
 1

Dynamic Verification and Control of Mobile Peer-to-Peer Systems

George Spanoudakis, Christos Kloukinas and Kelly Androutsopoulos

Department of Computing,
City University,

London,
United Kingdom,

{G.Spanoudakis, C.Kloukinas}@soi.city.ac.uk, kellyandrou@googlemail.com

Abstract

The development of dependable mobile P2P systems
is an inherently challenging task since such systems
may operate in largely uncontrolled environments and
may engage new peers or lose existing ones without
any form of centralised control. In these
circumstances, dependability and security can be
enhanced through the runtime monitoring (a.k.a.
dynamic verification) of the compliance of the system
behaviour against specific dependability and security
properties and the execution of control in cases where
properties are violated. In this paper we present a
framework for the dynamic verification and control of
mobile P2P systems, which uses peer-specific
monitoring policies to specify application-level
properties. The deployment of this framework for
monitoring system behaviour adds an extra layer of
security and dependability checking, which is
independent from checks performed directly by the
P2P system that is being monitored. Thus, it makes the
system more fault-tolerant and enables event logging
that could be used for further analysis and prevention
of attacks.

1. Introduction

Starting from the same types of peer-to-peer (P2P)
applications that have been dominant in desktop
platforms (e.g. instant messaging, voice over IP and file
sharing applications), mobile P2P systems are
increasingly covering a wide spectrum of
functionalities such as B2C and C2C e-commerce
applications, and mobile game engines. This tendency
is due to some key benefits of the decentralisation of
P2P architectures over their centralised counterparts,
including reduced vulnerability to single-point failures
and higher scalability [1]. The emergence of mobile
P2P applications has been enabled by the proliferation

of mobile devices equipped with technologies such as
WiFi and GPRS.

However, despite the benefits that arise from the
decentralised and dynamic nature of mobile P2P
systems, these very characteristics are also posing some
significant challenges for their dependability and
security. As individual peers may enter or leave a
mobile P2P system at will and without notice, the
availability of peers and the services that they offer
cannot be taken for granted. Peer availability may also
be affected by the limited power and computational
capacity of mobile devices, the availability of
connectivity in different locations, and the usage
patterns of individual mobile peers.

In such circumstances, ensuring that P2P
applications have been developed using sound software
engineering practices and incorporate a set of basic
security mechanisms is not sufficient for guaranteeing
security and dependability. Therefore, the preservation
of these properties by mobile P2P systems needs to be
dynamically verified through monitoring at runtime.
Dynamic verification complements system testing and
static verification, as none of the latter techniques can
guarantee the correctness of system behaviour at
runtime, either because it is difficult to foresee and
check all the possible conditions that may arise in the
real operational context of a system (system testing) or
ensure that the models used for static verification are
preserved by system implementations.

Several dynamic verification techniques have been
developed (e.g. [2][8][11][13][21]), providing
mechanisms to capture events from software systems at
runtime and check whether these events satisfy specific
properties, which are typically expressed in some
temporal logic language. However, as they focus
mainly on computing platforms where resource scarcity
is not a significant constraint and systems that are not
as dynamic and uncontrollable as mobile P2P systems,
these techniques do not address adequately some issues

 2

which are essential for the dynamic verification of
mobile P2P systems, namely:
� the dynamic negotiation between mobile peers at

run-time in order to enable the activation of
monitoring activities,

� the need to have a monitoring service that is not
deployed on the same machine as the peers that it
monitors, in order not to drain the computational
and power resources of mobile devices,

� the secure emission of events from mobile P2P
systems required for monitoring, and

� the dynamic execution of actions to prevent or
rectify detected violations of the monitored
properties during the execution of peer
applications.

In this paper, we present a dynamic verification
framework for mobile P2P systems (shortly referred to
as “DVF” in the rest of the paper) that addresses these
issues and constitutes the first such framework which,
to the best of our knowledge, is available on a mobile
computing platform. The use of DVF for monitoring
and controlling mobile P2P systems behaviour adds an
extra layer of checking security and dependability that
is independent from any checks performed by the peers
themselves. Thus, DVF makes mobile P2P systems
more fault-tolerant and enables logging of events which
could be used for further diagnostic analysis and
prevention of future attacks.

Central to the approach that underpins DVF is the
use of peer-specific monitoring policies. These policies
specify application level properties that need to be
monitored, concerning a peer itself or its collaborators
in a network, using a language based on Event Calculus
[19], the actions that should be taken when the
monitored properties are violated, and the permissions
that a peer gives to its collaborators regarding the
monitoring and control of its own activities.
Furthermore, the DVF supports the negotiation and
activation of monitoring policies between mobile peers
and the collection and transmission of events from
mobile peers for the monitoring of these policies. It
also offers control capabilities that enable reactions to
identified violations of the monitored properties.

The rest of this paper is structured as follows. In
Section 2, we present the architecture of DVF. In
Section 3 we introduce the language for specifying
DVF policies. In Sections 4 and 5, we present the
negotiation and control capabilities of DVF. In Section
6, we give an overview of the implementation of DVF
and in Section 7 we discuss related work. Finally, in
Section 8, we conclude and outline our plans for future
work.

2. Architecture of the Dynamic
Verification Framework

The main characteristic of DVF is that it decouples

monitoring from event capturing and control, assigning
responsibility for the latter two activities to individual
peers and responsibility for the former activity to
external monitors. Furthermore, the verification
framework deploys an event notification infrastructure,
supporting the transmission of events from peers to the
monitors and the results of the monitoring process in
the opposite direction. As shown in Figure 1, the DVF
consists of three basic components: Monitoring-
Enabled Peers (MEPs), monitors and event brokers
(EBr). These components are described below.

2.1 Monitoring enabled peers

Monitoring enabled peers are peers that incorporate
a peer verification controller (PVC). A PVC collects
events during the operation of a peer and publishes
them to event brokers, so that they can be distributed to
appropriate monitors. A PVC has also responsibility
for receiving notifications of the results of the
monitoring process and taking control actions on the
individual peer as required by these results (e.g.,
dropping messages exchanged between a peer and its
collaborators). As shown in Figure 2, a PVC is
provided as part of the basic runtime infrastructure that
enables the formation of peer networks (e.g. peer
registration, authentication and discovery) and the
communication between the individual peers in them.
Thus, when a peer application is built using this
infrastructure, it automatically incorporates a PVC. A
PVC internally consists of a controller, a policy parser
and a negotiation manager.

The PVC controller intercepts all the incoming and
outgoing messages, which are exchanged between its
host peer and other peers, and publishes these messages
in the form of encrypted events to the event broker of
the DVF, according to its event exposition rules. These
are determined dynamically through the monitoring
policy of the host peer itself and agreements that it may
have made with other peers regarding the exposition of
its own events. After sending a message to an event
broker, the controller may block it until it receives a
notification that the message does not violate any rule
or permit its transmission and wait for the
asynchronous notification of monitoring results.
Subsequently, when it receives the monitoring results
that relate to the message, the PVC controller applies
the actions required by the active monitoring policies.

 3

Figure 1. Architecture of DVF

Figure 2. Peer verification controllers

The policy parser of the PVC is responsible for
parsing the monitoring policy of the host peer and
creating a repository with information about the types
of events that should be intercepted, the properties
against which the intercepted events should be checked
and the actions that should be taken if the properties
are violated (see Section 3). The policy also includes
information about the events that the PVC may expose
to other peers and the events that it should request from
these peers in return.

Finally, the negotiation manager is the component
of the PVC that enables it to negotiate with external
peers for the reception and exposition of events that are
necessary for checking the active monitoring policies at
each side. The negotiation process is driven by the
monitoring policies of the involved peers as we explain
in sections 3 and 4. It should also be noted that the
PVC comes pre-assembled with the peer

communication infrastructure and signed off so that it
cannot be circumvented or tampered with.

2.2 Monitors

The monitors are the components of DVF that carry
out property checks by analysing the peer events at
runtime. The DVF may employ more than one monitor,
each having responsibility for different nodes of a peer
network. A monitor is appointed to check specific
properties by the PVC of an individual peer and can
reside either on the peer itself or on an external device.
The latter possibility is necessary for the provision of
monitoring services to peers running on devices that
cannot themselves support monitoring due to their
limited resources, such as smart phones and PDAs.

Following its appointment by the PVC of a peer, a
monitor subscribes to an event broker of DVF, in order
to receive the events needed for checking the properties
assigned to it and notifies property violations to the
event broker so that the interested PVCs will be
informed about them.

The monitor is a reasoning engine that checks
whether the Event Calculus formulae that specify the
required properties inside a monitoring policy are
satisfied by the events which are generated by the peer
PVCs at runtime and other events that can be derived
from them. The derivation of events is based on
deductive reasoning, performed by the reasoning
engine itself. A detailed account of the algorithms that
underpin the operation of monitors is beyond the scope
of this paper and may be found in [16].

2.3 Event brokers

The event broker (EBr) in DVF offers the
infrastructure needed for transmitting events from peers
to monitors and monitoring results from monitors to
peers. The event broker manages the subscriptions to
the “channels” between publishers of messages and
their respective subscribers. The use of the publish-
subscribe event reporting infrastructure in DVF keeps
the verification framework separate from the actual
P2P service, allowing the latter to operate
independently and adopt any overlay topology and
mode of service provision that it needs. Thus, the P2P
service developer is given freedom to design the
service, without having to take into account the
specifics of the monitoring framework which operates
in its own overlay. At the same time, the monitoring
framework is not “tied” to the service, allowing various
different services to be monitored, without modifying
the system to suit each one separately. Furthermore, the

P2P Runtime Infrastructure

PVC

P2P Application

Encryption
Module

Mobile Peer A

Peer Message Exchange Module

Controller
events

messages

messages
messages

Policy
Parser policy

repository

Negotiation
Manager

Peer B

EBr

notifications

conditions

Authentication
Module

Monitoring Policy

MEP

PVC

application

MEP

PVC

application

MEP

PVC

application

MEP

PVC

application

Event

Broker
(EBr)

Monitor Monitor

Authentication Service
monitoring results

events

inter-peer messages

 4

use of the publish-subscribe architecture allows DVF to
work well in an environment where peers come and go
quickly and unpredictably, and does not overload the
peer communication infrastructure with message
transmissions required for monitoring.

The security of communications in publish-
subscribe architectures can be ensured as demonstrated
in [18][22]. To preserve confidentiality in DVF, the
EBr manipulates encrypted publications, without
having access to their actual contents. This is achieved
through the use of secret tokens acting as aliases to the
actual information exchanged, giving the EBr enough
information to manage subscription and publication
messages without knowing what a token refers to (see
Section 4 for more details).

Policy policy_name
 [Rule RuleID String RuleFormula <formula>
 Assumptions
 [AssumptionID String
 AssumptionFormula <formula>]*
 AppliesTo <peer-list-type>*
 [Action <action-type>]*
]+
 [EventExposition <event_exposition_type>]*
 Timeout Duration [drop|forward]
 Lifetime [until Date | permanent]

Figure 3. Monitoring policy specification
language

3. Specification of monitoring policies

The operation of a PVC at runtime is driven by the

monitoring policy of its host peer. Policies are
specified according to the language shown in Figure 3
(an XML implementation of this language is described
in [15]). A policy contains: (i) one or more rules
specifying the properties that should be monitored at
runtime, (ii) the types of events that the PVC is allowed
to expose to other peers at runtime for their monitoring
needs if requested (EventExposition elements), (iii) a
timeout value determining the maximum time that an
event can be blocked whilst a PVC waits for
monitoring results, and (iv) a lifetime value which
determines for how long the policy will be valid.

3.1 Specification of policy rules

The specification of a rule in a monitoring policy

consists of an identifier that uniquely identifies the rule
within the policy (RuleID), a formula that defines the

logical form of the rule (RuleFormula), the peers that
the rule applies to (i.e., the peers against which the rule
should be monitored), a set of assumptions, and a set of
actions that define the ways in which DVF should react
when the rule is violated.

Formulae are defined in Event Calculus (EC [19]), a
first-order temporal logic language which can be used
for representing and reasoning about events and their
effects over time. An event in EC is an occurrence that
takes place at a specific instance of time (e.g.,
invocation of a system operation, reception or dispatch
of a message) and may have an effect. The effects of
events in EC are represented by fluents, i.e., conditions
which may change over time. A fluent may, for
example, specify a condition indicating that a peer has
received a message or that following the receipt of a
message an internal variable of a peer has been set to a
specific value. EC fluents are initiated or terminated by
an event. Event occurrences are represented by the
predicate Happens(e,t,ℜ(t1,t2)). This predicate denotes
that the instantaneous event e occurs at a time point t
within the time range ℜ(t1,t2). The range boundaries
can be specified by either time constants or arithmetic
expressions over the time variables of other predicates.
The initiation or termination of a fluent f due to the
occurrence of an event e at time t is denoted by the
predicates Initiates(e,f,t) and Terminates(e,f,t),
respectively. Two additional predicates, namely
Initially(f) and HoldsAt(f,t) may also be used to denote
that a fluent f holds at the start of the execution of a
system and that f holds at time t, respectively.

Fluents use the form relation(Object1, …, Objectn)
and events are restricted in our EC-based policy
language to exchanges of messages between peers. A
message can invoke an operation in a peer or return
results following the execution of an operation. Events
are specified using the following generic form:

event(_id, _sender, _receiver, _sig, _source)
In this form:
� _id is the unique identifier of the event
� _sender is the identifier of the peer that sends the

message.
� _receiver is the identifier of the peer that receives

the message.
� _sig is the signature of the operation or the type of

the message that the event refers to.
� _source is the identifier of the peer from which the

event was captured.
Examples of rules specified according to the policy

language of DVF are shown in Figure 4. For example,
Rule_1 should be monitored against the peer that owns
the policy, as the keyword self in its AppliesTo clause
denotes. The rule checks whether after the peer has sent
a message of type authorise, requesting the

 5

authorisation of _i by an external peer _B, it will
receive a message of type authorisation, signifying the
authorisation of _i from _B, within tu time units.
Essentially, Rule_1 monitors the (bounded) availability
of peer _B which provides authorisation services and
the communication channel between it and the host
peer.

Assumptions in policies express how the state of a
P2P system is affected by the events that occur during
its operation. These effects are expressed by formulae
that indicate the initialisation and termination of fluents
by different events. Whilst monitoring the rules, the
monitor uses the assumptions to deduce the status of
fluents, i.e. whether or not a fluent holds at a particular
instance of time. For example, Rule_2 of Figure 4
checks cases where an external peer (i.e., peer _A in the
rule) sends a request message to the current peer for a
piece of information _i (e.g., a file). In such cases, the
rule demands that the external peer _A must have been
authenticated at the recipient before the request is
received. The authentication of _A at _self is denoted
by HoldsAt(authenticated(_A, _self), t). Rule_2’s
assumption A1 is used at runtime to establish whether
the fluent authenticated(_A, _self) holds at the time of
the receipt of the request from _B or, equivalently, if
_A has been authenticated at _self at this time.
According to A1, the fluent authenticated(_A, _self) is
initiated (i.e., becomes true) when a message
confirming the authenticity of _A is received by the
peer _self, following a request for the authentication of
_A to an external authority (peer) _B. The
authentication request is represented by the event
e(_eID1, self, _B, authenticate(_A), _self) in the
formula A1 and the response to it by the event
e(_eID2, _B, self, authentication(_A), _self).

During monitoring, the fluent authenticated(_A,
_self)) is obtained by deduction from A1 and the EC
axioms. More specifically, when the events that signify
the dispatch of the authentication request message and
the response to it occur, the predicate
Initiates(e(_eID2, _B, _self, authentication(_A),_self),
authenticated(_A,self), t2)) is derived from A1 by
deduction. After the initialisation of this fluent, the
predicate HoldsAt(authenticated(_A, self), t) can be
derived using an axiom of EC which states that a fluent
will hold at any time point after it is initiated, unless
there has been an event terminating it in between.

3.2 Specification of actions

DVF policies also specify the control actions that
should be executed by the PVC, following rule
violations. These actions can be of three different

types: drop actions, violation notification actions, and
negotiation actions.

Policy policy-1
Rule RuleID Rule_1
RuleFormula
Happens(e(_eID1, _self, _B, authorise(_i), _self), t1, R(t1,t1))
⇒Happens(e(_eID2, _B, _self, authorisation(_i), _self),t2,
 R(t1,t1+tu)))
AppliesTo _self
Action notify(_eID1, _self, _B)

Rule RuleID Rule_2
RuleFormula
Happens(e(_eID1, _A, _self, request(_i), _self), t , R(t,t))
⇒ HoldsAt(authenticated(_A, self), t)
Assumptions
AssumptionID A1
AssumptionFormula
Happens(e(_eID2, _self, _B, authenticate(_A), _self), t1,
 R(t1,t1))
∧ Happens(e(_eID3, _B, _self, authentication(_A), _self), t2,
 R(t1,t2))
⇒ Initiates(e(_eID3, _B, _self, authentication(_A), _self),
 authenticated(_A,self), t2))
AppliesTo _self, Peer-role-A
Actions drop(_eID1, _self)

Rule RuleID Rule_3
RuleFormula
Happens(e(_eID1, _A, _self, request(_i), _self), t1, R(t1,t1))
∧ ¬∃t1. Happens(e(_eID2, _A, _self, request(_i), _self), t2,
 R(t2,t1))
⇒ HoldsAt(negotiated(_self,_A), t)
Assumptions
AssumptionID A1
AssumptionFormula
Happens(e(_eID1, _self, _self, start_neg(_A), _self), t1,
 R(t1,t1))
∧ Happens(e(_eID2, _A, _self, confirm_neg(_A), _self), t2,
 R(t1,t2))
⇒ Initiates(e(_eID2, _A, _self, confirm_neg(_A),_self),
 negotiated(_self,_A), t2))
AppliesTo self
Actions negotiate(_eID1, _A)

Rule RuleID Rule_4
RuleFormula
Happens(e(_eID1, _self, _A, dispatch(_i), _self), t1, R(t1,t1))
⇒ HoldsAt(negotiated(_self,_A), t)
Assumptions {}
AppliesTo self
Actions drop(_eID1)

EventExposition
Timeout 1000 drop
Lifetime permanent

Figure 4. Policy example

Drop actions prevent the dispatch of the peer

message that has caused the violation of a rule to the
peer that is the intended recipient of the message and is
specified as drop(eventID, peerID1, …, peerIDn),
where eventID is the identifier of the event that is
involved in the violation of the rule, and peerID1, …,
peerIDn the peers to be notified of the dropped
message.

 6

Violation notification actions can be taken in cases
where the event that has caused the violation should
not be dropped but a notification of the violation
should be send to certain peers and are specified as
notify(eventID, peerID1, …, peerIDn).

Finally, negotiation actions can be taken in cases
where the violation of a rule by an event should trigger
the negotiation process between peers and are specified
as negotiate(eventID, peerID1), where peerID is the
identifier of the peer with whom the negotiation must
take place.

As Figure 4 shows, in the case of Rule_1 the action
that should be taken is notify(_eID1, self, _B). This
action causes the PVC of the peer _self to send a
notification message to the peers _self and _B, to
inform them that the event _eID1 has violated Rule_1.
When violations of Rule_2 occur, the drop action
drop(_eID2, _self) should be executed. This will result
in the notification of the violation of Rule_2 to _self
but as the drop action specifies no other recipients of
the notification, the peer _A, which had requested item
_i causing the violation, will not be informed of the
drop of the message. Of course, the absence of
notifications should be used with care, as peers may
end up waiting for a response indefinitely.

4. Negotiation

A peer MEP1 starts the negotiation process with
another peer MEP2 when it needs events of MEP2 to
monitor its own policy. The negotiation process
between two peers can also be triggered by forcing the
PVC of a peer to take a negotiation action, following
the violation of a rule in its monitoring policy. Such a
rule will typically require that when MEP1 receives
some particular message from another peer MEP2, it
should negotiate with MEP2 the exposition of events
from it unless it has already done so.

For example, if MEP1 has the policy specified in
Figure 4, then according to Rule_3 when it receives a
request(_i) message from a peer MEP2, the fluent
negotiated(MEP1, MEP2) must hold, indicating that a
successful negotiation between MEP1 and MEP2 has
already taken place. If that is not the case, Rule_3 will
be violated and the PVC of MEP1 will execute the
action negotiate(_eID1, MEP2) as specified by the rule.
This action will trigger the negotiation process between
the PVCs of MEP1 and MEP2.

At the start of the negotiation process, the PVC of
MEP1 will identify the rules that apply to the role of
peer MEP2 and from these rules it will subsequently
identify the events that it will need from MEP2 in order
to check these rules and the actions that should be
executed if the rules are violated. Using this

information, the PVC of MEP1 will construct a
condition list of the following form (1) and send it to
MEP2 for approval.
(ev-type i,
 ((rule 1, (action 11, …, action 1L)),
 …,
 (rule n, (action n1, …, action nM))))
(i=1,…,k)

(1)

An element i in this list denotes the type of the events
of MEP2 that will be required (i.e. ev-typei), the rules
against which events of this type will be checked (rule1
,…., rulen) and the actions that should be taken if one
of these rules is violated (e.g., action11, …, action1L for
rule1). After receiving the condition list, the PVC of
MEP2 will check it against the event exposition list of
its own policy. If the exposition list allows it to accept
the conditions sent by MEP1, it will update its internal
active policy, so as to send the agreed events to MEP1.

Continuing with our previous example, suppose that
the role of MEP2 is Peer-role-A. Based on this, MEP1

will need to monitor whether the operation of MEP2 is
compliant with Rule_2. From this rule, it can then
construct the following condition list and send it to
MEP2 for negotiation:

[(e(_eID1, _A, MEP2, request(_i), MEP2),
(Rule_2, (drop(_eID1, MEP2))),

(e(_eID2, MEP2, _B, authenticate(_A), MEP2),
(Rule_2, ()),

(e(_eID3, _B, MEP2, authentication(_A), MEP2),
(Rule_2, ())]

The three event types in the above list are extracted
from Rule_2 after replacing _self with MEP2 as the
latter peer will become the subject of the monitoring of
Rule_2 in this case. Assuming that the event exposition
list in the monitoring policy of MEP2 is

EventExposition
(request(_i),[peer-role-B],
[notify(request(_i), _self)])
 (authenticate(_X),[peer-role-B],[])
 (authentication(_X),[peer-role-B],[])

the latter peer will not accept the condition list of
MEP1, as the actions that should be applied for
violations caused by request(_i) events are not included
in its permissible actions for this type of events. Thus,
the negotiation will fail. However, if the action
drop(_eID1, MEP2) was in the permissible action list
for request(_i) then the negotiation would have been
completed successfully.

When the PVC of MEP1 starts the negotiation
process, it sends a message start_neg(MEP2) to its peer
to indicate this and, if the negotiation process is
completed successfully, it sends the message
confirm_neg(MEP2). These messages are also sent to
the monitor, which from assumption A1 of Rule_3 will
establish the fluent negotiated(MEP1, MEP2). Thus, the
next time that MEP2 sends a request(_i) message to

 7

MEP1 the fluent will hold and there will be no need to
start the negotiation process again.

After the conditions are accepted in the negotiation
process, MEP1 will need to establish two confidential
communication channels that will allow the PVC of
MEP2 to send the events required for monitoring to the
monitor of MEP1 and the monitor to notify the results
of the monitoring process back to MEP1 and MEP2. In
DVF these communication channels are established
through the event broker.

(1) MEP 1 � MEP2: T e(i), T mr(i)
(2) MEP 1 � EBr: adv(M, T mr(i), t)
 MEP2 � EBr: adv(MEP 2, T e(i), t)
(3) MEP 1 MEP2: H(T e(i), T mr(i))
(4) MEP 2 � EBr: sub(MEP 2, T mr(i), t)
 MEP1 � EBr: sub(MEP 1, T mr(i), t),
 sub(M, T e(i), t)
(5) MEP 1,M EBr: H(M, T mr(i), t),
 H(M, T e(i), t)
 MEP1,MEP2EBr: H(MEP 2, T e(i), t),
 H(MEP 2, T mr(i), t)
(6) MEP 1 M: H(H(M, T mr(i), t)),
 H(M, T e(i), t)))
 MEP1 MEP2: H(H(MEP 2, T e(i), t),
 H(MEP 2, T mr(i), t))
(7) MEP 1 � M: T e(i), T mr(i),
 seed e(i), seed mr(i)
(8) MEP 1 M: H(Key e, Key mr)
(9) MEP 1 � MEP2: seed e(i), seed mr(i)
(10) MEP 1 MEP2: H(Key e, Key mr)
(11) MEP 1 � MEP2: reportToEBr()

Figure 5. Protocol of establishing event and
results notification channels1

DVF assumes that event brokers are not trusted

entities and therefore they should be able to manage the
subscriptions and publications of events and
monitoring results without having access to their
contents. To achieve this, the events and monitoring
results are encrypted and the necessary keys for the
decryption of this information are generated outside the
event broker and are not made available to it. The
event broker gets only tokens that identify the
notification channels and enable it to distribute the
encrypted messages to the appropriate subscribers.
Tokens essentially provide aliases to the actual
information exchanged, giving the event broker
sufficient information for managing subscriptions and
routing publications, without knowing what a token
refers to or being able to deduce the actual type of the
transmitted messages or other information from it. The
protocol for creating the tokens and decryption keys

1 If two or more steps have the same number in the protocol,

the order of their execution is not important.

and establishing the event and notification reporting
channels is shown in Figure 5.

This protocol is implemented by the PVCs of the
peers which are involved in the negotiation. In the
following, we explain the protocol in reference to our
previous example where the peer MEP1 requested
specific types of events for monitoring from MEP2.

The execution of the protocol starts after MEP2
agrees to provide the types of events requested by
MEP1. At this point MEP1 will need to coordinate the
process of creating the two necessary channels between
MEP2’s PVC and the monitor M through EBr. Thus,
after MEP1 receives a notification of the acceptance of
its condition list from MEP2, it creates unique tokens to
reference MEP2’s event channel (Te(i)) and the
monitoring results channel (Tmr(i)) and forwards them
to MEP2 (step (1)). It also sends an advertisement
message to EBr, indicating that the monitor M will
publish monitoring results referenced by the token
Tmr(i) (step (2)). MEP2 also sends an advertisement
message to EBr, indicating that it will publish events
referenced by the token Te(i) (step (2)), and
acknowledges the receipt of the tokens to MEP1 (step
(3))2. Following this, MEP2 asks EBr to subscribe to
the results that will be published by the monitor (step
(4)). In parallel, after receiving the acknowledgement
of the receipt of the tokens by MEP2, MEP1 sends a
message to EBr to subscribe M to the events that will
be published by MEP2 and itself to the result channel of
M. Following the acknowledgement of the created
subscriptions from EBr (step (5)), and from MEP2 and
M (step (6)), MEP1 forwards two seeds, which are
necessary for the local creation of symmetric
encryption/decryption session keys for the event and
results channel, to MEP2 and M (steps (7) and (9)).
These keys are related to the tokens (and as such, to the
specific events that have been negotiated) and,
therefore, cannot be used to decrypt any other channels.

MEP2 and M use the same symmetric key
generation function as MEP1 to generate Keye and Keymr
from the two pairs of token-seeds (Te(i),seed e(i))
and (Tmr(i),seed mr(i)), respectively. This function is
provided by the basic runtime infrastructure within
which the PVCs of MEP1 and MEP2 are embedded (see
[11]) and is also implemented by the monitors of DVF.
The process of establishing confidential channels is

2
 The acknowledgement messages sent during the execution
of protocol contain the hash value of the parameters of the
message they acknowledge and are denoted by
H(message). This enables the verification of message
integrity. The hash function H that is used is provided by
the peer infrastructure that embeds PVC.

 8

concluded successfully only when M and MEP2
acknowledge to MEP1 the key creation (steps (8) and
(10)), through the hash value of the keys. MEP1
matches the hash values of the acknowledgements with
the hash value of the keys that it has created locally and
it concludes that the process has completed
successfully only if a match is found. At the end of this
process, only MEP1, MEP2 and M possess the keys that
can be used to encrypt and decrypt the contents of the
event and monitoring results channels. Thus, EBr
cannot read the contents of the “channels”
corresponding to these tokens, despite knowing the
tokens that will enable it to forward publications to
subscribers. The channel establishment process is
aborted if at any point MEP1 does not receive the
acknowledgements that it expects within a pre-
specified time period. This protocol follows the process
for creating cryptographic keys in the Secure Sockets
Layer (SSL) protocol [10] and ensures that the event
notification infrastructure is engaged at runtime in a
flexible but secure manner.

EventGeneration(m: PeerMessage)
i_time = current_time()
Create an event e(m) for m
timeout = ActivePolicy(e(m)).timeout
timeleft = timeout.duration
e(m).D Rules = {R| R ∈ ActivePolicy(e(m)).Rules
 ∧ ∃a. a ∈ ActivePolicy(e(m).Actions
 ∧ (a = drop-action) ∧ a.rule = R}
e(m).ND Rules = ActivePolicy(e(m)).Rules − D Rules
If e(m).D Rules = ∅ then
 If e(m).ND Rules ≠ ∅
 Send e(m) to Brokers(Type(e(m)).List)
 Send m to its destinations
 return
EndIf

Send e(m) to Brokers(Type(e(m)).List)
While e(m).NoViolation ∨ e(m).D Rules ≠ ∅ Do
 //wait for notifications
 wt = i_time + timeleft – current_time()
 If (rcv(e(m).chan,NewN,wt) = Timeout) Then
 If (timeout.action = forward)
 send m to its destinations
 return
 EndIf
 R = NewN.rule
 If R ∈ e(m).D Rules ∧ NewN.violation Then
 DA = DropActions(R)
 Apply(DA)
 e(m).NoViolation = False
 EndIf
EndWhile

If e(m).NoViolation
 send m to its destinations
End Controller

Figure 6. Event generation algorithm

5. Control

The application of control actions in DVF is the
responsibility of the PVC controller and is driven by:
(a) the active monitoring policy that exists in a peer and
(b) the agreements that the peer may have made with
external peers after negotiation (if any). As we
discussed in Section 3, the monitoring policy of a peer
may define some control actions for each of the rules to
be monitored. Each of these actions must refer to a
specific event within the rule that it applies to. In the
policy of Figure 4, for instance, the drop action
specified for Rule_3 refers to the event
e(_eID2,_self,_A, request(_i), _self) in the rule
formula3 and, therefore, it can be applied only to
runtime events that match this event in the formula.

Based on the specification of the actions, the policy
parser creates an action list for the different types of
events that have been identified in a policy. The
elements of this list have the same form as (1)
indicating the rules against which events of a particular
type should be checked and the actions that should be
applied if a violation of these rules is caused by the
events. This list constitutes the internal active
monitoring policy of the peer and is updated through
condition negotiations with other peers. The PVC
implements control as specified by the algorithms event
generation and notification handling which are shown
in Figure 6 and Figure 7, respectively.

As shown in Figure 6, the PVC controller constructs
a new event for each message it catches and finds the
set of rules that need to be checked for the event and
have at least one drop action defined for it (DRules). If
this set is empty, then the controller transmits the event
to the event broker without waiting for any monitoring
results as these can be handled asynchronously. If,
however, there are rules with drop actions, then the
controller must ensure that all these rules have been
satisfied before allowing the message to be transmitted
to its destination. Thus, it waits to receive notifications
(NewN) for this event. If a timeout occurs first and the
timeout action of the policy is to forward the message,
then this is done and the controller returns immediately.
Otherwise, if a violation of a rule with a drop action for
the event is notified, the controller drops the event and
stops waiting for any further notifications of monitoring
results for the event as these can again be handled by
the notification handling process of the PVC in an
asynchronous mode.

The notification handling process of the PVC is
specified in Figure 7. Upon the reception of a new

3 Because it refers to the identifier _eID2.

 9

monitoring result, the corresponding event and rule are
found. If the notification reports a violation, then the
handler examines whether the rule has drop actions
associated with it and, if so, it forwards the notification
to the controller. If this has been the last notification
result for the particular rule, then the rule is removed
from the drop-action set of the event, so as to release
the controller once this drops to the empty set. Finally,
the handler performs whatever non-drop actions have
been associated with the violated rule.

NotificationHandling(NewN: monitorNotif)
 e(m) = NewN.event; R = NewN.rule
 If NewN.Violation Then
 If (R ∈ e(m).D Rules)
 snd(e(m).chan, NewN)
 If (NewN is last notification for R)
 e(m).D Rules = e(m).D Rules - {R}
 apply(NonDropActions(R))
 EndIf
End ResultNotificationHandler

Figure 7. Notification handling algorithm

6. Implementation

DVF has been implemented in Java. More
specifically, the monitor and the event broker have
been implemented in JSE v1.5 using the SIENA event
notification service [5]. The PVC has two
implementations: one that is based on JSE v1.5 and a
version for embedded devices developed on JME-CDC
1.0 and tested on Sony Ericsson’s P990i (both
simulated and real ones). Both PVCs have been
integrated with a peer communication framework that
has been developed within the EU project PEPERS and
provides basic peer discovery, management and
message passing as well as peer authentication
management [12].

The DVF can be used by P2P applications that use
the PEPERS peer communication framework
seamlessly. More specifically, to deploy the
capabilities of DVF, developers need to write a
monitoring policy, that drives the verification activity
during the operation of a P2P application, and provide
information about EBr and the monitor(s) that may be
used at runtime as part of a DVF configuration file.
However, there is no need to add any extra code to
their application, unless they want to notify end-users
of the monitoring results. In such cases, developers
should include code that reacts to the notification
messages which are sent by PVCs to peers after rule
violations.

7. Related Work

The work presented in this paper is related to two
broad strands of research, namely runtime verification
and security of P2P systems.

Work in the former strand has the same goal as the
framework that we have presented in this paper, i.e. the
verification of system properties by monitoring events
which are generated during the operation of the system.
This strand includes approaches focusing on properties
expressed in terms of low level program events
focusing mainly on Java programs (e.g.
[3][4][6][13][14]) and approaches which focus on
systems based on web-services (e.g. [11][17][21]).
None of these approaches, however, focuses explicitly
on mobile P2P systems and provides a framework that
can support effectively the verification of such systems
by including mechanisms for: (a) generating events
from such systems without having to change their code,
(b) negotiating monitoring conditions between peers in
order to activate monitoring when a P2P system
evolves with the admission and departure of peers, and
(c) applying control actions in response to certain types
of violations. Thus, the framework presented in this
paper is novel in addressing exactly these aspects.

Work in the second area focuses mainly on aspects
related to P2P system security rather than dynamic
verification, including reputation schemes [7][20],
admission control schemes [23][9], techniques for data
exchange encryption [24], and decentralised key
management [25]. It should be noted that the results of
the verification activity performed by the DVF could
be used to generate and update peer reputation ratings.
Also, through the specification and monitoring of
adequate monitoring rules, the DVF could be used to
enforce admission control policies.

8. Conclusions

In this paper, we presented a framework that we

have developed to enable the dynamic verification of
mobile P2P systems. This framework supports:
� the specification of monitoring policies to

determine application level properties that should
be monitored in different peers at runtime,

� the automatic negotiation between peers at run-time
in order to enable the activation of monitoring,

� the emission of events required for monitoring from
peers to the monitors that perform the checks,

� the runtime monitoring of the properties identified
in the policies, and

� the dynamic execution of actions that need to be
taken following the detection of property violations.

 10

The main characteristic of this framework is that it
performs dynamic verification based on policies that
the owners of individual peers in a P2P system can
define. These policies specify properties to be
monitored against the operations of not only the
specific peer for which the policy is defined but also
other peers that may interact with it dynamically at an
application level. Policies also specify the actions that
should be executed when the monitored properties are
violated, and the events that a peer is allowed to emit to
other peers interacting with it if the latter want to
monitor further properties against its behaviour. This
framework has been implemented and tested with
hybrid systems of both mobile and non-mobile peers
and the performance of the monitors deployed by DVF
has been evaluated in elsewhere (see [21]).

Currently, we are working on the transfer of part of
a monitor’s/EBR’s state to other monitors/EBRs, when
a peer (or group of peers) moves from one
neighbourhood to another. We are also investigating
the possibility of extending DVF with a monitor
discovery service in which monitors would be treated
as a special type of peers that could be discovered
dynamically using relevant P2P protocols.

9. Acknowledgements

This work has been supported by the Framework 6
European research project PEPERS (www.pepers.org).

10. References

[1] Androutsellis-Theotokis, S., Spinellis, D., 2004, A
survey of peer-to-peer content distribution technologies.
ACM Computing Surveys, 36(4):335–371
[2] Barringer, H., et al. 2004, Rule-Based Runtime
Verification, In Proc. of 5th Int. Conf. on Verification, Model
Checking, and Abstract Interpretation
[3] Brörkens, M. and Möller, M. 2002a, Dynamic event
generation for runtime checking using the JDI, In Proc. of the
Federated Logic Conference Satellite Workshops, Electronic
Notes in Theoretical Computer Science, 70 (4)
[4] Brörkens, M. and Möller, M. 2002b, Jassda trace
assertions, runtime checking the dynamic of Java programs,
In Proc of Inter. Conf. on Testing of Communicating
Systems, Berlin, Germany, 39-48
[5] Carzaniga, A., Rosenblum, D. S., Wolf, A. L., 2000,
Achieving scalability and expressiveness in an internet-scale
event notification service, In Proc. of the 19th ACM
Symposium on Principles of Distributed Computing
[6] Chen, F. and Roşu, G. 2007. Mop: an efficient and
generic runtime verification framework. In Proc. of the 22nd
ACM SIGPLAN Conference on Object Oriented
Programming Systems and Applications, 569-588
[7] Damiani E. et al., A reputation-based approach for

choosing reliable resources in peer-to-peer networks, 2002.
Proc. of 9th ACM Conf. on Computer and communications
security, 207 – 216
[8] D'Amorim, M., Havelund, K., 2005, Event-based
runtime verification of Java programs, In Proc. of 3rd Int.
Workshop on Dynamic Analysis (WODA'05)
[9] Fenkam, P. Dustdar, S. Kirda, E. Reif, G. Gall, H.,
2002. Towards an access control system for mobile peer-to-
peer collaborative environments, WET ICE 2002 – Int.
Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises
[10] Freier, A. O., Karlton, P., Kocher, P. C., 1996. The
SSL Protocol Version 3.0, Internet draft, available at:
http://wp.netscape.com/eng/ssl3/draft302.txt
[11] Ghezzi C., Guinea S., 2007, Runtime Monitoring in
Service Oriented Architectures, In Test and Analysis of Web
Services, (eds) Baresi L. & di Nitto E., Springer, 237-264.
[12] Groce, V. et al. 2007. Framework and Security
Verification Tools, Deliverable D6, PEPERS, FP6-26901
[13] Havelund, K., Roşu, G., 2004, An Overview of the
Runtime Verification Tool Java PathExplorer, Formal
Methods Syst. Des. 24: 189-215
[14] Kim, M., Kannan, S., Lee, I., Sokolsky, O. and
Viswanathan, M., 2001, Java-mac: a run-time assurance tool
for Java programs, In Electronic Notes in Theoretical
Computer Science, 55. Elsevier Science Publishers
[15] Koulouris, T., Tsigritis, T., and Spanoudakis, G.,
2006, Dynamic Verification Support Framework, Deliverable
D4, PEPERS Project, IST-2004-026901
[16] Mahbub K., 2006. Runtime monitoring of service
based systems, PhD, Dep. of Computing, City University
[17] Pistore M, Traverso, P., 2007, Assumption Based
Composition and Monitoring of Web Services, In Test and
Analysis of Web Services, (eds) Baresi L. & di Nitto E.,
Springer Verlang, 307-335.
[18] Raiciu C., Rosenblum, D. S., 2006, Enabling
Confidentiality in Content-Based Publish/Subscribe
Infrastructures, In Proc. of IEEE Securecomm ‘06
[19] Shanahan, M.P., 1999, The Event Calculus Explained,
in Artificial Intelligence Today, LNAI 1600:409-430
[20] Song, S., Hwang, K., Zhou, R., and Kwok, Y., 2005.
Trusted P2P Transactions with Fuzzy Reputation
Aggregation. IEEE Internet Computing, 9(6):24-34.
[21] Mahbub K., Spanoudakis G., 2007. Monitoring WS-
Agreements: An Event Calculus Based Approach, In Test
and Analysis of Web Services, (eds) Baresi L. & di Nitto E.,
Springer Verlang, 265-306.
[22] Srivatsa, M., Liu, L., 2005, Securing Publish-
Subscribe Overlay Services With EventGuard, In Proc. of
12th ACM Conf. on Computer and Communication Security
[23] Saxena N., Tsudik G., Yi J.H., 2003. Admission
control in Peer-to-Peer: design and performance evaluation,
1st ACM W. on Sec. of ad hoc and sensor networks, 104-113
[24] Xiaolin, Catania, B. Kian-Lee T., 2003. Securing
your data in agent-based P2P systems, In 8th Int. Conf. on
Database Systems for Advanced Applications, 55- 62
[25] Law, Y.W., Corin, R., Etalle, S. and Hartel, P., 2003.
A Formally Verified Decentralized Key Management
Architecture for Wireless Sensor Networks, Personal
Wireless Communications, LNCS 2775: 27-39

