Concurrency

Concepts, Models and Programs

(Most of the) Material Freely Online!

staff.city.ac.uk/c.kloukinas/concurrency

Book by:

Jeff Kramer and Jeff Magee
What Shall we Learn?

• The *theoretical foundations* of concurrency

• Its *main pitfalls* (race conditions, deadlocks, resource starvation, etc.)

• The *solutions* to these

• How to *automatically verify* your designs

• How to *develop correct multi-threaded systems*.
What is a Concurrent Program?

A **sequential** program has a single thread of control.

A **concurrent** program has multiple threads of control allowing it perform multiple computations in parallel and to control multiple external activities which occur at the same time.

Can be done on a single core! (*multi-tasking*)

You’ve done it already! (*event handlers*)

(*most probably wrong… 😞*)
Concurrency is widespread but error prone!

- Therac - 25 computerised radiation therapy machine
 - Concurrent programming errors contributed to accidents causing deaths and serious injuries.

- Mars Rover
 - Problems with interaction between concurrent tasks caused periodic software resets reducing availability for exploration.
So, Why Bother with Concurrent Programming?

- **Performance gain from multiprocessing hardware**
 - e.g. fine grain parallelism on multicore hardware: low level memory models
 - e.g. coarse grain parallelism for partitioned scientific calculations: processes

- **Increased application throughput**: *avoid polling (busy waiting)!*
 - e.g. an I/O call need only block one thread

- **Increased application responsiveness**
 - e.g. high priority thread for user requests.

- **More appropriate structure**
 - for programs which interact with the environment, control multiple activities and handle multiple events – coarse grain parallelism.
Module Approach

◆ Concepts
 - we adopt a model-based approach for the design, analysis and construction of concurrent programs

◆ Models
 - we use finite state models to represent concurrent behaviour.

◆ Practice
 - we use Java for constructing concurrent programs.
 Examples are used to illustrate the concepts, models and demonstration programs.
Book

Concurrency: State Models & Java Programs, 2nd Edition

Jeff Magee & Jeff Kramer

WILEY
Course Outline

2. Processes and Threads
3. Concurrent Execution
4. Shared Objects & Interference
5. Monitors & Condition Synchronization
6. Deadlock
7. Safety and Liveness Properties
8. Model-based Design (underlying theme)

The main basic Concepts

Models

Practice

Advanced topics …

9. Dynamic systems
10. Message Passing
11. Concurrent Software Architectures
12. Timed Systems
13. Program Verification
14. Logical Properties

staff.city.ac.uk/c.kloukinas/concurrency