
6.4 Integration using tan(x/2)

We will revisit the double angle identities:

sin x = 2 sin(x/2) cos(x/2)

=
2 tan(x/2)

sec2(x/2)
=

2 tan(x/2)

1 + tan2(x/2)

cos x = cos2(x/2)− sin2(x/2)

=
1− tan2(x/2)

sec2(x/2)
=

1− tan2(x/2)

1 + tan2(x/2)

tan x =
2 tan(x/2)

1− tan2(x/2)
.
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So writing t = tan(x/2) we have

sin x =
2t

1 + t2 cos x =
1− t2

1 + t2 tan x =
2t

1− t2 .

Also
dt
dx

=
1
2

sec2(x/2) =
1
2
(1 + tan2(x/2)) =

1 + t2

2
so

dx
dt

=
2

1 + t2 .

We can use these formulas to calculate integrals of the form∫
1

a cos x + b sin x + c
dx

by converting them into integrals of rational functions.
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Example 6.4.1: Integrate∫
1

12 + 13 sin x
dx .

Let t = tan(x/2). Then∫
1

12 + 13 sin x
dx =

∫
1(

12 + 13 2t
1+t2

) 2
1 + t2 dt

=

∫
1

6t2 + 13t + 6
dt =

∫
1

(3t + 2)(2t + 3)
dt

=
1
5

∫
3

3t + 2
− 2

2t + 3
dt

=
1
5
(ln(3t + 2)− ln(2t + 3)) + C

=
1
5
(ln(3 tan(x/2) + 2)− ln(2 tan(x/2) + 3)) + C
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6.5 Hyperbolic functions

We define the hyperbolic cosine of x by

cosh x =
1
2
(ex + e−x)

and the hyperbolic sine of x by

sinh x =
1
2
(ex − e−x).

These functions turn out to be very similar (in certain respects) to the
usual trigonometric functions. For example, they satisfy similar
identities. This will be justified more precisely when we consider
complex numbers next term.
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By analogy with the standard trig functions we define

tanh x =
sinh x
cosh x

sech x =
1

cosh x
cosech x =

1
sinh x

and
coth x =

1
tanh x

=
cosh x
sinh x

.

Although these functions are in some ways very similar to the standard
trig functions, they also have some striking differences. For example,
they are not periodic.
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The graph of cosh x :
e

e

cosh x

x

−x

This is an even function, and cosh 0 = 1. Note that this is also the
minimum value of cosh: if y = cosh x then

dy
dx

=
ex − e−x

2

so dy
dx = 0 implies that ex − e−x = 0, i.e. e2x = 1, so x = 0.
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The graph of sinh x :
ex

e−x−

sinh x

This is an odd function, and sinh 0 = 0. There are no stationary points,
but there is a point of inflection at 0.
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The graph of tanh x :

1

−1

Note that the domain of all three functions is R. The range of sinh is R,
of cosh is y ≥ 1, and of tanh is |y | < 1.
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Last time we claimed that hyperbolic functions had many similarities
with trigonometric functions — but saw that their graphs were quite
different. To justify, in part, our claim, we will now consider various
hyperbolic identities.

Example 6.5.1: Show that

sinh 2x = 2 sinh x cosh x .

2 sinh x cosh x = 2
1
2
(ex − e−x)

1
2
(ex + e−x)

=
1
2
(e2x − 1 + 1− e−2x) = sinh(2x).
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Example 6.5.2: Show that

cosh2 x − sinh2 x = 1.

cosh2 x − sinh2 x =
1
4
(e2x + 2 + e−2x)− 1

4
(e2x − 2 + e−2x)

=
4
4

= 1.

The last two examples are both very similar to the corresponding trig
formulas, apart from the minus sign in 6.5.2. This is generally true: we
can find new hyperbolic identities using
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Osborn’s Rule: (i) Change each trig function in an identity to the
corresponding hyperbolic function.
(ii) Whenever a product of two sines occurs, change the sign of that
term.

This rule does not prove the identity; it can only be used to suggest
possible identities, which can then be verified. Also note that products
of sines can be disguised: for example in tan2 x we have sin2 x

cos2 x .
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Example 6.5.3: Find a hyperbolic analogue to

tan 2x =
2 tan x

1− tan2 x
.

Osborn’s rule suggests that we try

tanh 2x =
2 tanh x

1 + tanh2 x
.

The righthand side equals

2 sinh x
cosh x

1

1 + sinh2 x
cosh2 x

=
2 sinh x
cosh x

cosh2 x
cosh2 x + sinh2 x

=
2 sinh x cosh x

cosh2 x + sinh2 x
.
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By Example 6.5.1 this equals

sinh 2x
cosh2 x + sinh2 x

so it is enough to prove that

cosh2 x + sinh2 x = cosh 2x .

But

cosh2 x + sinh2 x =
1
4
(e2x + 2 + e−2x) +

1
4
(e2x − 2 + e−2x)

=
1
2
(e2x + e−2x) = cosh 2x

as required.
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6.6 Solving hyperbolic equations

These are usually simpler to solve than the corresponding trig
equations.

Example 6.6.1: Solve

3 sinh x − cosh x = 1.

We have
3
2
(ex − e−x)− 1

2
(ex + e−x) = 1

which becomes
ex − 2e−x = 1.
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Therefore
e2x − ex − 2 = 0

or
(ex + 1)(ex − 2) = 0.

ex = −1 is impossible, so the only solution is ex = 2, i.e. x = ln 2.

Sometimes, as for standard trig functions, it is best to use an identity to
simplify the equation.
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Example 6.6.1: Solve

12 cosh2 x + 7 sinh x = 24.

We use cosh2 x − sinh2 x = 1. Then we have

12(1 + sinh2 x) + 7 sinh x = 24

which simplifies to

(3 sinh x + 4)(4 sinh x − 3) = 0.

So sinh x = −4
3 or sinh x = 3

4 .
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If sinh x = −4
3 then

ex − e−x

2
= −4

3

i.e. 3ex − 3e−x = −8, or equivalently 3e2x + 8ex − 3 = 0. Therefore

(3ex − 1)(ex + 3) = 0

and hence ex = 1
3 (as ex = −3 is impossible).

So x = ln 1
3 = − ln 3.

If sinh x = 3
4 then a similar calculation shows that x = ln 2, and so the

solutions to the equation are

x = − ln 3 and x = ln 2.
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Integrate ∫
x + 3

x2 + 2x + 5
dx .

Note that d
dx (x2 + 2x + 5) = 2x + 2. Thus∫

x + 3
x2 + 2x + 5

dx =

∫ 1
2(2x + 2) + 2
x2 + 2x + 5

dx

=
1
2

∫
2x + 2

x2 + 2x + 5
dx + 2

∫
1

(x + 1)2 + 4
dx

=
1
2

ln(x2 + 2x + 5) + tan−1
(

x + 1
2

)
+ C.
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Example 6.3.3:∫
1

2x2 + 2x + 1
dx =

∫
1

2(x2 + x + 1
2)

dx

=
1
2

∫
1

(x + 1
2)2 + 1

4

dx

=
1
2

(
1
1
2

)
tan−1

(
x + 1

2
1
2

)
+ C

= tan−1(2x + 1) + C.

(Compare with Ex 6.2.2.)
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We can also deal with more complicated rational functions by using
these methods together with partial fractions.

Finally, we consider the integrals of inverse trigonometric functions. To
integrate sin−1 x we use integration by parts with u = sin−1 x and
v = x .∫

sin−1 x = x sin−1 x −
∫

x√
1− x2

dx = x sin−1 x +
√

1− x2 + C.

Similarly∫
tan−1 x = x tan−1 x −

∫
x

x2 + 1
dx = x tan−1 x − 1

2
ln(x2 + 1) + C.
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6.7 Calculus of hyperbolics

It is easy to determine the derivatives of hyperbolic functions.

Example 6.7.1: Show that

d
dx

(cosh x) = sinh x .

d
dx

(cosh x) =
d

dx

(
1
2
(ex + e−x)

)
=

1
2
(ex − e−x) = sinh x .

Similarly we can show that

d
dx

(sinh x) = cosh x .

Note: Osborn’s Rule does not apply to calculus.
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We can now determine the derivatives of all the other hyperbolic
functions. These should be memorised.

f (x) f ′(x)
sinh x cosh x
cosh x sinh x
tanh x sech2 x

cosech x − coth x cosech x
coth x − cosech2 x

sech x − sech x tanh x .

Reversing the roles of the two columns (and remembering to add in
the constant!) we can deduce the integrals of the functions in the
right-hand column.
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6.8 Inverse hyperbolic functions

First consider sinh. From the graph we see that this is injective with
image R. Thus it possesses an inverse function for all values of x . For
x ∈ R we define

y = sinh−1 x if and only if x = sinh y .

Next consider tanh. This is also injective, but with image set
−1 < x < 1. So for −1 < x < 1 we define

y = tanh−1 x if and only if x = tanh y .
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The function cosh is not injective, so we cannot define an inverse to
the entire function. However, if we only consider cosh y on the domain
y ≥ 0 then the function is injective, with image set cosh y ≥ 1.

So for x ≥ 1 we define

y = cosh−1 x if and only if x = cosh y and y ≥ 0.

We can sketch the graphs of these functions:
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y = sinh−1 x y = tanh−1 x

1−1
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y = cosh−1 x

1

Sometimes these functions are denoted by arsinh, arcosh, and artanh.
It is easy to differentiate these functions.
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Example 6.8.1: Show that

d
dx

(sinh−1 x) =
1√

x2 + 1
.

If y = sinh−1 x then x = sinh y . Now

dx
dy

= cosh y , so
dy
dx

=
1

cosh y
.

By Ex 6.5.2, and the fact that cosh y ≥ 0 for all y , we have that

cosh y =

√
sinh2 y + 1 =

√
x2 + 1.

So
d

dx
(sinh−1 x) =

1√
x2 + 1

.

Similarly
d

dx
(cosh−1 x) =

1√
x2 − 1

.
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Example 6.8.2: Show that

d
dx

(tanh−1 x) =
1

1− x2 .

If y = tanh−1 x then x = tanh y , and so we have

dx
dy

= sech2 y and
dy
dx

=
1

sech2 y
.

Osborn’s Rule suggests that

sech2 y = 1− tanh2 y .

(We can and should verify this using the definitions.) Hence

dy
dx

=
1

1− tanh2 y
=

1
1− x2 .

These three standard derivatives should be memorised; we will see
their usefulness in the next lecture.
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Recall (Ex 5.3.3 and Ex 5.5.3) that we solved integrals of the form∫ √
1− x2 dx or

∫
1√

4− x2
dx

using the identity
cos2 u = 1− sin2 u

to suggest the substitution x = a sin u. From the identity

cosh2 u − sinh2 u = 1

we can now solve integrals of the form∫ √
x2 − 1 dx or

∫
1√

4 + x2
dx

by means of the substitution x = a cosh u or x = a sinh u.
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Example 6.8.3: Calculate∫ √
2x2 + 4x − 8 dx .

We have
2x2 + 4x − 8 = 2((x + 1)2 − 5)

and so ∫ √
2x2 + 4x − 8 dx =

∫ √
2
√

(x + 1)2 − (
√

5)2 dx .

Let x + 1 =
√

5 cosh u with u ≥ 0. Then dx
du =

√
5 sinh u and

(x + 1)2 − (
√

5)2 = 5 sinh2 u.
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Now ∫ √
2
√

5 sinh2 u
√

5 sinh u du = 5
√

2
∫

sinh2 u du

=
5
√

2
2

∫
cosh 2u − 1 du

=
5
√

2
2

[
sinh 2u

2
− u

]
+ C.

But sinh 2u = 2 sinh u cosh u = 2 cosh u
√

cosh2 u − 1 (by our
assumption on u) and so∫ √

2x2 + 4x − 8 dx

= 5
√

2
2

[
x+1√

5

√
(x+1)2

5 − 1− cosh−1
(

x+1√
5

)]
+ C.
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Example 6.8.4: Calculate ∫ 1

0

1√
1 + 4x2

dx .

Let 2x = sinh u so dx
du = 1

2 cosh u and

1 + 4x2 = 1 + sinh2 u = cosh2 u.

Then ∫ sinh−1 2

0

1
cosh u

cosh u
2

du =
[u

2

]sinh−1 2

0
=

1
2

sinh−1 2.
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Generally we can quote (and hence should know)∫
1√

x2 + a2
dx = sinh−1

(x
a

)
+C

∫
1√

x2 − a2
dx = cosh−1

(x
a

)
+C.

For integrals of the form∫
1√

ax2 + bx + c
dx

we can now solve by completing the square.
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Finally, we would like to have a more explicit formula for cosh−1 x and
sinh−1 x . As cosh x and sinh x are defined in terms of ex , we might
expect a formula involving ln.

Let y = sinh−1 x , so x = sinh y . Then

2x = ey − e−y .

Multiplying by ey we see that

e2y − 2xey − 1 = 0

and hence
(ey − x)2 − (x2 + 1) = 0.
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Solving for ey we obtain

ey = x ±
√

x2 + 1.

But
√

x2 + 1 > x for all x , and ey ≥ 0 for all y . Hence

ey = x +
√

x2 + 1

and so
sinh−1 x = y = ln(x +

√
x2 + 1).

In the same way we can show that

cosh−1 x = ln(x +
√

x2 − 1)

(recall that we have only defined cosh−1 x for x ≥ 1.) With these
results we can now simplify our earlier examples.
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Example 6.8.5: In Ex 6.6.2 we showed that

12 cosh2 x + 7 sinh x = 24

had solutions sinh x = −4
3 and sinh x = 3

4 . By the above results we
immediately obtain

x = ln

(
−4

3
+

√
16
9

+ 1

)
= ln

(
1
3

)
= − ln(3)

and

x = ln

(
3
4

+

√
9
16

+ 1

)
= ln(2).
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