
Concurrency: State Models and Java Programs 1

1

Chapter 1 - exercises

This is not really meant as an exercise, but as a way for you to get a first
contact with the LTSA tool, which you will be using extensively in this
course.

1.1 Start the LTSA, and type the following in the Edit window:

BOMB = (start -> timeout -> explode -> STOP).

This is a simplified model of a bomb. The timer of the bomb is started, and
when it expires (action timeout) the bomb explodes. Now from the “Build”
menu option, select “Parse”. This lets you know if your specification contains
syntax errors.

If you have no syntax errors, then select “Check – Compile”. This will
generate the state machine (Labelled Transition System - LTS) that
corresponds to your specification. You want to see what it looks like? Select
“Window – Draw”. Is this what you expected?

You can also experiment with actually “animating” the model of the bomb.
Select “Check - Run – Default”. An animator window comes up. On the right,
you have the actions that can be performed by the Bomb. The “ticked” ones
are those that are eligible at the current state. Select an action that you would
like the bomb to perform (by clicking in its corresponding box). Can all
actions be selected? What happens when you select an eligible action? Does
anything change on the displayed LTS?

1.2 Perform all of the above steps for the following specification of a
lamp:

LAMP = (switch_on -> switch_off -> LAMP).

Can you see an important difference from the first model?

Concurrency: State Models and Java Programs 2

2

Chapter 2 - exercises

2.1 For each of the following processes, give the Finite State Process
(FSP) description of the Labeled Transition System (LTS) graph. The
FSP process descriptions may be checked by generating the
corresponding state machines using the analysis tool, LTSA.

I. MEETING:

hello converse goodbye

0 1 2 3

II. JOB:
arrive work

leave

0 1 2

III. GAME:

one
two

three

lose

win

0 1 2

IV. MOVE:

ahead left

right

0 1 2

V. DOUBLE

Concurrency: State Models and Java Programs 3

3

in.1

in.2

in.3

out.2

out.4

out.6

0 1 2 3

VI. FOURTICK:

tick tick tick tick

0 1 2 3 4

VII. PERSON:

weekday

weekend

sleep

sleep

work

shop
play

0 1 2 3 4

For each of the following exercises 2.2 to 2.6, draw the state machine diagram
that corresponds to your FSP specification and check that it can perform the
required actions. The state machines may be drawn manually or generated
using the analysis tool, LTSA. LTSA may also be used to animate (run) the
specification to produce a trace.

2.2 A variable stores values in the range 0..N and supports the actions read
and write. Model the variable as a process, VARIABLE, using FSP.

Concurrency: State Models and Java Programs 4

4

For N=2, check that it can perform the actions given by the trace:

write.2 � read.2 � read.2 � write.1 � write.0 � read.0

2.3 A bistable digital circuit receives a sequence of trigger inputs and
alternately outputs 0 and 1. Model the process BISTABLE using FSP,
and check that it produces the required output i.e. it should perform the
actions given by the trace:

trigger � 1 � trigger � 0 � trigger � 1 � trigger � 0 …

(Hint: the alphabet of BISTABLE is [0],[1],trigger).

2.4 A sensor measures the water level of a tank. The level (initially 5) is
measured in units 0..9. The sensor outputs a low signal if the level is less
than 2 and a high signal if the level is greater than 8 otherwise it outputs
normal. Model the sensor as an FSP process, SENSOR.

(Hint: the alphabet of SENSOR is level[0..9], high, low, normal).

2.5 A drinks dispensing machine charges 15p for a can of Sugarola. The
machine accepts coins with denominations 5p, 10p and 20p and gives
change. Model the machine as an FSP process, DRINKS.

2.6 A miniature portable FM radio has three controls. An on/off switch turns
the device on and off. Tuning is controlled by two buttons scan and reset
which operate as follows. When the radio is turned on or reset is pressed,
the radio is tuned to the top frequency of the FM band (108 MHz). When
scan is pressed, the radio scans towards the bottom of the band (88 MHz).
It stops scanning when it locks on to a station or it reaches bottom (end).
If the radio is currently tuned to a station and scan is pressed then it starts
to scan from the frequency of that station towards bottom. Similarly,
when reset is pressed the receiver tunes to top. Using the alphabet (on,
off, scan, reset, lock, end) model the FM radio as an FSP process,
RADIO.

2.7 Program the radio of 2.6 in Java, complete with graphic display.

Concurrency: State Models and Java Programs 5

5

Chapter 3 - exercises

3.1 Show that S1 and S2 describe the same behavior:

P = (a->b->P).
Q = (c->b->Q).
||S1 = (P||Q).

S2 =(a->c->b->S2|c->a->b->S2).

3.2 ELEMENT=(up->down->ELEMENT) accepts an up action and then a

down action. Using parallel composition and process ELEMENT describe
a model, with interface actions up and down, that can accept up to four
consecutive up actions before a down action. Draw a Structure Diagram
for your solution. (Hint – see TWOBUFF)

3.3 Extend the model of the client-server system CLIENT_SERVER such
that there can be more than one client using the server.

3.4 Modify the model of the client-server system described in question 3.3
such that the call may terminate with a timeout action rather than a
response from the server. What happens to the server in this situation?

3.5 A roller coaster control system only permits its car to depart when it is
full. Passengers arriving at the departure platform are registered with the
roller coaster controller by a turnstile. The controller signals the car to
depart when there are enough passengers on the platform to fill the car to
its maximum capacity of M passengers. The car then goes around the
roller coaster track and then waits for another M passengers. A maximum
of M passengers may occupy the platform. Ignore the synchronization
detail of passengers embarking from the platform and car departure. The
roller coaster consists of three processes TURNSTILE, CONTROL and
CAR. TURNSTILE and CONTROL interact by the shared action
passenger indicating an arrival and CONTROL and CAR interact by the
shared action depart signaling car departure. Draw the Structure
Diagram for the system and provide FSP descriptions for each process
and the overall composition.

3.6 Modify the example Java program ThreadDemo such that it consists of
three rotating displays.

Concurrency: State Models and Java Programs 6

6

Chapter 4 - exercises

4.1 Recursive Locking in Java

Once a thread has acquired the lock on an object by executing a synchronized
method, that method may itself call another synchronized method from the
same object (directly or indirectly) without having to wait to acquire the lock
again. The lock counts how many times it has been acquired by the same
thread and does not allow another thread to access the object until there has
been an equivalent number of releases. This locking strategy is sometimes
termed recursive locking since it permits recursive synchronized methods.
For example:

public synchronized void increment(int n) {
 if (n>0) {
 ++value;
 increment(n-1);
 } else return;
 }

This is a rather unlikely recursive version of a method which increments
value by n. If locking in Java was not recursive, it would cause a calling
thread to block resulting in a deadlock.

Given the following declarations:

const N = 3
range P = 1..2 //thread identities
range C = 0..N //counter range for lock

Model a Java recursive lock as the FSP process RECURSIVE_LOCK with the
alphabet {acquire[p:P],release[p:P]}. acquire[p] acquires
the lock for thread p.

Concurrency: State Models and Java Programs 7

7

Chapter 5 - exercises

5.1 A single slot buffer may be modeled by:

 ONEBUF = (put->get->ONEBUF).

Program a Java class OneBuf that implements this one slot buffer as a
monitor.

5.2 Replace the condition synchronization in your implementation of the
one slot buffer by using semaphores. Given that Java defines
assignment to scalar types (with the exception of long and double) and
references types to be atomic, does your revised implementation require
the use of the monitor's mutual exclusion lock?

5.3 In the museum example (assessed coursework), identify which of the
processes, EAST, WEST, CONTROL and DIRECTOR, should be
threads and which should be monitors. Provide an implementation of
the monitor(s).

5.4 FSP allows multiple processes to synchronize on a single action. A set
of processes with the action sync in their alphabets must all perform this
action before any of them can proceed. Implement a monitor called
Barrier in Java with a method sync that ensures that all of N
threads must call sync before any of them can proceed.

5.5 The Savings Account Problem: A savings account is shared by several
people. Each person may deposit or withdraw funds from the account
subject to the constraint that the balance of the account must never
become negative. Develop a model for the problem and from the model
derive a Java implementation of a monitor for the savings account.

