
1.7 Sums of series

We often want to sum a series of terms, for example when we look at
polynomials. We abbreviate a sum of the form

u1 + u2 + · · ·+ ur by
r∑

i=1

ui .

For example

anxn + an−1xn−1 + · · ·+ a1x + a0 =
n∑

i=0

aix i

and

(a + b)n =
n∑

i=0

(
n
i

)
an−ibi .
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Suppose that ui = a + (i − 1)d , so that ui with i ≥ 1 form an arithmetic
progression (AP) with initial value a and common difference d . Then∑n

i=1 ui = a + (a + d) + · · ·+ (a + (n − 1)d)
= na + d + 2d + · · ·+ (n − 1)d
= na + d n(n−1)

2 = 1
2n(2a + (n − 1)d).

Next suppose that ui = ar i−1, so that ui with i ≥ 1 form a geometric
progression (GP) with initial value a and common ratio r . Then

n∑
i=1

ui = a + ar + · · ·+ arn−1 =

{
na if r = 1
a(1−rn)

1−r if r 6= 1.

(To verify the second case, rearrange the expression for 1n − rn given
in Section 1.5.)
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We can also sum certain series of powers of consecutive integers:

n∑
i=1

i =
n(n + 1)

2

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6

n∑
i=1

i3 =
n2(n + 1)2

4
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Example 1.7.1: The fourth term in a geometric progression is 7 and
the seventh is 4. Find the sum S18 of the first eighteen terms.

We have u4 = ar3 = 7 and u7 = ar6 = 4. Therefore

ar6

ar3 =
4
7

and so r =

(
4
7

) 1
3

.

Substituting into the expression for u4 we deduce that a = 49
4 . Then

S18 =

(
49
4

)
1− (4

7)
18
3

1− (4
7)

1
3

=

(
49
4

)
1− (4

7)6

1− (4
7)

1
3

.
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Example 1.7.2: Find the sum Sn of the squares of the first n even
integers greater than zero.

Sn = 22 + 42 + · · ·+ (2n)2

=
n∑

k=1

(2k)2 =
n∑

k=1

4k2 = 4
n∑

k=1

k2

=
4
6

n(n + 1)(2n + 1).
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2. Real functions of one variable

2.1 General definitions

A real function is a rule that assigns to each real number in some set
another real number, in a unique fashion. The set of inputs is called
the domain of the function, and the set of outputs is called the range or
image.

Usually we talk about a function going from one set to another without
guaranteeing that every value in the latter set occurs as an output of
the function. We refer to such a target set as the codomain. Thus the
range is a subset of the codomain.
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Let Df be the domain of f , with codomain Cf and range Rf . We write
this as

f : Df −→ Cf or f : x 7−→ f (x)

where x ∈ Df (and f (x) ∈ Cf ). This has the advantage over the form
f (x) = · · · that we do not need to give an explicit formula for f .

Example 2.1.1: Let f (x) = x2 with x ∈ R.

This has domain R, i.e. −∞ < x < ∞, and range the set of y with
y ≥ 0.

Example 2.1.2: Take f as in the preceding example, but with
−1 ≤ x ≤ 2.

This has domain −1 ≤ x ≤ 2 and range 0 ≤ y ≤ 4.
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The graph of a function is the set {(x , y) : y = f (x), x ∈ Df} which is a
subset of the plane R2. We often represent this graphically.

Example 2.1.3: The graph for Example 2.1.2 is {(x , x2) : −1 ≤ x ≤ 2}

10−1 2

1

4
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If the domain of a function is not specified, we assume that it is the
largest set of real numbers on which the function is defined.

Example 2.1.4: Specify the domain and range of f (x) = 1
x−2 .

Domain: any real number except 2.
Range: Can we solve y = 1

x−2?
No if y = 0. If y 6= 0 then

1
y

= x − 2 and x = 2 +
1
y

.

Therefore the range is all real numbers
except zero.
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The composition of two functions f and g, written f ◦ g, or just fg, is the
function defined by

(f ◦ g)(x) = f (g(x)).

This only makes sense if g(x) is contained in the domain of f , so the
domain of f ◦ g is the set of all x ∈ Dg such that g(x) ∈ Df .

Example 2.1.5: Let f (x) = 3x2 − 2x + x−1 with x 6= 0 and
g(x) = 2x + 1 with x ∈ R.

(f ◦ g)(x) = f (2x + 1) = 3(2x + 1)2 − 2(2x + 1) +
1

2x + 1

which has domain x 6= −1
2 .

(g ◦ f )(x) = g(3x2 − 2x + x−1) = 2(3x2 − 2x + x−1) + 1

which has domain x 6= 0.
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A function f is one-to-one (1–1) or injective if x 6= y implies that
f (x) 6= f (y).

Example 2.1.6: f (x) = x + 1 with x ∈ R is injective as if f (x) = f (y)
then

x + 1 = y + 1 so x = y .

f (x) = x2 with x ∈ R is not injective, as f (2) = f (−2).

An injective function f has an inverse f−1. For each b in the image of f ,
we set f−1(b) to be the unique element a in the domain of f such that
f (a) = b. So Df−1 = Rf and Rf−1 = Df . Also

f ◦ f−1(x) = x and f−1 ◦ f (x) = x .
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The graph of f−1 is the reflection of the graph of f in the line y = x .

f

f −1
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Example 2.1.7: Let f (x) = x−1
x+1 = 1− 2

x+1 for x 6= −1.
Set y = f (x), so

(x + 1)y = x − 1.

Rearranging we get that

x =
1 + y
1− y

and hence f−1(x) = 1+x
1−x with x 6= 1.

To check:

f ◦ f−1(x) =
1+x
1−x − 1
1+x
1−x + 1

=
1 + x − 1 + x
1 + x + 1− x

=
2x
2

= x .
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Note that it is not possible to talk about the inverse of a non-injective
function. For example, consider f (x) = x2 with x ∈ R. If f−1(4) exists,
is it 2 or −2?

However, f (x) = x2 with x ≥ 0 does have an inverse: f−1(x) =
√

x .
This is one reason why we may restrict the domain of a function.
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2.2 Special functions

We have already considered certain special classes of functions:
polynomials, and rational functions. Here are a few more.

The square root function f (x) =
√

x where x ≥ 0. (Recall that we have
already defined this function in Section 1.2.)

Example 2.2.1: Find the domain and range of
√

x2 − 2x − 3.

Set y = h(x) =
√

x2 − 2x − 3 =
f ◦ g(x) where
g(x) = x2 − 2x − 3 and
f (x) =

√
x .

The domain is x2 − 2x − 3 ≥ 0,
i.e. (x + 1)(x − 3) ≥ 0.
So x ≥ 3 or x ≤ −1.
The range is y ≥ 0.

3−1
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The modulus function f (x) = |x | =
{

x if x ≥ 0
−x if x < 0.

Example 2.2.2: Sketch the graph of f (x) = |x2 − 2x − 3|.

f (x) =


x2 − 2x − 3 if x ≤ −1

−x2 + 2x + 3 if − 1 < x < 3
x2 − 2x − 3 if x ≥ 3.

−1 3
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Example 2.2.3: Solve |x − 3| = 2x .

2x

|x−3|

3

From the graph we see that the solution occurs when x < 3. Therefore
we need

3− x = 2x

with x < 3, i.e. x = 1.
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2.3 Trigonometric functions

θ

P=(a,b)

1

10

We define

sin θ = b cos θ = a

for θ ∈ R, and

tan θ =
b
a

for θ ∈ R with θ 6=
(
n + 1

2

)
π for some

n ∈ Z.

Note: (i) tan θ = sin θ
cos θ .

(ii) We use radians for angles. 2π radians equals 360 degrees.
(iii) Positive angles are measured anticlockwise.
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The graphs of these functions are:

y = sin θ

π−π

−1

1

0

y = cos θ

−1

1

0 π−π
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y = tan θ

0 π−π

We define

cosec θ =
1

sin θ
sec θ =

1
cos θ

cot θ =
1

tan θ

wherever these functions are defined, and set cot π
2 = 0.
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A function is periodic of period t if

f (x + t) = f (x)

for all x ∈ Df and t is the least positive number for which this occurs.

A function is even if
f (−x) = f (x)

for all x ∈ Df and odd if
f (−x) = −f (x)

for all x ∈ Df .
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Here is a summary of the basic properties of trigonometric functions

Function Domain Range Period Zeros Odd/Even
sin R |y | ≤ 1 2π nπ O
cos R |y | ≤ 1 2π

(2n+1
2

)
π E

tan θ 6=
(2n+1

2

)
π R π nπ O

cosec θ 6= nπ |y | ≥ 1 2π − O
sec θ 6=

(2n+1
2

)
π |y | ≥ 1 2π − E

cot θ 6= nπ R π
(2n+1

2

)
π O
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You must memorise the following values:

0 π
6

π
4

π
3

π
2

sin θ 0 1
2

1√
2

√
3
2 1

cos θ 1
√

3
2

1√
2

1
2 0

tan θ 0 1√
3

1
√

3 −

You must also know all of the following identities:

sin(x) = cos
(π

2
− x

)
cot(x) = tan

(π

2
− x

)
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cos2 x + sin2 x = 1
cot2 x + 1 = cosec2 x

1 + tan2 x = sec2 x

sin(x + y) = sin x cos y + cos x sin y
cos(x + y) = cos x cos y − sin x sin y

tan(x + y) = tan x+tan y
1−tan x tan y

(From these you can work out sin(x − y) etc.)
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Special cases of these last equations which should also be known are:

sin(2x) = 2 sin x cos x
cos(2x) = cos2 x − sin2 x

tan(2x) = 2 tan x
1−tan2 x

You should also know:

sin x + sin y = 2 sin
( x+y

2

)
cos

( x−y
2

)
cos x + cos y = 2 cos

( x+y
2

)
cos

( x−y
2

)
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This last pair of equations can be derived from the preceding sets. For
example, let x = p + q and y = p − q. Then

sin x + sin y = sin(p + q) + sin(p − q).

The righthand side equals

sin p cos q + cos p sin q
− cos p sin q + sin p cos q

which equals

2 sin p cos q = 2 sin
(

x + y
2

)
cos

(
x − y

2

)
.
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Example 2.3.1: Express sin 3θ in terms of sin θ.

sin 3θ = sin(θ + 2θ)
= sin θ cos 2θ + cos θ sin 2θ

= sin θ(cos2 θ − sin2 θ)
+2 cos θ sin θ cos θ

= 3 sin θ cos2 θ − sin3 θ

= 3 sin θ(1− sin2 θ)− sin3 θ

= 3 sin θ − 4 sin3 θ
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When solving any trigonometric equation, we ultimately reduce to
solving some equation of the form

f (θ) = a

where f is a trigonometric function such as cos, sin, or tan. Thus we
must know the general solution to such equations.

As the functions are periodic of period 2π (respectively π) for cos and
sin (respectively tan), it is enough to find all solutions in some 2π
period (respectively π period).

For sin, if θ is a solution then so is π − θ.
For cos if θ is a solution then so is −θ.
Tan is injective on the domain −π

2 < θ < π
2 , so has only one solution in

each period.
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In summary, the general solutions (which are to be memorised) in
terms of a particular solution θ are:

sin θ + 2nπ or π − θ + 2nπ with n ∈ Z
cos ±θ + 2nπ with n ∈ Z
tan θ + nπ with n ∈ Z

Example 2.3.2: Find the general solution to cos θ = 1√
2
.

One solution is θ = π
4 , so general solution is

θ = ±π

4
+ 2nπ with n ∈ Z.
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Example 2.3.3: Find all solutions to sin 2θ = −
√

3
2 with −π ≤ θ ≤ 3π.

One solution is 2θ = −π
3 , and so the general solution is

2θ = −π

3
+ 2nπ or 2θ =

4π

3
+ 2nπ with n ∈ Z.

Therefore

θ = −π

6
+ nπ or θ =

4π

6
+ nπ with n ∈ Z.

In the required range θ takes the values

−π

6
,

5π

6
,

11π

6
,

17π

6
, −π

3
,

2π

3
,

5π

3
,

8π

3
.
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Example 2.3.4: Solve 2 cos2 2θ − sin 2θ = 1 for 0 ≤ θ ≤ 2π.

2 cos2 2θ − sin 2θ − 1 = 2(1− sin2 2θ)− sin 2θ − 1

and so we require

(2 sin 2θ − 1)(sin 2θ + 1) = 0.

This has solutions sin 2θ = 1
2 and −1. Want 0 ≤ 2θ ≤ 4π. For

sin 2θ = 1
2 have

2θ =
π

6
,
5π

6
,
13π

6
,
17π

6
and for sin 2θ = −1 have

2θ =
3π

2
,
7π

2
.

Therefore
θ =

π

12
,
5π

12
,
13π

12
,
17π

12
,
3π

4
,
7π

4
.

Anton Cox (City University) AS1051 Week 2 Autumn 2007 31 / 35

A function of the form a cos θ + b sin θ can be rewritten in either of the
forms R cos(θ − α) or R sin(θ + α) for suitable choices of R ≥ 0 and
−π

2 ≤ α < π
2 . Suppose

a cos θ + b sin θ = R cos(θ − α)
= R cos θ cos α + R sin θ sin α.

Comparing coefficients we have

a = R cos α and b = R sin α.

Therefore
R2(cos2 α + sin2 α) = R2 = a2 + b2

and so R =
√

a2 + b2. Then

R sin α

R cos α
= tan α =

b
a

and so α = tan−1 (b
a

)
.
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Similarly

a cos θ + b sin θ =
√

a2 + b2 sin
(
θ + tan−1

(a
b

))
.

Example 2.3.5: Find the general solution of the equation
√

3 cos x + sin x = 1.

Let
√

3 cos x + sin x = R cos(x − α) with R > 0 and −π
2 < α < π

2 . By
the above we have

R =
√

1 + 3 and tan α =
1√
3

which implies that R = 2 and α = π
6 . Thus we have to solve

2 cos
(

x − π

6

)
= 1.

This has general solution

x − π

6
= ±π

3
+ 2nπ with n ∈ Z.
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There is a simple method for solving an equation of the form

cos aθ = cos bθ.

By the general form of the solution to cos we must have

aθ = 2nπ ± bθ

and so
θ =

2nπ

a± b
with n ∈ Z.

Similar results hold for
sin aθ = sin bθ

and
tan aθ = tan bθ.
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This method works when both sides of the equation involve the same
function. Sometimes we will have to first rearrange to ensure this.

Example 2.3.6: Find the general solution of cos 2θ = sin θ.

sin θ = cos(π
2 − θ) and so cos(2θ) = cos(π

2 − θ). Therefore

2θ = 2nπ ±
(π

2
− θ

)
with n ∈ Z.

Rearranging, we find that

θ =
2nπ

3
+

π

6
or θ = 2nπ − π

2
with n ∈ Z.
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