
CHAPTER 5

Representation type and Gabriel’s theorem

5.1. Representation type

We have seen that a finite dimensional algebra has only finitely many isomorphism classes of
simple modules. It is natural to ask if the same is also true ofindecomposables. However, this is
not generally the case.

DEFINITION 5.1.1. An algebra hasfinite representation typeif there are only finitely many
isomorphism classes of finite dimensional indecomposable modules. Otherwise the algebra has
infinite representation type.

By Krull-Schmidt it is clear that for a representation finitealgebra we have complete knowl-
edge of its representation theory once we have constructed acomplete (finite) set of indecompos-
able modules (although that is not necessarily easy!). Semisimple algebras are clearly of finite
representation type.

EXAMPLE 5.1.2. Suppose that k is algebraically closed. Then the algebra A= k[x]/(xn) has
finite representation type. Any A-module M is a vector space together with a linear mapφ : M −→
M such thatφn = 0. Considerφ as a matrix with respect to some basis. Then the corresponding
Jordan canonical form forφ is a block diagonal matrix where each block is a t× t matrix of the
form

Jt(0) =



















0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 0 1
0 · · · 0 0 0 0



















.

for some t≤ n (as no larger block satisfiesφn = 0). But if M is indecomposable then there is only
one such block. Therefore there are precisely n isomorphismclasses of indecomposable modules:
one each of dimension1,2, . . . ,n.

EXAMPLE 5.1.3. The algebra A= k[x,y]/(x2,y2) has infinite representation type. Let M= k2n

for some n≥ 1 and choseλ ∈ k. Then let x and y act respectively by

X =

(

0 In
0 0

)

Y =

(

0 Jn(λ )
0 0

)

where In is the n×n identity matrix, and Jn(λ ) = Jn(0)+λ In. It is easy to verify that X2 =Y2 = 0
and XY=YX, so this defines an A-module. One can also check it is indecomposable. Clearly these
modules are non-isomorphic for different values of n (and infact they are also non-isomorphic for
different values ofλ ).
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46 5. REPRESENTATION TYPE AND GABRIEL’S THEOREM

EXAMPLE 5.1.4. Let Q be a quiver such that there exist two vertices i and j suchthat there
are (at least) two arrowsα,β : i −→ j. Then as in the last example we find infinitely many non-
isomorphic indecomposables by setting Mi = M j = kn and representingα by the matrix In andβ
by the matrix Jn(λ ).

LEMMA 5.1.5. If A has finite representation type and I is an ideal in A then A/I has finite
representation type.

PROOF. Suppose thatM is anA/I -module. Then we can define anA-module structure onM
by settingam= (a+ I)m for all a∈ A andm∈ M. FurtherM is indecomposable forA if and only
if it is for A/I , and two modules are isomorphic asA/I -modules if and only they are isomorphic as
A-modules. �

If an algebra is not representation finite, is there any hope to classify the finite dimensional
indecomposable modules?

DEFINITION 5.1.6. Suppose that k is an infinite field. An algebra over k hastame represen-
tation typeif it is of infinite type and for all n∈ N, all but finitely many isomorphism classes of
n-dimensional indecomposables occur in a finite number of one-parameter families.

Thus there is some hope that one can classify all indecomposable representations for algebras
of tame representation type.

REMARK 5.1.7. (a) We could make precise what we mean by a one-parameter family of rep-
resentations; for our purposes however the above definitionwill be good enough. The idea of a
one-parameter family is illustrated in the variation withλ of the representations defined in Exam-
ple 5.1.3.
(b) Some authors define tame representation type to include finite representation type.

DEFINITION 5.1.8. A k-algebra A haswild representation typeif for all finite dimensional
k-algebras B, the representation theory of B can be embeddedinto that of A.

REMARK 5.1.9.Again, we could give a more precise definition of what we mean by embedding
one representation theory inside another, but this would require the language of categories.

This means that understanding all indecomposable representations ofA implies an understand-
ing of all representations ofeveryfinite dimensional algebra, which should sound like a hopeless
task. That it is can be seem from

REMARK 5.1.10. It follows from an alternative definition of wild representation type that the
representation theory of k〈x,y〉 can be embedded into that of any wild algebra. But the word
problem for finitely presented groups can be embedded into the representation theory of k〈x,y〉,
and this problem has been proved to beundecidable.

The following fundamental theorem is due to Drozd.

THEOREM 5.1.11 (Trichotomy theorem).Over an algebraically closed field, every finite di-
mensional algebra is either of finite, tame, or wild representation type.

PROOF. A proof of this theorem is beyond the scope of this course. �
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In general we do not have a complete classification of algebras of finite (or tame) representation
type. However in the special case of a quiver algebra or a group algebra we can give such a
classification. We will conclude this section by considering the group case. As one would expect
from Maschke’s theorem, this now depends on the field as well as the group. We begin with a
special case.

PROPOSITION5.1.12.Let G be a finite group of order pn, and k be a field of characteristic p.
Then kG has finite representation type if and only if G is cyclic.

PROOF. (Sketch) First suppose thatG is cyclic. Then by Example 5.1.2 it is enough to show
thatkG∼= k[x]/(xpn

). Letgbe a generator forG, and define a mapφ : k[x]−→ kGby f 7−→ f (1−g).

We claim that this is a surjective algebra homomorphism, with kernel containing(xpn
). From

this it follows by comparing dimensions and Lemma 1.2.7 thatφ induces the desired algebra
isomorphism. To see the claim, note that(1−g)pi

=1−gpi
in characteristicp, as all other binomial

coefficients vanish, and henceφ(xpn
) = 0. Then verify that 1,(1−g),(1−g)2, . . . ,(1−g)pn−1 form

a basis forkG.

For the reverse implication, basic group theory implies that there existsN⊳G such thatG/N∼=
Cp×Cp. It is then enough by Lemma 5.1.5 to show thatk(G/N) has infinite representation type.
By a similar argument to the preceding paragraph, one can show that

k(G/N)∼= k[x,y]/(xp,yp).

As (xp,yp)⊆ (x2,y2), it is enough to show thatk[x,y]/(x2,y2) has infinite type. But this was done
in Example 5.1.3. �

Using this it is possible to prove

THEOREM 5.1.13 (Higman).Let G be a finite group and k a field. Then kG has finite repre-
sentation type if and only if either
(a) k has characteristic zero, or
(b) k has characteristic p> 0 and G has a cyclic Sylow p-subgroup.

PROOF. (Sketch) Ifk has characteristic zero thenkG is semisimple by Maschke’s theorem,
and we are done. Ifk has positive characteristic then we would like to argue thatkG of finite type
if and only if kH is of finite type whereH is a Sylowp-subgroup ofG, as then we are done by
Proposition 5.1.12.

As H is a Sylowp-subgroup ofG the index ofH in G is coprime top, and so is non-zero ink.
The reduction to the case ofkH now proceeds by a Maschke-type averaging argument. �

The tame cases can also be classified.

THEOREM 5.1.14. Let G be a finite group, and k be an infinite field of characteristic p > 0.
Then kG has tame representation type if and only if p= 2 and the Sylow2-subgroups of G are
dihedral, semidihedral, or generalised quaternion.
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5.2. Representation type of quiver algebras

In the special case of a quiver algebra we have a complete classification of those of finite and
of tame representation types. We will begin by consider the finite type case, for which we will
need to introduce certain Dynkin diagrams. These are illustrated in Figure 5.1.
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FIGURE 5.1. The Dynkin diagrams of typesAn, Dn, E6, E7, andE8

THEOREM 5.2.1 (Gabriel).Suppose that Q is a finite quiver. Then kQ has finite representation
type if and only ifQ̄ is a disjoint union of Dynkin diagrams of types A, D, or E as inFigure 5.1.

If you know any of the theory of Lie algebras then you may recognise Dynkin diagrams as
being associated with a root system. (This explains the strange labelling scheme: there are also
root systems of typesBn andCn, as well asF4 andG2.)

There is a similar classification of tame quiver algebras, this time in terms of certainextended
Dynkin diagrams(also known asEuclidean diagrams).

THEOREM 5.2.2. Suppose that Q is a finite quiver and k an infinite field. Then kQ has tame
representation type if and only if̄Q is a disjoint union of extended Dynkin diagrams as in Figure
5.2 possibly together with Dynkin diagrams of types A, D, E asin Figure 5.1.

In the next two sections we will introduce some of the main ideas used in the proof of Gabriel’s
theorem. First we will introduce some combinatorics associated to representations which for sim-
ples and projectives only depends on the underlying graph. This provides the link with the language
of Lie theory (although a knowledge of this is not necessary here). In the final section of this chap-
ter we will outline how this combinatorics, together with reflection functors, can be used to prove
one implication of Gabriel’s theorem.
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Ê6 :

1 2 3 4 n

1

2

3

4

n

654321
Ê7 :

761 2 3 4 5
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FIGURE 5.2. The extended Dynkin diagrams of typesÂn, D̂n, Ê6, Ê7, andÊ8

5.3. Dimension vectors and Cartan matrices

In this section we will assume for convenience that the vertex setQ0 of a finite quiverQ has
been identified with{1, . . . ,n} for somen.

DEFINITION 5.3.1. Suppose that M= (Mi,φi) is a representation of a finite quiver Q with
vertices1, . . .n. Then thedimension vectorof M is the n-tuple

dimM = (dimM1, . . . ,dimMn).

EXAMPLE 5.3.2. (a) The dimension vector of the representation considered in Example 1.4.3
is (1,2,2,3,2).

(b) Clearly the simple representations of Q have dimension vectors with1 in the ith position
(for some i) and0 elsewhere. We will denote this vector by e(i).

(c) By Proposition 3.3.2 we have that p(i) = dimP(i) is the vector whose jth coordinate is the
number of paths from i to j.

We can now define a matrix related tokQ which will play an important role in what follows.

DEFINITION 5.3.3. TheCartan matrixC of kQ is the n× n matrix whose ith column is the
vector p(i)T .
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EXAMPLE 5.3.4. Let Q be the quiver

•1
α // •2

β
// •3

γ
// •4 .

This has Cartan matrix








1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1









.

LEMMA 5.3.5. For all i ∈ Q0 we have

e(i) = p(i)−
n

∑
i=1

a(i, j)p( j) (6)

where a(i, j) is the number of arrows from i to j.

PROOF. (Sketch) LetA = kQ, and setSi = Aei/J ei . Then we have thate(i) = dim(Si) and
p(i) = dim(Aei) and so

e(i) = dim(Aei)−dim(J ei).

Thus it is enough to show that

dim(J ei) =
n

∑
i=1

a(i, j)p( j).

Now J ei is the span of all paths of positive length starting ati, which equals the direct sum of all
Aα whereα is an arrow starting ati. It is easy to see thatAα ∼= Aε j whereα : i −→ j via the map
xα 7−→ xε j . �

COROLLARY 5.3.6. The Cartan matrix of Q is invertible overZ.

PROOF. Transposing the vectors in (6) we obtain

e(i)T = p(i)T −
n

∑
i=1

a(i, j)p( j)T .

The left-hand side is the columns of the identity matrix, while the right-hand side involves the
columns ofC. ThusC has a left inverseI +(−a(i, j)). �

EXAMPLE 5.3.7. Returning to the quiver in Example 5.3.4 we see that

C−1 =









1 0 0 0
−1 1 0 0

0 −1 1 0
0 0 −1 1









.

We can now use the Cartan matrix to define various forms onZn. We will write C−T for
(C−1)T .

DEFINITION 5.3.8. We define theEuler characteristic, a (not in general symmetric) bilinear
form onZn by

〈x,y〉= xC−TyT
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and an associated symmetric form by

(x,y) = 〈x,y〉+ 〈y,x〉.

It is an elementary exercise to show that

LEMMA 5.3.9. For all i and j in Q0 we have

〈p(i),e( j)〉= δi j .

DEFINITION 5.3.10.For i ∈ Q0 define a map si : Zn −→ Zn by

si(x) = x− (x,e(i))e(i).

This is a linear map and it is easy to verify that s2
i = id. We define W to be the subgroup ofGLn(Z)

generated by the si . We say thatx ∈ Zn is positiveif xi ≥ 0 for all i, with strict inequality for at
least one i, and writex > 0. Then the set ofpositive rootsfor Q is the set

{w(e(i)) : w(e(i))> 0, w∈W, 1≤ i ≤ n}.

Root systems arise in a variety of places, such as Lie theory,and are well understood. The
following fact is not hard to prove.

LEMMA 5.3.11.Suppose thatQ is of type A, D, or E. Then the set

{w(e(i)) : w∈W, 1≤ i ≤ n}

(and hence the set of positive roots) is finite.

The relevance of the above combinatorial framework to representation theory is the following
result.

THEOREM 5.3.12 (Gabriel).Suppose that Q is a finite quiver such thatQ is of type A, D or
E. Then the map V7−→ dimV gives a bijection between isomorphism classes of finite dimensional
indecomposable representations and the positive roots of Q.

(Combining this with Lemma 5.3.11 proves that ADE type quivers have finite representation
type.)

One way to prove Theorem 5.3.12 is using reflection functors.

5.4. Reflection functors

DEFINITION 5.4.1. Let Q be a finite quiver, and suppose that i is a vertex such thatthere are
no arrows starting from i. Then we say that i is asink in Q. Similarly, if there are no arrows ending
at i then we say that i is asourcein Q.

Suppose thati is a sink (or source) ofQ. We wish to define a new quiversiQ and a functor
from kQ-modules toksiQ-modules. (This just means that it should mapkQ-modules toksiQ-
modules and also map morphisms betweenkQ-modules to corresponding morphisms forksiQ in a
compatible manner.) We begin withsiQ.

DEFINITION 5.4.2. Suppose that i is a sink (or source) of Q. Then siQ is the quiver obtained
by reversing the direction of all arrows ending at i.
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Now suppose thatM = (Mi,φi) is a representation ofQ. We next wish to define a representation
of siQ when i is a sink. Suppose for concreteness that the arrows enteringi are labelledα j with
α j : i j −→ i for 1≤ j ≤ t.

DEFINITION 5.4.3. Let C+
i (M) be the siQ-representation with C+(M) j = M j for all j 6= i. The

space C+i (M)i is defined by the exact sequence

0−→C+
i (M)i

θ
−→

t
⊕

j=1

Mi j

ψ
−→ Mi (7)

whereψ = ∑t
j=1 φi j . The linear maps in C+i (M) are unchanged if the arrow has not been reversed,

and areθ followed by projection onto the relevant summand if the arrow has been reversed. Given
a morphismφ between two representations of Q a corresponding morphism C+

i (φ) can be defined
between siQ-modules, which makes C+i into a functor. We call this areflection functor.

As the notation suggests, there is a relation between reflection functors and the combinatorics
of the preceding section. This follows from

PROPOSITION 5.4.4. Suppose that M is a finite dimensional indecomposable representation
of a finite quiver Q. Then C+i (M) is 0 if M is a simple representation, and is indecomposable
otherwise. In the latter case we have that

dimC+
i (M) = si(dimM).

PROOF. (Sketch) It is clear thatC+
i (M) = 0 if M is simple. Next one shows: (i) thatM is

indecomposable only ifM is simple or the mapψ in (7) is surjective, and (ii) that ifN = C+
i (M)

then there is a homomorphism
EndkQ(M)−→ EndksiQ(N)

which is surjective if (7) is surjective.

Now supposeM is indecomposable but not simple. Then EndkQ(M) is local by Lemma 2.4.6
and we have a surjection onto EndksiQ(N). Arguing as in the proof of 3.1.7 we see that this latter
algebra is also local, and soN is indecomposable.

The dimension claim follows from elementary linear algebra, together with a comparison with
the corresponding combinatorics for dimension vectors. �

Now suppose thati is a source inQ. There is a similar definition of a reflection functorC−
i in

this case were we reverse the direction of all the arrows in (7). Again one can show thatC−
i takes

simple representations to 0 and non-simple indecomposableto indecomposables as in Proposition
5.4.4. From the definitions it is easy to verify that

C−
i C+

i (M)∼=

{

M M 6∼= Si
0 M ∼= Si

and similarly

C+
i C−

i (M)∼=

{

M M 6∼= Si
0 M ∼= Si .

From this follows
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COROLLARY 5.4.5. Suppose that i is a sink in Q. Then there is a bijection betweennon-simple
finite dimensional indecomposable kQ-modules and non-simple indecomposable ksiQ-modules
given by C+i . Hence kQ and ksiQ have the same representation type.

Any finite acyclic quiver has a sink and a source. Thus we can label the vertices ofQ starting
with the sinks, then taking the sinks in the quiver without these vertices, and so on. Thus we may
assume that if there is an edge fromi to j theni < j. We will call such a labelling anadmissible
labelling.

DEFINITION 5.4.6. Suppose that Q has an admissible labelling. Then the functor

C+ =C+
n C+

n−1 . . .C
+
1

is defined. We call this theCoxeter functorwith respect to this ordering. Note that every arrow
in Q is reversed precisely twice in the construction of C+, and so C+ takes representations of Q
to representations of Q. Similarly there is a functor C− = C−

1 . . .C−
n . There are corresponding

elements s+ and s− in W.

Using the finiteness of the set of positive roots from Lemma 5.3.11 it is now possible to prove

LEMMA 5.4.7. If y∈Zn satisfies s+y= y theny= 0. Also, ifx∈Zn with x> 0 then(s+)nx= 0
for n>> 0.

Now we can sketch the proof of Theorem 5.3.12.

PROOF. (Sketch) First suppose thatQ is of typeADE, and thatM is a finite dimensional in-
decomposable representation ofQ. Then forn >> 0 we have(C+)nM = 0. This follows from
Lemma 5.4.7 as dim(C+)nM ≥ 0 for all n, but equals(s+)ndimM by Proposition 5.4.4.

Thus there existsn such thatX = (C+)nM 6= 0 but (C+)X = 0. Therefore there is ani
such thatC+

i−1 . . .C
+
1 (X) 6= 0 but C+

i C+
i−1 . . .C

+
1 (X) = 0. By Proposition 5.4.4 this implies that

C+
i . . .C+

1 (X) ∼= Si (for the relevant quiver). We can reverse our steps and reconstructM from Si

usingC−
j functors, which also gives the dimension vector forM in terms of the action ofW on

e(i). It is easy to see that this gives the desired bijection between dimension vectors and finite
dimensional indecomposable modules. �

This gives one half of Gabriel’s Theorem 5.2.1. To prove thatall other quivers have infinite
representation type, one proceeds case by case. Show that various simple quivers have infinite type
by hand, such as a quiver with multiple arrows (see Example 5.1.4), or a quiver with four arrows
from distinct vertices meeting at a single vertex. Then showthat every quiver contains one of these
examples as a subquiver (and hence is of infinite type) exceptthe quivers of type ADE. Finally by
using reflection functors we see that the representation type depends only on the underlying graph.

To conclude, a word or two about infinite dimensional representations. As one might expect
these are considerably more complicated. Here are two general theorems for the finite and infinite
type cases.

THEOREM 5.4.8 (Auslander).If A is a finite dimensional algebra of finite representation type
then every indecomposable A-module is finite dimensional, and every module is a direct sum of
indecomposables.
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THEOREM 5.4.9 (Roiter).If A is a finite dimensional algebra of infinite representation type
then there are indecomposable A-modules with arbitrarily many composition factors.

5.5. Exercises

(1) Let Q be the quiver

•1
α // •2 •3

β
oo .

(a) Show that this has six isomorphism classes of indecomposable modules with dimen-
sion vectors(1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1) and(1,1,1).

(b) Determine the Cartan matrix forQ.
(c) Verify that the dimension vectors of projective and simple representations are orthog-

onal with respect to the Euler characteristic.
(d) Determine the groupW as a subgroup of GL3(Z), and hence verify that the dimension

vectors of indecomposable modules are in bijection with thepositive roots ofQ.
(e) Consider the reflection functor forQ corresponding to the unique sink inQ. Deter-

mine the effect of this functor on each of the indecomposablerepresentations ofQ,
verifying that in each case the new representation is indecomposable.

(2) Consider the 3-Kronecker quiver Qgiven by

•1

α

""β
//

γ
<<
•2 .

For λ ,µ ∈ k let M(λ ,µ) be the representation ofQ such thatM1 = k2, M2 = k, and the
maps corresponding toα, β and γ are given by the matrices(1,0), (0,1), and(λ ,µ)
respectively. Show that the representationsM(λ ,µ) are indecomposable and pairwise
non-isomorphic (and hence that this quiver has a two-parameter family of indecompos-
ables).

These are not the only indecomposables (this quiver has wildrepresentation type!). In
[Bar06, Proposition 2.1] it is shown that classifying the indecomposables of this quiver
would allow one to classify the indecomposables foranyquiver.

(3) Investigate what happens if you apply the theory of reflection functors to the 3-Kronecker
quiver and its representationsM(λ ,µ) described above.



CHAPTER 6

Further directions

In this Chapter we will briefly review some of the many ways in which the material in this
course can be extended. Given the time available we can only sketch an indication of the kind of
topics that can be covered: more detailed surveys can be found in the references.

6.1. Ring theory

Much of the classical material developed in Chapters 1-3 canalso be considered when the field
k is replaced by a (commutative) ring. However this can introduce considerable complications —
particularly when we consider representations over the integers. Good basic introductions can be
found in [Mat86] and the (194 page!) introduction to [CR81]. The latter also gives an extensive
exposition of the integral representation theory of finite groups. A shorter discussion more in the
spirit of the later part of these notes can be found in [Ben91].

6.2. Almost split sequences and the geometry of representations

We have only begun the study of representations of finite dimensional algebras. There are
several important ideas which we have not had time to touch on, and we will give a brief sketch of
a few of them in this section.

Consider a short exact sequence ofA-modules

0→ L
φ
→ M

ψ
→ N → 0.

If M is the direct sum ofL andN then we call the sequencesplit. Recall from Lemma 3.1.2 that
this is equvalent to the existence of a left inverse toφ and to the existence of a right inverse toψ.
We call a morphism with a left inverse asection, and with a right inverse aretraction.

Clearly if our sequence is split we understandM completely if we understandL andN. How-
ever, we would like to be able to deal with non-split sequences. Almost split sequences turn out to
play an important role.

We say that a homomorphismφ : L → M is left minimalif every elementsθ ∈ EndA(M) with
θφ = φ is an automorphism. (There is a similar definition forright minimal.) The mapφ as above
is calledleft almost splitif φ is not a section, and for every morphismτ : L→U that is not a section
there existsτ ′ : M →U such thatτ ′φ = τ. This definition is similar to that for an injective module;
the corresponding ‘projective’ version is calledright almost split.

Now we can give the main definition. A sequence

0→ L
φ
→ M

ψ
→ N → 0

55
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is almost splitif φ is left minimal and left almost split, andψ is right minimal and right almost
split. It is clear that an almost split sequence is not split.However, it is not immediately clear that
there exist any such sequences.

First one shows that ifφ : L → M is left minimal and left almost split, thenM is unique up to
isomorphism. Ifφ is merely left almost split thenL must be an indecomposable. (And of course
there are similar righthand versions of these results.) Thus if there is an almost split sequence as
above thenL andN must be indecomposable, andM is uniquely determined. Further,L cannot be
injective andN cannot be projective.

The Auslander-Reiten translateis an explicit functor which takes anA-moduleM to an A-
moduleτM. (The precise definition is a little too involved for the timeavailable to us.) Using this,
Auslander and Reiten were able to prove

THEOREM 6.2.1 (Auslander-Reiten).If M is indecomposable and not projective then there is
exists an almost split sequence

0→ τM → E → M → 0.

There is a similar result for indecomposable noninjectivesusing the inverse translateτ−1.

Auslander and Reiten also introduced theAuslander-Reiten quiverassociated to a finite dimen-
sional algebraA. This is a quiver whose vertices are the isomorphism classesof indecomposable
representations ofA, and whose arrows correspond to bases for the spaces of certain irreducible
morphismsbetween indecomposables. Studying this, together with theeffect of the Auslander-
Reiten translate upon it, is an important aspect of the modern theory.

For example, using this one can prove the following conjectures of Brauer and Thrall:

THEOREM 6.2.2. If A is not representation finite then A has indecomposable modules of arbi-
trarily large dimension.

THEOREM 6.2.3. If k is algebraically closed and A is not representation finite then there are
infinitely many positive integers n such that there are infinitely many non-isomorphic n-dimensional
indecomposable A-modules.

The theory of almost split sequences and AR-quivers is developed in [ARS94] and [ASS06].

Another direction of study is inspired by the reflection functors used in the proof of Gabriel’s
Theorem. This leads to a general area oftilting theory, which tries to replace the algebraA be-
ing studied by a simpler algebra which is closely related. Again, an extensive theory has been
developed — see for example [ASS06].

Finally in this section, we should note that there is an important approach to representations
of finite dimensional algebras which we have completely ignored in these notes, which relies on
geometric techniques.

If we fix a dimension vectorα, then the space of representations of a given quiver with that
dimension forms an algebraic variety. Thus we may use the methods of algebraic geometry to
study this variety. This is a very powerful technique, but does require more geometry than we
have time to introduce in these notes. For an indication of how the results in this course (such as
Gabriel’s theorem) can be approached in this manner, see [Bru03]. There is also a more general
survey focussing on the geometric aspects in [CB93].
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6.3. Local representation theory

We have not looked in detail at the special case of group algebras of finite groups in character-
istic p> 0. We did see in the discussion of representation type that the Sylowp-subgroups play a
key role. There is a general approach to studying group representations which proceeds by relating
the representation theory of a groupG to that of certain normalisers ofp-groups inG.

Given H ≤ G, we can generalise the notion of projective modules forG to relatively H-
projectivemodules. One way to define this is to copy the definition we havegiven, but add the
requirement that the desired homomorphism must exist as a morphism ofkH-modules. Using this
the Green and Brauer correspondences can be defined which reduce to the study of the representa-
tion theory of normalisers ofp-groups inG.

This leads to an extensive and well-developed theory. An excellent introduction, which starts
in the spirit of these notes, can be found in [Alp86].

6.4. Representations of other algebraic objects

In this series of lecures we have concentrated on representations of (mainly finite dimensional)
associative algebras. But there are other algebraic structures we could have studied. We will
introduce a few of the most important examples.

A Lie algebrais an example of a non-associative algebra. The bilinear mapof two elementsx
andy is traditionally denoted by[x,y]. To give a Lie algebra structure this map must beantisym-
metric:

[x,x] = 0

and satisfy theJacobi identity:

[x, [y,z]]+ [y, [z,x]]+ [z, [x,y]] = 0.

Given two Lie algebrasg andh, ahomomorphismfrom g to h is a linear map which respects the
Lie algebra structures, i.e. such that

φ([x,y]) = [φ(x),φ(y)].

Note that any associative algebraA can be given a Lie algebra structure by using the standard
multiplication to define

[x,y] = xy−yx.

In particular, given a vector spaceM the algebra Endk(M) has a Lie algebra structure, and we
define arepresentationof g to be a vector spaceM together with a Lie algebra homomorphism
from g to Endk(M).

In a similar way we can define representations of various other classes of algebraic objects
by showing that Endk(M) or Autk(M) (the space of invertible linear maps) lies in that class, and
requiring that the linear map is a homomorphism in that class.

For example, ifk=C orR and we start with aLie group G(a group that is also a differentiable
manifold, such that the group operations are smooth maps) then if M is a finite dimensional vector
space then Autk(M) is also a Lie group. (For infinite dimensionalM more care is needed.) Thus a
representationof G is a vector spaceM and a homomorphism of Lie groups fromG to Autk(M).
This situation can be generalised to arbitrary algebraically closed fields by consideringalgebraic
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groupsand their representations. Instead of being a differentialmanifold we require that the group
is an algebraic variety with group operations which are morphisms of varieties.

The representation theory of Lie algebras and of Lie or algebraic groups is closely related,
and all three theories have been very well developed. An introduction to the basics of Lie algebra
representation theory can be found in [Car05] or [Hum72]. For Lie groups it is necessary to know
some basic manifold theory, while for algebraic groups there is a fair amount of algebraic geometry
required. See [FH91] (or the more advanced [Bum04]) for Lie groups and [Jan03] for algebraic
groups — although the latter presumes a good knowledge of thebasic structure of such groups as
described in [Spr98] or [Hum75].

Given a Lie algebrag, there exists a correspondinguniversal enveloping algebras U(g). This
is an infinite dimensional associative algebra which (via the usual Lie algebra structure on an as-
sociative algebra) preserves the representation theory ofg. A classical introduction is [Dix96]; see
also [Hum08] for a guide to the relatedcategoryO of certain infinite dimensional representations
of g overC.

The special class ofsemisimple algebraic groups(or the associated Lie algebras) can be clas-
sified; the classification is based around Dynkin diagrams. There are correspondingfinite groups
of Lie type, and one way of studying these is via a reduction from the corresponding algebraic
group. An introduction to this approach can be found in [DM91], while [Hum06] gives a more
elementary and up-to-date survey of the field.

6.5. Quantum groups and the Ringel-Hall algebra

To define an algebra we needed a multiplication map: a bilinear map fromA×A to A. We can
define an analogous structure called acoalgebraby defining every map in the opposite direction,
and consideringcomultiplication: a bilinear map fromA to A×A. (There are various conditions in
the definition which we will not describe here.) Algebras that are also coalgebras in a compatible
way are calledbialgebras, and if they have one additional property (corresponding tothe inversion
of elements in a group) we obtain aHopf algebra. There are plenty of interesting examples of
Hopf algebras — including group algebras and the universal enveloping algebra of a Lie algebra.

Quantum groupshave been defined in a number of different ways. In each case, the basic idea
is to take some Hopf algebra related to a Lie algebrag and introduce an extra parameterq∈ k. The
structure of these algebras will depend onq, but whenq tends to 1 we should recover the original
Hopf algebra in the limit. The standard construction is realised as a deformation of the universal
enveloping algebra ofg.

Quantum groups have been studied for many reasons. They arose in the mathematical physics
literature (which is a rich source of interesting representation theories), and have since proved
very useful in the study of representations of algebraic groups in positive characteristic. (The best
results to date on the structure of simple modules for algebraic groups proceed via a comparison
with the associated quantum group.) They have also shed new light on the classical theory; certain
remarkable bases called crystal (or canonical) bases were found in the quantum world which were
not previously known in the classical case.
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There are many different approaches to quantum groups, reflecting their varied applications.
Two good examples are [Jan96] and [Kas95]. There is also a nice introduction to the theory of
crystal bases in [HK02].

Why have we made a detour into Lie theory in the last two sections? Well, it turns out
that quantum groups are closely related to representationsof finite dimensional algebras. Ringel
(generalising work of Hall) defined certain algebras, theRingel-Hall algebrasassociated to a fi-
nite dimensional algebraA. These have basis the set of isomorphism classes of indecomposable
A-modules, and multiplication is defined in terms of possibleextensions of one module by an-
other. Ringel then proved that for a quiver algebra this algebra is isomorphic to a quantum group
associated to the corresponding Lie algebra. Thus the theory of finite dimensional algebras is
closely related to that of Lie algebras. The relationship between these two theories is described in
[DDPW08].

6.6. Categorification and higher representation theory

Categorification is the process whereby a set-theoretic structure is enriched into a category-
theoretic structure. In this process, each set is replaced by a category, with functions replaced
by functors and equations holding in the structure by natural isomorphisms of functors which are
themselves related by further equations. One rather elementary example of a categorification is the
relation between the natural numbersN and the category of finite sets.

Indeed, this process can be extended to categories themselves, to form the notion of higher
categories. For example a 2-category will consists of objects, morphisms between objects, and
2-morphisms between morphisms. This process is in part motivated by problems and ideas in
homotopy theory. An introduction to the general notions canbe found in [BD98].

Categorifaction has had a number of very striking applications in representation theory. A
survey of some of these can be found in [Maz12]. The most famous of these is probably the proof
of Broué’s Abelian Defect Group Conjecture for the symmetric groups by Chuang and Rouquier.
The key idea in this work was to realise the complexification of the character ring of the group
algebra of the symmetric group as the basic highest weight representation of some affine Kac-
Moody Lie algebra. This work has been extended and generalised by Rouquier, and by Khovanov
and Lauda, into a more general notion of higher representation theory.
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