Maths for Actuarial Science Coursework 1

This is an assessed coursework, and will count towards your final grade. Solutions should be handed in to the mathematics general office (C123) by 3:00pm on Thursday 12th November. Late submissions will be penalised.

1. Solve the equation

$$
\begin{equation*}
\left|\frac{x-1}{x+2}\right|<\left|\frac{x+1}{x-2}\right| . \tag{10}
\end{equation*}
$$

2. (i) Find an equation for the ellipse with foci at $(3,5)$ and $(3,7)$ and major axis of length 6.
(ii) Explain why for any circle C and point P outside it, the lengths of the two tangents from C to P are always equal.
3. (i) Using the identities for $\cos A+\cos B$, and for $\cos ^{2} C$ in terms of $\cos 2 C$, show that for any values of α, β, γ we have

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2}(\alpha+\beta+\gamma)=2(1+\cos (\beta+\gamma) \cos (\gamma+\alpha) \cos (\alpha+\beta))
$$

(ii) Find in terms of π the general solutions to

$$
\sin 5 \theta+\sin \theta=\sin 3 \theta
$$

4. (i) Differentiate the following functions:
(a) $(1+3 x)^{2} \ln (1+3 x)$
(b) $\tan ^{2}\left(x^{3}+1\right)$.
(ii) Find the second derivative (with respect to x) of the function

$$
x=t^{2}+t+1 \quad y=\ln (t)
$$

5. Evaluate the following integrals:
(a) $\int \frac{x+2}{1-4 x^{2}} d x$
(b) $\int_{0}^{1} \frac{2 x}{\sqrt{2 x+1}} d x$
