Mathematics for Actuarial Science 6

1. Calculate

$$
\text { (a) } \int x \ln x d x \quad \text { (b) } \int x(\ln x)^{2} d x
$$

2. Calculate
(a) $\int \sqrt{3 x+8} d x$
(b) $\int(3 x+8) e^{x} d x$
(c) $\int 3 x \sqrt{3 x+8} d x$.
3. (a) Given that $2 y=x-\sin x \cos x$, show that $\frac{d y}{d x}=\sin ^{2} x$.
(b) Hence find

$$
\int x \sin ^{2} x d x
$$

4. Calculate

$$
\int_{0}^{\pi} x^{2} \cos 3 x d x
$$

5. Let I_{n} stand for the integral $\int x^{n} e^{2 x} d x$. Use integration by parts to give a formula relating I_{n} to I_{n-1}. Use this result to find I_{4}.
6. The curve with equation $y=e^{3 x}+1$ meets the line $y=8$ at the point $(h, 8)$.
(a) Find h, giving your answer in terms of natural logarithms.
(b) Show that the area of the finite region enclosed by the curve with equation $y=$ $e^{3 x}+1$, the x-axis, the y-axis, and the line $x=h$, is $2+\frac{1}{3} \ln 7$.
7. The graph of $y=x\left(4-x^{2}\right)$ is illustrated below for $x \geq 0$. Find the exact value of k for which the areas above and below the x-axis are equal.

8. Curves C and D have equations $y=\frac{1}{x}$ and $y=k x^{2}$ respectively, where k is a constant. The curves intersect at the point P, whose x-coordinate is $\frac{1}{2}$.
(a) Determine the value of k.
(b) Find the gradient of C at P.
(c) Calculate the area of the finite region bounded by C, D, the x-axis, and the line $x=2$.
9. Simplify $\tan \left(\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{4}\right)$
10. Solve the equation

$$
\sin ^{-1}\left(\frac{x}{x-1}\right)+2 \tan ^{-1}\left(\frac{1}{x+1}\right)=\frac{\pi}{2} .
$$

11. Calculate

$$
\int \frac{3}{2 x^{2}+5} d x
$$

