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Many 2-D integrable spin models known: Ising, RSOS, etc.
Yang-Baxter equation = commuting Transfer Matrices

Rm(U) ng(u -+ ?)) Rgg(?}) = Rgg(?}) ng(u + ?J) ng(u) .

Systematic construction by quantum group techniques.

Analogue of Yang-Baxter equation for 3-dim. integrability:

Tetrahedron equation (TE)
A.B.Zamolodchikov 1981, Bazhanov-Stroganov 1982

Ri2s Riss Ross Rsse = Rase Rosg Riss Rios.

Figure 1: R123 maps initial variables toy, 19, tog to final ), o), 1w}



More eXPIICItIy (Each R;;x, depends on 3 param., there are 5 different param. in the TE).
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—> Layer-transfer matrices commute = Integrability

TE is very restrictive  (N'% egs., by symmetries— N® egs.),
essentially only one solution known:

Z.n- Zamolodchikov-Baxter-Bazhanov (ZBB) model

for N > 2 Boltzmann weights complex, models are chiral.
Partition function per site k£ has been calculated (Baxter 1983)

Turns our to be real:

log (k/2€) —Z/ [log(2cosz) + x tan x| dx

Strong indication that integrable ZBB model is critical
for all 3 parameters, has no temperature variable —
bad for describing phase transtions. (Baxter, Forrester 1985)

Need less restrictive " modified” TE-equations (MTE)
first proposed by Mangazeev and Stroganov 1993

different rapidities at the left and right hand sides of TE,

related by classical integrable equations.

Check of TE usually very tedious.



Sergeev formulation of the 3D vertex ZBB-model:

Quantum variables: elements of ultralocal Weyl algebra at

root of unity:
_ 627m'/N,

u; w; = ww;-uj; W ;W = w;-u; for ¢ # j.

Attach also scalar x; to each link, together: w; = (u;, w;, ;).

02 Oriented 3D lattice

Key object: Canonical invertible rational mapping operator R i3

(Rigg o V) (uy, wi,ug, ..., w3) = U(u},wp,u,, ..., wh).

R193 is uniquely determined from postulates:

1. Baxter Z-invariance:
lines may be shifted respect to each other
2: Linear Problem:
0 = (Dy| + WDy vy + (D] Wi + k1 (Dg| 1 Wy



Linear problem considered like Kirchhoff law:

Consider currents (¢;|; flowing out of the vertex tv; into the
four sectors of the auxiliary plane around them, distributed

according to the Weyl variables: (k; " coupling constant” )

w{¢;| u; flows between the arrows, {(¢;|w; below arrows,
(| to the left sector, k;(¢;|uywy to the right sector

Auxiliary plane

N\

Total current received by an inner sector shall vanish.



Another view of the same auxiliary planes:

A is vertex of the basic lattice

Left: Magnified view of the currents emerging from tus
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Conditions which determine Ri33 uniquely as a canonical
and invertible map: (S.Sergeev, J.Phys.A32 (1999) 5639)

e [inear Problem:

The total current received by inner sectors shall vanish.
o (lurrents in external sectors are invariant against

Z -transformation of inner lines.



Examples from A=V :

Total current received by the left internal sector vanishes:

(0] = Wi{p1] + (¢o] + w'Pus(es| = 0;

Current received by left external sector shall equal that received by corre-

sponding right hand sector:

(0| = (5] = (o] + (3]
<¢b‘ — W/1<€b/1‘ — W2<¢2\ + /433113W3<q§3|; etc.

8 equations: all currents can be eliminated. Unique solution

to this A =V linear problem: 7Sergeev mapping”

W, = w2
1= - = -
wiw; T — w2 ugwy ' 4+ Ky Wy lug
I u?
u; = -

u; 'y — w2utwy + Ky wiug!



Complete formulae of the unique solution:

W = W3
1 — — _ _
wiwy T — w2 ugwy ' 4+ Ky Wy ug
—1

u = RoWgq

1 — _ _ _ _ _ _
0 = U

3 — _ —

u; luy — w2utwy + R wiag!
Il . Il i et —1 —1

These eqs. define the mapping Ris3 (invertible, canonical):

(ngg ) @) (111, Wi, Uy, ... ,W3> déf CD(u’l, Wll, 11/27 ce ,Wé)
for any rational function ® of the uy,..., ws.
Canonical:  maps the triple Weyl algebra of uy, wq,us,...,ws
into the same Weyl algebra of the u}, wi, uj, ..., wj

Functional map Rgéé implied by Ri93 :

For w=e?™/N we have (au+bw)Y = (au)™ + (bw)", so:

N
w Y = 2 - etc
L= N —N N. —N N —N N’ .
Wy Wy Uz wg T+ K3 Wy Uy

For any rational scalar function #(...) we define

d
(Rgé o ¢> (u1, wr, U, . . ., w3) < Y(ul, wi, uh, ... wy).



Mapping Ri23 looks complicated:

W2
W, = — 7 — ——; etc.
WiWs  — W/ UgWy + K3 W, Ug

We now represent u;, w;, u,, w, by N x N matrices

u = w Xi W = w; Ly Xili=w1; X,

So 3 a N°x N3-matrix Ryss with

S

u
J R123 R123> R123 R123> 1=1,2,3.

[SSET
N\N\

We shall see: Ry93 can be written in simple form!

Ri93: superposition of a functional mapping Rg%

and a finite dimensional similarity transform Raqos:

Rizzo® = Rios (Rg)g © @) 123 -

This superposition because Weyl variables at root of unity!

(Bazhanov, Reshetikhin, Bobenko,
Sergeev, Mangazeev, Stroganov 1995)

R.123 will be Boltzmann weights of N-component spin system.



Introduce Baxter-Bazhanov cyclic Fermat-curve functions:

related to quantum dilogarithm at root of unity: Faddeev-Kashaev 1993

nEZN7 p:<xay>7 CCN—i_yN:la

n
Y
wO =1 wi = =57
v=1
Because of Fermat relation:  wy(n+ N) = w,(n).
Then:
Rﬁ:g,ﬁ; = <7:17 i27 i3|R123|j17 j27 j3 >

(j1—11) J3 wpl(iQ — il) wm(j2 — ]1)

Wy, (J2 — 1) Wy, (22 — J1)

— 5i2+i3,j2+j3 W

x-coord. of the four Fermat curve points are connected by
1Ly = W I3Xy4.

Sergeev, Mangazeev, Stroganov 1995

Fermat curve points are defined in terms of wy, wy, k1, ..., K3 :
Us Kol ul
L] = y L2 = —F/——5, L3= —,
VWK1 Vwu) Wy

Primes denote functionally transformed scalar variables:

1 p(f) 1 p(f) ,
uj =Riggou;, w;=Rygzow;
How to prove all this?  Use recursion relations like

y 1= wi ity

J1:J2:03 . RILI2:J3
i1,02+1,i3—1 11,12,13 y, 1— wiz—ii+l gy



The modified Tetrahedron equation.

Basic 3-dim. lattice is formed by set of intersecting planes.

For Z-invariance A = V we considered intersecting 3 planes:
Triangle in nearby cutting auxiliary plane,

shrinking to point at vertex Rqs3.

Now take 4 intersecting planes of the basic lattice: These cut

auxiliary plane in 4 lines forming Quadrangle with 6 points.

Shifting one line such that one subtriangle A shrinks to point
and then reverses to V: action of R,j;.

Each quadrangle has two subtriangles which can be reversed:

Figure ()7 : we can use either Ri93 or Rz :

3 8 different quadrangles (with 6 labeled points)

—> 8 different positions of the auxiliary plane w.r.t. vertices.



Each (); has two triangles which can be reversed
= we can move only clock- or anticlockwise.
The clockwise and anticlockwise mappings ()1 — ;5
lead to the same result and so are equivalent:

—> The mapping R solves the TE:
Ri23 - Rias - Roas - R3se = Resse - Roae - Rias - Raos -

Operator equation in Weyl space of u;, wq,us, wo, ..., ug, wg.



TE for Ryy = TE for RY)

Rizs - Rily ~ Rilg - Rl olus’...,wp))
= Rify Rt Rils - Ribgo (.. wi)).

Now we derive from the Tetrahedron Equation
Ri23 - Rias - Rous - R3se = Rsse - Raoae - Rias - Rios
the Modified Tetrahedron Equation.

We use Rijro® = Riji (R(f) o CID) Rz_ji and get

ijk
R {Rg% {R145 (Rﬁ% {Rm {Réﬁ)a <R356 (R%)ﬁ ° @) R:islﬁ) } R2_416D Rf4l5H Riz

= Raso {R;(aé% {R246 (R% {R145 {Rg‘ié (Rm (Rg% ° ‘D) R1213) } R1415D R2416H Riys-
Introduce shorthand:

RY = Riy; R? = R, 0Rus RO = RYLRY) oRug; ete.
guuing

(R<1> RO RO R<4>){Rg; RU R RY) Cp}(R<1>R<2>R<3>R<4>>

-1
:<R<8> RO RO R<5>){R§Jgé R R RY CI)}(R(8)R(7)R(6)R(5>) |

-1

Functional TE cancels! We get the MTE :

RYVRP RO RYW = pRORODRORD



or, inserting the abbreviations:
Rios - (Rgé o R145) : (R@Rgﬁ o R246) : (RgéRgﬁRéﬁé o R356>
= p Rise- (Ré{% o R246> : (R%%Réﬁ% o Rl%)(@é%@ﬁ?ﬂzgﬁ o Rms) :

Modified Tetrahedron Equation.

NY x N matrix equation with matrix entries
related by the functional transformation.
Not same rapidities left and right as e.g. in Yang-Baxter eq. :
Rapidities on left and right hand sides related by jo,z,

which gives rise to classical integrable system

MTE contains 8 rapidity parameters and 16 phases.

Matrix structure:

Q' k1.ko.ks,ka.ks.ke @kl,kz,kg,k4,k5,k6

11,12,13, 14,15, 16 11,192,113, 14,15, 16

= N'2egs. (for N =2 256 different non-trivial egs.).

Different 3D models <= Different solutions for functional
mapping.
We obtain a large class of different 3D integrable

quantum models choosing various classical solutions.



Sketch of functional mapping for whole 3D lattice, at site n:

U3,n+e3a WB,n—i—eg

Ul,n—i—ela Wl,n—l—el
e3 e
Uons Won ' ‘e U2,n+627 WQ,n+e2
- .
Ul,nn Wl,n UB,I]; WB,n
Recall:
N
IN Wy
w, = etc.

whlwz Y + udwy + ok wy N ud
Define for the whole lattice: (U = v, W =w", K = &")

Ul,n+e1 L WB,n—l—eg

Ul,n W?),n

. K2:n1,n3U2,nW2,n

_ )

Kl:ng,ny,Ul,nWZ,n —+ KS:nl,n2U2,nW3,n -+ Kl:ng,ngKB:nl,ngUl,nW&n
Wl,n . W2,n+e2 . Wl,nWS,n
T T )

Wl,n+e1 WZ,n Wl,nWQ,n + U3,nW2,n + KB:nl,nQ U3,nW3,n
U2,n+e2 . U3,n Ul,nU3,n

Usn Us ntes B UsnUsn + UsnWin + K1y naUrnWin '

Rewrite this to trilinear Hirota form, we solve by methods of
algebraic geometry (Fay-identities) (Krichever, Shiota, Mulase 1978-84)

Useful practical solution by rational limit of ©-functions.

Trivial solution —— ZBB-model.



Conclusions:

We considered a 3-dim. oriented lattice with
affine Weyl variables at root of unity, located on links.

Studied local properties.

linear current condition and A = V-invariance =

Sergeev rational canonical invertible mapping R 193

acting on a triple affine Weyl algebra.

Mapping splits: functional mapping of Weyl centers and a
N? x N3 matrix conjugation:
Quantum operators with coeff. determined by classical
integrable system.
Conjugation matrix represented by cyclic Fermat-curve

functions w,(n).

TE from uniqueness of R (Q1 = @Q)5),
MTE appears after cancellation of functional TE.

Explicit parameterization of MTE: 8 continous variables

vs. 5 in ZBB model. Describe phase transition?

Explicit solutions for functional mapping and generating
function for the constants of motion require

global considerations and boundary conditions.



