

L

Hearing voices then seeing lips: disunity of subjective timing

Elliot Freeman¹, Abby Ipser¹, Alex Leff², Jon Driver²

(1) City University London (2) University College London

Acknowledgements: Austra Palmbaha, Peter Brown, Sabah Khan, Christian Lamberts, Agnès Alsius, Ryota Kanai and the late Tom Schofield, Royal Society Leverhulme Trust

Introduction

Due to physical and neural delays, the sight and sound of speech causes a cachophony of asynchronous events in the brain. How can we still perceive voice and lipmovements as simultaneous?

Our converging evidence suggests that actually, we do not:

- 1) Case study: dissociation between subjective timing for two different concurrent tasks: Temporal order judgement and McGurk effect
- 2) Individual differences in neurotypical participants: anticorrelation of subjective timings for the above concurrent tasks

1) Case study

- Patient PH: male, retired pilot, 67 at time of testing. midbrain and auditory brainstem lesions. In 2008 began to experience voices leading lipmovements. Otherwise highfunctioning, by neuropsychological assessment.
- High-resolution MRI: two small lesions
 - anterior-medial tip of the left sub-thalamic nucleus
 - Right dorso-medial pontine nucleus
- Both regions may play a role in timing, audition or crossmodal interactions 1-3

Subthalamic nucleus

•Stimuli: typical McGurk stimuli ⁴: Congruent and incongruent combinations: movie of lip-

> movements [ba], [ga] paired with audio /ba/, /da/.

Variable auditory lag:

- 9 levels, range ±500ms, randomised. •Dual task:

 Timing judgement and phoneme identification

Timing judgements, two types: Temporal Order Judgement (TOJ) or Simultaneity Judgement (SJ). Blocked, counterbalanced

Dependent measures:

- TOJ & SJ → Point of Subjective Simultaneity (PSS)
- Phoneme judgements → Optimal timing for McGurk effect (tMcG)

Method

Comparison of PH with controls

a) Timing Judgment:

- Temporal order judgment (TOJ) : PH: ~200ms auditory lead (auditory lag required for subjective synchrony)
 - Healthy: ~Veridical
- Simultaneity Judgments (SJ):
- PH: 44ms auditory lag - Healthy: slight auditory lead

b) McGurk:

- PH requires opposite visual lag for maximal McGurk, consistent with pathological auditory slowing.
- PH outside all healthy 95%CI's

Timing discrepancy (PSS - tMcG):

- PH sig. > healthy older controls [Crawford t(5)=2.24, p<0.05, one-
- c) Specific to speech (TOJ veridical for flash and noise bursts)
- d) TOJ: auditory lag eliminated with fourier-phase-scrambled lips

McGurk effect (in TOJ blocks) McGurk effect (in SJ blocks)

Plots compare PH with healthy adults (21 young, Mean 25yr + 6 older mean 56yr)

Summary:

Lesion reveals dissociation: auditory slowing (consistent with pathology) in McGurk, versus opposite auditory speeding for TOJ

2) Individual differences

Black symbols: healthy (young and older); White: PH

- a) TOJ sessions: Negative correlation. TOJ probes distinct mechanisms
- b) SJ sessions: Positive correlation. Perceived simultaneity may depend on quality of integration

A challenge for existing theories

Theory	Prediction
★ Unity assumption ⁵	
➤ Unified timing ⁶⁻⁷	association and +ve correlation
➤ Temporal recalibration 8-9	
➤ Independent local timing 10-12	dissociation and null correlation
✓ Temporal renormalisation theory?	Dissociation and -ve correlation

Proposed Temporal Renormalisation theory

- Different tasks subject to different delays
- -e.g. McG and TOJ tasks
- Modalities synchronised to their unimodal norms
- Norm represents best guess at 'when was now'
- → apparent repulsion of timings for different tasks:
 - -If one signal is delayed, others will seem to be speeded, relative to the norm

A-lead for TOJ

Conclusions

t TOJ

- Subjective timing depends on discrete mechanisms subject to their own neural delays
- •There is no apparent unity of subjective timing: We can concurrently experience the same external events as happening at different times.
- •We cannot correct delays, though we can compensate for them
- Via renormalisation, senses are synchronised on average

References

- 1. Kolomiets, B.P. et al. (2001) Segregation and Convergence of Information Flow through the Cortico-Subthalamic Pathways. J. Neurosci. 21, 5764-5772.
- 2. Halverson, H.E. & Freeman, J.H. (2010) Medial auditory thalamic input to the lateral pontine nuclei is necessary for auditory eyeblink conditioning. Neurobiology of Learning and
- 3. Teki, S., Grube, M., Griffiths, T.D. (2012) A unified model of time perception accounts for duration-based and beat-based timing mechanisms. Frontiers in Integrative Neuroscience, 5:90.
- 4. McGurk, H. & MacDonald, J. (1976) Hearing lips and seeing voices. Nature 264, 746-748.
- 5. Welch, R. B. & Warren, D. H. (1980). Immediate perceptual response to intersensory discrepancy. *Psychological Bulletin*, 88(3), 638-67. 6. Creelman, C.D. (1962) Human discrimination of auditory duration. The Journal of the Acoustical Society of America 34, 582.
- 7. Ivry, R.B. & Spencer, R.M.C. (2004) The neural representation of time. Current Opinion in Neurobiology 14, 225-32.
- 8. Sternberg, S. (1973) The Perception of Temporal Order: Fundamental Issues and a General Model. Attention and Performance IV 629-685. 9. Fujisaki, W. Shimojo, S., Kashino, M. & Nishida, S. (2004) Recalibration of audiovisual simultaneity. *Nature Neuroscience* 7, 773-8.
- 10. Harris L R, Harrar V, Jaekl P, Kopinska A (2010) Mechanisms of simultaneity constancy. In: Nijhawan R (ed) Space and time in perception and action. Cambridge University Press,
- 11. Aschersleben, G. & Prinz, W. (1995) Synchronizing actions with events: the role of sensory information. *Perception & Psychophysics* 57, 305-17. 12. Zeki, S. & Bartels, A. (1998) The asynchrony of consciousness. *Proceedings of the Royal Society of London: Biological sciences* 265, 1583-5.