CITY UNIVERSITY
 London

BSc Degrees in Mathematical Science
Mathematical Science with Statistics
Mathematical Science with Computer Science
Mathematical Science with Finance and Economics
MMath Degrees in Mathematical Science

Part I Examination

Geometry and Vectors

May 2006
9:00 am - 11:00 am

Time allowed: 2 hours

Full marks may be obtained for correct answers to FIVE questions of section A and TWO questions of section B. If more than TWO questions are answered of section B, the best TWO marks will be credited.

Section A

Answer all six questions from this section. Each question carries 8 marks.

1. $A B C D$ constitutes a parallelogram. The point E is situated on the line segment $\overline{B D}$, such that $\overline{B E}=\frac{1}{3} \overline{B D}$. The point F is the pointin which the diagonal $\overline{B D}$ intersects the line $\overline{A E}$.

Sketch the corresponding figure and show, using vectors, that

$$
\overline{A F}=\frac{3}{4} \overline{A E} .
$$

2. The vectors $\vec{\imath}, \vec{\jmath}, \vec{k}$ constitute an orthonormal basis. Given are the vectors

$$
\vec{u}=2 \vec{\imath}+2 \vec{k} \quad \text { and } \quad \vec{v}=2 \vec{\imath}-\vec{\jmath}+\vec{k}
$$

(i) Determine the angle between \vec{u} and \vec{v}.
(ii) Construct two vectors of length 3 which are both perpendicular to the plane which contains \vec{u} and \vec{v}.
(iii) Verify the triangle identity for the vectors \vec{u} and \vec{v}.
3. The vectors $\vec{\imath}, \vec{\jmath}, \vec{k}$ constitute an orthonormal basis. For the four vectors

$$
\vec{u}=\vec{\jmath}+2 \vec{k}, \quad \vec{v}=-\vec{\imath}+3 \vec{\jmath}, \quad \vec{w}=\vec{\imath}-\vec{\jmath} \quad \text { and } \quad \vec{x}=\vec{\imath}+\vec{\jmath}-\vec{k}
$$

construct a new vector

$$
\vec{p}=\lambda(\vec{u} \times \vec{v}) \times(\vec{w} \times \vec{x}) .
$$

Determine the constant λ such that \vec{p} becomes a unit vector.
4. An ellipse is given in its polar form as

$$
r=\frac{k}{1-e \cos \theta},
$$

with eccentricity $e=4 / 5$ and $k=9 / 5$.
(i) Determine the normal form for this ellipse.
(ii) Find the equations of the tangents to the ellipse which passes through the point $Q(0,5)$.
5. Given are the two points $A(3,1,2)$ and $B(-1,2,0)$.
(i) Determine the equation of the line passing through the points A and B. Subsequently find the coordinates of the point in which the line intersects the $x y$-plane.
(ii) Determine the coordinates of the point in which the line through the points A and B intersects the plane

$$
\mathcal{P}: \quad 2 x-4 y-z=30
$$

6. Determine the equation of the line of intersection of the two planes

$$
\begin{array}{ccc}
\mathcal{P}_{1}: & 3 x-y+z-17=0 \\
\mathcal{P}_{2}: & -x+2 y+6 z+14=0
\end{array}
$$

in Cartesian form.

Section B

Answer two questions from this section. Each question carries 26 marks.
7. (i) State Euclid's five axioms.
(ii) Use the axioms to prove the following:

Given a line \mathcal{L} and a point P which is not on the line, i.e. $P \notin \mathcal{L}$, there is a unique plane \mathcal{P} containing both \mathcal{L} and P.
8. Given are the three points $A(3,-1,0), B(2,1,8)$ and $C(2,3,4)$
(i) Determine the equation of the plane \mathcal{P} which contains the three points A, B, C.
(ii) Show that the distance of the origin from \mathcal{P} is $34 / \sqrt{149}$.
(iii) Find the point of intersection between the plane \mathcal{P} and the line

$$
\mathcal{L}_{1}: \frac{x+1}{2}=\frac{y+15}{5}=\frac{z-6}{1} .
$$

(iv) Given is a second line

$$
\mathcal{L}_{2}: \frac{x-5}{4}=\frac{y+8}{-2}=\frac{z-11}{5} .
$$

Do the lines \mathcal{L}_{1} and \mathcal{L}_{2} intersect? In case they do, find the point of intersection.
9. Given are the two spheres

$$
\begin{array}{ll}
\mathcal{S}_{1}: & x^{2}+y^{2}+z^{2}=9 \\
\mathcal{S}_{2}: & x^{2}+(y+6)^{2}+z^{2}=36
\end{array}
$$

and the plane

$$
\mathcal{P}: \lambda x+\mu y+z=6 .
$$

(i) Show that the condition for \mathcal{P} to be the tangent plane to \mathcal{S}_{1} is

$$
\lambda^{2}+\mu^{2}=3
$$

(ii) Find the condition for \mathcal{P} to be also the tangent plane to \mathcal{S}_{2}.
(iii) Determine the equation of the plane which is the common tangent plane to \mathcal{S}_{1} and \mathcal{S}_{2}.
(iv) Specify a vector which lies in the plane determined in (iii)

Internal Examiner: Dr. A. Fring
External Examiners: Professor M.A. O'Neill
Professor D.J. Needham

