Geometry \& Vectors

Exercises 1

1) Let \mathcal{L}_{1} and \mathcal{L}_{2} be lines and \mathcal{P} a plane. \mathcal{L}_{1} does not lie in \mathcal{P}, that is $\mathcal{L}_{1} \notin \mathcal{P}$, but intersects the plane in a point P , that is $\mathrm{P} \in \mathcal{L}_{1}$ and $\mathrm{P} \in \mathcal{P}$. Furthermore, \mathcal{L}_{2} lies in the plane \mathcal{P} but does not go through the point P , i.e. $\mathrm{P} \notin \mathcal{L}_{2}$ and $\mathcal{L}_{2} \in \mathcal{P}$.
i) Do the lines \mathcal{L}_{1} and \mathcal{L}_{2} intersect?
ii) State the argument to support your answer using the axioms provided in the lecture.
2) Three distinct points A, B, C lie in two different planes \mathcal{P}_{1} and \mathcal{P}_{2}, i.e. $A, B, C \in \mathcal{P}_{1}$ and $A, B, C \in \mathcal{P}_{2}$.
Are the two planes necessarily identical?
3) Can a three legged table wobble?
4) Two lines \mathcal{M} and \mathcal{N} cross in some point X . A line \mathcal{L}_{1} crosses \mathcal{N} in the point A and \mathcal{M} in the point B. A further line \mathcal{L}_{2} is parallel to \mathcal{L}_{1} and crosses \mathcal{N} in the point C and \mathcal{M} in the point D . The point X is on the line segment BD and AC .
Draw the relevant sketch and use the similarity axiom to show that

$$
\mathrm{XA}: \mathrm{AC}=\mathrm{XB}: \mathrm{BD} .
$$

5) ABCD constitutes a parallelogram. The point O is on the line $\overleftrightarrow{A B}$. The line $\overleftrightarrow{O C}$ crosses the line $\overleftrightarrow{A D}$ in the point P .
Draw the relevant sketch and show that

$$
\mathrm{AP}: \mathrm{PD}=\mathrm{OA}: \mathrm{AB}
$$

6) ABCD constitutes a parallelogram. The point W is the midpoint of the line segment BC. The lines $\overleftrightarrow{A W}$ and $\overleftrightarrow{B D}$ intersect in the point X .
Draw the relevant sketch and show that

$$
\mathrm{DX}: \mathrm{XB}=2: 1 .
$$

See handout for solutions.

Exerciset !

1) i) No.
i) - ecyprose X_{1} ard X_{2} inferseot in wome point $P^{\prime} \neq P$

- Hen Z_{1} thos two gointis in the reare
- lyy arimm 4 farllows that $X_{1} \in P$ untint andsondinats the aussantion

2) - if $A_{1} B, C$ are noweliner itfolems fom ravinn 2 Kt $P_{1}=p_{2}$

- if A, B, C or welinear then it aveled be thet $P_{1} \neq P_{2}$ and the line $\mathcal{L} \geqslant A, B, C$ cowel be the intervertion of the two peares (ascimes)

3) No ly axaion 3 .

4
 axines 9:

$$
\begin{aligned}
& \Rightarrow \frac{x C}{x A}=\frac{x D}{x B} \Rightarrow 1+\frac{x C}{x A}=1+\frac{x D}{x B} \Rightarrow \frac{x A+x C}{x A}=\frac{x B+x D}{x B} \\
& \Rightarrow \frac{A C}{x A}=\frac{B D}{x B} \Rightarrow x A: A C=x B: B D
\end{aligned}
$$

5)

$$
\begin{aligned}
& P A: P D=P O: P C \\
& O A: A B=O P: P C
\end{aligned} \subset_{\Rightarrow A P: P D=O A: A B}
$$

6)

Drow the lise $\underset{\Sigma y}{y}$ throz $<+$ paroelel to ker lines $\overrightarrow{A B}, \stackrel{C}{D}$

$$
\left.\begin{array}{l}
B y: y c=B x: \times D \\
w x: x A=w y: y B \\
B x: x D=x w: A x
\end{array}\right\} \Rightarrow D x: x B=2: 1
$$

$$
(B y+Y w):(B y+Y C)=B W: B C=1: 2
$$

