 1) Let \mathcal{L}_1 and \mathcal{L}_2 be lines and \mathcal{P} a plane. \mathcal{L}_1 does not lie in \mathcal{P} , that is $\mathcal{L}_1 \notin \mathcal{P}$, but intersects the plane in a point P, that is $P \in \mathcal{L}_1$ and $P \in \mathcal{P}$. Furthermore, \mathcal{L}_2 lies in the plane \mathcal{P} but does not go through the point P, i.e. $P \notin \mathcal{L}_2$ and $\mathcal{L}_2 \in \mathcal{P}$.
 - i) Do the lines \mathcal{L}_1 and \mathcal{L}_2 intersect?
 - ii) State the argument to support your answer using the axioms provided in the lecture.
- 2) Three distinct points A,B,C lie in two different planes \mathcal{P}_1 and \mathcal{P}_2 , i.e. A,B,C $\in \mathcal{P}_1$ and A,B,C $\in \mathcal{P}_2$.

Are the two planes necessarily identical?

- **3)** Can a three legged table wobble?
- 4) Two lines \mathcal{M} and \mathcal{N} cross in some point X. A line \mathcal{L}_1 crosses \mathcal{N} in the point A and \mathcal{M} in the point B. A further line \mathcal{L}_2 is parallel to \mathcal{L}_1 and crosses \mathcal{N} in the point C and \mathcal{M} in the point D. The point X is on the line segment BD and AC.

Draw the relevant sketch and use the similarity axiom to show that

$$XA : AC = XB : BD.$$

5) ABCD constitutes a parallelogram. The point O is on the line \overrightarrow{AB} . The line \overrightarrow{OC} crosses the line \overrightarrow{AD} in the point P.

Draw the relevant sketch and show that

$$AP : PD = OA : AB.$$

6) ABCD constitutes a parallelogram. The point W is the midpoint of the line segment BC. The lines \overleftrightarrow{AW} and \overleftrightarrow{BD} intersect in the point X.

Draw the relevant sketch and show that

$$DX : XB = 2 : 1.$$

See handout for solutions.

Exercises 1

5 **~** ^

1) i) No.
i) - suppose 2, and
$$X_2$$
 inferent in non-point $P' \neq P$
- Hen X_1 two two points in Ac plane
- by conim 4 follows that $X_1 \in P$ will contrative the ansarption
2) - if A_1B_1C are noncollinear if follows from reason 2 that $P_1 = P_1$
- if A_1B_1C are collinear the if could be that $P_1 \neq P_2$ and the
line $X \ni A_1B_1C$ could be the interestion of the two planes (conim 6)
3) We by conim 3.
4)
 $= \frac{X_1}{X_1} = \frac{X_2}{X_3} = 1 + \frac{X_2}{X_4} = 1 + \frac{X_2}{X_5} \Rightarrow \frac{X_4 + X_1C}{X_4} = \frac{X_5 + X_2}{X_5}$
 $\Rightarrow \frac{A_1C}{X_4} = \frac{B_2}{X_5} \Rightarrow XA : A < = X & B & X \\ A : X & C = X & B & X \\ A = \frac{B_2}{X_5} \Rightarrow XA : A < C = X & B & B \\ A = \frac{B_2}{X_5} \Rightarrow XA : A & C = X & B & B \\ A = \frac{B_2}{X_5} \Rightarrow XA : A & C = X & B & B \\ B = \frac{A_1C}{X_5} = \frac{B_2}{X_5} \Rightarrow XA : A & C = X & B & B \\ B = \frac{A_1C}{X_5} = \frac{B_2}{X_5} \Rightarrow XA : A & C = X & B & B \\ B = \frac{A_1C}{X_5} = \frac{B_2}{X_5} \Rightarrow XA : A & C = X & B & B \\ B = \frac{A_1C}{X_5} = \frac{B_2}{X_5} \Rightarrow XA : A & C = X & B & B \\ B = \frac{B}{X_5} = \frac{B}{X_5} = \frac{B}{X_5} \Rightarrow XA : A & C = X & B & B \\ B = \frac{B}{X_5} = \frac{B}{X_5$