Mathematics for Actuarial Science 6

1. Calculate
 (a) \(\int x \ln x \, dx \)
 (b) \(\int x (\ln x)^2 \, dx \).

2. Calculate
 (a) \(\int \sqrt{3x + 5} \, dx \)
 (b) \(\int (3x + 8) e^x \, dx \)
 (c) \(\int 3x \sqrt{3x + 5} \, dx \).

3. (a) Given that \(2y = x - \sin x \cos x \), show that \(\frac{dy}{dx} = \sin^2 x \).
 (b) Hence find \(\int x \sin^2 x \, dx \).

4. Calculate
 \(\int_0^\pi x^2 \cos 3x \, dx \).

5. Let \(I_n \) stand for the integral \(\int x^n e^x \, dx \). Use integration by parts to give a formula relating \(I_n \) to \(I_{n-1} \). Use this result to find \(I_4 \).

6. The curve with equation \(y = e^{3x} + 1 \) meets the line \(y = 8 \) at the point \((b, 8) \).
 (a) Find \(b \), giving your answer in terms of natural logarithms.
 (b) Show that the area of the finite region enclosed by the curve with equation \(y = e^{3x} + 1 \), the \(x \)-axis, the \(y \)-axis, and the line \(x = b \), is \(2 + \frac{1}{3} \ln 7 \).

7. The graph of \(y = x(4 - x^2) \) is illustrated below for \(x \geq 0 \). Find the exact value of \(k \) for which the areas above and below the \(x \)-axis are equal.

8. Curves \(C \) and \(D \) have equations \(y = \frac{1}{4} \) and \(y = kx^2 \) respectively, where \(k \) is a constant. The curves intersect at the point \(P \), whose \(x \)-coordinate is \(\frac{1}{2} \).
 (a) Determine the value of \(k \).
 (b) Find the gradient of \(C \) at \(P \).
 (c) Calculate the area of the finite region bounded by \(C \), \(D \), the \(x \)-axis, and the line \(x = 2 \).

9. Simplify \(\tan(\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{4}) \).

10. Solve the equation \(\sin^{-1} \left(\frac{x}{x + 1} \right) + 2 \tan^{-1} \left(\frac{1}{x + 1} \right) = \frac{\pi}{2} \).

11. Calculate \(\int \frac{3}{2x^2 + 5} \, dx \).