
CHAPTER 2

Semisimplicity and some basic structure theorems

In this chapter we will review some of the classical structure theorems for finite dimensional
algebras. In most cases results will be stated with only a sketch of the proof. Henceforth we will
restrict our attention to finite dimensional modules.

2.1. Simple modules and semisimplicity

Recall that a simple module is a moduleSsuch that the only submodules areSand 0. These
form the building blocks out of which all other modules are made:

LEMMA 2.1.1. If M is a finite dimensional A-module then there exists a sequence of submod-
ules

0= M0 ⊂ M1 ⊂ ·· · ⊂ Mn = M

such that Mi/Mi−1 is simple for each1≤ i ≤ n. Such a series is called acomposition seriesfor M.

PROOF. Proceed by induction on the dimension ofM. If M is not simple, pick a submoduleM1
of minimal dimension, which is necessarily simple. Now dim(M/M1) < dimM, and so the result
follows by induction. �

Moreover, we have

THEOREM 2.1.2 (Jordan-Hölder).Suppose that M has two composition series

0= M0 ⊂ M1 ⊂ ·· · ⊂ Mm = M, 0= N0 ⊂ N1 ⊂ ·· · ⊂ Nn = M.

Then n= m and there exists a permutationσ of {1, . . .n} such that

Mi/Mi+1
∼= Nσ(i)/Nσ(i)+1.

PROOF. The proof is similar to that for groups. �

Life would be (relatively) straightforward if every modulewas a direct sum of simple modules.

DEFINITION 2.1.3. A module M issemisimple(or completely reducible) if it can be written as
a direct sum of simple modules. An algebra A issemisimpleif every finite dimensional A-module
is semisimple.

LEMMA 2.1.4. If M is a finite dimensional A-module then the following are equivalent:
(a) If N is a submodule of M then there exists L a submodule of M such that M= L⊕N.
(b) M is semisimple.
(c) M is a (not necessarily direct) sum of simple submodules.
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PROOF. (Sketch) Note that (a) implies (b) and (b) implies (c) are clear. For (c) implies (a)
consider the set of submodules ofA whose intersection withN is 0. Pick one such,L say, of
maximal dimension; ifN⊕L 6= M then there is some simpleS in M not in N⊕L. But this would
imply thatS+L has intersection 0 withA, contradicting the maximality ofL. �

LEMMA 2.1.5. If M is a semisimple A-module then so is every submodule and quotient module
of M.

PROOF. (Sketch) IfN is a submodule thenM = N⊕L for someL by the preceding Lemma.
But thenM/L ∼= N, and so it is enough to prove the result for quotient modules.

If M/L is a quotient module consider the projection homomorphismπ from M to M/L. Write
M as a sum of simple modulesSi and verify thatπ(S) is either simple or 0. This proves thatM/L
is a sum of simple modules, and so the result follows from the preceding lemma. �

To show that an algebra is semisimple, we do not want to have tocheck the condition for every
possible module. Fortunately we have

PROPOSITION2.1.6. Every finite dimensional A-module is isomorphic to a quotient of An for
some n. Hence an algebra A is semisimple if and only if A is semisimple as an A-module.

PROOF. (Sketch) Suppose thatM is a finite dimensionalA-module, spanned by some elements
m1, . . . ,mn. We define a map

φ : ⊕n
i=1A−→ M

by

φ((a1, . . . ,an)) =
n

∑
i=1

aimi .

It is easy to check that this is a homomorphism ofA-modules, and so by the isomorphism theorem
we have that

M ∼=⊕n
i=1A/kerφ .

The result now follows from the preceding lemma. �

For finite groups we can say exactly whenkG is semisimple:

THEOREM 2.1.7 (Maschke).Let G be a finite group. Then the group algebra kG is semisimple
if and only if the characteristic of k does not divide|G|, the order of the group.

PROOF. (Sketch) First suppose that the characteristic ofk does not divide|G|. We must show
that everykG-submoduleM of kG has a complement as a module. Clearly as vector spaces we
can findN such thatM⊕N = kG. Let π : kG−→ M be the projection mapπ(m+n) = m for all
m∈ M andn∈ N. We want to modifyπ so that it is a module homomorphism, and then show that
the kernel is the desired complement.

Define a mapTπ : kG−→ M by

Tπ(m) =
1
|G| ∑

g∈G

g(π(g−1m)).

Note that this is possible as|G|−1 exists ink. It is then routine to check thatTπ is a kG-module
map.
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Now let K = ker(Tπ), which is a submodule ofkG. We want to show thatkG= M⊕K. First
show thatTπ acts as the identity onM, which implies thatM ∩K = 0. Next note that by the
rank-nullity theorem for linear maps,kG= M +K. Combining these two facts we deduce that
kG= M⊕K as required.

For the reverse implication, considerw= ∑g∈Gg∈ kG. It is easy to check that every element
of g fixesw, and hencew spans a one-dimensional submoduleM of kG. Now suppose that there is
a complementary submoduleN of kG, and decompose 1= e+ f whereeand f are the idempotents
corresponding toM andN respectively. We havee= λw for someλ ∈ k, ande2 = e= λ 2w2. It
is easy to check thatw2 = |G|w and henceλw = λ 2|G|w which implies that 1= λ |G|. But this
contradicts the fact that|G|= 0 in k. �

The next result will be important in the following section.

LEMMA 2.1.8. The algebra Mn(k) is semisimple.

PROOF. Let Ei j denote the matrix inA= Mn(k) consisting of zeros everywhere except for the
(i, j)th entry, which is 1. We first note that

1= E11+E22+ · · ·+Enn

is an orthogonal idempotent decomposition of 1, and henceA decomposes as a direct sum of
modules of the formAEii . We will show that these summands are simple.

First observe thatAEii is just the set of matrices which are zero except possibly in column i.
Pick x∈ AEii non-zero; we must show thatAx= AEii . As x is non-zero there is some entryxmi in
the matrixx which is non-zero. But then

E jmx= xmiE ji ∈ Ax

and henceE ji ∈ Ax for all 1≤ j ≤ n. But this implies thatAx= AEii as required. �

2.2. Schur’s lemma and the Artin-Wedderburn theorem

We begin with Schur’s lemma, which tells us about automorphisms of simple modules.

LEMMA 2.2.1 (Schur).Let S be a simple A-module andφ : S−→S a non-zero homomorphism.
Thenφ is invertible.

PROOF. Let M = kerφ andN = imφ ; these are both submodules ofS. But S is simple and
φ 6= 0, soM = 0 andφ is injective. Similarly we see thatN = S, soφ is surjective, and henceφ is
invertible. �

LEMMA 2.2.2. If k is algebraically closed and S is a finite dimensional simple module with
non-zero endomorphismφ , thenφ = λ . idS, for some non-zeroλ ∈ k.

PROOF. As k is algebraically closed and dimS< ∞ the mapφ has an eigenvalueλ ∈ k. Then
φ −λ idS is an endomorphism ofSwith non-zero kernel (containing all eigenvectors with eigen-
value λ ). Arguing as in the preceding lemma we deduce that ker(φ − λ idS) = S, and hence
φ = λ idS. �
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Given anA-moduleM we set

EndA(M) = {φ : M −→ M | φ is anA-homomorphism}.

This is a subalgebra of Endk(M). More generally, ifM andN areA-modules we set

HomA(M,N) = {φ : M −→ N | φ is anA-homomorphism}.

Arguing as in the proof of Lemma 2.2.1 above we obtain

LEMMA 2.2.3 (Schur).If k is algebraically closed and S and T are finite dimensionalsimple
A-modules then

HomA(S,T)∼=

{

k if S∼= T
0 otherwise.

We can now give a complete classification of the finite dimensional semisimple algebras.

THEOREM 2.2.4 (Artin-Wedderburn).Let A be a finite dimensional algebra over an alge-
braically closed field k. Then A is semisimple if and only if

A∼= Mn1(k)⊕Mn2(k)⊕·· ·⊕Mnt (k)

for some t∈ N and n1, . . . ,nt ∈ N.

PROOF. (Sketch) We saw in Lemma 2.1.8 thatMn(k) is a semisimple algebra, and ifA andB
are semisimple algebras, then it is easy to verify thatA⊕B is semisimple.

For the reverse implication suppose thatM andN areA-modules, withM = ⊕n
i=1Mi andN =

⊕m
i=1Ni . The first claim is that HomA(M,N) can be identified with the space of matrices

{(φi j )1≤i≤n,1≤ j≤m | φi, j : M j −→ Ni anA-homomorphism}

and that ifM = N with Mi = Ni for all i then this space of matrices is an algebra by matrix multi-
plication, isomorphic to EndA(M). This follows by an elementary calculation.

Now apply this to the special case whereM = N = A, and

A= (S1⊕S2⊕·· ·⊕Sn1)⊕ (Sn1+1⊕·· ·⊕Sn1+n2)⊕·· ·⊕ (Sn1+n2+···+nt−1+1⊕·· ·⊕Sn1+n2+···+nt )

is a decomposition ofA into simples such that two simples are isomorphic if and onlyif they occur
in the same bracketed term. By Schur’s Lemma above we see thatφi j in this special case is 0 if
Si andSj are in different bracketed terms, and is someλi j ∈ k otherwise. There is then an obvious
isomorphism of HomA(A,A) with Mn1(k)⊕·· ·⊕Mnt (k). Finally, we note that for any algebraA
we have

EndA(A,A)∼= Aop

and hence

A= (Aop)op∼= Mn1(k)
op⊕·· ·⊕Mnt (k)

op.

But it is easy to see thatMn(k) ∼= Mn(k)op via the map taking a matrixX to its transpose, and so
we are done. �

We can also describe all the simple modules for such an algebra.
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COROLLARY 2.2.5. Suppose that

A∼= Mn1(k)⊕Mn2(k)⊕·· ·⊕Mnt (k).

Then A has exactly t isomorphism classes of simple modules, one for each matrix algebra. If
Si is the simple corresponding to Mni(k) then dimSi = ni and Si occurs precisely ni times in a
decomposition of A into simple modules.

PROOF. (Sketch) Choose a basis forA such that for each elementa ∈ A the mapx 7−→ ax is
given by a block matrix









A1 0 0 · · · 0
0 A2 0 · · · 0
...

...
0 · · · 0 0 At









whereAi ∈ Mni (k). ThenA is the direct sum of the spaces given by the columns of this matrix,
each of dimensionni . Arguing as in Lemma 2.1.8 we see that each of these column spaces is a
simpleA-module. Swapping rows in a given block gives isomorphic modules. Thus there are at
mostt non-isomorphic simples in a decomposition ofA (and hence by Proposition 2.1.6 at most
t isomorphism classes). Two simples from different blocks cannot be isomorphic (by considering
the action of the matrix which is the identity in blockAi and zero elsewhere). �

REMARK 2.2.6. If k is not algebraically closed then the proofs of Lemmas 2.2.2 and 2.2.3 no
longer hold. Instead one deduces that for a simple module S the spaceEndA(S,S) is a division
ring over k. (Adivision ring is a non-commutative version of a field.) There is then a version of
the Artin-Wedderburn theorem, but where each Mn(k) is replaced by some Mn(Di) with Di some
division ring containing k.

2.3. The Jacobson radical

Suppose thatA is not a semisimple algebra. One way to measure how far from semisimple it
is would be to find an idealI in A such thatA/I is semisimple andI is minimal with this property.

DEFINITION 2.3.1. TheJacobson radical(or just radical) of an algebra A, denotedJ (A) (or
justJ ), is the set of elements a∈ A such that aS= 0 for all simple modules S. It is easy to verify
that this is an ideal in A.

DEFINITION 2.3.2. An ideal isnilpotentif there exists n such that In = 0. A maximal submod-
ule in a module M is a module L⊂ M which is maximal by inclusion. Theannihilator Ann(M) of
a module M is the set of a∈ A such that aM= 0. This is easily seen to be a submodule of A.

When discussing the Jacobson radical, the following resultis useful.

LEMMA 2.3.3. Let A be a finite dimensional algebra. Then A has a largest nilpotent ideal.

PROOF. Consider the set of nilpotent ideals inA, and chose one,I , of maximal dimension.
If J is another nilpotent ideal then the idealI + J is also nilpotent. (IfIn = 0 andJm = 0 then
(I + J)m+n = 0, as the expansion of any expression(a+b)n+m with a ∈ I andb ∈ J contains at
leastn copies ofa or m copies ofb.) But then dim(I +J) = dimI and henceJ ⊆ I . �
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THEOREM 2.3.4 (Jacobson).Let A be a finite dimensional algebra. The idealJ (A) is
(a) the largest nilpotent ideal N in A.
(b) the intersection D of all maximal submodules of A.
(c) the smallest submodule R of A such that A/R is semisimple.

PROOF. (a) First suppose thatS is simple. ThenNS is a submodule ofS. If NS= S then by
inductionNmS= S for all m≥ 1. But this contradicts the nilpotency ofN, and soN ⊆ J . For the
reverse inclusion, consider a composition series forA

0= An ⊂ An−1 ⊂ ·· · ⊂ A0 = A.

As Ai/Ai+1 is simple we havea(Ai/Ai+1) = 0 for all a∈ J . But this implies thatJ Ai ⊆ Ai+1,
and hence

J n ⊂ J nA⊂ An = 0.

(b) Suppose thata ∈ J andM is a maximal submodule ofA. ThenA/M is simple and so
a(A/M) = 0. In other words,a(1+M) = 0+M and soa∈ M. ThusJ ⊂ M for every maximal
submodule ofA.

For the reverse inclusion, suppose thatJ 6⊆ D. Then there exists some simpleS ands∈ S
with Ds 6= 0. NowDs is a submodule ofS, and henceDs= S. Thus there existsd ∈ D with ds= s;
sod−1∈ Ann(S) 6⊆ A, and there exists a maximal submoduleM of A with Ann(S)⊆ M. But then
d ∈ D ⊆ M and 1−d ∈ M implies that 1∈ M, which contradictsM ⊂ A.

(c) (Sketch) First we claim thatD can be expressed as the intersection of finitely many maximal
submodules ofA. To see this pick some submoduleL which is the intersection of finitely many
maximal submodules, such that dimL is minimal. ClearlyD ⊆ L. For any maximalM in A we
must have thatL = L∩M, and henceL ⊆ D.

ThusD = M1∩M2∩ . . .∩Mn for some maximal submodulesM1, . . .Mn. There is a homomor-
phism

φ : A/D −→ A/M1⊕·· ·A/Mn

given byφ(a) = (a+M1, . . . ,a+Mn). It is easy to see this is injective. As eachMi is maximal we
have embeddedA/D into a semisimple module, and henceA/D is semisimple by Lemma 2.1.5.

Now suppose thatA/X is semisimple. It remains to show thatD ⊆ X. Write A/X as a direct
sum of simplesSi = Li/X. Then it is easy to check that the submoduleMi = ∑i 6= j Li is a maximal
submodule ofA, and that the intersection of theMi equalsX. By definition this intersection contains
D, as required. �

The Jacobson radical can be used to understand the structureof A-modules:

LEMMA 2.3.5 (Nakayama).If M is a finite dimensional A-module such thatJ M = M then
M = 0.

PROOF. (Sketch, for the caseA is finite dimensional) Suppose thatM 6=0 and choose a minimal
set of generatorsm1, . . . ,mt of M as anA-module. Nowmt ∈ M = J M implies that

mt =
t

∑
i=1

aimi



2.4. THE KRULL-SCHMIDT THEOREM 23

for someai ∈ J , and so

(1−at)mt =
t−1

∑
i=1

aimi .

Now at ∈ J implies thatat is nilpotent, and then it is easy to check that 1−at must be invert-
ible. But this implies thatmt can be expressed in terms of the remainingmi , which contradicts
minimality. �

We have the following generalisation of Nakayama’s Lemma.

PROPOSITION 2.3.6. If A is a finite dimensional algebra and M is a finite dimensional A-
module thenJ M equals
(a) the intersection D of all maximal submodules of M.
(b) the smallest submodule R of M such that M/R is semisimple.

PROOF. (Sketch) Suppose thatMi is a maximal submodule ofM. ThenM/Mi is simple, and
hence by Nakayama’s lemmaJ (M/Mi) = 0. ThereforeJ M ⊆ J Mi ⊆ Mi and soJ M ⊆ D.

By Theorem 2.3.4 the moduleM/J M is semisimple, as it is a module forA/J . Now
suppose thatL is a submodule ofM such thatM/L is semisimple. LetM/L = M1/L⊕·· ·⊕Mt/L
where eachMi/L is simple. Then the modulesNj = ∑i 6= j Mi are maximal submodules ofM andL
is the intersection of theNj . HenceJ M is a submodule ofL asJ M is a submodule ofD. Taking
L = J M we see thatD is a submodule ofJ M which completes the proof. �

Motivated by the last result, we have

DEFINITION 2.3.7. Theradicalof a module M is defined to be the moduleJ M. Note that
when M= A this agrees with the earlier definition of the radical of an algebra. Theheador topof
M, denotedhd(M) or top(M), is the module M/J M. By the last proposition the sequence

M ⊃ J M ⊃ J 2M ⊃ ·· · ⊃ J tM ⊃ J t+1M = 0

is such that each successive quotient is the largest semisimple quotient possible. This is called the
Loewy seriesfor M, and t+1 is theLoewy lengthof M.

The head of a moduleM is the largest semisimple quotient ofM. It can be shown that the
submodule ofM generated by all simple submodules is the largest semisimple submodule ofM;
we call this thesocleof M, and denote it by soc(M).

2.4. The Krull-Schmidt theorem

Given a finite dimensionalA-moduleM, it is clear that we can decomposeM as a direct sum of
indecomposable modules. The Krull-Schmidt theorem says that this decomposition is essentially
unique, and so it is enough to classify the indecomposable modules for an algebra.

THEOREM 2.4.1 (Krull-Schmidt).Let A be a finite dimensional algebra and M be a finite
dimensional A-module. If

M = M1⊕M2⊕·· ·⊕Mn = N1⊕N2⊕·· ·⊕Nm

are two decompositions of M into indecomposables then n= m and there exists a permutationσ
of {1, . . .n} such that Ni ∼= Mσ(i).
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PROOF. The idea is to proceed by induction onn, at each stage cancelling out summands which
are known to be isomorphic. The details are slightly technical, and so will be omitted here. Instead
we will review below some of the ideas used in the proof. �

A key idea in the proof of the Krull-Schmidt theorem is the notion of a local algebra.

DEFINITION 2.4.2. An algebra A islocal if it has a unique maximal right (or left) ideal.

There are various characterisations of a local algebra.

LEMMA 2.4.3. Suppose that A is a finite dimensional algebra over an algebraically closed
field. Then the following are equivalent:
(a) A is a local algebra.
(b) The set of non-invertible elements of A form an ideal.
(c) The only idempotents in A are0 and1.
(d) The quotient A/J is isomorphic to k.

PROOF. This is not difficult, but is omitted as it requires a few preparatory results. �

REMARK 2.4.4. In fact (a) and (b) are equivalent for any algebra A. However,there exist
examples of infinite dimensional algebras with only0 and1 as idempotents which are not local,
for example k[x]. Also, if the field is not algebraically closed then A/J will only be a division
ring in general.

LEMMA 2.4.5 (Fitting).Let M be a finite dimensional A-module, andφ ∈ EndA(M). Then for
large enough n we have

M = im(φn)⊕ker(φn).

In particular, if M is indecomposable then any non-invertible endomorphism of M must be nilpo-
tent.

PROOF. Note thatφ i+1(M) ⊆ φ i(M) for all i. As M is finite dimensional there must exist an
n such thatφn+t(M) = φn(M), for all t ≥ 1 and soφn is an isomorphism fromφn(M) to φ2n(M).
Form∈ M let x be an element such thatφn(m) = φ2n(x). Now

m= φn(x)+(m−φn(x)) ∈ im(φn)+ker(φn)

and soM = im(φn)+ker(φn). If φn(m) ∈ im(φn)∩ker(φn) thenφ2n(m) = 0, and soφn(m) = 0.
Thus the sum is direct, as required. �

Local algebras are useful as they allow us to detect indecomposable modules.

LEMMA 2.4.6. Let M be a finite dimensional A-module. Then M is indecomposable if and
only if EndA(M) is a local algebra.

PROOF. First suppose thatM = M1 ⊕M2, and for i = 1,2 let ei be the map fromM to M
which mapsm1+m2 to mi. Thenei ∈ EndA(M) is non-invertible (as it has non-zero kernel). But
e1+e2 = 1, which is invertible, which implies that EndA(M) is not local by Lemma 2.4.3.

Now suppose thatM is indecomposable. LetI be a maximal right ideal in EndA(M), and
pick φ ∈ EndA(M)\I . By maximality we have EndA(M) = EndA(M)φ + I . Thus we can write
1= θφ +µ whereθ ∈ EndA(M) andµ ∈ I . Note that any element inI cannot be an isomorphism
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of M (as it would then be invertible), and hence by Fitting’s Lemma we have thatµn = 0 for some
n>> 0. But then

(1+µ +µ2+ . . .+µn−1)θφ = (1+µ +µ2+ . . .+µn−1)(1−µ) = 1−µn = 1

and soφ is an isomorphism. But thenI consists precisely of the non invertible elements in
EndA(M), and the result follows by Lemma 2.4.3. �

2.5. Exercises

(1) Let A= k[x] andM be the 2-dimensionalA module wherex acts via the matrix
(

0 1
0 0

)

with respect to some basis ofM. Prove thatM is not a semisimple module.

(2) Prove the assertion in the proof of the Artin-Wedderburntheorem that

EndA(A,A)∼= Aop.

(3) Thecentreof an algebraA, denotedZ(A), is the set ofz∈ A such thatza= azfor all a∈A.
This is a subalgebra ofA. If k is algebraically closed andS is a simpleA-module show
that for allz∈ Z(A) there existsλ ∈ k such thatzm= λm for all m∈ S.

(4) Show thatk[x]/(xn) is a local algebra.

(5) Let G be a finite group of orderpn, andk be a field of characteristicp.
(a) Prove that the idealI generated by the set

{1−g : g∈ Z(G)}

is nilpotent inkG.
(b) Show thatI is the kernel of some map fromkG to k(G/Z(G)).
(c) Deduce thatkG is local. You may use the fact that for all suchG we haveZ(G) 6= 1.

(6) Show thatk[x,y] is not a local algebra, but only contains the two idempotents0 and 1.
This demonstrates the need for finite dimensionality in Lemma 2.4.3.


