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Abstract 
 

The development of dependable mobile P2P systems 
is an inherently challenging task since such systems 
may operate in largely uncontrolled environments and 
may engage new peers or lose existing ones without 
any form of centralised control. In these 
circumstances, dependability and security can be 
enhanced through the runtime monitoring (a.k.a. 
dynamic verification) of the compliance of the system 
behaviour against specific dependability and security 
properties and the execution of control in cases where 
properties are violated. In this paper we present a 
framework for the dynamic verification and control of 
mobile P2P systems, which uses peer-specific 
monitoring policies to specify application-level 
properties. The deployment of this framework for 
monitoring system behaviour adds an extra layer of 
security and dependability checking, which is 
independent from checks performed directly by the 
P2P system that is being monitored. Thus, it makes the 
system more fault-tolerant and enables event logging 
that could be used for further analysis and prevention 
of attacks. 

 
1. Introduction 
 

Starting from the same types of peer-to-peer (P2P) 
applications that have been dominant in desktop 
platforms (e.g. instant messaging, voice over IP and file 
sharing applications), mobile P2P systems are 
increasingly covering a wide spectrum of 
functionalities such as B2C and C2C e-commerce 
applications, and mobile game engines. This tendency 
is due to some key benefits of the decentralisation of 
P2P architectures over their centralised counterparts, 
including reduced vulnerability to single-point failures 
and higher scalability [1]. The emergence of mobile 
P2P applications has been enabled by the proliferation 

of mobile devices equipped with technologies such as 
WiFi and GPRS. 

However, despite the benefits that arise from the 
decentralised and dynamic nature of mobile P2P 
systems, these very characteristics are also posing some 
significant challenges for their dependability and 
security. As individual peers may enter or leave a 
mobile P2P system at will and without notice, the 
availability of peers and the services that they offer 
cannot be taken for granted. Peer availability may also 
be affected by the limited power and computational 
capacity of mobile devices, the availability of 
connectivity in different locations, and the usage 
patterns of individual mobile peers. 

In such circumstances, ensuring that P2P 
applications have been developed using sound software 
engineering practices and incorporate a set of basic 
security mechanisms is not sufficient for guaranteeing 
security and dependability. Therefore, the preservation 
of these properties by mobile P2P systems needs to be 
dynamically verified through monitoring at runtime. 
Dynamic verification complements system testing and 
static verification, as none of the latter techniques can 
guarantee the correctness of system behaviour at 
runtime, either because it is difficult to foresee and 
check all the possible conditions that may arise in the 
real operational context of a system (system testing) or 
ensure that the models used for static verification are 
preserved by system implementations. 

Several dynamic verification techniques have been 
developed (e.g. [2][8][11][13][21]), providing 
mechanisms to capture events from software systems at 
runtime and check whether these events satisfy specific 
properties, which are typically expressed in some 
temporal logic language. However, as they focus 
mainly on computing platforms where resource scarcity 
is not a significant constraint and systems that are not 
as dynamic and uncontrollable as mobile P2P systems, 
these techniques do not address adequately some issues 



 2 

which are essential for the dynamic verification of 
mobile P2P systems, namely: 
� the dynamic negotiation between mobile peers at 

run-time in order to enable the activation of 
monitoring activities, 

� the need to have a monitoring service that is not 
deployed on the same machine as the peers that it 
monitors, in order not to drain the computational 
and power resources of mobile devices, 

� the secure emission of events from mobile P2P 
systems required for monitoring, and 

� the dynamic execution of actions to prevent or 
rectify detected violations of the monitored 
properties during the execution of peer 
applications. 

In this paper, we present a dynamic verification 
framework for mobile P2P systems (shortly referred to 
as “DVF” in the rest of the paper) that addresses these 
issues and constitutes the first such framework which, 
to the best of our knowledge, is available on a mobile 
computing platform. The use of DVF for monitoring 
and controlling mobile P2P systems behaviour adds an 
extra layer of checking security and dependability that 
is independent from any checks performed by the peers 
themselves. Thus, DVF makes mobile P2P systems 
more fault-tolerant and enables logging of events which 
could be used for further diagnostic analysis and 
prevention of future attacks. 

Central to the approach that underpins DVF is the 
use of peer-specific monitoring policies. These policies 
specify application level properties that need to be 
monitored, concerning a peer itself or its collaborators 
in a network, using a language based on Event Calculus 
[19], the actions that should be taken when the 
monitored properties are violated, and the permissions 
that a peer gives to its collaborators regarding the 
monitoring and control of its own activities. 
Furthermore, the DVF supports the negotiation and 
activation of monitoring policies between mobile peers 
and the collection and transmission of events from 
mobile peers for the monitoring of these policies. It 
also offers control capabilities that enable reactions to 
identified violations of the monitored properties. 

The rest of this paper is structured as follows. In 
Section 2, we present the architecture of DVF. In 
Section 3 we introduce the language for specifying 
DVF policies. In Sections 4 and 5, we present the 
negotiation and control capabilities of DVF. In Section 
6, we give an overview of the implementation of DVF 
and in Section 7 we discuss related work. Finally, in 
Section 8, we conclude and outline our plans for future 
work. 

 

2. Architecture of the Dynamic 
Verification Framework 

 
The main characteristic of DVF is that it decouples 

monitoring from event capturing and control, assigning 
responsibility for the latter two activities to individual 
peers and responsibility for the former activity to 
external monitors. Furthermore, the verification 
framework deploys an event notification infrastructure, 
supporting the transmission of events from peers to the 
monitors and the results of the monitoring process in 
the opposite direction. As shown in Figure 1, the DVF 
consists of three basic components: Monitoring-
Enabled Peers (MEPs), monitors and event brokers 
(EBr). These components are described below. 
 
2.1 Monitoring enabled peers 
 

Monitoring enabled peers are peers that incorporate 
a peer verification controller (PVC). A PVC collects 
events during the operation of a peer and publishes 
them to event brokers, so that they can be distributed to 
appropriate monitors. A PVC has also responsibility 
for receiving notifications of the results of the 
monitoring process and taking control actions on the 
individual peer as required by these results (e.g., 
dropping messages exchanged between a peer and its 
collaborators). As shown in Figure 2, a PVC is 
provided as part of the basic runtime infrastructure that 
enables the formation of peer networks (e.g. peer 
registration, authentication and discovery) and the 
communication between the individual peers in them. 
Thus, when a peer application is built using this 
infrastructure, it automatically incorporates a PVC. A 
PVC internally consists of a controller, a policy parser 
and a negotiation manager. 

The PVC controller intercepts all the incoming and 
outgoing messages, which are exchanged between its 
host peer and other peers, and publishes these messages 
in the form of encrypted events to the event broker of 
the DVF, according to its event exposition rules. These 
are determined dynamically through the monitoring 
policy of the host peer itself and agreements that it may 
have made with other peers regarding the exposition of 
its own events. After sending a message to an event 
broker, the controller may block it until it receives a 
notification that the message does not violate any rule 
or permit its transmission and wait for the 
asynchronous notification of monitoring results. 
Subsequently, when it receives the monitoring results 
that relate to the message, the PVC controller applies 
the actions required by the active monitoring policies.  
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Figure 1. Architecture of DVF 

 

 

Figure 2. Peer verification controllers 

The policy parser of the PVC is responsible for 
parsing the monitoring policy of the host peer and 
creating a repository with information about the types 
of events that should be intercepted, the properties 
against which the intercepted events should be checked 
and the actions that should be taken if the properties 
are violated (see Section 3). The policy also includes 
information about the events that the PVC may expose 
to other peers and the events that it should request from 
these peers in return. 

Finally, the negotiation manager is the component 
of the PVC that enables it to negotiate with external 
peers for the reception and exposition of events that are 
necessary for checking the active monitoring policies at 
each side. The negotiation process is driven by the 
monitoring policies of the involved peers as we explain 
in sections 3 and 4. It should also be noted that the 
PVC comes pre-assembled with the peer 

communication infrastructure and signed off so that it 
cannot be circumvented or tampered with. 
 
2.2 Monitors 
 

The monitors are the components of DVF that carry 
out property checks by analysing the peer events at 
runtime. The DVF may employ more than one monitor, 
each having responsibility for different nodes of a peer 
network. A monitor is appointed to check specific 
properties by the PVC of an individual peer and can 
reside either on the peer itself or on an external device. 
The latter possibility is necessary for the provision of 
monitoring services to peers running on devices that 
cannot themselves support monitoring due to their 
limited resources, such as smart phones and PDAs.  

Following its appointment by the PVC of a peer, a 
monitor subscribes to an event broker of DVF, in order 
to receive the events needed for checking the properties 
assigned to it and notifies property violations to the 
event broker so that the interested PVCs will be 
informed about them.  

The monitor is a reasoning engine that checks 
whether the Event Calculus formulae that specify the 
required properties inside a monitoring policy are 
satisfied by the events which are generated by the peer 
PVCs at runtime and other events that can be derived 
from them. The derivation of events is based on 
deductive reasoning, performed by the reasoning 
engine itself. A detailed account of the algorithms that 
underpin the operation of monitors is beyond the scope 
of this paper and may be found in [16]. 
 
2.3 Event brokers 
 

The event broker (EBr) in DVF offers the 
infrastructure needed for transmitting events from peers 
to monitors and monitoring results from monitors to 
peers. The event broker manages the subscriptions to 
the “channels” between publishers of messages and 
their respective subscribers. The use of the publish-
subscribe event reporting infrastructure in DVF keeps 
the verification framework separate from the actual 
P2P service, allowing the latter to operate 
independently and adopt any overlay topology and 
mode of service provision that it needs. Thus, the P2P 
service developer is given freedom to design the 
service, without having to take into account the 
specifics of the monitoring framework which operates 
in its own overlay. At the same time, the monitoring 
framework is not “tied” to the service, allowing various 
different services to be monitored, without modifying 
the system to suit each one separately. Furthermore, the 
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use of the publish-subscribe architecture allows DVF to 
work well in an environment where peers come and go 
quickly and unpredictably, and does not overload the 
peer communication infrastructure with message 
transmissions required for monitoring. 

The security of communications in publish-
subscribe architectures can be ensured as demonstrated 
in [18][22]. To preserve confidentiality in DVF, the 
EBr manipulates encrypted publications, without 
having access to their actual contents. This is achieved 
through the use of secret tokens acting as aliases to the 
actual information exchanged, giving the EBr enough 
information to manage subscription and publication 
messages without knowing what a token refers to (see 
Section 4 for more details). 
 

Policy policy_name 
  [Rule RuleID String RuleFormula <formula> 
 Assumptions 
      [AssumptionID String 
    AssumptionFormula <formula>]* 
 AppliesTo <peer-list-type>* 
 [Action <action-type>]* 
  ]+ 
  [EventExposition  <event_exposition_type>]* 
  Timeout Duration [drop|forward] 
  Lifetime [until Date | permanent] 

Figure 3. Monitoring policy specification 
language 

 

3. Specification of monitoring policies 
 
The operation of a PVC at runtime is driven by the 

monitoring policy of its host peer. Policies are 
specified according to the language shown in Figure 3 
(an XML implementation of this language is described 
in [15]). A policy contains: (i) one or more rules 
specifying the properties that should be monitored at 
runtime, (ii) the types of events that the PVC is allowed 
to expose to other peers at runtime for their monitoring 
needs if requested (EventExposition elements), (iii) a 
timeout value determining the maximum time that an 
event can be blocked whilst a PVC waits for 
monitoring results, and (iv) a lifetime value which 
determines for how long the policy will be valid.  

 
3.1 Specification of policy rules 

 
The specification of a rule in a monitoring policy 

consists of an identifier that uniquely identifies the rule 
within the policy (RuleID), a formula that defines the 

logical form of the rule (RuleFormula), the peers that 
the rule applies to (i.e., the peers against which the rule 
should be monitored), a set of assumptions, and a set of 
actions that define the ways in which DVF should react 
when the rule is violated. 

Formulae are defined in Event Calculus (EC [19]), a 
first-order temporal logic language which can be used 
for representing and reasoning about events and their 
effects over time. An event in EC is an occurrence that 
takes place at a specific instance of time (e.g., 
invocation of a system operation, reception or dispatch 
of a message) and may have an effect. The effects of 
events in EC are represented by fluents, i.e., conditions 
which may change over time. A fluent may, for 
example, specify a condition indicating that a peer has 
received a message or that following the receipt of a 
message an internal variable of a peer has been set to a 
specific value. EC fluents are initiated or terminated by 
an event. Event occurrences are represented by the 
predicate Happens(e,t,ℜ(t1,t2)). This predicate denotes 
that the instantaneous event e occurs at a time point t 
within the time range ℜ(t1,t2). The range boundaries 
can be specified by either time constants or arithmetic 
expressions over the time variables of other predicates. 
The initiation or termination of a fluent f due to the 
occurrence of an event e at time t is denoted by the 
predicates Initiates(e,f,t) and Terminates(e,f,t), 
respectively. Two additional predicates, namely 
Initially(f)  and HoldsAt(f,t) may also be used to denote 
that a fluent f holds at the start of the execution of a 
system and that f holds at time t, respectively.  

Fluents use the form relation(Object1, …, Objectn) 
and events are restricted in our EC-based policy 
language to exchanges of messages between peers. A 
message can invoke an operation in a peer or return 
results following the execution of an operation. Events 
are specified using the following generic form: 

event(_id, _sender, _receiver, _sig, _source) 
In this form: 
� _id is the unique identifier of the event 
� _sender is the identifier of the peer that sends the 

message. 
� _receiver is the identifier of the peer that receives 

the message. 
� _sig is the signature of the operation or the type of 

the message that the event refers to. 
� _source is the identifier of the peer from which the 

event was captured. 
Examples of rules specified according to the policy 

language of DVF are shown in Figure 4. For example, 
Rule_1 should be monitored against the peer that owns 
the policy, as the keyword self in its AppliesTo clause 
denotes. The rule checks whether after the peer has sent 
a message of type authorise, requesting the 
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authorisation of _i by an external peer _B, it will 
receive a message of type authorisation, signifying the 
authorisation of _i from _B, within tu time units. 
Essentially, Rule_1 monitors the (bounded) availability 
of peer _B which provides authorisation services and 
the communication channel between it and the host 
peer.  

Assumptions in policies express how the state of a 
P2P system is affected by the events that occur during 
its operation. These effects are expressed by formulae 
that indicate the initialisation and termination of fluents 
by different events. Whilst monitoring the rules, the 
monitor uses the assumptions to deduce the status of 
fluents, i.e. whether or not a fluent holds at a particular 
instance of time. For example, Rule_2 of Figure 4 
checks cases where an external peer (i.e., peer _A in the 
rule) sends a request message to the current peer for a 
piece of information _i (e.g., a file). In such cases, the 
rule demands that the external peer _A must have been 
authenticated at the recipient before the request is 
received. The authentication of _A at _self is denoted 
by HoldsAt(authenticated(_A, _self), t). Rule_2’s 
assumption A1 is used at runtime to establish whether 
the fluent authenticated(_A, _self) holds at the time of 
the receipt of the request from _B or, equivalently, if 
_A has been authenticated at _self at this time. 
According to A1, the fluent authenticated(_A, _self) is 
initiated (i.e., becomes true) when a message 
confirming the authenticity of _A is received by the 
peer _self, following a request for the authentication of 
_A to an external authority (peer) _B. The 
authentication request is represented by the event 
e(_eID1,  self, _B, authenticate(_A), _self) in the 
formula A1 and the response to it by the event 
e(_eID2, _B, self, authentication(_A), _self). 

During monitoring, the fluent authenticated(_A, 
_self)) is obtained by deduction from A1 and the EC 
axioms. More specifically, when the events that signify 
the dispatch of the authentication request message and 
the response to it occur, the predicate 
Initiates(e(_eID2, _B, _self, authentication(_A),_self), 
authenticated(_A,self), t2)) is derived from A1 by 
deduction. After the initialisation of this fluent, the 
predicate HoldsAt(authenticated(_A, self), t) can be 
derived using an axiom of EC which states that a fluent 
will hold at any time point after it is initiated, unless 
there has been an event terminating it in between. 

 
3.2 Specification of actions 
 

DVF policies also specify the control actions that 
should be executed by the PVC, following rule 
violations. These actions can be of three different 

types: drop actions, violation notification actions, and 
negotiation actions. 

Policy policy-1 
Rule RuleID Rule_1 
RuleFormula 
Happens( e(_eID1, _self, _B, authorise(_i), _self), t1, R(t1,t1)) 
⇒Happens( e(_eID2, _B, _self, authorisation(_i), _self),t2, 
                   R(t1,t1+tu)))  
AppliesTo _self  
Action notify(_eID1, _self, _B) 

Rule RuleID Rule_2 
RuleFormula 
Happens( e(_eID1, _A, _self, request(_i), _self), t , R(t,t)) 
⇒ HoldsAt(authenticated(_A, self), t)  
Assumptions 
AssumptionID A1 
AssumptionFormula 
Happens( e(_eID2, _self, _B, authenticate(_A), _self), t1, 
                R(t1,t1)) 
∧ Happens( e(_eID3, _B, _self, authentication(_A), _self), t2, 
                   R(t1,t2)) 
⇒ Initiates(e(_eID3, _B, _self, authentication(_A), _self), 
                  authenticated(_A,self), t2)) 
AppliesTo _self, Peer-role-A 
Actions drop(_eID1, _self) 

Rule RuleID Rule_3 
RuleFormula 
Happens( e(_eID1, _A, _self, request(_i), _self), t1, R(t1,t1)) 
∧ ¬∃t1. Happens( e(_eID2, _A, _self, request(_i), _self), t2, 
                             R(t2,t1)) 
⇒ HoldsAt(negotiated(_self,_A), t)  
Assumptions 
AssumptionID A1 
AssumptionFormula 
Happens( e(_eID1, _self, _self, start_neg(_A), _self), t1, 
                R(t1,t1)) 
∧ Happens( e(_eID2, _A, _self, confirm_neg(_A), _self), t2, 
                   R(t1,t2)) 
⇒ Initiates(e(_eID2, _A, _self, confirm_neg(_A),_self), 
                  negotiated(_self,_A), t2)) 
AppliesTo self 
Actions negotiate(_eID1, _A) 

Rule RuleID Rule_4 
RuleFormula 
Happens( e(_eID1, _self, _A, dispatch(_i), _self), t1, R(t1,t1)) 
⇒ HoldsAt(negotiated(_self,_A), t)  
Assumptions {} 
AppliesTo self 
Actions drop(_eID1) 

EventExposition 
Timeout 1000 drop 
Lifetime permanent 

Figure 4. Policy example 

 
Drop actions prevent the dispatch of the peer 

message that has caused the violation of a rule to the 
peer that is the intended recipient of the message and is 
specified as drop(eventID, peerID1, …, peerIDn), 
where eventID is the identifier of the event that is 
involved in the violation of the rule, and peerID1, …, 
peerIDn the peers to be notified of the dropped 
message. 
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Violation notification actions can be taken in cases 
where the event that has caused the violation should 
not be dropped but a notification of the violation 
should be send to certain peers and are specified as 
notify(eventID, peerID1, …, peerIDn). 

Finally, negotiation actions can be taken in cases 
where the violation of a rule by an event should trigger 
the negotiation process between peers and are specified 
as negotiate(eventID, peerID1), where peerID is the 
identifier of the peer with whom the negotiation must 
take place. 

As Figure 4 shows, in the case of Rule_1 the action 
that should be taken is notify(_eID1, self, _B). This 
action causes the PVC of the peer _self to send a 
notification message to the peers _self and _B, to 
inform them that the event _eID1 has violated Rule_1. 
When violations of Rule_2 occur, the drop action 
drop(_eID2, _self) should be executed. This will result 
in the notification of the violation of Rule_2 to _self 
but as the drop action specifies no other recipients of 
the notification, the peer _A, which had requested item 
_i causing the violation, will not be informed of the 
drop of the message. Of course, the absence of 
notifications should be used with care, as peers may 
end up waiting for a response indefinitely.  
 

4. Negotiation  
 

A peer MEP1 starts the negotiation process with 
another peer MEP2 when it needs events of MEP2 to 
monitor its own policy. The negotiation process 
between two peers can also be triggered by forcing the 
PVC of a peer to take a negotiation action, following 
the violation of a rule in its monitoring policy. Such a 
rule will typically require that when MEP1 receives 
some particular message from another peer MEP2, it 
should negotiate with MEP2 the exposition of events 
from it unless it has already done so. 

For example, if MEP1 has the policy specified in 
Figure 4, then according to Rule_3 when it receives a 
request(_i) message from a peer MEP2, the fluent 
negotiated(MEP1, MEP2) must hold, indicating that a 
successful negotiation between MEP1 and MEP2 has 
already taken place. If that is not the case, Rule_3 will 
be violated and the PVC of MEP1 will execute the 
action negotiate(_eID1, MEP2) as specified by the rule. 
This action will trigger the negotiation process between 
the PVCs of MEP1 and MEP2. 

At the start of the negotiation process, the PVC of 
MEP1 will identify the rules that apply to the role of 
peer MEP2 and from these rules it will subsequently 
identify the events that it will need from MEP2 in order 
to check these rules and the actions that should be 
executed if the rules are violated. Using this 

information, the PVC of MEP1 will construct a 
condition list of the following form (1) and send it to 
MEP2 for approval. 
(ev-type i,   
  ((rule 1, (action 11, …, action 1L)), 
    …, 
   (rule n, (action n1, …, action nM)))) 
(i=1,…,k) 

(1) 

An element i in this list denotes the type of the events 
of MEP2 that will be required (i.e. ev-typei), the rules 
against which events of this type will be checked (rule1 
,…., rulen) and the actions that should be taken if one 
of these rules is violated (e.g., action11, …, action1L  for 
rule1). After receiving the condition list, the PVC of 
MEP2 will check it against the event exposition list of 
its own policy. If the exposition list allows it to accept 
the conditions sent by MEP1, it will update its internal 
active policy, so as to send the agreed events to MEP1. 

Continuing with our previous example, suppose that 
the role of MEP2 is Peer-role-A. Based on this, MEP1 

will need to monitor whether the operation of MEP2 is 
compliant with Rule_2. From this rule, it can then 
construct the following condition list and send it to 
MEP2 for negotiation: 

[(e(_eID1, _A, MEP2, request(_i), MEP2), 
(Rule_2, (drop(_eID1, MEP2))), 

(e(_eID2, MEP2, _B, authenticate(_A), MEP2), 
(Rule_2, ()), 

(e(_eID3, _B, MEP2, authentication(_A), MEP2), 
(Rule_2, ())] 

The three event types in the above list are extracted 
from Rule_2 after replacing _self with MEP2 as the 
latter peer will become the subject of the monitoring of 
Rule_2 in this case. Assuming that the event exposition 
list in the monitoring policy of MEP2 is 

EventExposition 
(request(_i),[peer-role-B], 
[notify(request(_i), _self)]) 
 (authenticate(_X),[peer-role-B],[]) 
 (authentication(_X),[peer-role-B],[]) 

the latter peer will not accept the condition list of 
MEP1, as the actions that should be applied for 
violations caused by request(_i) events are not included 
in its permissible actions for this type of events. Thus, 
the negotiation will fail. However, if the action 
drop(_eID1, MEP2) was in the permissible action list 
for request(_i) then the negotiation would have been 
completed successfully. 

When the PVC of MEP1 starts the negotiation 
process, it sends a message start_neg(MEP2) to its peer 
to indicate this and, if the negotiation process is 
completed successfully, it sends the message 
confirm_neg(MEP2). These messages are also sent to 
the monitor, which from assumption A1 of Rule_3 will 
establish the fluent negotiated(MEP1, MEP2). Thus, the 
next time that MEP2 sends a request(_i) message to 



 7 

MEP1 the fluent will hold and there will be no need to 
start the negotiation process again. 

After the conditions are accepted in the negotiation 
process, MEP1 will need to establish two confidential 
communication channels that will allow the PVC of 
MEP2 to send the events required for monitoring to the 
monitor of MEP1 and the monitor to notify the results 
of the monitoring process back to MEP1 and MEP2. In 
DVF these communication channels are established 
through the event broker. 
 

(1) MEP 1 � MEP2: T e(i), T mr(i) 
(2) MEP 1 � EBr: adv(M, T mr(i), t) 
 MEP2 � EBr: adv(MEP 2, T e(i), t) 
(3) MEP 1  MEP2: H(T e(i), T mr(i)) 
(4) MEP 2 � EBr: sub(MEP 2, T mr(i), t) 
 MEP1 � EBr: sub(MEP 1, T mr(i), t), 
  sub(M, T e(i), t) 
(5) MEP 1,M  EBr: H(M, T mr(i), t), 
  H(M, T e(i), t) 
 MEP1,MEP2EBr: H(MEP 2, T e(i), t), 
  H(MEP 2, T mr(i), t) 
(6) MEP 1  M: H(H(M, T mr(i), t)), 
  H(M, T e(i), t))) 
 MEP1  MEP2: H(H(MEP 2, T e(i), t), 
  H(MEP 2, T mr(i), t)) 
(7) MEP 1 � M: T e(i), T mr(i), 
  seed e(i), seed mr(i) 
(8) MEP 1  M: H(Key e, Key mr) 
(9) MEP 1 � MEP2: seed e(i), seed mr(i) 
(10) MEP 1  MEP2: H(Key e, Key mr) 
(11) MEP 1 � MEP2: reportToEBr() 

Figure 5. Protocol of establishing event and 
results notification channels1 

 
DVF assumes that event brokers are not trusted 

entities and therefore they should be able to manage the 
subscriptions and publications of events and 
monitoring results without having access to their 
contents. To achieve this, the events and monitoring 
results are encrypted and the necessary keys for the 
decryption of this information are generated outside the 
event broker and are not made available to it. The 
event broker gets only tokens that identify the 
notification channels and enable it to distribute the 
encrypted messages to the appropriate subscribers. 
Tokens essentially provide aliases to the actual 
information exchanged, giving the event broker 
sufficient information for managing subscriptions and 
routing publications, without knowing what a token 
refers to or being able to deduce the actual type of the 
transmitted messages or other information from it. The 
protocol for creating the tokens and decryption keys 

                                                           
1 If two or more steps have the same number in the protocol, 

the order of their execution is not important. 

and establishing the event and notification reporting 
channels is shown in Figure 5. 

This protocol is implemented by the PVCs of the 
peers which are involved in the negotiation. In the 
following, we explain the protocol in reference to our 
previous example where the peer MEP1 requested 
specific types of events for monitoring from MEP2. 

The execution of the protocol starts after MEP2 
agrees to provide the types of events requested by 
MEP1. At this point MEP1 will need to coordinate the 
process of creating the two necessary channels between 
MEP2’s PVC and the monitor M through EBr. Thus, 
after MEP1 receives a notification of the acceptance of 
its condition list from MEP2, it creates unique tokens to 
reference MEP2’s event channel (Te(i) ) and the 
monitoring results channel (Tmr(i) ) and forwards them 
to MEP2 (step (1)). It also sends an advertisement 
message to EBr, indicating that the monitor M will 
publish monitoring results referenced by the token 
Tmr(i)  (step (2)). MEP2 also sends an advertisement 
message to EBr, indicating that it will publish events 
referenced by the token Te(i) (step (2)), and 
acknowledges the receipt of the tokens to MEP1 (step 
(3))2. Following this, MEP2 asks EBr to subscribe to 
the results that will be published by the monitor (step 
(4)). In parallel, after receiving the acknowledgement 
of the receipt of the tokens by MEP2, MEP1 sends a 
message to EBr to subscribe M to the events that will 
be published by MEP2 and itself to the result channel of 
M. Following the acknowledgement of the created 
subscriptions from EBr (step (5)), and from MEP2 and 
M (step (6)), MEP1 forwards two seeds, which are 
necessary for the local creation of symmetric 
encryption/decryption session keys for the event and 
results channel, to MEP2 and M (steps (7) and (9)). 
These keys are related to the tokens (and as such, to the 
specific events that have been negotiated) and, 
therefore, cannot be used to decrypt any other channels. 

MEP2 and M use the same symmetric key 
generation function as MEP1 to generate Keye and Keymr 
from the two pairs of token-seeds (Te(i),seed e(i) ) 
and (Tmr(i),seed mr(i) ), respectively. This function is 
provided by the basic runtime infrastructure within 
which the PVCs of MEP1 and MEP2 are embedded (see 
[11] ) and is also implemented by the monitors of DVF. 
The process of establishing confidential channels is 

                                                           
2
 The acknowledgement messages sent during the execution 
of protocol contain the hash value of the parameters of the 
message they acknowledge and are denoted by 
H(message).  This enables the verification of message 
integrity. The hash function H that is used is provided by 
the peer infrastructure that embeds PVC. 
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concluded successfully only when M and MEP2 
acknowledge to MEP1 the key creation (steps (8) and 
(10)), through the hash value of the keys. MEP1 
matches the hash values of the acknowledgements with 
the hash value of the keys that it has created locally and 
it concludes that the process has completed 
successfully only if a match is found. At the end of this 
process, only MEP1, MEP2 and M possess the keys that 
can be used to encrypt and decrypt the contents of the 
event and monitoring results channels. Thus, EBr 
cannot read the contents of the “channels” 
corresponding to these tokens, despite knowing the 
tokens that will enable it to forward publications to 
subscribers. The channel establishment process is 
aborted if at any point MEP1 does not receive the 
acknowledgements that it expects within a pre-
specified time period. This protocol follows the process 
for creating cryptographic keys in the Secure Sockets 
Layer (SSL) protocol [10] and ensures that the event 
notification infrastructure is engaged at runtime in a 
flexible but secure manner.  

 
EventGeneration(m: PeerMessage) 
i_time = current_time() 
Create an event e(m) for m 
timeout = ActivePolicy(e(m)).timeout 
timeleft = timeout.duration 
e(m).D Rules  = {R| R ∈ ActivePolicy(e(m)).Rules 
        ∧ ∃a. a ∈ ActivePolicy(e(m).Actions
    ∧ (a = drop-action) ∧ a.rule = R} 
e(m).ND Rules = ActivePolicy(e(m)).Rules − D Rules  
If e(m).D Rules  = ∅ then 
 If e(m).ND Rules  ≠ ∅ 
  Send e(m) to Brokers(Type(e(m)).List) 
 Send m to its destinations 
  return 
EndIf 
 
Send e(m) to Brokers(Type(e(m)).List) 
While e(m).NoViolation ∨ e(m).D Rules  ≠ ∅ Do 
 //wait for notifications 
  wt = i_time + timeleft – current_time() 
 If ( rcv(e(m).chan,NewN,wt) = Timeout) Then 
     If (timeout.action = forward) 
      send m to its destinations 
    return 
  EndIf 
 R = NewN.rule 
 If R ∈ e(m).D Rules ∧ NewN.violation Then  
   DA = DropActions(R) 
   Apply(DA) 
   e(m).NoViolation = False 
  EndIf 
EndWhile 
 
If e(m).NoViolation 
  send m to its destinations 
End Controller  

Figure 6. Event generation algorithm 

 

5. Control 
 

The application of control actions in DVF is the 
responsibility of the PVC controller and is driven by: 
(a) the active monitoring policy that exists in a peer and 
(b) the agreements that the peer may have made with 
external peers after negotiation (if any). As we 
discussed in Section 3, the monitoring policy of a peer 
may define some control actions for each of the rules to 
be monitored. Each of these actions must refer to a 
specific event within the rule that it applies to. In the 
policy of Figure 4, for instance, the drop action 
specified for Rule_3 refers to the event 
e(_eID2,_self,_A, request(_i), _self) in the rule 
formula3 and, therefore, it can be applied only to 
runtime events that match this event in the formula. 

Based on the specification of the actions, the policy 
parser creates an action list for the different types of 
events that have been identified in a policy. The 
elements of this list have the same form as (1) 
indicating the rules against which events of a particular 
type should be checked and the actions that should be 
applied if a violation of these rules is caused by the 
events. This list constitutes the internal active 
monitoring policy of the peer and is updated through 
condition negotiations with other peers. The PVC 
implements control as specified by the algorithms event 
generation and notification handling which are shown 
in Figure 6 and Figure 7, respectively. 

As shown in Figure 6, the PVC controller constructs 
a new event for each message it catches and finds the 
set of rules that need to be checked for the event and 
have at least one drop action defined for it (DRules ). If 
this set is empty, then the controller transmits the event 
to the event broker without waiting for any monitoring 
results as these can be handled asynchronously. If, 
however, there are rules with drop actions, then the 
controller must ensure that all these rules have been 
satisfied before allowing the message to be transmitted 
to its destination. Thus, it waits to receive notifications 
(NewN) for this event. If a timeout occurs first and the 
timeout action of the policy is to forward the message, 
then this is done and the controller returns immediately. 
Otherwise, if a violation of a rule with a drop action for 
the event is notified, the controller drops the event and 
stops waiting for any further notifications of monitoring 
results for the event as these can again be handled by 
the notification handling process of the PVC in an 
asynchronous mode.  

The notification handling process of the PVC is 
specified in Figure 7. Upon the reception of a new 

                                                           
3 Because it refers to the identifier _eID2. 
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monitoring result, the corresponding event and rule are 
found. If the notification reports a violation, then the 
handler examines whether the rule has drop actions 
associated with it and, if so, it forwards the notification 
to the controller. If this has been the last notification 
result for the particular rule, then the rule is removed 
from the drop-action set of the event, so as to release 
the controller once this drops to the empty set. Finally, 
the handler performs whatever non-drop actions have 
been associated with the violated rule. 

 
NotificationHandling(NewN: monitorNotif) 
  e(m) = NewN.event; R = NewN.rule 
 If NewN.Violation Then 
    If (R ∈ e(m).D Rules ) 
      snd(e(m).chan, NewN) 
   If (NewN is last notification for R ) 
      e(m).D Rules  = e(m).D Rules  - {R}  
  apply(NonDropActions(R)) 
  EndIf 
End ResultNotificationHandler 

Figure 7. Notification handling algorithm 

 

6. Implementation 
 

DVF has been implemented in Java. More 
specifically, the monitor and the event broker have 
been implemented in JSE v1.5 using the SIENA event 
notification service [5]. The PVC has two 
implementations: one that is based on JSE v1.5 and a 
version for embedded devices developed on JME-CDC 
1.0 and tested on Sony Ericsson’s P990i (both 
simulated and real ones). Both PVCs have been 
integrated with a peer communication framework that 
has been developed within the EU project PEPERS and 
provides basic peer discovery, management and 
message passing as well as peer authentication 
management [12]. 

The DVF can be used by P2P applications that use 
the PEPERS peer communication framework 
seamlessly. More specifically, to deploy the 
capabilities of DVF, developers need to write a 
monitoring policy, that drives the verification activity 
during the operation of a P2P application, and provide 
information about EBr and the monitor(s) that may be 
used at runtime as part of a DVF configuration file. 
However, there is no need to add any extra code to 
their application, unless they want to notify end-users 
of the monitoring results. In such cases, developers 
should include code that reacts to the notification 
messages which are sent by PVCs to peers after rule 
violations.  
 

7. Related Work 
 

The work presented in this paper is related to two 
broad strands of research, namely runtime verification 
and security of P2P systems.  

Work in the former strand has the same goal as the 
framework that we have presented in this paper, i.e. the 
verification of system properties by monitoring events 
which are generated during the operation of the system. 
This strand includes approaches focusing on properties 
expressed in terms of low level program events 
focusing mainly on Java programs (e.g. 
[3][4][6][13][14]) and approaches which focus on 
systems based on web-services (e.g. [11][17][21]). 
None of these approaches, however, focuses explicitly 
on mobile P2P systems and provides a framework that 
can support effectively the verification of such systems 
by including mechanisms for: (a) generating events 
from such systems without having to change their code, 
(b) negotiating monitoring conditions between peers in 
order to activate monitoring when a P2P system 
evolves with the admission and departure of peers, and 
(c) applying control actions in response to certain types 
of violations. Thus, the framework presented in this 
paper is novel in addressing exactly these aspects. 

Work in the second area focuses mainly on aspects 
related to P2P system security rather than dynamic 
verification, including reputation schemes [7][20], 
admission control schemes [23][9], techniques for data 
exchange encryption [24], and decentralised key 
management [25]. It should be noted that the results of 
the verification activity performed by the DVF could 
be used to generate and update peer reputation ratings. 
Also, through the specification and monitoring of 
adequate monitoring rules, the DVF could be used to 
enforce admission control policies.  

 

8. Conclusions  
 
In this paper, we presented a framework that we 

have developed to enable the dynamic verification of 
mobile P2P systems. This framework supports: 
� the specification of monitoring policies to 

determine application level properties that should 
be monitored in different peers at runtime, 

� the automatic negotiation between peers at run-time 
in order to enable the activation of monitoring, 

� the emission of events required for monitoring from 
peers to the monitors that perform the checks,  

� the runtime monitoring of the properties identified 
in the policies, and 

� the dynamic execution of actions that need to be 
taken following the detection of property violations. 



 10 

The main characteristic of this framework is that it 
performs dynamic verification based on policies that 
the owners of individual peers in a P2P system can 
define. These policies specify properties to be 
monitored against the operations of not only the 
specific peer for which the policy is defined but also 
other peers that may interact with it dynamically at an 
application level. Policies also specify the actions that 
should be executed when the monitored properties are 
violated, and the events that a peer is allowed to emit to 
other peers interacting with it if the latter want to 
monitor further properties against its behaviour. This 
framework has been implemented and tested with 
hybrid systems of both mobile and non-mobile peers 
and the performance of the monitors deployed by DVF 
has been evaluated in elsewhere (see [21]). 

Currently, we are working on the transfer of part of 
a monitor’s/EBR’s state to other monitors/EBRs, when 
a peer (or group of peers) moves from one 
neighbourhood to another. We are also investigating 
the possibility of extending DVF with a monitor 
discovery service in which monitors would be treated 
as a special type of peers that could be discovered 
dynamically using relevant P2P protocols. 
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