Stratification and cosupport for finite group schemes

Julia Pevtsova University of Washington, Seattle

Joint work with BIK

Dave Benson, Henning Krause, Srikanth B. Iyengar

(left to right)

June 25, 2015 BensonFest, Isle of Skye

•00000

The party goes on: BensonFest II in Vancouver, BC Summer School July 27-30, Conference August 1-5, 2016

This talk: k - field, G-finite group scheme over k.

Classify localising tensor ideal subcategories of StMod G.

- 1. Classification of thick tensor ideals of stmod *G* for *G* a *finite* group scheme (corrected proof)
- 2. Classification of localising tensor ideal subcategories of StMod kG for G a finite group (new proof, originally due to

Finite group schemes

000000

, Ann. of Math. 174 (2011)

STABLE MODULE CATEGORY

Finite group schemes

000000

 $\Lambda =$ finite dimensional Hopf k-algebra

StMod Λ Objects: (all) Λ -modules

Morphisms: $\underline{\text{Hom}}(M, N) = \frac{\text{Hom}_{\Lambda}(M, N)}{\text{PHom}_{\Lambda}(M, N)}$ stmod Λ - finite dimensional Λ -modules

 Λ is Frobenius \Rightarrow StMod Λ is a tensor triangulated category

Localising subcategory $\mathcal{C} \subset \operatorname{StMod} \Lambda$: full triangulated subcategory closed under arbitrary direct sums.

Thick subcategory $\mathcal{C} \subset \operatorname{stmod} \Lambda$: full triangulated subcategory closed under direct summands.

Tensor ideal: $M \in \mathcal{C} \Rightarrow N \otimes M \in \mathcal{C}$ for any N.

Classify tensor ideal localising subcategories of StMod Λ

Problem: $H^*(\Lambda, k)$ is not known to be finitely generated!

STABLE MODULE CATEGORY

$$char k = p > 0$$

Finite group schemes

000000

 Λ = finite dimensional *cocommutative* Hopf *k*-algebra

StMod Λ Objects: (all) Λ -modules

Morphisms: $\underline{\text{Hom}}(M, N) = \frac{\text{Hom}_{\Lambda}(M, N)}{\text{PHom}_{\Lambda}(M, N)}$ stmod Λ - finite dimensional Λ -modules

 Λ is Frobenius \Rightarrow StMod Λ is a tensor triangulated category

Localising subcategory $\mathcal{C} \subset \operatorname{StMod} \Lambda$: full triangulated subcategory closed under arbitrary direct sums.

Thick subcategory $\mathcal{C} \subset \operatorname{stmod} \Lambda$: full triangulated subcategory closed under direct summands.

Tensor ideal: $M \in \mathcal{C} \Rightarrow N \otimes M \in \mathcal{C}$ for any N.

Classify tensor ideal localising subcategories of StMod Λ

Problem: $H^*(\Lambda, k)$ is not known to be finitely generated!

Why cocommutative? Geometric interpretation.

Definition

Finite group schemes

000000

A finite group scheme *G* over a field *k* is a functor

G: comm. k-algebras \longrightarrow groups

represented by a finite dimensional commutative Hopf k-algebra k[G].

Definition

Finite group schemes

000000

A finite group scheme *G* over a field *k* is a functor

 $G: \text{ comm. } k\text{-algebras} \longrightarrow \text{groups}$

represented by a finite dimensional commutative Hopf k-algebra k[G].

k[G] is a finite dimensional commutative Hopf k-algebra \Rightarrow $kG := k[G]^* = \text{Hom}_k(k[G], k)$ is a finite dimensional, cocommutative Hopf k-algebra, the group algebra of G

$$\left\{\begin{array}{c} \text{finite group} \\ \text{schemes} \\ G \end{array}\right\} \sim \left\{\begin{array}{c} \text{finite dimensional} \\ \text{cocommutative} \\ \text{Hopf algebras} \\ kG \end{array}\right.$$

Representations of *G* over *k*

kG-modules

000000

- Finite groups. *kG* is the group algebra
- Restricted Lie algebras. For \mathcal{G} algebraic group (GL_n, SL_n, Sp_{2n} , SO_n), $\mathfrak{g} = \operatorname{Lie} \mathcal{G}$.

$$\mathfrak{u}(\mathfrak{g}) = U(\mathfrak{g})/\langle x^p - x^{[p]} \rangle$$

restricted enveloping algebra, a finite dimensional cocommutative Hopf algebra

Frobenius kernels

$$G = \mathcal{G}_{(r)} = \operatorname{Ker} \{ \mathcal{G} \xrightarrow{F^r} \mathcal{G} \}$$

Frobenius kernels are *connected* (k[G] is local).

$$\left\{ \begin{array}{c} \text{Restricted} \\ \text{Lie algebras} \\ \text{Lie } \mathcal{G} \end{array} \right\} \quad \sim \quad \left\{ \begin{array}{c} \text{Connected finite group} \\ \text{schemes of height 1} \\ \mathcal{G}_{(1)} \end{array} \right\}$$

$$\mathfrak{u}(\text{Lie } \mathcal{G}) \cong k\mathcal{G}_{(1)}$$

$$H^*(G, k) := H^*(kG, k).$$

00000

To apply geometric methods, work with $Proj H^*(G, k)$

Theorem (Friedlander-Suslin, 1997)

Let G be a finite group scheme over a field k, and M be a finite dimensional representation of G. Then $H^*(G,k)$ is a finitely generated k-algebra, and $H^*(G,M)$ is a finite module over $H^*(G,k)$.

Theorem (Suslin-Friedlander-Bendel, 1997)

Let g be a restricted Lie algebra. Then

$$\operatorname{Spec} H^*(\mathfrak{g}, k) \cong \mathcal{N}_p(\mathfrak{g}) := \{ x \in \mathfrak{g} \, | \, x^{[p]} = 0 \}$$

For \mathcal{G} a connected reductive algebraic group, $\mathcal{N}_p(\text{Lie }\mathcal{G})$ is irreducible! Contrast with Quillen stratification theorem for $H^*(G,k)$ for finite groups.

Moral: there is no family of abelian subgroup schemes controlling the behavior of $H^*(G, k)$ or stmod kG.

Let G be a finite group scheme over a field k. There is a one-to-one correspondence

$$\left\{ \begin{array}{c} \textit{Localising tensor} \\ \textit{ideal subcategories} \\ \textit{of } \mathsf{StMod}\, \textit{kG} \end{array} \right\} \quad \sim \quad \left\{ \begin{array}{c} \textit{Subsets of} \\ \textit{Proj}\, H^*(G,k) \end{array} \right\}$$

which restricts to

$$\left\{ \begin{array}{c} \textit{Thick tensor ideal} \\ \textit{subcategories of stmod kG} \end{array} \right\} \sim \left\{ \begin{array}{c} \textit{Subsets of Proj } H^*(G,k) \\ \textit{closed under specialization} \end{array} \right\}$$

$$C_V = \{M \in \operatorname{StMod} kG \mid \operatorname{supp} M \subset V\} \longleftarrow V \subset \operatorname{Proj} H^*(G, k)$$

$$C \longrightarrow V = \bigcup_{M \in \mathcal{C}} \operatorname{supp} M$$

Precursors/motivation: Devinatz-Hopkins-Smith (stable homotopy theory), Hopkins, Neeman, Thomason (CA, AG), Benson-Carlson-Rickard (Finite groups)

- Need theory of supports!
- And cosupports
- In fact, one theory is not enough; need two:
 - BIK theory of local cohomology functors (Rickard idempotents)
 - π -supports and π -cosupports
- Detection of projectivity by π -supports (generalized Dade's lemma)
- Comparison of Koszul objects (\sim Carlson modules) for closed and generic points on Proj $H^*(G, k)$

BIK SUPPORT/COSUPPORT

$$X = \operatorname{Proj} H^*(G, k)$$

$$\mathfrak{p} \in X \mapsto \Gamma_{\mathfrak{p}}k \in \operatorname{StMod} kG$$

- "Rickard idempotent", a universal module with respect to the classical support variety theory based on the action of $H^*(G, k)$ on $H^*(S, M)$ (as appeared in J. Carlson's talk).

For M a kG-module,

supp
$$M$$
: = { $\mathfrak{p} \in X \mid \Gamma_{\mathfrak{p}}k \otimes M$ is not projective} cosupp M : = { $\mathfrak{p} \in X \mid \operatorname{Hom}_k(\Gamma_{\mathfrak{p}}k, M)$ is not projective}

 $M \in \operatorname{stmod} kG \Longrightarrow \operatorname{supp} M = \operatorname{cosupp} M = \operatorname{``classical''}$ support variety.

Good properties: "two out of three", direct sums, shifts, detection (supp $M = \emptyset \Rightarrow M \cong 0$, that is, M is projective). Lack: good behavior w.r.t tensor products and Homs.

Definition

A π -point α of a finite group scheme G defined over field extension K/k is a flat map of algebras

$$K[t]/t^p - - \stackrel{\alpha}{-} - \rightarrow KG : = kG \otimes_k K$$

which factors through some unipotent abelian subgroup scheme $U \subset G_K$.

A finite group scheme *U* is unipotent if *KU* is a local algebra (unipotent finite groups = p-groups).

The map $KU \rightarrow KG$ is a map of Hopf algebras, the other two are just maps of algebras.

FROM π -POINTS TO POINTS ON Proj $H^*(G, k)$

$$\begin{array}{ccc} \boxed{\alpha: K[t]/t^p \to KG} & \longrightarrow & H^*(G_K,K) \stackrel{\alpha^*}{\to} H^*(K[t]/t^p,K) & \longrightarrow \\ & \text{Ker } \alpha^* \cap H^*(G,k) & \longrightarrow & \boxed{\text{pt} \in \text{Proj}\, H^*(G,k)} \\ \end{array}$$

Some π - points \longrightarrow same point on $Proj H^*(G, k)$

$$\alpha^* \colon \operatorname{\mathsf{Mod}}\nolimits kG \longrightarrow \operatorname{\mathsf{Mod}}\nolimits K[t]/t^p \ , \quad M \mapsto \alpha^*(M_K).$$

$$\alpha: K[t]/t^p \longrightarrow KG, \ \beta: L[t]/t^p \longrightarrow LG$$

$$\left\{\begin{array}{ll} \alpha \sim \beta \end{array}\right\} \qquad \stackrel{\text{def}}{\Longleftrightarrow} \left\{\begin{array}{ll} \forall \text{ (fin. dim.) } kG - \text{module } M, \\ \alpha^*(M_K) \text{ is free } \Leftrightarrow \beta^*(M_L) \text{ is free} \end{array}\right\}$$

$$\Pi(G)$$
: = $\frac{\langle \pi - points \rangle}{\sim}$

Theorem (Friedlander-P, 2007)

There is a natural homeomorphism $\Pi(G) \cong \operatorname{Proj} H^*(G, k)$.

π -SUPPORT AND π -COSUPPORT

Let *M* be a *kG*-module.

$$\pi\text{-}\operatorname{supp} M\colon=\{[\alpha]\in\Pi(G)\,|\,\alpha^*(M\otimes_k K)\text{ is not free }\}$$

$$\pi\text{-}\operatorname{cosupp} M\colon=\{[\alpha]\in\Pi(G)\,|\,\alpha^*(\operatorname{Hom}_k(K,M))\text{ is not free }\}$$

 $\{\pi\text{-supp }M\}$ for M finite dimensional kG-modules are precisely the closed sets in $\Pi(G)$.

Theorem (Friedlander-P.'07, BIKP'15)

Let M, N be kG-modules.

[Tensor product formula] π -supp $M \otimes_k N = \pi$ -supp $M \cap \pi$ -supp N

[Function object formula]

 π - cosupp $Hom_k(M, N) = \pi$ - supp $M \cap \pi$ - cosupp N

Two support theories: BIK (co)support and π -(co)support. Identify them \implies prove classification for StMod kGShort (conceptual and elegant) route for finite groups.

Theorem

Finite group schemes

Let G be a finite group, and M be a kG-module. Then π -cosupp $(M) = \emptyset \iff M$ is projective.

Proof: analogue of Dade's lemma for elementary abelian *p*-groups + Chouinard's theorem.

Theorem

Let G be a finite group, and M be a kG-module. Then π - cosupp $M = \operatorname{cosupp} M$ π -supp M = supp M

"Local to Global Principle" (BIK theory) \Longrightarrow to classify localising tensor ideals in StMod kG it suffices to prove Minimality: For any $\mathfrak{p} \in \operatorname{Proj} H^*(G, K)$,

 $\Gamma_{\mathfrak{p}}(\operatorname{StMod} kG) \colon = \{ M \in \operatorname{StMod} kG \mid \operatorname{supp} M \subseteq \mathfrak{p} \}$ is a minimal tensor ideal localising subcategory.

Theorem

Let G be a finite group. Then $\Gamma_{\mathfrak{p}}(\operatorname{StMod} kG)$ is minimal for any $\mathfrak{p} \in \operatorname{Proj} H^*(G, k)$.

Proof. It suffices to show that for any $M, N \not\cong 0$ in $\Gamma_{\mathfrak{p}}(\operatorname{StMod} kG)$, $\operatorname{Hom}_k(N, M) \not\cong 0$.

- $1. M \not\cong 0 \implies \operatorname{End}_k(M) \not\cong 0$
- 2. $\emptyset \neq \operatorname{cosupp}(\operatorname{End}_k(M)) = \operatorname{supp} M \cap \operatorname{cosupp} M \Longrightarrow$
- $\mathfrak{p} \in \operatorname{cosupp} M$
- 3. $\operatorname{cosupp}(\operatorname{Hom}_k(N, M)) = \operatorname{supp} N \cap \operatorname{cosupp} M = \mathfrak{p} \implies \operatorname{Hom}_k(N, M) \ncong 0$
- 4. The end!

Detection of projectivity by π -cosupport for arbitrary finite group scheme is problematic.

Theorem (Super^a generalized Dade's lemma)

"super" = "big and powerful"

Finite group schemes

Let G be a finite group scheme, and M be a kG-module. Then M is *projective* if and only if for every field extension K/k and every flat algebra map $\alpha: K[t]/t^p \to KG$, the $K[t]/t^p$ -module $\alpha^*(M \otimes_k K)$ is projective.

Benson-Carlson-Rickard, Bendel, P., Benson-Iyengar-Krause-P.

Important: holds for infinite-dimensional modules.

Equivalent formulation:

 $M \cong 0$ in StMod $kG \iff \pi$ -supp $M = \emptyset$

Theorem

Finite group schemes

For any finite group scheme G, and any kG-module M, π -supp M = supp M

To prove that $H^*(G, k)$ "stratifies" StMod kG (which implies classification), it suffices to prove minimality of $\Gamma_p(\operatorname{StMod} kG)$.

Theorem

Let $\mathfrak{m} \in \operatorname{Proj} H^*(G, k)$ be a closed point. Then $\Gamma_{\mathfrak{m}}(\operatorname{StMod} kG)$ is minimal.

Proof. Formal from three ingredients:

- π -supp = supp
- π -supp detection of projectivity
- Function Object Formula for π -cosupp

$$\mathfrak{p} \in X = \operatorname{Proj} H^*(G, k)$$

$$\mathfrak{m} \in X_K = \operatorname{Proj} H^*(G_K, K)
\downarrow \qquad \downarrow
\mathfrak{p} \in X = \operatorname{Proj} H^*(G, k)$$

 \mathfrak{m} is a closed point in X_K "lying over" \mathfrak{p} .

Theorem (Reduction to closed points)

$$\Gamma_{\mathfrak{p}}k \in Loc^{\otimes}(\Gamma_{\mathfrak{m}}K\downarrow_{G})$$
. Equivalently, $\Gamma_{\mathfrak{m}}K\downarrow_{G}$ "builds" $\Gamma_{\mathfrak{p}}k$.

Main ingredient: explicit comparison of Koszul objects (= Carlson modules): $\Omega^d(K/\!\!/\mathfrak{m})\downarrow_G \simeq (k/\!\!/\mathfrak{p})_{\mathfrak{p}}$.

Corollary

 $\Gamma_{\mathfrak{p}}$ is minimal for any $\mathfrak{p} \in \operatorname{Proj} H^*(G,k)$. Hence, $H^*(G,k)$ stratifies StMod kG and classification theorem holds.

APPLICATIONS

Finite group schemes

- π -cosupp = cosupp
- π -cosupp detects projectivity of kG-modules

Quiz! What does Dave do once he is done with stratifying?

- Orinks beer
- Orinks whisky
- Orinks Spanish red wine
- Starts costratifying

And the correct answer is 3 and 4 ...no, wait, it is "all of the above".

Theorem

Let G be a finite group scheme. Then $H^*(G,k)$ "costratifies" StMod kG. Hence, there is one-to-one correspondence between colocalising Hom-closed subcategories of StMod kG and subsets of Proj $H^*(G,k)$, given by cosupport.

HAPPY BIRTHDAY, DAVE!