Geometry & Vectors

Exercises 2

1) Given are the two scalars $\lambda = 4$, $\mu = -3$ and three vectors

$$\vec{u} = 9\vec{\imath} - 3\vec{\jmath} + \vec{k},$$

$$\vec{v} = 5\vec{\imath} + 2\vec{\jmath} - 6\vec{k},$$

$$\vec{w} = 11\vec{\jmath} + \sqrt{5}\vec{k},$$

where the vectors \vec{i} , \vec{j} , \vec{k} constitute an orthonormal basis.

i) Compute the following expressions

$$\vec{u} \cdot \vec{v}$$
, $\lambda(\vec{u} + \vec{v}) \cdot \vec{w}$, $|\vec{v}|^2$, $\mu(\vec{u} \cdot \vec{v})\vec{w}$, $|\mu(\vec{u} \cdot \vec{v})\vec{w}|$, $(42 + |\vec{w}|^2/\mu)\vec{u}$, $\vec{o} \cdot \vec{v}$.

- ii) For the vector $\vec{x} = 2\vec{\imath} + \alpha \vec{\jmath} + \vec{k}$, with $\alpha \in \mathbb{R}$, determine the constant α such that the vector \vec{x} is perpendicular to the vector \vec{v} .
- 2) Consider the two vectors

$$\vec{u} = \gamma \vec{i} - 2\vec{j} + 3\vec{k},$$

$$\vec{v} = 2\gamma \vec{i} + \gamma \vec{j} - 4\vec{k}.$$

Find the constant (or constants?) $\gamma \in \mathbb{R}$ such that \vec{u} and \vec{v} are perpendicular.

- 3) Given the points $P_1=(2,5)$ and $P_2=(5,-2)$. Determine the midpoint on the line segment P_1 P_2 .
- 4) The midpoint of the line segment AB is the point C(-4,-3). The position vector of the point A is $\overrightarrow{OA} = 8\vec{\imath} 5\vec{\jmath}$. Construct the position vector \overrightarrow{OB} .
- 5) Given the points A=(3,2) and B=(6,8) in a plane. The point C is situated on the line \overrightarrow{AB} . Construct the position vectors $\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}$ and determine the coordinates of the point C such that

$$AC : CB = 1 : 2.$$

6) Given are two non-intersecting lines \mathcal{L}_1 and \mathcal{L}_2 with line segments A_1B_1 and A_2B_2 and midpoints C_1 and C_2 respectively. Show that

$$\overrightarrow{A_1 A_2} + \overrightarrow{B_1 B_2} = 2\overrightarrow{C_1 C_2}.$$

Solutions to exercises 2

$$\vec{u} \cdot \vec{v} = 33, \quad \lambda(\vec{u} + \vec{v}) \cdot \vec{w} = -4(11 + 5\sqrt{5}), \quad |\vec{v}|^2 = 65,$$
$$\mu(\vec{u} \cdot \vec{v})\vec{w} = -1089\vec{\jmath} - 99\sqrt{5}\vec{k}, \quad |\mu(\vec{u} \cdot \vec{v})\vec{w}| = 297\sqrt{14}$$
$$(42 + |\vec{w}|^2/\mu)\vec{u} = \vec{o}, \quad \vec{o} \cdot \vec{v} = 0$$

ii)
$$\alpha = -2$$
.

2)
$$\gamma = -2 \text{ or } \gamma = 3.$$

3)

$$\overrightarrow{OP}_{12} = \overrightarrow{OP}_1 + \frac{1}{2}\overrightarrow{P_1P_2} = \overrightarrow{OP}_1 + \frac{1}{2}(\overrightarrow{OP}_2 - \overrightarrow{OP}_1) \Rightarrow P_{12} = (7/2, 3/2)$$

4)
$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OA} + 2\overrightarrow{AC} = \overrightarrow{OA} + 2(\overrightarrow{OC} - \overrightarrow{OA}) \Rightarrow \overrightarrow{OB} = -16\vec{\imath} - \vec{\jmath}$$
.

5)

$$2\left|\overrightarrow{AC}\right| = \left|\overrightarrow{BC}\right| \tag{1}$$

$$2\left|\overrightarrow{AC}\right| = \left|\overrightarrow{BC}\right|$$

$$\left|\overrightarrow{AC}\right| + \left|\overrightarrow{BC}\right| = \left|\overrightarrow{AB}\right| = 3\sqrt{5}$$
(1)

Make the ansatz $\overrightarrow{OC} = x\overrightarrow{i} + y\overrightarrow{j}$ with unknown constants x, y. Compute with this $\left| \overrightarrow{AC} \right| = \sqrt{(x-3)^2 + (y-2)^2}$ and $\left| \overrightarrow{BC} \right| = \sqrt{(x-6)^2 + (y-8)^2}$. Substitute into (1) and (2) and solve for x, y. Then C=(4,4).

$$\left. \frac{\overrightarrow{A_1 A_2} = \frac{1}{2} \overrightarrow{A_1 B_1} + \overrightarrow{C_1 C_2} + \frac{1}{2} \overrightarrow{B_2 A_2}}{\overrightarrow{B_1 B_2} = -\frac{1}{2} \overrightarrow{A_1 B_1} + \overrightarrow{C_1 C_2} - \frac{1}{2} \overrightarrow{B_2 A_2}} \right\} \Rightarrow \overrightarrow{A_1 A_2} + \overrightarrow{B_1 B_2} = 2 \overrightarrow{C_1 C_2}$$