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Summer school: G-finite group; k - field.
Classify thick tensor ideals of stmod kG.

This talk: k - field, G-finite group scheme over k.
Classify localising tensor ideal subcategories of StMod G.

+3

1. Classification of thick tensor ideals of stmod G for G a finite
group scheme (corrected proof)
2. Classification of localising tensor ideal subcategories of
StMod kG for G a finite group (new proof, originally due to

, Ann. of Math. 174 (2011))
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STABLE MODULE CATEGORY

char k = p > 0

Λ = finite dimensional Hopf k-algebra

cocommutative Hopf k-algebra

StMod Λ Objects: (all) Λ-modules
Morphisms: Hom(M,N) = HomΛ(M,N)

PHomΛ(M,N)

stmod Λ - finite dimensional Λ-modules

Λ is Frobenius ⇒ StMod Λ is a tensor triangulated category

Localising subcategory C ⊂ StMod Λ: full triangulated
subcategory closed under arbitrary direct sums.
Thick subcategory C ⊂ stmod Λ: full triangulated subcategory
closed under direct summands.
Tensor ideal: M ∈ C ⇒ N ⊗M ∈ C for any N.
Classify tensor ideal localising subcategories of StMod Λ

Problem: H∗(Λ, k) is not known to be finitely generated!
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Why cocommutative? Geometric interpretation.

Definition
A finite group scheme G over a field k is a functor

G : comm. k-algebras −→ groups

represented by a finite dimensional commutative Hopf
k-algebra k[G].

k[G] is a finite dimensional commutative Hopf k-algebra ⇒
kG := k[G]∗ = Homk(k[G], k) is a finite dimensional,
cocommutative Hopf k-algebra, the group algebra of G


finite group

schemes
G

 ∼


finite dimensional

cocommutative
Hopf algebras

kG


Representations of G over k oo // kG-modules
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EXAMPLES
• Finite groups. kG is the group algebra
• Restricted Lie algebras. For G - algebraic group (GLn, SLn,

Sp2n, SOn), g = LieG.

u(g) = U(g)/〈xp − x[p]〉
restricted enveloping algebra, a finite dimensional
cocommutative Hopf algebra
• Frobenius kernels

G = G(r) = Ker{G Fr
// G }

Frobenius kernels are connected (k[G] is local).
Restricted

Lie algebras
LieG

 ∼


Connected finite group

schemes of height 1
G(1)


u(LieG) ∼= kG(1)
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H∗(G, k) := H∗(kG, k).
To apply geometric methods, work with Proj H∗(G, k)

Theorem (Friedlander-Suslin, 1997)
Let G be a finite group scheme over a field k, and M be a finite
dimensional representation of G. Then H∗(G, k) is a finitely
generated k-algebra, and H∗(G,M) is a finite module over H∗(G, k).

Theorem (Suslin-Friedlander-Bendel, 1997)
Let g be a restricted Lie algebra. Then

Spec H∗(g, k) ∼= Np(g) := {x ∈ g | x[p] = 0}

For G a connected reductive algebraic group, Np(LieG) is
irreducible! Contrast with Quillen stratification theorem for
H∗(G, k) for finite groups.
Moral: there is no family of abelian subgroup schemes
controlling the behavior of H∗(G, k) or stmod kG.
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Theorem ( -P., 2015)
Let G be a finite group scheme over a field k. There is a one-to-one
correspondence

Localising tensor
ideal subcategories

of StMod kG

 ∼
{

Subsets of
Proj H∗(G, k)

}
which restricts to{

Thick tensor ideal
subcategories of stmod kG

}
∼

{
Subsets of Proj H∗(G, k)
closed under specialization

}

CV = {M ∈ StMod kG | supp M ⊂ V} V ⊂ Proj H∗(G, k)oo

C // V =
⋃

M∈C
supp M
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INGREDIENTS OF THE PROOF

Precursors/motivation: Devinatz-Hopkins-Smith (stable
homotopy theory), Hopkins, Neeman, Thomason (CA, AG),
Benson-Carlson-Rickard (Finite groups)

Need theory of supports!
And cosupports
In fact, one theory is not enough; need two:

BIK theory of local cohomology functors (Rickard
idempotents)
π-supports and π-cosupports

Detection of projectivity by π-supports (generalized
Dade’s lemma)
Comparison of Koszul objects (∼ Carlson modules) for
closed and generic points on Proj H∗(G, k)
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BIK SUPPORT/COSUPPORT
X = Proj H∗(G, k)

p ∈ X 7→ Γpk ∈ StMod kG

- “Rickard idempotent”, a universal module with respect to the
classical support variety theory based on the action of H∗(G, k)
on H∗(S,M) (as appeared in J. Carlson’s talk).

For M a kG-module,

supp M : = {p ∈ X |Γpk⊗M is not projective}

cosupp M : = {p ∈ X | Homk(Γpk,M) is not projective}

M ∈ stmod kG +3 supp M = cosupp M =“classical”
support variety.
Good properties: “two out of three”, direct sums, shifts,
detection (supp M = ∅ ⇒M ∼= 0, that is, M is projective).
Lack: good behavior w.r.t tensor products and Homs.
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π-POINTS

Definition
A π-point α of a finite group scheme G defined over field
extension K/k is a flat map of algebras

K[t]/tp

$$

α // KG : kG⊗k K

KU

;;

which factors through some unipotent abelian subgroup
scheme U ⊂ GK.

A finite group scheme U is unipotent if KU is a local algebra
(unipotent finite groups = p-groups).
The map KU→ KG is a map of Hopf algebras, the other two are
just maps of algebras.

11 / 20



Finite group schemes Main theorem Support theories Proof for finite groups General case

FROM π-POINTS TO POINTS ON Proj H∗(G, k)

α : K[t]/tp → KG // H∗(GK,K)
α∗
// H∗(K[t]/tp,K) //

Kerα∗∩H∗(G, k) // pt ∈ Proj H∗(G,k)

Some π - points // same point on Proj H∗(G, k)

α∗ : Mod kG // Mod K[t]/tp , M 7→ α∗(MK).

α : K[t]/tp // KG , β : L[t]/tp // LG

{
α ∼ β

}
ks def +3

{
∀ (fin. dim.) kG−module M,

α∗(MK) is free ks +3 β∗(ML) is free

}
Π(G) : =

〈π−points〉
∼

Theorem (Friedlander-P, 2007)
There is a natural homeomorphism Π(G) ∼= Proj H∗(G, k).
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π-SUPPORT AND π-COSUPPORT

Let M be a kG-module.

π- supp M : = {[α] ∈ Π(G) |α∗(M⊗k K) is not free }

π- cosupp M : = {[α] ∈ Π(G) |α∗(Homk(K,M)) is not free }

{π- supp M} for M finite dimensional kG-modules are precisely
the closed sets in Π(G).

Theorem (Friedlander-P.’07, BIKP’15)
Let M, N be kG-modules.

[Tensor product formula]
π- supp M⊗k N = π- supp M ∩ π- supp N

[Function object formula]
π- cosupp Homk(M,N) = π- supp M ∩ π- cosupp N
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Two support theories: BIK (co)support and π-(co)support.
Identify them +3 prove classification for StMod kG

Short (conceptual and elegant) route for finite groups.

Theorem
Let G be a finite group, and M be a kG-module. Then
π- cosupp(M) = ∅ ks +3 M is projective.

Proof: analogue of Dade’s lemma for elementary abelian
p-groups + Chouinard’s theorem.

Theorem
Let G be a finite group, and M be a kG-module. Then
π- cosupp M = cosupp M
π- supp M = supp M
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“Local to Global Principle” (BIK theory) +3 to classify
localising tensor ideals in StMod kG it suffices to prove
Minimality: For any p ∈ Proj H∗(G,K),
Γp(StMod kG) : = {M ∈ StMod kG | supp M ⊆ p} is a minimal
tensor ideal localising subcategory.

Theorem
Let G be a finite group. Then Γp(StMod kG) is minimal for any
p ∈ Proj H∗(G, k).

Proof. It suffices to show that for any M,N 6∼= 0 in
Γp(StMod kG), Homk(N,M) 6∼= 0.
1. M 6∼= 0 +3 Endk(M) 6∼= 0
2. ∅ 6= cosupp(Endk(M)) = supp M ∩ cosupp M +3

p ∈ cosupp M
3. cosupp(Homk(N,M)) = supp N ∩ cosupp M = p +3

Homk(N,M) 6∼= 0
4. The end!
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CLASSIFICATION FOR FINITE GROUP SCHEMES

Detection of projectivity by π-cosupport for arbitrary finite group
scheme is problematic.

Theorem (Supera generalized Dade’s lemma)
a“super” = “big and powerful”

Let G be a finite group scheme, and M be a kG-module. Then M is
projective if and only if for every field extension K/k and every flat
algebra map α : K[t]/tp → KG, the K[t]/tp-module α∗(M⊗k K) is
projective.

Benson-Carlson-Rickard, Bendel, P., Benson-Iyengar-Krause-P.

Important: holds for infinite-dimensional modules.

Equivalent formulation:
M ∼= 0 in StMod kG ks +3 π- supp M = ∅
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Theorem
For any finite group scheme G, and any kG-module M,
π- supp M = supp M

To prove that H∗(G, k) “stratifies” StMod kG (which implies
classification), it suffices to prove minimality of Γp(StMod kG).

Theorem
Let m ∈ Proj H∗(G, k) be a closed point. Then Γm(StMod kG) is
minimal.

Proof. Formal from three ingredients:
π- supp = supp
π- supp detection of projectivity
Function Object Formula for π- cosupp
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p ∈ X = Proj H∗(G, k)

m_

��

∈ XK

��

Proj H∗(GK,K)

p ∈ X Proj H∗(G, k)

m is a closed point in XK “lying over” p.

Theorem (Reduction to closed points)

Γpk ∈ Loc⊗(ΓmK↓G). Equivalently, ΓmK↓G “builds” Γpk.

Main ingredient: explicit comparison of Koszul objects (=
Carlson modules): Ωd(K//m)↓G ' (k//p)p.

Corollary
Γp is minimal for any p ∈ Proj H∗(G, k). Hence, H∗(G, k) stratifies
StMod kG and classification theorem holds.
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APPLICATIONS

π- cosupp = cosupp
π- cosupp detects projectivity of kG-modules

Quiz! What does Dave do once he is done with stratifying?
1 Drinks beer
2 Drinks whisky
3 Drinks Spanish red wine
4 Starts costratifying

And the correct answer is .... 3 and 4 ...no, wait, it is “all of the
above”.

Theorem
Let G be a finite group scheme. Then H∗(G, k) “costratifies”
StMod kG. Hence, there is one-to-one correspondence between
colocalising Hom-closed subcategories of StMod kG and subsets of
Proj H∗(G, k), given by cosupport.
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HAPPY BIRTHDAY, DAVE!
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