Mathematics for Actuarial Science 1

1. Given that

$$
c x=\sqrt{\left(\frac{a x^{2}-b}{d}\right)}
$$

express x in terms of a, b, c, and d.
2. If $x=p+\sqrt{q}$ where p and q are rational, show that x^{2} and x^{3} are of the form $P+Q \sqrt{q}$, where P and Q are rational.
3. Verify that $z=(4+\sqrt{15})^{\frac{1}{3}}+(4-\sqrt{15})^{\frac{1}{3}}$ satisfies

$$
z^{3}-3 z-8=0 .
$$

4. Expand $(2-3 x)^{5}$, arranging your answer in ascending powers of x with integer coefficients.
5. Given that $(1+2 x)^{22}=1+A x+B x^{2}+C x^{3}+\cdots$, find the values of A, B, and C.
6. Show that

$$
\left(x+\frac{1}{x}\right)^{3}+\left(x-\frac{1}{x}\right)^{3}=2 x^{3}+\frac{6}{x}
$$

7. Calculate the value of the term independent of x in the expansion of $\left(x^{2}-\frac{3}{x}\right)^{6}$.
8. Show that

$$
\frac{(2 n)!}{n!}=2^{n} \cdot 1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n-1)
$$

9. $(*)$ Write down the general term in the expansion of $(1+x)^{n}$. Use the identity

$$
(1+x)^{m}(1+x)^{n}=(1+x)^{n+m}
$$

to prove that

$$
{ }_{m} C_{r}+{ }_{m} C_{r-1 \cdot n} C_{1}+{ }_{m} C_{r-2 \cdot n} C_{2}+\cdots+{ }_{n} C_{r}={ }_{n+m} C_{r} .
$$

10. Solve the equation $\frac{1}{x}+\frac{1}{3 x-2}=2$.
11. Given that α and β are roots of the equation $x^{2}+3 x-6=0$, find a quadratic equation with integer coefficients whose roots are $\frac{2}{\alpha}$ and $\frac{2}{\beta}$.
12. Find the set of values of k for which the equation $x^{2}+k x+(3-k)=0$ has real roots. In the case when $k=5$, the roots of the equation are α and β. Without calculating the values of α and β, find
(a) the value of $\alpha^{3}+\beta^{3}$;
(b) a quadratic with roots $\alpha^{2}+3 \beta$ and $\beta^{2}+3 \alpha$.
13. Divide $x^{6}+5 x^{5}+11 x^{4}+13 x^{3}-3 x^{2}-8 x+5$ by $x^{2}+2 x+5$.
14. Show that $x-4$ is a factor of $f(x)=x^{3}-8 x^{2}+29 x-52$. Factorise $f(x)$ and show that the equation $f(x)=0$ has only one real root.
15. Use the remainder theorem to find a factor of $f(x)=2 x^{3}-9 x^{2}+7 x+6$, and hence factorise $f(x)$ into its linear factors.
16. The function $f(x)$ is given by $f(x)=x^{3}+a x^{2}-4 x+b$, where a and b are constants. Given that $x-2$ is a factor of $f(x)$ and that there is a remainder of 6 when $f(x)$ is divided by $x+1$, find the values of a and b.
17. Show that

$$
\frac{1}{1+x}-\frac{8}{2-x}+\frac{12}{(2-x)^{2}}=\frac{k x^{2}}{(1+x)(2-x)^{2}}
$$

where k is an integer to be determined.
18. Express

$$
\frac{1+3 x^{2}}{(1+x)^{2}(1+3 x)}
$$

in partial fractions.
19. Express

$$
\frac{1-2 x+5 x^{2}}{(1-2 x)\left(1+x^{2}\right)}
$$

in partial fractions.
20. (*) Express $x^{4}-4 x^{2}+16$ in the form

$$
\left(x^{2}+A x+B\right)\left(x^{2}+C x+D\right)
$$

where A, B, C, and D, are real constants. Hence express

$$
\frac{1}{x^{4}-4 x^{2}+16}
$$

in partial fractions.
21. (*) Express

$$
\frac{x^{5}-1}{x^{2}\left(x^{3}+1\right)}
$$

in partial fractions

