4.6 Tangents and normals to curves

We have already defined the value of the derivative f' of a function f at
a point xp to be the gradient of f at xy. Thus we can easily use the
derivative to write down the equation of the tangent to that point. Using
the equation for a line passing through (xo, f(Xo)) we have that the
tangentto f at xp is

y 1) = L (x0)(x ~ x0).

The normal to f at xg is the line passing through (xo, f(xo))
perpendicular to the tangent. This has equation

Y~ 00) = g (x ~ x0)

ax (X0)
(when this makes sense).

4.7 Stationary points and points of inflexion

We can tell a lot about a function from its derivatives.

Example 4.7.1:
Q \%
U
R
P T
\ s

A stationary point on a curve y = f(x) is a point (xo, f(Xo)) such that
f'(xo) = 0. These come in various forms:

Type Test
f'(x) "(x)
Local maximum Changes from +to — —ve
Local minimum Changes from —to + +ve
Point of inflexion No sign change (see below)

e.g. Qis amax, Sis amin, Uis a point of inflexion.
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Note that the maxima and minima above are only local. This means
that in a small region about the given point they are extremal values,
but perhaps not over the whole curve. Extremal values for the whole
curve are called global maxima or minima.

Example 4.7.2: Consider the function f on the domain X < x <Y
given by the graph

Both A and C are local maxima, and B and D are local minima.
However the global maximum is at Y and the global minimum at X.
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Example 4.6.1: Find the equation of the tangent and normal to the
curve
y=x>-6x+5
at the point (2, —3).
We have
= 2x -6
and hence g%(z) =4 — 6 = —2. Hence the equation of the tangent is

y+3=-2(x-2) ie. y=-2x+1.

The gradient of the normal is =} = 4, and hence the equation of the
normal is

1 . X
y+3=5(x-2) ie. y=--4.
2 2

If f/(x) > 0fora< x < bthen fisincreasingona< x < b
e.g. arcs PQ, SU, UV.

If f'(x) <0 for a< x < bthen fis decreasingon a < x < b

e.g. arc QS.
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A point of inflexion is one where f”(xp) = 0 and f” changes sign at Xo.
eg.R T, U

If f(x) > 0 for a < x < bthen fis concaveupona< x < b
e.g. arc RST.

If f(x) < 0for a< x < bthen f is concave downona< x < b

e.g. arc PQR.
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Example 4.7.3: Find the stationary values and points of inflexion of

y=3x*+8x3—6x2—24x +2.

We have d
Y q2x% y24x2 —12x — 24
dx
and )
dy 2
S = 36X +48x — 12.

Stationary points when % =0, i.e. (check) x = 1, -1, —2.
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! 1"

y y . . .
(1,-17) 0+ 72 Min Example 4.7.4: Find the stationary points of the curve
(—1,15) +0- —24  Max X
(210) 0+ 36  Min f(x) = 6ln (7) Fx—N)(x-7)
Points of inflexion at x = §(—2 + v/7), i.e. (x,y) ~ (0.22,-3.36) and Deduce that f(x) = 0 has only one solution, and state its value.
(x,y) ~ (~1.55,12.32).
dy 6 &y 6
d7 = ; +2x -8 @ *? +2
We have f'(x) = 0 when 2x? — 8x +6 = 0,i.e. x =1 or 3.
2 1 1 f’(1) = —4 so there is a local max at (1, —6In7).
f’(3) = % so there is a local min at (3, —6In(%) —8).
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. . " . Example 4.7.5: Find the least value of
For large x the function f is large and positive. Therefore the curve is

of the form y = & sec? x + b? cosec? x
‘ 1 3 where a and b are positive constants and 0 < x < 7.
% = 24 sec x(sec x tan x) + 2b cosec x(— cosec x cot x)
= 2a” sec? xtan x — 2b? cosec? x cot x
sinx cos X
=24 —2b2 =
cosd x sin® x
It cannot cross the x-axis again as there are no other turning points, so 222 sin* x — 2b2 cos? x
f(x) = 0 has only one solution. By inspection, x = 7 is a root. = oS3 X sin? x

Since y — oo as x — 0 or x — 7, the stationary point must be a
minimum. Substituting for tan x in y gives

_ 2 > 2
Stationary point are where y’ = 0, i.e. where y =a(1+tan?x) + b3(1 + cot? x)
—2 (142 +b2(1+§)
282 sin* x — 2b? cos* x = 0. a b
_ > _ 2
This can be rearranged to give =& +2ab+b” = (a+b)

b? b
tan*x=— or tan2x=5.

&

Since 0 < x < § we have tanx > 0, and so tan x = /b/a, and there is
precisely one stationary point.

(@bf | = ‘
|
|
|
5. Calculus II: Integration From our standard results for differentiation we deduce the following

integrals, which must be memorised.
5.1 Basic theory

We will define the integral of a function f(x) to be its antiderivative: f(x) /f(x) dx
k 1k

[roaax=Feoc X (k#1) x40

X Inx+C

e* e+ C

; ; ; ith dF _

wherfa Cisa constar}t a:Fd F(;(G) is a function Wlt.h i = f(x). Any twg sin x _cosx+ C
functions F and G with §& = §2 = f(x) must satisfy {-(F — G) =0, i.e. COS X sinx+C
F — G is some constant function. Thus the integral is only defined up tan x —In(cosx) + C

to the undetermined constant C.
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There are obvious extensions of these results, replacing x by ax + b.
For example, for k # —1 we have

ko (ax+ b1
/(ax+b) a= 0

and b
/sin(ax+b)dx= %4— (o}

etc. We also have for functions f and g and constants a and b that

/af+bgdx:a/fdx+b/gdx‘
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For more complicated rational functions we usually simplify first using
partial fractions.

Example 5.1.3:

1 —1 1
[ =] won e
:7In(x71)+ln(x72)+C:In<X72>+C.

x—1

Example 5.1.4:

14 3x2 -2 3 2
/mdx = /m+1 T 3de = m+In(1+3x)+C.
Example 5.1.7:

/sin 3x cos xdx = / sin(3x + x) Z SINEX = X) 4

1 . . 1 1
= /E(sm4x+ sin2x)adx = B cos4x — ZCOSZX+ C.
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5.2 Method of substitution
Recall the chain rule for differentiation:
i _ /
S A(9() = F(g0)g ().

Integrating both sides we obtain

/f’(Q(X))Q’(X) dx = f(g(x)) + C.
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Example 5.1.1:

/x7+%7\/)7dx:/x7dx+3/x’2dx—/x%dx

x® 3 2
% x 3°°°
Example 5.1.2:
1 (2x+3)73 —1
ax = C= .
/(2x+3)4 =32 YT eexrapt
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Example 5.1.5:

/sin5xdx = —%cosSx+ C.

For more complicated integrals involving trigonometric functions, we
typically use standard identities to simplify the integral.

Example 5.1.6:

1 x 1
.2 _ o _ _ 2 g
/S|n xdx7/2(1 cos 2x)dx 3 4sm2x+ C.
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Sometimes it is not so easy to spot the integral of a function.
Example 5.1.8: /2xex2dx.

This does not correspond to one of our standard integrals. However,
by inspection we can observe that

d

a(e)‘z) = 2xe*

using the chain rule, and hence
/2xe?‘2dx e’ +C

We would like to formalise this procedure.
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Writing u = g(x) this becomes
N
/f(u)a dx = f(u) + C
and so we have
[rtaeg o= [

where u = g(x).
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Example 5.2.1: We return to example 5.1.8, and recalculate

/ 2xe* dx.

Let u = x2,s0 § = 2x. Then

/2xe"2dx:/e”%dx=/e“du=e“+C=eXZ+C.
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Example 5.2.3: Integrate

/sin“xcosxdxA
Let u=sinx, so 3 = cos x. Then
4 4 ud sin® x
/sm xcosxdx:/u du:§+C: 5 +C.

Example 5.2.4: Integrate

/tanxdx.
/tanxdx:/ sinx ax
cos X

Let u=cosx, so 34 = —sinx. Then

First note that

25/36

/ SINX gy = — / 15 du = —In(u)+C = —In(cos x)+C = In(sec x)+C.

COs X
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Example 5.3.1: Integrate
1
[
Let vx = u, s0 x = u? and & = 2u. Then
1 1
/ m dx = / H—UZU du

:/27 2 du
1+u

=2u—2In(1 +u) + C=2Vx-2In(1 + Vx) +
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Example 5.3.3: Integrate

/mdx

Let x = 2sin8, so & = 2cos 6, and 4 — x2 = 4cos? 6. Then

1 2cosf
/(4_)(2)% = 800530d0

1 5 1
_Z/sec Gde_ztan9+C

1 sing 1 X
=g —7—51tC=77—=+C
4\/1 —sin?0 4V4—x
Autumn 2007
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C.
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Example 5.2.2: Integrate
/)(2()(3 +1)2 dx.

Let u=x®+1,s0 9 = 3x2. Then

3
2,3 3 uz du
x“(x°+1)2dx= [ ——dx
/ (x+1) /3dx
3
H 2 s 2 5
=[S du=—uz+C=—(x*+1)2
/3 TR TG
Autumn 2007

5.3 Inverse substitution
In the last section we substituted

fg(x)) — f(u)
gd(x)dx — du.

Next we consider the inverse substitution. Replacing ' by h and
interchanging the roles of x and u we have

[ o' wyau= [ nixyax
where x = g(u). Therefore we can substitute

h(x) — h(g(v)
dx — g’(u)du:g—Zdu.
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Example 5.3.2: Integrate

idx
Vex+3
Let u=+2x+3,502x +3 = u?and & = u. Then
x—-2 1?2 -3)-2
——dx = [2"—" “ydu
V2x+3 / u
=/%(u2—7)du
3 Tu u, »
—g—?"’c—g(u —21)+C
Ve
:XT”’(zxqs)Jrc.
Autumn 2007

5.4 Integration by parts

Recall the rule for differentiating a product of functions:

d du dv
dx dx’ “dx’

Using the antiderivative this becomes

du dv
v= [ v—dx — dx.
u / ax &t / Vix

dv du
/uadx_uv—/vadx.

Therefore
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+C.
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Example 5.4.1: Calculate

/xcosxdx.
Letu=xand §£ = cos x. Then §4 =1 and v = sin x.

/xcosxdx = xsinx — [(sinx).1dx

= xsinx +cosx + C.
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Letu= 2 and & = &3,

3X
T = 2—Xe——/§eaxdx

- 33
— 2l3x_3 3x
= ge 27 +C.
So - »
— L_l “ 3x
s_(3 9+27) +C.
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du __ 2 _ 143x
Then g = 5 and v = ze”.

Autumn 2007
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Example 5.4.2: Calculate
S= / x2e% dx.

— x2 dv _ 53x du _ — 1a3x
Letu=x?and ¥ = *. Then ¥ = 2x and v = J&*.

,Xz 3X 2x 3X 7)(2 3x
Sfae /Se dxfse T.

Now use integration by parts again to determine T
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Using this method we can integrate another of our standard functions.

Example 5.4.3: Calculate
/ In(x) dx.

Letu=In(x)and & = 1. Then ¥ = L and v = x.

/In(x) dx =xIn(x)— [ £dx
=xIn(x) —x+ C,

Next time we will see how integration by parts can be used in more
complicated examples.
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