## Geometry and Vectors

## Coursework 2

SOLUTIONS:

1. (i) With $A(6,1,3), B(4,5,1) \Rightarrow \overrightarrow{A B}=-2 \vec{\imath}+4 \vec{\jmath}-2 \vec{k}$
$\Rightarrow$ equation of the line through $A$ and $B$

$$
\mathcal{L}: \frac{x-6}{-2}=\frac{y-1}{4}=\frac{z-3}{-2}=\lambda
$$

$\Rightarrow P(6-2 \lambda, 1+4 \lambda, 3-2 \lambda) \in \mathcal{L}$
$\Rightarrow P \in y z$-plane $\Rightarrow x=0 \Rightarrow \lambda=3 \Rightarrow P(0,13,-3)$
(ii) $\mathcal{L}$ intersects $\mathcal{P}$ for

$$
\begin{aligned}
2(6-2 \lambda)+(1+4 \lambda)-3(3-2 \lambda) & =16 \\
4+6 \lambda & =16 \Rightarrow \lambda=2
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow P(2,9,-1)=\mathcal{L} \cap \mathcal{P} \tag{6}
\end{equation*}
$$

2. (i)

(ii) The equation of the parabola is

$$
y=\frac{1}{2} x^{2}
$$

and the equation of the circle is

$$
x^{2}+(y-a)^{2}=4 .
$$

Differentiating both equations gives

$$
\frac{d y}{d x}=x \quad \text { and } \quad 2 x+2(y-a) \frac{d y}{d x}=0 .
$$

Since the tangents are the same
$\Rightarrow 1+(y-a)=0 \quad \Rightarrow(y-a)=-1 \quad \Rightarrow x^{2}+1=4 \quad \Rightarrow x= \pm \sqrt{3}, y=\frac{3}{2}$
The points of intersection are $P_{ \pm}=( \pm \sqrt{3}, 3 / 2)$.
The center results from $(3 / 2-a)=-1$, i.e. $(0,5 / 2)$.
The intersection with the $y$-axis is obtained from $(y-5 / 2)^{2}=4$, i.e. $y=1 / 2,9 / 2$.
3. (i) We have

$$
\begin{aligned}
& \mathcal{L}_{1}: \quad \frac{x+1}{2}=y-1=\frac{z-2}{3}=\lambda \\
& \mathcal{L}_{2}: \quad-x=\frac{y+9}{3}=z+4=\mu
\end{aligned}
$$

with $\lambda, \mu \in \mathbb{R}$. Therefore

$$
\begin{equation*}
P(2 \lambda-1, \lambda+1,3 \lambda+2) \in \mathcal{L}_{1} \quad \text { and } \quad Q(-\mu, 3 \mu-9,3 \lambda+2) \in \mathcal{L}_{2} \tag{1}
\end{equation*}
$$

For $P=Q$ we need to solve

$$
\begin{align*}
2 \lambda-1 & =-\mu  \tag{2}\\
\lambda+1 & =3 \mu-9  \tag{3}\\
3 \lambda+2 & =3 \lambda+2 \tag{4}
\end{align*}
$$

Form (2) and (3) follows $\mu=3$ and $\lambda=-1$. Equation (4) is satisfied for these values, i.e. $-1=-1$.
$\Rightarrow$ The two lines intersect in

$$
P(-3,0,-1)=\mathcal{L}_{1} \cap \mathcal{L}_{2} .
$$

(ii) $\mathcal{L}_{1}$ is parallel to the vector $\vec{v}_{1}=2 \vec{\imath}+\vec{\jmath}+3 \vec{k}$
$\mathcal{L}_{2}$ is parallel to the vector $\vec{v}_{2}=-\vec{\imath}+3 \vec{\jmath}+\vec{k}$
$\Rightarrow \vec{v}_{1} \times \vec{v}_{2}$ is perpendicular to $\mathcal{L}_{1}$ and $\mathcal{L}_{2}$
We compute

$$
\vec{v}_{1} \times \vec{v}_{2}=\left|\begin{array}{rrr}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
2 & 1 & 3 \\
-1 & 3 & 1
\end{array}\right|=-8 \vec{\imath}-5 \vec{\jmath}+7 \vec{k}
$$

$\Rightarrow \mathcal{P}_{1}:-8 x-5 y+7 z=d$ for some $d \in \mathbb{R}$
We have $P \in \mathcal{P}_{1}$ for say $\lambda=0$ in (1) $P(-1,1,2) \Rightarrow 8-5+14=d \Rightarrow d=17$.
$\Rightarrow$

$$
\mathcal{P}_{1}:-8 x-5 y+7 z=17 .
$$

(iii) Taking $P(x, y, z)$ to be an arbitrary point in the plane $\mathcal{P}_{2}$, the following vectors are in this plane:

$$
\begin{aligned}
& \overrightarrow{A B}=2 \vec{\imath}+\vec{\jmath}-\vec{k} \in \mathcal{P}_{2} \\
& \overrightarrow{A C}=3 \vec{\imath}+2 \vec{\jmath}+4 \vec{k} \in \mathcal{P}_{2} \\
& \overrightarrow{A P}=x \vec{\imath}+(y-3) \vec{\jmath}+(z-1) \vec{k} \in \mathcal{P}_{2}
\end{aligned}
$$

The vector $\overrightarrow{A B} \times \overrightarrow{A C}$ is perpendicular to the plane, such that $\overrightarrow{A P} \cdot \overrightarrow{A B} \times \overrightarrow{A C}=0$.
Compute

$$
\overrightarrow{A P} \cdot \overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{lrr}
x & y-3 & z-1 \\
2 & 1 & -1 \\
3 & 2 & 4
\end{array}\right|=0
$$

$\Rightarrow$ The plane containing the points $A, B, C$ is

$$
\mathcal{P}_{2}: 32+6 x-11 y+z=0 .
$$

(iv) A normal vector to $\mathcal{P}_{1}$ is $\vec{\eta}_{1}=-8 \vec{\imath}-5 \vec{\jmath}+7 \vec{k}$.

A normal vector to $\mathcal{P}_{2}$ is $\vec{\eta}_{2}=6 \vec{\imath}-11 \vec{\jmath}+\vec{k}$.
$\Rightarrow \vec{\eta}_{1} \times \vec{\eta}_{2}$ is parallel to $\mathcal{L}=\mathcal{P}_{1} \cap \mathcal{P}_{2}$.
Compute

$$
\vec{\eta}_{1} \times \vec{\eta}_{2}=\left|\begin{array}{rrr}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
-8 & -5 & 7 \\
6 & -11 & 1
\end{array}\right|=72 \vec{\imath}+50 \vec{\jmath}+118 \vec{k}
$$

Any point on the line has to satisfy the two equations

$$
\begin{aligned}
6 x-11 y+z & =-32 \\
-8 x-5 y+7 z & =17
\end{aligned}
$$

Taking $y=0$ gives as solution $x=241 / 50$ and $z=-77 / 25$.
$\Rightarrow$ The line of intersection is

$$
\mathcal{L}: \quad \frac{x-241 / 62}{72}=\frac{y}{50}=\frac{z+77 / 25}{118}
$$

Equivalently, taking $z=0$ gives as solution $x=-347 / 118$ and $z=-77 / 59$. $\Rightarrow$ The line of intersection is

$$
\mathcal{L}: \quad \frac{x+347 / 118}{72}=\frac{y-77 / 59}{50}=\frac{z}{118}
$$

Equivalently, taking $x=0$ gives as solution $x=-347 / 118$ and $z=-77 / 59$.
$\Rightarrow$ The line of intersection is

$$
\mathcal{L}: \quad \frac{x}{72}=\frac{y-241 / 72}{50}=\frac{z-347 / 72}{118} .
$$

