
3.4 Conic sections

Circles belong to a special class of curves called conic sections. Other
such curves are the ellipse, parabola, and hyperbola.

We will briefly describe the standard conics. These are chosen to have
simple equations, and all other conics are variants on them. Our
standard conics are all symmetric about the origin and the x-axis.
Thus the standard circle is

x2 + y2 = a2

which can be written parametrically as

x = a cos θ y = a sin θ.
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There are various ways to define conic sections, for example as the
curves arising from different slices through a cone. Each shares the
property that:

The distance of each point on the curve from
a fixed point (the focus) and a fixed straight
line (the directrix) is a constant ratio e (the
eccentricity). (For circles, this has to be inter-
preted with care.)

The different classes correspond to different ranges of the value of e.
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The standard hyperbola is given by

x2

a2 −
y2

b2 = 1

with b2 = a2(e2 − 1) for some e > 1.
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There are two foci, at
(ae,0) (−ae,0)

and two directrices,
x =

a
e

x = −a
e
.

We call the shortest distance between the two sections of the curve
the major axis, which equals 2a. This curve has asymptotes

y =
bx
a

y = −bx
a

and parametric equation

x = a sec θ y = b tan θ.
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The standard ellipse is given by

x2

a2 +
y2

b2 = 1

with b2 = a2(1− e2) for some 0 < e < 1.
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There are two foci, at
(ae,0) (−ae,0)

and two directrices,
x =

a
e

x = −a
e
.

The maximum width of the curve along the x-axis is called the major
axis, which equals 2a, and along the y -axis is called the minor axis,
which equals 2b. Note that the standard ellipse is chosen such that the
major axis is longer than the minor axis. This curve has parametric
equation

x = a cos θ y = b sin θ.

When e = 0 we obtain the case of a circle.
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−a a

The standard parabola is given by

y2 = 4ax

and has eccentricity e = 1.
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There is one focus, at
(a,0)

one directrix,
x = −a

and an axis at y = 0. This curve has parametric equation

x = at2 y = 2at

and the gradient of the curve at (at2,2at) is t−1.

We can analyse general conics by using a change of variable to
convert them into the standard forms.
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Example 3.4.1: Determine the foci and directices of the ellipse

(x − 2)2

25
+

(y + 3)2

16
= 1.

We compare with
X 2

a2 +
Y 2

b2 = 1.

To transform in this way we must have

X = x − 2 Y = y + 3 a = 5 b = 4.

Also b2 = a2(1− e2) implies that e = 3
5 . Therefore the centre of the

ellipse is at (2,−3), the major axis has length 2a = 10 and the minor
axis has length 2b = 8.
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The foci lie on the major axis at distance ae = 3 from the centre. So
the foci are

(5,−3) (−1,−3).

Directrices are perpendicular to the major axis and at distance

a
e

=
25
3

from the centre. So the directrices are

x =
31
3

x = −19
3
.
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Example 3.4.2: An ellipse has foci at (2,5) and (8,5) and eccentricity
e = 1

4 . Find its Cartesian equation.

The centre is midway between the foci, so lies at (5,5). The distance
from the centre to each focus is ae = 3, and so a = 12. Therefore

b2 = a2(1− e2) = 135.

From this we see that the equation is given by

(x − 5)2

144
+

(y − 5)2

135
= 1.
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4. Calculus I: Differentiation

4.1 The derivative of a function

Suppose we are given a curve with a point A lying on it. If the curve is
‘smooth’ at A then we can find a unique tangent to the curve at A:

b ca

A
A A

Here the curve in (a) is smooth at A, but the curves in (b) and (c) are
not.
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If the tangent is unique then the gradient of the curve at A is defined to
be the gradient of the tangent to the curve at A.

The process of finding the general gradient function for a curve is
called differentiation.

Consider the chord AB. As B gets
closer to A, the gradient of the chord
gets closer to the gradient of the
tangent at A.

A

B
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For y = f (x), the gradient function is
defined by

lim
δx→0

(
δy
δx

)
= lim

δx→0

(
f (x + δx)− f (x)

δx

)
.

yδ

xδ

,y+(x+δx δy)

(x,y)

We denote the gradient function by dy
dx or f ′(x), and call it the derivative

of f . This is not the formal definition of the derivative, as we have not
explained exactly what we mean by the limit as δx → 0. But this
intuitive definition will be sufficient for the basic functions which we
consider.
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Example 4.1.1: Take f (x) = c, a constant function.

At every x the gradient is 0, so f ′(x) = 0 for all x .
Or

f (x + δx)− f (x)

δx
=

c − c
δx

= 0.

Example 4.1.2: Take f (x) = ax .

At every x the gradient is a, so f ′(x) = a for all x .
Or

f (x + δx)− f (x)

δx
=

a(x + δx)− ax
δx

=
aδx
δx

= a.
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Example 4.1.3: Take f (x) = x2.

Now we need to consider the second formulation, as we cannot simply
read the gradient off from the graph.

f (x + δx)− f (x)

δx
=

(x + δx)2 − x2

δx

=
x2 + 2xδx + (δx)2 − x2

δx

=
δx(2x + δx)

δx
= 2x + δx .

The limit as δx tends to 0 is 2x , so f ′(x) = 2x .
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Example 4.1.4: Take f (x) = 1
x .

f (x + δx)− f (x)

δx
=

1
δx

(
1

x + δx
− 1

x

)
=

x − (x + δx)

(δx)(x + δx)x

=
−δx

(δx)(x + δx)x
=

−1
(x + δx)x

.

The limit as δx tends to 0 is − 1
x2 , so f ′(x) = − 1

x2 .
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Example 4.1.5: Take f (x) = xn with n ∈ N and n > 1.

Recall that

an − bn = (a− b)(an−1 + an−2b + an−3b2 + · · ·+ bn−1)

and so
an − bn

a− b
= an−1 + an−2b + an−3b2 + · · ·+ bn−1

where the sum has n terms. As a→ b we have

lim
a→b

(
an − bn

a− b

)
= lim

a→b
(an−1 + an−2b + an−3b2 + · · ·+ bn−1) = nbn−1.

If a = x + δx and b = x then

lim
δx→0

(
f (x + δx)− f (x)

δx

)
= lim

a→b

(
an − bn

a− b

)
= nbn−1 = nxn−1.

Hence f ′(x) = nxn−1.
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Example 4.1.6: f (x) = sin x .

We use the identity for sin A + sin B.

f (x + δx)− f (x) = 2 sin
(
δx
2

)
cos

(
x +

δx
2

)
and so

f (x + δx)− f (x)

δx
=

sin
(

δx
2

)
δx
2

cos
(

x +
δx
2

)
.

We need the following fact (which we will not prove here):

lim
θ→0

sin θ
θ

= 1

and so

f ′(x) = lim
δx→0

sin
(

δx
2

)
δx
2

cos
(

x +
δx
2

)
= cos(x).
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Some standard derivatives, which must be memorised:

f (x) f ′(x)
—— ——
xk kxk−1

ex ex

ln x 1
x

sin x cos x
cos x − sin x
tan x sec2 x
cosec x − cosec x cot x
sec x sec x tan x
cot x − cosec2 x

Some of these results can be derived from the results in the following
sections, or from first principles. However it is much more efficient to
know them.
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4.2 Differentiation of compound functions

Once we know a few basic derivatives, we can determine many others
using the following rules:
Let u(x) and v(x) be functions of x , and a and b be constants.

Function Derivative
———— —————

Sum and difference au ± bv a du
dx ± b dv

dx
Product uv v du

dx + u dv
dx

Quotient u
v

v du
dx−u dv

dx
v2

Composite u(v(x)) du
dz .

dz
dx where z = v(x).

The final rule above is known as the chain rule and has the following
special case

u(ax + b) a du
dx (ax + b)

For example, the derivative of sin(ax + b) is a cos(ax + b).
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Example 4.2.1: Differentiate

y = 2x5 − 3x3 +
4
x2 .

dy
dx

= 10x4 − 9x2 − 8
x3 .

Example 4.2.2: Differentiate

y =
x2 − 1
x2 + 1

.

dy
dx

=
(x2 + 1)2x − (x2 − 1)2x

(x2 + 1)2 =
4x

(x2 + 1)2 .
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Example 4.2.3: Differentiate

y = x2 ln(x + 3).

dy
dx

= 2x ln(x + 3) +
x2

x + 3
.

Example 4.2.4: Differentiate y = e5x .

Set z = 5x , then
dy
dx

=
dy
dz

dz
dx

= ez5 = 5e5x .
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Example 4.2.5: Differentiate y = 4 sin(2x + 3).

Set z = 2x + 3, then

dy
dx

=
dy
dz

dz
dx

= 4 cos(z)2 = 8 cos(2x + 3).

As we have already noted, some of the standard derivatives can be
deduced from the others.

Example 4.2.6: Differentiate

y = tan x =
sin x
cos x

.

dy
dx

=
cos x cos x − sin x(− sin x)

cos2 x
=

cos2 x + sin2 x
cos2 x

=
1

cos2 x
= sec2 x .
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Example 4.2.7: y = cosec x = 1
sin x .

dy
dx

=
sin x .(0)− 1. cos x

sin2 x
=
− cos x
sin2 x

= − cosec x cot x .

Example 4.2.8: y = ln(x +
√

x2 + 1), i.e. y = ln u where
u = x +

√
x2 + 1.

dy
dx

=
1
u

du
dx

and
du
dx

= 1 +
(x2 + 1)−

1
2

2
.2x

so

dy
dx

=
1

x +
√

x2 + 1

(
1 +

x√
x2 + 1

)
=

1
x +
√

x2 + 1

(√
x2 + 1 + x√

x2 + 1

)
=

1√
x2 + 1

.
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Example 4.2.9: y = xx .

We have y = (eln x)x = e(x ln x), i.e. y = eu where u = x ln x .

dy
dx

= eu du
dx

= ex ln x(ln(x) + 1) = xx(ln(x) + 1).

4.3 Higher derivatives

The derivative dy
dx is itself a function, so we can consider its derivative.

If y = f (x) then we denote the second derivative, i.e. the derivative of
dy
dx with respect to x , by d2y

dx2 or f ′′(x). We can also calculate the higher
derivatives dny

dxn or f (n)(x).
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Example 4.3.1: y = ln(1 + x2).

Let z = dy
dx = 2x

1+x2 .

d2y
dx2 =

dz
dx

=
(1 + x2).2− 2x(2x)

(1 + x2)2 =
2(1− x2)

(1 + x2)2 .

Example 4.3.2: Show that y = e−x sin(2x) satisfies

d2y
dx2 + 2

dy
dx

+ 5y = 0.

dy
dx

= −e−x sin 2x + 2e−x cos 2x = e−x(2 cos 2x − sin 2x)

d2y
dx2 = −e−x(2 cos 2x − sin 2x) + e−x(−4 sin 2x − 2 cos 2x)

= e−x(−3 sin 2x − 4 cos 2x).
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Writing s for sin 2x and c for cos 2x we have

y ′′ + 2y ′ + 5y = e−x(−3s − 4c − 2s + 4c + 5s) = 0.

Example 4.3.3: Evaluate

d3

dx3

(
1 + 3x2

(1 + x)2(1 + 3x)

)
at x = 0.

We could use the quotient rule, but this will get complicated. Instead
we use partial fractions.

y =
1 + 3x2

(1 + x)2(1 + 3x)
=

A
1 + x

+
B

(1 + x)2 +
C

1 + 3x
.

We obtain (check!) A = 0, B = −2, and C = 3.
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Now
dy
dx

=
4

(1 + x)3 −
9

(1 + 3x)2

d2y
dx2 =

−12
(1 + x)4 +

54
(1 + 3x)3

d3y
dx3 =

48
(1 + x)5 −

54× 9
(1 + 3x)4

and substituting x = 0 we obtain that

d3y
dx3 (0) = 48− 486 = −438.
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Generally it is hard to give a simple formula for the nth derivative of a
function. However, in some cases it is possible. The following can be
proved by induction.

Example 4.3.4: y = eax .

dy
dx

= aeax and
d2y
dx2 = a2eax .

We can show that
dny
dxn = aneax .
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Example 4.3.5: y = sin(ax).

y ′ = a cos(ax) = a sin(ax + π
2 )

y ′′ = −a2 sin(ax) = a2 sin(ax + π)

y ′′′ = −a3 cos(ax) = a3 sin(ax + 3π
2 )

y (iv) = a4 sin(ax) = a4 sin(ax + 2π).

We can show that
dny
dxn = an sin(ax +

nπ
2

).
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4.4 Differentiating implicit functions

Sometimes we cannot rearrange a function into the form y = f (x), or
we may wish to consider the original form anyway (for example,
because it is simpler). However, we may still wish to differentiate with
respect to x .

Given a function g(y) we have from the chain rule

d
dx

(g(y)) =
d

dy
(g(y))

dy
dx
.
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Example 4.4.1: x2 + 3xy2 − y4 = 2.

d
dx

(x2 + 3xy2 − y4) =
d

dx
(2) = 0.

Therefore we have

2x +
d

dx
(3xy2)− d

dx
(y4) = 0

2x + 3y2 + 3x
d

dx
(y2)− 4y3 dy

dx
= 0

2x + 3y2 + 6xy
dy
dx
− 4y3 dy

dx
= 0.
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Example 4.4.2: 2
x2 + 3

y2 = 1
2 .

d
dx

(
2
x2 +

3
y2 ) =

d
dx

(
1
2
) = 0.

Therefore we have

− 4
x3 +

d
dx

(
3
y2

)
= 0

− 4
x3 −

6
y3

dy
dx

= 0.
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4.5 Differentiating parametric equations

Sometimes there is no easy way to express the relationship between x
and y directly in a single equation. In such cases it may be possible to
express the relationship between them by writing each in terms of a
third variable. We call such equations parametric equations as both x
and y depend on a common parameter.

Example 4.5.1: x = t3 y = t2 − 4t + 2.

Although we can write this in the form

y = x
2
3 − 4x

1
3 + 2

the parametric version is easier to work with.

Anton Cox (City University) AS1051 Week 4 Autumn 2007 35 / 39

To differentiate a parametric equation in the variable t we use

dy
dx

=
dy
dt

dt
dx

and
dt
dx

=
1
dx
dt
.

Example 4.5.1: (Continued.)

dy
dt

= 2t − 4
dx
dt

= 3t2

and so
dy
dx

=
2t − 4

3t2 .
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Example 4.5.2: Find the second derivative with respect to x of

x = sin θ y = cos 2θ.

We have
dx
dθ

= cos θ
dy
dθ

= −2 sin 2θ.

Therefore
dy
dx

=
−2 sin 2θ

cos θ
= −4 sin θ.

Now

d2y
dx2 =

d
dx

(
dy
dx

)
=

d
dx

(−4 sin θ) =
d
dθ

(−4 sin θ)
dθ
dx

=
−4 cos θ

cos θ
= −4.
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Note: The rules so far may suggest that derivatives can be treated just
like fractions. However

d2y
dx2 6=

d2y
dt2

d2t
dx2

in general. Moreover
d2y
dx2 6=

(
d2x
dy2

)−1

.
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Example 4.5.2: (Continued.) We have

d2y
dθ2 = −4 sin 2θ = −8 sin θ cos θ

and
d2θ

dx2 =
d

dx

(
dθ
dx

)
=

d
dθ

(sec θ)
(

dθ
dx

)
= sec2 θ tan θ.

Therefore

d2y
dθ2

d2θ

dx2 = −8 sin θ cos θ sec2 θ tan θ = −8 tan2 θ 6= −4 =
d2y
dx2 .
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