Geometry and Vectors

Coursework 2

Hand in the complete solutions to all three questions in the general office (room C123)

DEADLINE: Thursday 02/04/2009 at 16:00

1. (12 marks) Given the two points $A(6,1,3)$ and $B(4,5,1)$,
(i) find the equation of the line passing through A and B by determining the point of intersection of this line with the $y z$-plane;
(ii) find the coordinates of the point in which the line through the points A and B intersects the plane

$$
\mathcal{P}: \quad 2 x+y-3 z=16
$$

2. (12 marks) A circle with radius 2 and center located on the y-axis is inscribed into the parabola $y=x^{2} / 2$. (This means the circle and the parabola have the same tangent at the points of intersection.)
(i) Draw the corresponding figure.
(ii) Determine the points of intersection, the center of the circle and the intersection of the circle with the y-axis.
3. (26 marks) Given are the three points $A(0,3,1), B(2,4,0)$ and $C(3,5,5)$ and the two lines

$$
\begin{array}{ll}
\mathcal{L}_{1}: & \frac{x+1}{2}=y-1=\frac{z-2}{3} \\
\mathcal{L}_{2}: & -x=\frac{y+9}{3}=z+4
\end{array}
$$

(i) Do the two lines \mathcal{L}_{1} and \mathcal{L}_{2} intersect? In case they do, find the coordinates of their point of intersection $P=\mathcal{L}_{1} \cap \mathcal{L}_{2}$.
(ii) Determine the equation of the plane \mathcal{P}_{1} containing \mathcal{L}_{1} and \mathcal{L}_{2}, i.e. $\mathcal{L}_{1} \in \mathcal{P}$, $\mathcal{L}_{2} \in \mathcal{P}$.
(iii) Determine the equation of the plane \mathcal{P}_{2} which contains the points A, B and C.
(iv) Compute the equation for the line of intersection for the two planes \mathcal{P}_{1} and \mathcal{P}_{2} in Cartesian form.

