Mathematics for Actuarial Science 1

1. Given that
\[cx = \sqrt{\left(ax^2 - b \right) \left(\frac{c}{d} \right)} \]
express \(x \) in terms of \(a, b, c, \) and \(d \).

2. If \(x = p + \sqrt{q} \) where \(p \) and \(q \) are rational, show that \(x^2 \) and \(x^3 \) are of the form \(P + Q \sqrt{q} \), where \(P \) and \(Q \) are rational.

3. Verify that \(z = (4 + \sqrt{15})^3 + (4 - \sqrt{15})^3 \) satisfies
\[z^3 - 3z - 8 = 0. \]

4. Expand \((2-3x)^5\), arranging your answer in ascending powers of \(x \) with integer coefficients.

5. Given that \((1+2x)^2 = 1 + Ax + Bx^2 + Cx^3 + \cdots\), find the values of \(A, B, \) and \(C \).

6. Show that
\[\left(x + \frac{1}{x}\right)^3 + \left(x - \frac{1}{x}\right)^3 = 2x^3 + \frac{6}{x}. \]

7. Calculate the value of the term independent of \(x \) in the expansion of \((x^2 - \frac{3}{4})^6\).

8. Show that
\[\frac{(2n)!}{n!} = 2^n \cdot 1.3.5 \cdots (2n - 1). \]

9. (**) Write down the general term in the expansion of \((1 + x)^n\). Use the identity
\[(1 + x)^m(1 + x)^n = (1 + x)^{m+n} \]
to prove that
\[a'C_0 + a'C_{-1}C_1 + a'C_{-2}C_2 + \cdots + a'C_r = aC_r. \]

10. Solve the equation \(\frac{1}{x} + \frac{1}{x^2} = 2 \).

11. Given that \(\alpha \) and \(\beta \) are roots of the equation \(x^2 + 3x - 6 = 0 \), find a quadratic equation with integer coefficients whose roots are \(\frac{\alpha}{n} \) and \(\frac{\beta}{n} \).

12. Find the set of values of \(k \) for which the equation \(x^2 + kx + (3-k) = 0 \) has real roots.

In the case when \(k = 5 \), the roots of the equation are \(\alpha \) and \(\beta \). Without calculating the values of \(\alpha \) and \(\beta \), find

(a) the value of \(\alpha^2 + \beta^2 \);

(b) a quadratic with roots \(\alpha^2 + 3\beta \) and \(\beta^2 + 3\alpha \).

13. Divide \(x^6 + 5x^5 + 11x^4 + 13x^3 - 3x^2 - 8x + 5 \) by \(x^2 + 2x + 5 \).

14. Show that \(x - 4 \) is a factor of \(f(x) = x^6 - 8x^2 + 29x - 52 \). Factorise \(f(x) \) and show that the equation \(f(x) = 0 \) has only one real root.

15. Use the remainder theorem to find a factor of \(f(x) = 2x^3 - 9x^2 + 7x + 6 \), and hence factorise \(f(x) \) into its linear factors.

16. The function \(f(x) \) is given by \(f(x) = x^3 + ax^2 - 4x + b \), where \(a \) and \(b \) are constants.

Given that \(x - 2 \) is a factor of \(f(x) \) and that there is a remainder of 6 when \(f(x) \) is divided by \(x - 1 \), find the values of \(a \) and \(b \).

17. Show that
\[\frac{1}{1+x} + \frac{8}{2-x} + \frac{12}{(2-x)^2} = \frac{kx^2}{(1+x)(2-x)^2} \]
where \(k \) is an integer to be determined.

18. Express
\[\frac{1 + 3x^2}{(1+x)^2(1+3x)} \]
in partial fractions.

19. Express
\[\frac{1 - 2x + 5x^2}{(1-2x)(1+x^2)} \]
in partial fractions.

20. (**) Express \(x^4 - 4x^2 + 16 \) in the form
\[(x^2 + Ax + B)(x^2 + Cx + D) \]
where \(A, B, C, \) and \(D \), are real constants. Hence express
\[\frac{1}{x^4 - 4x^2 + 16} \]
in partial fractions.

21. (**) Express
\[\frac{x^5 - 1}{x^2(x^3 + 1)} \]
in partial fractions.