
4.6 Tangents and normals to curves

We have already defined the value of the derivative f ′ of a function f at
a point x0 to be the gradient of f at x0. Thus we can easily use the
derivative to write down the equation of the tangent to that point. Using
the equation for a line passing through (x0, f (x0)) we have that the
tangent to f at x0 is

y − f (x0) =
dy
dx

(x0)(x − x0).

The normal to f at x0 is the line passing through (x0, f (x0))
perpendicular to the tangent. This has equation

y − f (x0) =
−1

dy
dx (x0)

(x − x0)

(when this makes sense).
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Example 4.6.1: Find the equation of the tangent and normal to the
curve

y = x2 − 6x + 5

at the point (2,−3).

We have
dy
dx

= 2x − 6

and hence dy
dx (2) = 4− 6 = −2. Hence the equation of the tangent is

y + 3 = −2(x − 2) i.e. y = −2x + 1.

The gradient of the normal is −1
−2 = 1

2 , and hence the equation of the
normal is

y + 3 =
1
2
(x − 2) i.e. y =

x
2
− 4.
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4.7 Stationary points and points of inflexion

We can tell a lot about a function from its derivatives.

Example 4.7.1:

P

Q

R

S

T

U

V
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If f ′(x) > 0 for a < x < b then f is increasing on a < x < b

e.g. arcs PQ, SU, UV.

If f ′(x) < 0 for a < x < b then f is decreasing on a < x < b

e.g. arc QS.
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A stationary point on a curve y = f (x) is a point (x0, f (x0)) such that
f ′(x0) = 0. These come in various forms:

Type Test
f ′(x) f ′′(x)

Local maximum Changes from + to − −ve
Local minimum Changes from − to + +ve
Point of inflexion No sign change (see below)

e.g. Q is a max, S is a min, U is a point of inflexion.
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A point of inflexion is one where f ′′(x0) = 0 and f ′′ changes sign at x0.

e.g. R, T, U.

If f ′′(x) > 0 for a < x < b then f is concave up on a < x < b

e.g. arc RST.

If f ′′(x) < 0 for a < x < b then f is concave down on a < x < b

e.g. arc PQR.

Anton Cox (City University) AS1051 Week 5 Autumn 2007 6 / 36

Note that the maxima and minima above are only local. This means
that in a small region about the given point they are extremal values,
but perhaps not over the whole curve. Extremal values for the whole
curve are called global maxima or minima.

Example 4.7.2: Consider the function f on the domain X ≤ x ≤ Y
given by the graph

X

A

B

C

D

Y

Both A and C are local maxima, and B and D are local minima.
However the global maximum is at Y and the global minimum at X.
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Example 4.7.3: Find the stationary values and points of inflexion of

y = 3x4 + 8x3 − 6x2 − 24x + 2.

We have
dy
dx

= 12x3 + 24x2 − 12x − 24

and
d2y
dx2 = 36x2 + 48x − 12.

Stationary points when dy
dx = 0, i.e. (check) x = 1, −1, −2.

Anton Cox (City University) AS1051 Week 5 Autumn 2007 8 / 36



y ′ y ′′

(1,−17) −0 + 72 Min
(−1, 15) + 0− −24 Max
(−2, 10) −0 + 36 Min

Points of inflexion at x = 1
3(−2±

√
7), i.e. (x , y) ≈ (0.22,−3.36) and

(x , y) ≈ (−1.55, 12.32).

−2 −1 1
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Example 4.7.4: Find the stationary points of the curve

f (x) = 6 ln
(x

7

)
+ (x − 1)(x − 7).

Deduce that f (x) = 0 has only one solution, and state its value.

dy
dx

=
6
x

+ 2x − 8
d2y
dx2 = − 6

x2 + 2.

We have f ′(x) = 0 when 2x2 − 8x + 6 = 0, i.e. x = 1 or 3.

f ′′(1) = −4 so there is a local max at (1,−6 ln 7).
f ′′(3) = 4

3 so there is a local min at (3,−6 ln(7
3)− 8).
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For large x the function f is large and positive. Therefore the curve is
of the form

31

It cannot cross the x-axis again as there are no other turning points, so
f (x) = 0 has only one solution. By inspection, x = 7 is a root.
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Example 4.7.5: Find the least value of

y = a2 sec2 x + b2 cosec2 x

where a and b are positive constants and 0 < x < π
2 .

dy
dx = 2a2 sec x(sec x tan x) + 2b2 cosec x(− cosec x cot x)

= 2a2 sec2 x tan x − 2b2 cosec2 x cot x

= 2a2 sin x
cos3 x

− 2b2 cos x
sin3 x

=
2a2 sin4 x − 2b2 cos4 x

cos3 x sin3 x
.
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Stationary point are where y ′ = 0, i.e. where

2a2 sin4 x − 2b2 cos4 x = 0.

This can be rearranged to give

tan4 x =
b2

a2 or tan2 x =
b
a

.

Since 0 < x < π
2 we have tan x > 0, and so tan x =

√
b/a, and there is

precisely one stationary point.
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Since y →∞ as x → 0 or x → π
2 , the stationary point must be a

minimum. Substituting for tan x in y gives

y = a2(1 + tan2 x) + b2(1 + cot2 x)

= a2
(

1 +
b
a

)
+ b2

(
1 +

a
b

)
= a2 + 2ab + b2 = (a + b)2

(a+b)2
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5. Calculus II: Integration

5.1 Basic theory

We will define the integral of a function f (x) to be its antiderivative:∫
f (x) dx = F (x) + C

where C is a constant and F (x) is a function with dF
dx = f (x). Any two

functions F and G with dF
dx = dG

dx = f (x) must satisfy d
dx (F −G) = 0, i.e.

F −G is some constant function. Thus the integral is only defined up
to the undetermined constant C.
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From our standard results for differentiation we deduce the following
integrals, which must be memorised.

f (x)

∫
f (x) dx

xk (k 6= −1) 1
k+1xk+1 + C

x−1 ln x + C
ex ex + C
sin x − cos x + C
cos x sin x + C
tan x − ln(cos x) + C
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There are obvious extensions of these results, replacing x by ax + b.
For example, for k 6= −1 we have∫

(ax + b)k dx =
(ax + b)k+1

a(k + 1)
+ C

and ∫
sin(ax + b) dx =

− cos(ax + b)

a
+ C.

etc. We also have for functions f and g and constants a and b that∫
af + bg dx = a

∫
f dx + b

∫
g dx .
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Example 5.1.1:∫
x7 +

3
x2 −

√
xdx =

∫
x7dx + 3

∫
x−2dx −

∫
x

1
2 dx

=
x8

8
− 3

x
− 2

3
x

3
2 + C.

Example 5.1.2:∫
1

(2x + 3)4 dx =
(2x + 3)−3

(−3).2
+ C =

−1
6(2x + 3)3 + C.
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For more complicated rational functions we usually simplify first using
partial fractions.

Example 5.1.3:∫
1

(x − 1)(x − 2)
dx =

∫
−1

(x − 1)
+

1
x − 2

dx

= − ln(x − 1) + ln(x − 2) + C = ln
(

x − 2
x − 1

)
+ C.

Example 5.1.4:∫
1 + 3x2

(1 + x)2(1 + 3x)
dx =

∫
−2

(1 + x)2 +
3

1 + 3x
dx =

2
1 + x

+ln(1+3x)+C.
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Example 5.1.5: ∫
sin 5x dx = −1

5
cos 5x + C.

For more complicated integrals involving trigonometric functions, we
typically use standard identities to simplify the integral.

Example 5.1.6:∫
sin2 x dx =

∫
1
2
(1− cos 2x)dx =

x
2
− 1

4
sin 2x + C.
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Example 5.1.7:∫
sin 3x cos xdx =

∫
sin(3x + x) + sin(3x − x)

2
dx

=

∫
1
2
(sin 4x + sin 2x)dx = −1

8
cos 4x − 1

4
cos 2x + C.
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Sometimes it is not so easy to spot the integral of a function.

Example 5.1.8:
∫

2xex2
dx .

This does not correspond to one of our standard integrals. However,
by inspection we can observe that

d
dx

(ex2
) = 2xex2

using the chain rule, and hence∫
2xex2

dx = ex2
+ C.

We would like to formalise this procedure.
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5.2 Method of substitution

Recall the chain rule for differentiation:

d
dx

f (g(x)) = f ′(g(x))g′(x).

Integrating both sides we obtain∫
f ′(g(x))g′(x) dx = f (g(x)) + C.
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Writing u = g(x) this becomes∫
f ′(u)

du
dx

dx = f (u) + C

and so we have ∫
f ′(g(x))g′(x) dx =

∫
f ′(u) du

where u = g(x).
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Example 5.2.1: We return to example 5.1.8, and recalculate∫
2xex2

dx .

Let u = x2, so du
dx = 2x . Then∫

2xex2
dx =

∫
eu du

dx
dx =

∫
eu du = eu + C = ex2

+ C.
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Example 5.2.2: Integrate ∫
x2(x3 + 1)

3
2 dx .

Let u = x3 + 1, so du
dx = 3x2. Then

∫
x2(x3 + 1)

3
2 dx =

∫
u

3
2

3
du
dx

dx

=

∫
u

3
2

3
du =

2
15

u
5
2 + C =

2
15

(x3 + 1)
5
2 + C.
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Example 5.2.3: Integrate ∫
sin4 x cos x dx .

Let u = sin x , so du
dx = cos x . Then∫

sin4 x cos x dx =

∫
u4 du =

u5

5
+ C =

sin5 x
5

+ C.

Example 5.2.4: Integrate ∫
tan x dx .

First note that ∫
tan x dx =

∫
sin x
cos x

dx .

Let u = cos x , so du
dx = − sin x . Then∫

sin x
cos x

dx = −
∫

1
u

du = − ln(u)+C = − ln(cos x)+C = ln(sec x)+C.
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5.3 Inverse substitution

In the last section we substituted

f ′(g(x)) −→ f ′(u)

g′(x) dx −→ du.

Next we consider the inverse substitution. Replacing f ′ by h and
interchanging the roles of x and u we have∫

h(g(u))g′(u) du =

∫
h(x) dx

where x = g(u). Therefore we can substitute

h(x) −→ h(g(u))

dx −→ g′(u) du =
dx
du

du.
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Example 5.3.1: Integrate ∫
1

1 +
√

x
dx .

Let
√

x = u, so x = u2 and dx
du = 2u. Then∫

1
1 +

√
x

dx =

∫
1

1 + u
2u du

=

∫
2− 2

1 + u
du

= 2u − 2 ln(1 + u) + C = 2
√

x − 2 ln(1 +
√

x) + C.
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Example 5.3.2: Integrate ∫
x − 2√
2x + 3

dx .

Let u =
√

2x + 3, so 2x + 3 = u2 and dx
du = u. Then∫

x − 2√
2x + 3

dx =

∫ 1
2(u2 − 3)− 2

u
u du

=

∫
1
2
(u2 − 7) du

=
u3

6
− 7u

2
+ C =

u
6

(u2 − 21) + C

=

√
2x + 3

6
(2x − 18) + C.
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Example 5.3.3: Integrate ∫
1

(4− x2)
3
2

dx .

Let x = 2 sin θ, so dx
dθ = 2 cos θ, and 4− x2 = 4 cos2 θ. Then∫

1

(4− x2)
3
2

dx =

∫
2 cos θ

8 cos3 θ
dθ

=
1
4

∫
sec2 θ dθ =

1
4

tan θ + C

=
1
4

sin θ√
1− sin2 θ

+ C =
1
4

x√
4− x2

+ C.
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5.4 Integration by parts

Recall the rule for differentiating a product of functions:

d
dx

(uv) =
du
dx

.v + u.
dv
dx

.

Using the antiderivative this becomes

uv =

∫
v

du
dx

dx +

∫
u

dv
dx

dx .

Therefore ∫
u

dv
dx

dx = uv −
∫

v
du
dx

dx .
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Example 5.4.1: Calculate ∫
x cos x dx .

Let u = x and dv
dx = cos x . Then du

dx = 1 and v = sin x .∫
x cos x dx = x sin x −

∫
(sin x).1 dx

= x sin x + cos x + C.
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Example 5.4.2: Calculate

S =

∫
x2e3x dx .

Let u = x2 and dv
dx = e3x . Then du

dx = 2x and v = 1
3e3x .

S =
x2

3
e3x −

∫
2x
3

e3x dx =
x2

3
e3x − T .

Now use integration by parts again to determine T
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Let u = 2x
3 and dv

dx = e3x . Then du
dx = 2

3 and v = 1
3e3x .

T =
2x
3

e3x

3
−

∫
2
9

e3x dx

=
2x
9

e3x − 2
27

e3x + C.

So

S =

(
x2

3
− 2x

9
+

2
27

)
e3x + C.
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Using this method we can integrate another of our standard functions.

Example 5.4.3: Calculate ∫
ln(x) dx .

Let u = ln(x) and dv
dx = 1. Then du

dx = 1
x and v = x .∫

ln(x) dx = x ln(x)−
∫ x

x dx

= x ln(x)− x + C,

Next time we will see how integration by parts can be used in more
complicated examples.
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