Mathematics for Actuarial Science 4

1. Differentiate the following functions with respect to x:

(a)
$$4x^3 - 2x^2 + 1 + x^{-2}$$
,

(b)
$$\cos(3x+2)$$
,

(c)
$$\frac{x}{x^2+1}$$
,

(d)
$$x \ln x$$
,

(e)
$$\sqrt{1+x^2}$$
,

(f)
$$e^x \cos(x^2)$$
,

(g)
$$\frac{x-8}{(x+2)(2x-1)}$$
,

(h)
$$x^{e^x}$$
,

(i)
$$\cos(\tan(x^2))$$
,

2. Differentiate the following functions with respect to x:

(a)
$$x^3 + 3xy^2 - 2xy + x^{-4}y^{-3} = 0$$
,

(b)
$$\cos(x)\sin(y) = 1$$
,

(c)
$$\cos(y\tan(x)) = \ln(xy)$$
,

(d)
$$\frac{x+2\sin(y)+4}{(x-y)} = \cot(y)$$
,

(e)
$$y \tan(x^{-1}) + x \sec(y^{-1}) = e^x$$
,

3. Differentiate the following functions with respect to x:

(a)
$$x = t^2 + 2t + 1$$
, $y = 7t^3$,

(b)
$$x = \cos(t), y = \cot(t),$$

(c)
$$x = \ln(\sqrt{1+2t^2}), y = t^3 + t$$
,

(d)
$$x = \cos(t)e^{t^2}$$
, $y = \sin(t)e^{-t^2}$,

(e)
$$x = \frac{1}{\ln(t)}, y = 3\tan(4t).$$

4. Given that $y = e^{-x} \sin(x\sqrt{3})$, prove that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -2e^{-x}\sin\left(x\sqrt{3} - \frac{\pi}{3}\right).$$

Show also that $\frac{d^3y}{dx^3} = ky$ for some constant k, and state the value of k.

5. If
$$f(x) = 3 - \frac{x^2}{4} + \ln(\frac{x}{2})$$
,

(a) show that there is a root α of f(x) = 0 such that $0.09 < \alpha < 0.1$

(b) find
$$f'(x)$$
 and obtain the value of β such that $f'(\beta) = 0$.

6. (*) If $y = \ln \left(1 + \sqrt{(1+x)}\right)$, show that

$$4x\frac{d^2y}{dx^2} + 4\frac{dy}{dx} = (1+x)^{-\frac{3}{2}}.$$