

Geometry and Vectors

Coursework 2

Hand in the complete solutions to all three questions in the general office (room C123)

DEADLINE: Thursday 02/04/2009 at 16:00

- 1. (12 marks) Given the two points A(6,1,3) and B(4,5,1),
 - (i) find the equation of the line passing through A and B by determining the point of intersection of this line with the yz-plane;
 - (ii) find the coordinates of the point in which the line through the points A and B intersects the plane

$$\mathcal{P}: \quad 2x + y - 3z = 16.$$

- 2. (12 marks) A circle with radius 2 and center located on the y-axis is inscribed into the parabola $y = x^2/2$. (This means the circle and the parabola have the same tangent at the points of intersection.)
 - (i) Draw the corresponding figure.
 - (*ii*) Determine the points of intersection, the center of the circle and the intersection of the circle with the y-axis.
- **3.** (26 marks) Given are the three points A(0,3,1), B(2,4,0) and C(3,5,5) and the two lines

$$\mathcal{L}_1: \quad \frac{x+1}{2} = y - 1 = \frac{z-2}{3}$$

 $\mathcal{L}_2: \quad -x = \frac{y+9}{3} = z + 4.$

- (i) Do the two lines \mathcal{L}_1 and \mathcal{L}_2 intersect? In case they do, find the coordinates of their point of intersection $P = \mathcal{L}_1 \cap \mathcal{L}_2$.
- (*ii*) Determine the equation of the plane \mathcal{P}_1 containing \mathcal{L}_1 and \mathcal{L}_2 , i.e. $\mathcal{L}_1 \in \mathcal{P}$, $\mathcal{L}_2 \in \mathcal{P}$.
- (*iii*) Determine the equation of the plane \mathcal{P}_2 which contains the points A, B and C.
- (*iv*) Compute the equation for the line of intersection for the two planes \mathcal{P}_1 and \mathcal{P}_2 in Cartesian form.