Geometry \& Vectors

Exercises 2

1) Given are the two scalars $\lambda=4, \mu=-3$ and three vectors

$$
\begin{aligned}
\vec{u} & =9 \vec{\imath}-3 \vec{\jmath}+\vec{k}, \\
\vec{v} & =5 \vec{\imath}+2 \vec{\jmath}-6 \vec{k}, \\
\vec{w} & =11 \vec{\jmath}+\sqrt{5} \vec{k},
\end{aligned}
$$

where the vectors $\vec{\imath}, \vec{\jmath}, \vec{k}$ constitute an orthonormal basis.
i) Compute the following expressions

$$
\vec{u} \cdot \vec{v}, \quad \lambda(\vec{u}+\vec{v}) \cdot \vec{w}, \quad|\vec{v}|^{2}, \quad \mu(\vec{u} \cdot \vec{v}) \vec{w}, \quad|\mu(\vec{u} \cdot \vec{v}) \vec{w}|, \quad\left(42+|\vec{w}|^{2} / \mu\right) \vec{u}, \quad \vec{o} \cdot \vec{v} .
$$

ii) For the vector $\vec{x}=2 \vec{\imath}+\alpha \vec{\jmath}+\vec{k}$, with $\alpha \in \mathbb{R}$, determine the constant α such that the vector \vec{x} is perpendicular to the vector \vec{v}.
2) Consider the two vectors

$$
\begin{aligned}
\vec{u} & =\gamma \vec{\imath}-2 \vec{\jmath}+3 \vec{k}, \\
\vec{v} & =2 \gamma \vec{\imath}+\gamma \vec{\jmath}-4 \vec{k} .
\end{aligned}
$$

Find the constant (or constants?) $\gamma \in \mathbb{R}$ such that \vec{u} and \vec{v} are perpendicular.
3) Given the points $\mathrm{P}_{1}=(2,5)$ and $\mathrm{P}_{2}=(5,-2)$. Determine the midpoint on the line segment $P_{1} P_{2}$.
4) The midpoint of the line segment AB is the point $\mathrm{C}(-4,-3)$. The position vector of the point A is $\overrightarrow{O A}=8 \vec{\imath}-5 \vec{\jmath}$. Construct the position vector $\overrightarrow{O B}$.
5) Given the points $\mathrm{A}=(3,2)$ and $\mathrm{B}=(6,8)$ in a plane. The point C is situated on the line $\overleftrightarrow{A B}$. Construct the position vectors $\overrightarrow{O A}, \overrightarrow{O B}, \overrightarrow{O C}$ and determine the coordinates of the point C such that

$$
\mathrm{AC}: \mathrm{CB}=1: 2 .
$$

6) Given are two non-intersecting lines \mathcal{L}_{1} and \mathcal{L}_{2} with line segments $\mathrm{A}_{1} \mathrm{~B}_{1}$ and $\mathrm{A}_{2} \mathrm{~B}_{2}$ and midpoints C_{1} and C_{2} respectively. Show that

$$
\overrightarrow{A_{1} A_{2}}+\overrightarrow{B_{1} B_{2}}=2 \overrightarrow{C_{1} C_{2}}
$$

Solutions to exercises 2

1) i)

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =33, \quad \lambda(\vec{u}+\vec{v}) \cdot \vec{w}=-4(11+5 \sqrt{5}), \quad|\vec{v}|^{2}=65, \\
\mu(\vec{u} \cdot \vec{v}) \vec{w} & =-1089 \vec{\jmath}-99 \sqrt{5} \vec{k}, \quad|\mu(\vec{u} \cdot \vec{v}) \vec{w}|=297 \sqrt{14} \\
\left(42+|\vec{w}|^{2} / \mu\right) \vec{u} & =\vec{o}, \quad \vec{o} \cdot \vec{v}=0
\end{aligned}
$$

ii) $\alpha=-2$.
2) $\gamma=-2$ or $\gamma=3$.
3)

$$
\overrightarrow{O P}_{12}=\overrightarrow{O P}_{1}+\frac{1}{2}{\overrightarrow{P_{1} P}}_{2}=\overrightarrow{O P}_{1}+\frac{1}{2}\left(\overrightarrow{O P}_{2}-\overrightarrow{O P}_{1}\right) \Rightarrow P_{12}=(7 / 2,3 / 2)
$$

4) $\overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B}=\overrightarrow{O A}+2 \overrightarrow{A C}=\overrightarrow{O A}+2(\overrightarrow{O C}-\overrightarrow{O A}) \Rightarrow \overrightarrow{O B}=-16 \vec{\imath}-\vec{\jmath}$.
5)

$$
\begin{align*}
2|\overrightarrow{A C}| & =|\overrightarrow{B C}| \tag{1}\\
|\overrightarrow{A C}|+|\overrightarrow{B C}| & =|\overrightarrow{A B}|=3 \sqrt{5} \tag{2}
\end{align*}
$$

Make the ansatz $\overrightarrow{O C}=x \vec{\imath}+y \vec{\jmath}$ with unknown constants x, y. Compute with this $|\overrightarrow{A C}|=\sqrt{(x-3)^{2}+(y-2)^{2}}$ and $|\overrightarrow{B C}|=\sqrt{(x-6)^{2}+(y-8)^{2}}$. Substitute into (1) and (2) and solve for x, y. Then $\mathrm{C}=(4,4)$.
6)

$$
\left.\begin{array}{l}
\overrightarrow{A_{1} A_{2}}=\frac{1}{2} \overrightarrow{A_{1} B_{1}}+\overrightarrow{C_{1} C_{2}}+\frac{1}{2} \overrightarrow{B_{2} A_{2}} \\
\overrightarrow{B_{1} B_{2}}=-\frac{1}{2} \overrightarrow{A_{1} B_{1}}+\overrightarrow{C_{1} C_{2}}-\frac{1}{2} \overrightarrow{B_{2} A_{2}}
\end{array}\right\} \Rightarrow \overrightarrow{A_{1} A_{2}}+\overrightarrow{B_{1} B_{2}}=2 \overrightarrow{C_{1} C_{2}}
$$

