
Presented at ESA Software Product Assurance Workshop, Nordvjik, March 96. Copyright of the authors

RIGOROUSLY ASSESSING SOFTWARE RELIABILITY AND SAFETY

Lorenzo Strigini and Norman Fenton
Centre for Software Reliability, City University, Northampton Square, London EC1V OHB, UK

Tel.: +44 171 477 8421; Fax: +44 171 477 8585; E-mail: l.strigini@csr.city.ac.uk, n.fenton@csr.city.ac.uk

ABSTRACT
This paper summarises the state of the art in the assess-
ment of software reliability and safety ("dependability"),
and describes some promising developments. A sound
demonstration of very high dependability is still impos-
sible before operation of the software; but research is
finding ways to make rigorous assessment increasingly
feasible. While refined mathematical techniques cannot
take the place of factual knowledge, they can allow the
decision-maker to draw more accurate conclusions from
the knowledge that is available.

INTRODUCTION
A quantitative, probabilistic assessment of software
dependability is usually necessary, due to: i) the need to
estimate the effect of potential software defects on the
reliability and safety of the system in which the software
is embedded, and ii) the uncertain knowledge about the
possible defects and the process that activates them,
which can only be described in probabilistic terms. It
may not require that precise probabilities are assigned,
but at least it requires trustworthy statements about
comparisons of probabilities between different scenarios
that the decision-maker has to consider.

THE PROBLEMS WITH SOFTWARE
RELIABILITY ASSESSMENT
An objection to probabilistic assessment is that it is in-
effective, as it must rely on statistical testing, and for
some required reliability levels infeasibly large amounts
of testing would be needed. As a result, in most of the
industry, dependability assessment is limited to a qualita-
tive appraisal of the development process. Probabilities,
if required, are then derived via informal "engineering
judgement". Experimental research in psychology clearly
shows that engineering judgement is trusted much more
than it should be [1, 2]. The likely result are unfounded
claims, and no knowledge of the levels of dependability
actually achieved. Such judgement tends to be coded into
standards and guidelines for the development of critical
software: given a required level of reliability, a standard
prescribes a set of techniques, which are arguably useful
or necessary for achieving that level, but definitely not
sufficient. Standard rules make decision-making simpler
and legally safer, but are practically dangerous when not
based in scientific knowledge.

The problem is in the nature of software failures, which
are due to design defects. When we test a mechanical or
electronic device, we usually enjoy two advantages:

- we are confident that any design defects or systematic
manufacturing defects are either absent, in devices
produced by a well-controlled process from a trusted
design, or, e.g. when testing a new model, can be

revealed by the tests we have chosen. For software,
design defects are the norm, even after testing;

- since the device has continuous behaviour, we can trust
test results in certain operating conditions to be
representative of its behaviour over a range of similar
conditions, and we can accelerate testing by making it
more stressful. This applies not only to failures from
wear and tear, but also to many failures caused by
design defects. The discontinuous nature of software
mostly precludes these advantages.

So, the main basis for trusting a physical product to be
free from defects is trust in the design, manufacture and
testing process. Testing is applied to each new design,
and it is quite effective at detecting residual design de-
fects. As a result, probabilistic assessments of reliability
and safety concentrate on physical failures. This only be-
comes a problem when the design is complex and has
discontinuous behaviour, e.g. in the thinking processes
of human operators, or in the propagation of failures
among subsystems. At the level of complexity of large
industrial plants and aircraft, design defects may thus be a
problem again. Current software standards tend to treat
software as a simple product, where excellence of design
process may ensure the absence of serious defects; yet, all
available evidence indicates that software products are
complex systems, and defects are always present.

We are thus compelled to use the approach of statistical
testing to estimate the failure rate of programs. In this
approach, we attempt to test the software in a way that is
statistically representative of how it will actually be used
in operation. This differs starkly from traditional software
testing methods which focus on fault-finding. One would
hope that, over time, a software production process can
be made more predictable, so that acceptably low failure
rates can be estimated on the basis of the process itself.
This would require both a process that appears reliable
and repeatable, and measured high reliability over its
products. We are aware of only two organisations (the
then IBM unit at Houston and Hitachi in Japan) who
even claim that these factors are already present [3, 4].

Without using any process evidence at all, a plausible
inference process based on statistical testing only
suggests that after N successful test cases, the expected
failure rate of the software is of the order of 1/N [5, 6] .

The following four figures may help to explain the
effects of non-test-based knowledge on dependability
assessment. They represent probability distributions for
the failure rate of a software product: a point on the x
axis represents a value of failure rate. However, they
differ in representing the effects of different process-based
evidence, combined with the same amount of testing.

2

failure rate
Product of "mediocre" process, with evidence
from previous, similar products: distribution of
predicted failure rate, before testing. Expected value of
failure rate: 9 10-5

Risk of failure rate greater than 10-4: 21%

failure rate
Product of "mediocre" process, with evidence
from this product: distribution of predicted failure rate,
after testing. Expected value of failure rate: 3 10-5

Risk of failure rate greater than 10-4: 5%

The first figure represents such a distribution (here just a
plausible, arbitrary distribution, chosen for the sake of il-
lustration), assuming it is predicted from process infor-
mation only, before testing the software. This prediction
could be based on how reliably previous, similar products
of the same process have been observed to behave. We
have assumed a reliability requirement that the failure rate
be no greater than 10-4 per demand. The darkened part of
the graph corresponds to failure rates that do not satisfy
the requirement: its area represents the probability that
the software is too unreliable. This figure represents a
case of somewhat weak process evidence: for instance,

the average failure rate is barely within the required
bound. More importantly, the probability that the actual
failure rate is unsatisfactory, i.e., the project risk, is
21%. This was clearly a risky project.

The second figure takes into account the fact that the
software passed 10,000 tests, i.e., evidence specific to
this individual product, in addition to the generic, process
evidence on which the previous distribution was based.
The new distribution shown has been obtained by a stan-
dard Bayesian procedure (which we discuss in the next
section). The risk of a bad product has decreased to 5 %,
which may be of some reassurance to a customer.

The next two figures describe another distribution prior
to testing. This is clearly more favourable than the first
one, and the risk is "only" 5 %. After testing, the risk
has decreased to 1 %.

failure rate
Product of "improved" process: distribution of
predicted failure rate, before testing. Expected failure
rate: 3 10-5.Risk of failure rate greater than 10-4: 5 %

failure rate
Product of "improved" process: distribution of
predicted failure rate, after testing. Expected failure
rate: 2 10-5. Risk of failure rate greater than 10-4: 1 %

3

We thus see the role of testing in reducing the
probability that a dangerously unreliable product is
deployed, together with the effect that we could expect
from a well-founded knowledge that the process usually
delivers good software.

The demand for assessment methods that are not limited
to statistical testing is clearly justified. Software often
proves much more reliable than it could be claimed to be
on the basis of testing. Qualitative, process-based
assessment attempts to overcome this apparent paradox,
using knowledge that is available to the assessor: the use
of good development methods, the past record of a
development organisation, and so on. The problem is in
the practice of assessment: whatever knowledge is
available is not used in a rigorous manner; and the
available knowledge may not be enough to support the
desired conclusions. An example is given by "maturity
models", like e.g. CMM [7]. It is plausible that applying
the CMM scheme benefits the software industry and its
customers, but not that the benefits include being able to
specify a high CMM level as a contractual requirement
and thus assure a required level of reliability of the
software product. There is no evidence that CMM levels
correlate (across developers) with product reliability. One
of the expected advantages of higher CMM levels, i.e.,
repeatability of the process, would improve the assurance
that can be drawn from process evidence; but this
advantage cannot be realised without statistics of the
reliability actually delivered by the process.

The problem of limited knowledge is actually two-fold:
first, general knowledge about software engineering
methods is very limited [[8-10]; second, reliability
requirements are often so stringent that no amount of
specific knowledge that it is feasible to collect about an
individual product can demonstrate their attainment [6].

SOUND METHODS FOR COMBINING
EVIDENCE
Mathematical techniques for dealing with uncertain
knowledge have existed for a long time. We illustrate
here some of their applications. For instance, the four
figures above demonstrate the use of Bayesian inference,
in updating the beliefs that can be held prior to testing
with the results of testing. Bayesian probabilistic
reasoning is the main tool available for combining
diverse evidence into a reliability assessment. It offers a
language and calculus (not the only one proposed, but the
most mature and well-developed, and arguably the most
convincing) for reasoning about the beliefs that can be
reasonably held, in the presence of uncertainty, about
future events, on the basis of available evidence. Prior
probabilities are thus updated, after new events are
observed, to produce posterior probabilities. By repeating
this process, the implications of multiple sources of
evidence can be calculated in a consistent way. Questions
in software reliability assessment that can be answered
with these techniques are, for instance:

- given that statistical testing is used, with reliability
requirements for which it is practical, what are the
consequences of finding a fault (decreasing confidence
in the product)? Specifically, how should one change

the number of tests required on the software after the
faults is fixed? [11]

- given an estimate of the fault-revealing power of tests,
how can one estimate the reliability of software which
did not fail during testing? [12, 13]

The "prior beliefs" are clearly the most difficult input to
these methods of reasoning. Yet they are necessary to
model sound reasoning. One can avoid them by using
"classical" statistical inference, deriving statements like
"after N successful tests, I have confidence C that the
software has failure rate lower than q". But classical
inference does not model an important part of judgement:
after N successful tests on two programs, the confidence
bounds derived are identical, even if one program is the
professional product of the best developers on the market
and the other program is known to be low-quality work
of unskilled amateurs. It is these additional factors that
must be captured in the choice of prior probabilities.

The most favourable condition is that in which the
evidence from testing is so overwhelming that the prior
beliefs have little weight in comparison. However, as we
have stated, for stringent reliability requirements this is
seldom the case. The prior beliefs must be based on
process-related evidence. As a minimum, one could try to
exploit the available track record of an organisation,
ideally represented by the reliability demonstrated by its
previous products. The paper [14] illustrates a procedure
for this derivation.

It seems desirable to take into account explicitly all the
factors that affect the reliability of a software product:
proficiency of developers, effectiveness of tools, effec-
tiveness of inspections and debug testing, effects of spec-
ification and programming languages, specific difficulties
of an application or a specific project, etc. The usual im-
pediment to using this multiple evidence has been that
the reasoning needed is overly complex. However, com-
puter tools for manipulating so-called Bayesian belief
networks (BBNs for brevity) have pushed back the
boundary of the problems that can be attacked. BBNs
offer a visually intuitive language for representing
probabilistic relationships between events. Their use
will be illustrated by a couple of examples. The impor-
tance of this language lies in the fact that it is intuitive
enough to help in manipulating and communicating
complex webs of inference, and yet it has a rigorous,
mathematical meaning so that software tools can inter-
pret it and perform the complex calculations needed in its
use.

Our preliminary investigations on Bayesian belief
networks show great promise of making dependability
assessment easier to describe, and thus to check,
communicate and audit [15, 16].

Two examples of BBNs are illustrated below. The first
one (from [15]) uses comparatively little evidence,
depending only on the observed reliabilities and defect
counts of previous products of the same process, and on
the defects discovered in the current product during
debugging. The topology of the graph is used to indicate
probabilistic relationships among the variables described
in the nodes. For instance, knowing the number of faults
present in the product before debugging (top node in the
graph) would allow one to state the probabilities of

4

finding one, two, etc., faults during debugging. This
conditional probability distribution (representing one's
knowledge about the fault-finding effectiveness of the
debug process), as well as the probability distribution for
the number of faults present, and conditional probability
distributions for all the other nodes, are represented in
data structures associated with the graph: via the graph
plus these distributions, one represents previous
knowledge about the product to be assessed (including the
process that produced it).

Faults
found in

debugging

Faults in
product before

debugging

Faults in
delivered
product

Failures during
operational life

of product

Failures in
acceptance

testing

Prob. of failure per demand of
delivered product

This previous knowledge thus implies prior probabilities
for the values of each variable (i.e., each node) in the
belief network. When an event (value of a variable) is
actually observed, all these can be updated, using Bayes'
theorem, obtaining posterior probabilities that take into
account the events observed. Both calculations can be
performed automatically by software tools.

Bayesian nets also allow an injection of scientific rigour
when these probability distributions are simply "expert
opinions". A BBN will derive all the implications of the
beliefs input to it, and some of these implications are
statements of fact that can be checked against the ob-
served reality of a software project, or simply against the
experience of the experts and decision makers themselves.
The second BBN shown, from [17], includes some more
subjective indicators, like problem complexity. Thus,
this network is meant to be populated with probabilities
that are not all derived from statistical inference, but at
least in part from "expert opinion". the advantage of
using belief networks is then that of checking the
consistency of one's beliefs and one's decisions.

The ability, through BBNs, to make one's assumptions
and detailed reasoning explicit and check their consistency
(internal as well as with other known facts and experience
of the experts), may substantially improve the way the
available information is used in decision making.

actual
design

complexity

testing
effort

detected
faults

estimated
design

complexity

assessor
skillresidual

faults

design
effort

actual
problem

complexity

injected
faults

assessor
skill

estimated
problem

complexity

THE NEED FOR MEASUREMENT
Methods like Bayesian calculus, assisted by software
tools, allow us to make the best use of the complex evi-
dence available - our factual knowledge about a software
product - in predicting software dependability. Our abil-
ity to predict very high dependability would thus no
longer be limited by the complexity of reasoning about
such complex knowledge, but by the extent of the
knowledge itself. Apart from the direct knowledge that
comes from statistical testing, our knowledge on the im-
pact of process factors on dependability consists of data
about their relationship with observed dependability in
classes of products. Such data are now scarce and incon-
clusive. Some progress can be expected from the increas-
ing popularity of measurement programmes within the
industry. If sound, such programmes will allow compa-
nies to document the effectiveness of the methods they
use: confidence in claims derived from process-related ev-
idence will increase. The degree and importance of this
increase can be calculated through formalised, computer-
aided reasoning techniques like BBNs.

A well managed software development project could have
available a wealth of potentially important quantitative
information to support safety assessment: data from
testing; fault and change reports from various project
phases; test results including coverage measures; outputs
from static analysis or metrics tools; various internal
system quality indicators such as modularity measures;
measures of effort associated with various project phases;
last but not least, historical evidence of efficacy of tools
and techniques. In particular, good data about software
defects and changes, with adequate records of previous

5

projects, can provide important quantitative information
on which to base a reliability assessment or safety case.

Measurement of appropriate indicators during projects has
been shown to help in project management, in particular
early detection of problems [18, 19]. However, before it
can be used for usefully strong predictions of reliability,
it must have been applied to enough projects to collect
some useful experience. In other words, introducing
measurement practices can produce an immediate payoff
in achieving quality (including reliability) but only a
delayed payoff in the ability to predict markedly higher
levels of operational dependability. In the short term,
direct evidence (from statistical testing) will still be the
only basis for strong predictions, and these will be
limited by the amount of testing that is feasible.

DECISIONS WITH LIMITED DATA
As we pointed out earlier, Bayesian methods allow
rigorous reasoning with uncertain knowledge, irrespective
of whether abundant statistical data are available.
However, they require the problem to be fully described
in probabilistic terms, which may be difficult for an
untrained user. Rigorous methods for structuring one's
decision are also available for situations in which the
available knowledge is more difficult to express in terms
of probabilities, as those studied in the field of Multi-
Criteria Decision Aid (MCDA) [20, 21].

There are three classes of methods which come under the
umbrella of MCDA. The most well known is multiple
attribute utility theory (MAUT). All the methods in this
class attempt to optimise some utility function, defining
a strict order over the set of all possible decisions. One
such method is the Analytical Hierarchy Process [22].
This was used in the SHIP project to assess dependability
of PLC’s [23, 24]. It was also used [25] to assess
(theoretically) the ‘best’ way to improve safety on the
Space Shuttle. The problem with MAUT is that, in
forcing a strict order over the set of decisions, it makes
very strong assumptions about the underlying criteria; in
particular, there is an assumption that the criteria are
measurable on a ratio (rather than simply an ordinal)
scale. This is generally unrealistic for software
dependability assessment. Thus we have experimented
with a second class of MCDA methods called outranking
methods , which depend on much less stringent
assumptions. The result is that you get a partial (as
opposed to a strict) order over the set of decisions. This
then means that your choice is narrowed down to the set
of decisions which are optimal in the partial ordering.
The third class of MCDA methods are the interactive
methods whereby the set of decisions is incrementally
narrowed by interactive techniques (after each ‘round’ the
decision maker is asked to input additional information).

These methods allow the decision-maker to articulate re-
quirements and decision criteria, and choose among avail-
able alternatives in a sensible way: while they do not of-
fer "optimality" in the same sense that Bayesian decision
theory does, they do prevent most of the inconsistencies
commonly associated with such decision-making.

STANDARDS AND GUIDELINES
These considerations also have implications for standards
and guidelines applied to the development and procure-

ment of critical software. It is now impossible to pre-
scribe sets of techniques that will guarantee a certain
level of reliability. Standards are useful for setting mini-
mum requirements (although standard-makers should be
wary of prescribing detailed techniques and thus possibly
impeding the adoption of better alternatives), and must
certainly be continuously updated as new findings recom-
mend the use of a specific technique over another, or in-
crease the confidence that can be derived from a specific
technique. But we should not expect some methodologi-
cal breakthrough to eliminate the uncertainty in software
dependability assessment. We should, rather, expect our
uncertainty to be slowly reduced. There is a danger for
customers and regulators in a "prescriptive" approach,
which effectively allows a software developer to state "I
complied with all the prescriptions in the standard, there-
fore my software must be considered acceptable". They
may be better advised to adopt an approach more similar
to the "safety case" now typical of, e.g., the offshore in-
dustry. The developer would then have to build a con-
vincing argument explicitly linking the relevant evidence
with the claim that the software is acceptable (i.e.., pre-
sents a sufficiently low risk) for its use. These arguments
would be organisation- and application-specific, thus tak-
ing into account factors, like quality of personnel, that
are extremely important but difficult to treat in a pre-
scriptive fashion. They would depend on data collected in
comparable circumstances, typically within the same or-
ganisation. Tools like BBNs would make the argument
easier to check and negotiate between the parties.

A useful addition to current standards would be directives
for collecting and analysing reliability data, and thus fos-
tering both continuous improvement and better assess-
ment. In addition to project history data, the monitoring
of actual operation is highly desirable: for instance, on-
line recording of failures (e.g., discrepancies in voted sys-
tems); logging of periods of operation of a system, of its
modes of operation and of the failures observed, and anal-
ysis of their causes. These activities benefit the industry
in the long term, but may be difficult to justify among
the costs of an individual project, unless there is a con-
sensus (a standard) on their desirability. Over time, the
collected data would produce useful knowledge like, for
instance, the spread in reliability to be expected for a
given subsystem in different uses, or the likelihood that a
"formal verification" method actually guarantees a prod-
uct free from design faults of the pertinent class, as a
function of the complexity of the product.

CONCLUSIONS
We have recalled the reasons of the problems which
afflict software reliability assessment, and why only
direct evidence of observed reliability can produce strong
predictions about future reliability. The source of all
problems is the simple fact that the strength of these
predictions is actually commensurate to the effort spent
in observation (testing effort, or time in actual
operation).

We have unavoidably been led to point at the paucity of
the knowledge on which predictions, as well as project
decisions, have now to be based, and hence to the need
for better measurement.

6

We have described two rigorous approaches (BBNs and
MCDA) which can be used to combine evidence to sup-
port a safety assessment, irrespective of what particular
measurement data are known. In both approaches the very
act of modelling reaps an immediate dividend in terms of
visibility of assumptions and arguments. This makes for
sounder reasoning, after which the second advantage of
these methods, the availability of computer support, can
be used for the complex calculations that derive the con-
sequences of such reasoning.

What are direct implications of these considerations for
the space industry in particular? They are not very
different from those for any other industry that sees its
dependence on software increase together with the size
and complexity of the software it uses:

- need for more measurement. Both development
organisations and client organisations need to chart
where they stand and where they are steering from
there;

- need for realistic requirements. If a system design
imposes software reliability requirements which, upon
examination, can be satisfied with a probability of 99
%, or even 80 % or 50 %, the software development
organisation may be stimulated to well reasoned steps
to improve quality and reduce risk. If instead the
reliability required is so high that the chance of
obtaining it is small and uncertain, the software
developers can certainly do their best to achieve it, but
any attempt to rational decisions and assessment will
be discouraged in favour of defensive hand waving,
invoking the protection of standards, and "playing the
number game" . A customer or regulator that accepts
such a system design is asking to be deceived.

In summary, more emphasis on collecting hard evidence
and using it well would allow possibly more modest
claims, but sounder decisions.

ACKNOWLEDGEMENTS
This work was funded in part by ESPRIT Long Term
Research Project 20072 "DeVa", and by the U.K.
EPSRC and DTI through the DATUM project (grant
GR/H89944, project number IED4/19314).

REFERENCES
[1] L. Strigini, “Limiting the Dangers of Intuitive
Judgment in Decision Making,” IEEE Software, "Quality
Time", January, pp. 101-103, 1996.
[2] P. Ayton, “On the Competence and Incompetence of
Experts", in Expertise and Decision Support, G. Wright
and F. Bolger, Eds.: Plenum Press, 1993, pp. 77-105.
[3] K. Yasuda and K. Koga, “Product development and
quality in the software factory", in Software Quality
Assurance and metrics: A Worldwide perspective, N. E.
Fenton, R. W. Whitty, and Y. Iizuka, Eds.: International
Thomson Press, 1995, pp. 195-205.
[4] T. Keller, “Measurements role in providing "error-
free" onboard shuttle software", 3rd Intl Applications of
Software Metrics Conference, La Jolla, California, 1992.
[5] K. W. Miller, L. J. Morell, R. E. Noonan, S. K.
Park, D. M. Nicol, B. W. Murrill, and J. M. Voas,
“Estimating the Probability of Failure When Testing

Reveals No Failures", IEEE Transactions on Software
Engineering, vol. 18, pp. 33-43, 1992.
[6] B. Littlewood and L. Strigini, “Validation of Ultra-
High Dependability for Software-based Systems",
Communications of the ACM, vol. 36, pp. 69-80, 1993.
[7] M. Paulk, W. C. V., and B. Curtis, The Capability
Maturity Model for Software: Guidelines for
Improving the Software Process,: Addison Wesley, 1994.
[8] N. Fenton, “How effective are software engineering
methods?", Journal of Systems and Software, vol. 20,
pp. 93-100, 1993.
[9] N. Fenton, “Software Measurement: a Necessary
Scientific Basis", IEEE TSE, vol. SE-20, pp. 199-206,
1994.
[10] N. Fenton, S. Pfleeger, and R. Glass, “Science and
Substance: A Challenge to Software Engineers", IEEE
Software, July, pp. 86-95, 1994.
[11] B. Littlewood and D. Wright, “On a Stopping Rule
for the Operational Testing of Safety Critical Software",
25th Annual International Symposium on Fault
-Tolerant Computing), Pasadena, 1995.
[12] A. Bertolino and L. Strigini, “On the use of
testability measures for dependability assessment", IEEE
TSE, vol. 22, pp. 97-108, 1996.
[13] A. Bertolino and L. Strigini, “Predicting Software
Reliability from Testing Taking into Account Other
Knowledge about a Program", to be presented at Proc.
Quality Week '96, San Francisco, 1996.
[14] B. Littlewood and D. Wright, “A Bayesian model
that combines disparate evidence for the quantitative
assessment of system dependability", presented at
SafeComp95, Belgirate, Italy, 1995.
[15] K. A. Delic, F. Mazzanti, and L. Strigini,
“Formalising a software safety case via belief networks",
SHIP Project Technical Report T046, July 1995.
[16] M. Neil, B. Littlewood, and N. Fenton, “Applying
Bayesian Belief Networks to Systems Dependability
Assessment", Proc. Fourth Safety-Critical Systems
symposium, Leeds, U.K., 1996.
[17] N. E. Fenton, “The role of measurement in software
safety assessment", , Report DATUM/CSR/11, 1995.
[18] S. Henry, C. Selig, “Design metrics which predict
source code quality", IEEE Software, March, 1990.
[19] O. Johansson and C. Nord, “Using predictions to
improve software reliability", Ericsson Review, vol. 1,
pp. 30-35, 1995.
[20] N. E. Fenton, “Multi-criteria Decision Aid; with
emphasis on its relevance in dependability assessment",
Report CSR DATUM/CSR/02, 1995.
[21] P. Vincke, Multicriteria Decision Aid. New York: J.
Wiley, 1992.
[22] T. Saaty, The Analytic Hierarchy Process. New
York: McGraw Hill, 1980.
[23] A. Auer, “A judgement and decision making
framework", SHIP Project Report SHIP/T/013, 1994.
[24] A. Vaisanen, A. Auer, and J. Korhonen,
“Assessment of the safety of PLCs: Janiksenlinna water
plant study", SHIP Project Report SHIP/T/033, 1994.
[25] M. V. Frank, “Choosing among safety
improvement strategies: a discussion with example of
risk assessment and multi-criteria decision approaches for
NASA", Reliability Engineering and System Safety, vol.
49, pp. 311-324, 1995.

