
 

 

Chapter 13 
The Runtime Monitoring Framework of 
SERENITY  

George Spanoudakis, Christos Kloukinas and Khaled Mahbub1 

 

Abstract This chapter describes SERENITY’s approach to runtime monitoring 
and the framework that has been developed to support it. Runtime monitoring is 
required in SERENITY in order to check for violations of security and depend-
ability properties which are necessary for the correct operation of the security and 
dependability solutions that are available from the SERENITY framework. This 
chapter discusses how such properties are specified and monitored. The chapter 
focuses on the activation and execution of monitoring activities using S&D Pat-
terns and the actions that may be undertaken following the detection of property 
violations. The approach is demonstrated in reference to one of the industrial case 
studies of the SERENITY project. 
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13.1. Introduction 

Ensuring the security and dependability of complex systems operating in highly 
distributed environments and frequently changing contexts, whilst maintaining 
system interoperability and adaptability, is one of the major challenges of current 
research in the area of security and dependability [22]. This is because, as opera-
tional conditions change, the security and dependability mechanisms of a system 
may become ineffective and, when this happens, the system will need to adapt or 
replace them to ensure the preservation of the desired security and dependability 
(S&D) properties. In such circumstances, the ability to react dynamically requires 
the monitoring of the operation of the security and dependability mechanisms that 
are deployed by the system and the identification of conditions indicating the 
compromise of security and dependability properties. These needs are prominent 
especially in systems with distributed components that are deployed over changing 
infrastructures and communicate over heterogeneous and changing networks. 

This chapter presents the monitoring framework that has been developed in 
SERENITY to enable the monitoring the security and dependability mechanisms 
at runtime.  

As discussed in previous chapters of this book, one of the key objectives of 
SERENITY has been the development of a runtime framework, known as 
SERENITY Runtime Framework (SRF), enabling systems which operate in dy-
namic environments to configure, deploy and adapt mechanisms for realising 
S&D Properties dynamically. In particular, the SRF supports the dynamic selec-
tion, configuration and deployment of components that realise S&D Properties ac-
cording to S&D Patterns. An S&D Pattern in SERENITY specifies a reusable 
S&D Solution for realising a set of S&D Properties. It also specifies the contextual 
conditions under which this solution becomes applicable, and invariant conditions 
that need to be monitored at run-time in order to ensure that the solution described 
by the pattern behaves correctly. A set of S&D Patterns describing the same appli-
cation interface and offering the same S&D Properties forms an S&D Class. 

When an application needs to deploy a solution that realises specific S&D 
Properties using a specific API, it asks the SRF for patterns that can provide the 
required properties and belong to an S&D Class compatible with the required API. 
The SRF searches through its library of S&D Patterns and, if such patterns exist 
that are applicable in the current context of the application, selects one of them 
and returns a reference to its implementation to the application. Subsequently, the 
application uses the selected implementation through calls to the API it had re-
quested. 

During the deployment of an S&D Pattern by an application, it is necessary to 
monitor whether the invariant conditions specified in the pattern are satisfied and 
take corrective actions if a violation of these conditions is identified. The monitor-
ing of these conditions is the responsibility of the monitoring framework that is 
discussed in this chapter. 
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The monitoring framework of SERENITY is called EVEREST (EVEnt REa-
Soning Toolkit). EVEREST is available as a service to the SRF and when an S&D 
Pattern is activated it undertakes responsibility for checking conditions regarding 
the runtime operation of the components that implement the pattern. These condi-
tions are specified within S&D Patterns by monitoring rules expressed in EC-
Assertion, i.e., a temporal formal language based on Event Calculus [27]. 
EVEREST can detect violations of monitoring rules against streams of runtime 
events, which are sent to it by different and distributed event sources, the Event 
Capturers. It also has the capability to: (i) deduce information about the state of 
the system being monitored, by using assumptions about the behaviour of a sys-
tem and how runtime events may affect its state, (ii) detect potential violations of 
monitoring rules (known as threats), by estimating belief measures in the potential 
of occurrence of such violations, and (iii) perform diagnostic analysis in order to 
identify whether the events causing a violation are genuine or the result of a sys-
tem fault or an attack. This chapter focuses on the basic monitoring capabilities of 
EVEREST and the support that it provides for reacting to violations of monitoring 
rules. The threat detection and diagnostic capabilities of EVEREST are beyond the 
scope of this chapter and are discussed in the next chapter of this book [33]. 

The rest of this chapter is structured as follows. Section 13.2 introduces a sce-
nario demonstrating the need for runtime monitoring of the security and depend-
ability mechanisms of a system at runtime. Section 13.3 provides an overview of 
the architecture of EVEREST and its relation with the SERENITY runtime 
framework. Section 13.4 presents the language for specifying monitoring rules as 
part of S&D Patterns. Section 13.5 discusses the core monitoring capabilities of 
EVEREST. Section 13.6 provides an overview of the implementation of 
EVEREST and results of experimental evaluations that have been conducted to 
evaluate it. Finally, Section 13.7 reviews related work and, Section 13.8 concludes 
by identifying aspects of EVEREST that require further research and develop-
ment. 

13.2. A Scenario for Runtime Monitoring of Security and 
Dependability 

To appreciate the need for monitoring and adaptation of system security and de-
pendability mechanisms at runtime, consider a system which manages access to 
different resources of an organisation, through a combination of user authentica-
tion, device identification and location detection capabilities [3]. 

In this system, referred to Location Based Access Control System (LBACS) in 
the following, users entering and moving within the premises of an organisation 
using mobile computing devices (e.g., a notebook or smart phone) may be given 
access to different resources, such as the enterprise intranet, printers or the Inter-
net, depending on their user-id, the id of the mobile device that they are using, and 
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the location of this device.  Resource access is granted depending on policies, 
which determine when access to a particular type of resource is considered to be 
harmful or not. A policy may, for example, determine that an authenticated em-
ployee of the organisation who is trying to access a printer via the local wireless 
network, whilst being in an area of the premises that is accessible to the public, 
should be granted access, whilst authenticated visitors should only be given access 
to printers when they are in one of the organisation’s meeting rooms. 

The general architecture of LBACS is shown in Fig. 13.1. As shown in the fig-
ure, the access control solution of LBACS is based on two servers: a location and 
a control server. The control server polls the location server at regular intervals, in 
order to obtain the position of the devices of all the users who are currently con-
nected to the system. The location server calculates the position of different user 
devices from signals that it receives from devices through location sensors. The 
estimates of device positions are not exact and are associated with an accuracy 
measure. The authentication of the identity of the different user devices is based 
on the existence of a TPM chip on them and its ability to respond to requests by 
the authentication server of the system (LBACS is discussed in more detail in 
Chapter 18). 

 

 
Fig. 13.1 Location Based Access Control System (based on [3]) 

 
The effectiveness of the access control solution of LBACS depends on several 
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(C1) The continuous availability of the location servers and TPMs on the user 
devices at runtime. The availability of these components is a pre-requisite 
for the availability of device position and authentication information, which 
is necessary for the access control system at runtime. 

(C2) The continuous periodic dispatch of signals from the mobile devices to the 
location server that enables it to maintain accurate position data for the de-
vices. 

Monitoring the above conditions at runtime in a system like LBACS would re-
quire the implementation of appropriate checks within the system itself or the de-
ployment of an external monitor that would undertake the relevant responsibility. 
The former option would not be very flexible as it would require changes in the 
implementation of the required checks when the different components of the sys-
tem change. Also depending on changes on the system components, the exact 
conditions that would need to be monitored could change as well. In such cases, 
giving the system the responsibility for monitoring would not be flexible. 

The solution advocated in SERENITY is to delegate this responsibility to ex-
ternal components that would check the above conditions and take action when 
they are violated, e.g., replace malfunctioning components, alert system adminis-
trators of detected violations etc. In particular, in SERENITY the responsibility 
for monitoring runtime conditions is assigned to EVEREST and the responsibility 
for reacting to violations of properties is assigned to the SERENITY runtime 
framework. The generic architecture of EVEREST and its relation to the 
SERENITY runtime framework are discussed in the following. 

13.3. Overview of EVEREST 

The architecture of EVEREST is shown in Fig. 13.2. As shown in the figure, 
EVEREST is exposed as a service to the SERENITY runtime framework, offering 
interfaces for submitting monitoring rules to it for checking, forwarding runtime 
events from the applications which are being monitored, and obtaining monitoring 
results. Internally, EVEREST has three main components: a monitor manager, a 
monitor and an event collector. 

The monitoring manager is the component that has responsibility for initiating, 
coordinating and reporting the results of the monitoring process. As such, it re-
ceives the monitoring rules from the SRF and provides the API for obtaining 
monitoring results. The event collector is responsible for receiving events from 
SRF and passing them to the monitoring manager. The monitoring manager for-
wards these events to the Native Type Generator (NTG) sub-component of the 
monitor, which translates the events from XML to internal Java objects. After re-
ceiving events from the manager, the monitor checks whether they violate any of 
the rules given to it. 
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Fig. 13.2 Architecture of the monitoring framework 

The monitor is a generic engine for checking violations of EC-Assertion formu-
lae against a given set of runtime events. During monitoring, it also takes into ac-
count information about the state of a system, which it derives from runtime 
events using assumptions. To perform the required checks, the monitor maintains 
an event and a fluent database. The first of these databases keeps events which are 
necessary for checking past formulae (i.e., formulas requiring that when an event 
happens some other event should already have occurred or some condition should 
be satisfied), while the second keeps information about the initiation and termina-
tion of state conditions by runtime events that is necessary for monitoring (see 
Section 13.4). When a violation of a property is detected, the monitor records it in 
a deviation database. This database is accessed by the monitoring manager when 
the latter component is polled by the SRF to report detected deviations.  

The event capturers intercept events during the operation of applications and 
send them to the SRF, which subsequently forwards them to EVEREST. Capturers 
are typically part of the implementation of the components that realise the solu-
tions described by S&D Patterns. In some cases, however, they may also be part 
of the infrastructure where these components that realise S&D Patterns are de-
ployed. When a capturer intercepts an event, it wraps it into an envelope contain-
ing additional information about the event. This information includes the sender, 
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receiver and source of the event (i.e., the component where it was captured), and a 
timestamp indicating when the event was captured at its source.  

As the event capturers may run on separate machines from the monitoring ser-
vices, it is necessary to ensure that the timestamps of the events that they generate 
are comparable. To enable this, the event capturers that are provided by imple-
mentations of S&D Patterns should realise the Network Time Protocol [23], i.e., a 
protocol based on the clock synchronisation scheme described in [20]. The im-
plementation of this protocol allows event capturers to compute the difference of 
their clocks with the clock of the SERENITY runtime framework at regular inter-
vals. This difference is subsequently used to transform timestamps taken accord-
ing to the clock of each capturer into timestamps that express time in terms of the 
SERENITY runtime framework’s clock. This is achieved by implementing an 
NTP client at each event capturer and an NTP server at the machine that hosts the 
SERENITY runtime framework. The NTP clients call the NTP server at regular 
intervals to synchronise their clocks with the clock of the server. The use of NTP 
can synchronise distributed clocks at a very high level of accuracy since recent 
versions of NTP (e.g. version 4) use a resolution of less than one nanosecond. 

13.4. Specification of Monitoring Rules and Assumptions in 
S&D Patterns 

The rules that need to be monitored at runtime and other functional and non func-
tional assumptions about the solutions which are being monitored are specified 
within S&D Patterns using an XML based language, called EC-Assertion. EC-
Assertion is based on event calculus [27], a first-order temporal logic language 
that was originally developed to represent and reason about actions and their ef-
fects over time. The basic modelling constructs of Event Calculus are events and 
fluents. An event in EC is something that occurs at a specific instance of time, is 
of instantaneous duration, and may cause some change in the state of the reality 
that is being modelled. This state is represented by fluents.  

To represent the occurrence of an event, EC uses the predicate Happens(e, t, 
ℜ(t1,t2)). This predicate represents the occurrence of an event e that occurs at 
some time point t within the time range ℜ(t1, t2) and is of instantaneous duration. 
The boundaries of ℜ(t1, t2) can be specified by using either time constants or 
arithmetic expressions over the time variables of other predicates in an EC for-
mula. The EC predicate Initiates(e, f, t) signifies that a fluent f starts to hold after 
the event e occurs at time t. The EC predicate Terminates(e, f, t) signifies that a 
fluent f ceases to hold after the event e occurs at time t. An EC formula may also 
use the predicates Initially(f) and HoldsAt(f, t) to signify that a fluent f holds at the 
start of the operation of a system and that f holds at time t, respectively. 

EC defines a set of axioms that can be used to determine when a fluent holds 
based on initiation and termination events that regard this fluent. These axioms are 
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listed in Table 13.1. Axiom EC1 states that a fluent f is clipped (i.e., ceases to 
hold) within the time range from t1 to t2, if an event e occurs at some time point t 
within this range and e terminates f. Axiom EC2 states that a fluent f holds at time 
t, if it held at time 0 and has not been terminated between 0 and t. Axiom EC3 
states that a fluent f holds at time t, if an event e has occurred at some time point t1 
before t, which initiated f at t1 and f has not been clipped between t1 and t. Finally, 
axiom EC4 states that the time range in a Happens predicate includes its bounda-
ries. 

Table 13.1. Axioms of Event Calculus 

(EC1) Clipped(t1,f,t2) ⇐ (∃e,t) Happens(e,t,ℜ(t1,t2)) 
                                  ∧ Terminates(e,f,t) 
(EC2) HoldsAt(f,t) ⇐ Initially(f) ∧ ¬Clipped(0,f,t) 
(EC3) HoldsAt(f,t) ⇐ (∃e,t1) Happens(e,t,ℜ(t1,t)) 
                               ∧ Initiates(e,f,t1) 
                               ∧ ¬Clipped(t1,f,t) 
(EC4) Happens(e,t,ℜ(t1,t2)) ⇒ (t1 < t) ∧ (t ≤ t2) 

 
EC-Assertion adopts the basic representation principles of EC and its axiomatic 

foundation and introduces special terms to represent the types of events and condi-
tions that are needed for runtime monitoring. More specifically, given its focus on 
monitoring the operation of software systems at runtime, events in EC-Assertion 
can be invocations of system operations, responses from such operations, or ex-
changes of messages between different system components. To represent these 
types of events, EC-Assertion defines a specific event structure that is syntacti-
cally represented by the event term 

event(_id, _sender, _receiver, _status, _sig, _source) 
In this event term: 
• _id is a unique identifier of the event; 
• _sender is the identifier of the system component that sends the mes-

sage/operation call/response; 
• _receiver is the identifier of the system component that receives the mes-

sage/operation call/response; 
• _status is the processing status of an event (i.e., REQ if the event represents 

an operation invocation and RES if the event represents an operation re-
sponse); 

• _sig is the signature of the dispatched message or the operation invoca-
tion/response that is represented by the event, comprising the operation name 
and its arguments/result;  

• _source is the identifier of the component where the event was captured.  
 Fluents are defined as relations between objects and represented as terms of 

the form rel(O1, …, On). In fluent terms, rel is the name of a relation which associ-
ates the objects O1, …, On. 

The rules to be monitored at runtime are specified in terms of the above predi-
cates and have the general form body ⇒ head. The meaning of a rule is that if its 
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body evaluates to True, its head must also evaluate to True. The Happens predi-
cates in a rule with no constraints for their lower and upper time boundaries are 
what we call “unconstrained” predicates. During the monitoring process, rules are 
activated by events that can be unified with the unconstrained Happens predicates 
in them. When this unification is possible, the monitor generates a rule instance to 
represent the partially unified rule and keeps this instance active until all the other 
predicates in it have been successfully unified with events and fluents of appropri-
ate types or it is deduced that no further unifications are possible. In the latter 
case, the rule instance is deleted. When a rule instance is fully unified, the monitor 
checks if the particular instantiation that it expresses is satisfied.  

Considering  the location based access control scenario that we introduced in 
Section 13.2, the condition (C1) about the availability of location servers during 
the operation of LBACS can be checked by monitoring whether each time that the 
control server sends a request for the position of a specific device to the location 
server, the latter component responds to it within a predefined time interval, e.g., 
within 10 time units after the receipt of the request. This would be a bounded 
availability check which can be expressed in EC-Assertion by the following moni-
toring rule: 
Rule-1: 

Happens(e(_e1, _controlServer, _locationServer, REQ                

                      location(_dev,_loc,_acc), _controlServer), t1, ℜ(t1,t1)) 
⇒ (∃ t2:Time, e2:String)  
Happens(e(_e2, _locationServer, _controlServer, RES,               

                      location(_dev,_loc,_acc),_controlServer),  
  t2, ℜ(t1+1,t1+10)) 
 

The specification of Rule-1 assumes that the operation of the location server 
providing the latest known position of a device is location(_dev, _loc, _acc), 
where _dev identifies the device and _loc, _acc the location returned by the server 
and the estimation of its accuracy respectively. 

Also the condition (C2) about the continuous periodic dispatch of signals from 
the mobile devices to the location server can be specified by the following two 
rules: 
 
Rule-2: 

Happens(e(_e1, _dev, _locationServer, REQ, signal(_dev),              

 _locationServer), t1, ℜ(t1,t1)) 
 ⇒ (∃ t2:Time, e2:String)) 
Happens(e(_e2, _dev, _locationServer, REQ, signal(_dev),         

_locationServer), t2, ℜ(t1,t1+m)) ∧ (_e1 ≠ _e2) 
 
Rule-3: 

Happens(e(_e1, _controlServer, _locationServer, REQ,               

        location(_dev,_loc,_acc), _controlServer), t1, ℜ(t1,t1)) 
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∧ ¬∃t. Happens(e(_e3, _controlServer, _locationServer, REQ,        
            location(_dev,_loc,_acc), _controlServer), t, ℜ(0,t1)) 
⇒ (∃ t2:Time, e2:String) 
Happens(e(_e2, _dev, _locationServer, RES, signal(_dev),         

           _locationServer), t2, ℜ(t1,t1+m)) 
 

Rule-2 checks whether each mobile device (_dev), sends signals signal(_dev) 
periodically to the location server (_locationServer), with a maximum delay of up 
to m time units between two signals. A violation of this rule by a device would in-
dicate that either the device malfunctions or that it is no longer present in the area 
covered by the system. Rule-2 would be able to capture the latter case after a de-
vice becomes known to the system by sending it a signal for the first time but 
would not be able to capture cases where a known user with a malfunctioning de-
vice enters the area covered by the system. Rule-3 above covers this case by 
checking whether the location server receives a signal from a device within a pe-
riod of at most m time units after the first time that the control server makes a re-
quest for the location of this device. 

13.5. Core Monitoring Capabilities 

As discussed in Section 13.3, runtime events may come from distributed compo-
nents operating with different time clocks. Furthermore, distributed system com-
ponents may have different types of connections with the monitor and, therefore, 
generate events that arrive at EVEREST with different communication delays and 
possibly in an order that is not the same as the order of their generation. 

Thus, EVEREST has to overcome two problems when checking properties in-
volving events from distributed components: (i) to synchronise the clocks of the 
various event sources, so that the timestamps of the different events can be or-
dered and comparable to each other, and (ii) to establish until when a particular 
event needs to be stored, so that it can reason about the system properties in a 
sound way or, equivalently, to compute the required monitoring lifetime of each 
event. 

Consider, for instance, the case where the system of Fig. 13.1 needs to be pro-
tected against attackers flooding the servers with false device signals. To detect 
such attacks, one possible condition to monitor is whether the signals sent to the 
location server have indeed been sent by the devices they appear to be coming 
from and that these devices have been authenticated to the system. This condition 
can be monitored using the following monitoring rule: 
Rule-4: 

Happens(e(_e1, _dev, _locationServer, REQ, signal(_dev),         

                      _locationServer), t1, ℜ(t1,t1))  
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 ⇒ (∃ t2:Time) 
Happens(e(_e2, _dev, _locationServer, REQ, signal(_dev),         

                      _dev), t2, ℜ(0,t1)) 
 ∧ (∃ t3:Time) 
Happens(e(_e3, _controlServer, _locationServer, REQ,               

                      location(_dev,_loc,_acc), _controlServer), t3, ℜ(0,t1)) 
 
In this rule, the predicate Happens(e(_e1, _dev, _locationServer, REQ, sig-

nal(_dev),_locationServer), t1, ℜ(t1,t1)) represents the receipt of a signal from a 
device _dev by the location server and the predicate  Happens(e(_e2, _dev, 
_locationServer, REQ, signal(_dev), _dev), t2, ℜ(0,t1)) represents the dispatch of 
a matching signal from the same device which has occurred earlier. Also, the 
predicate Happens(e(_e3, _controlServer, _locationServer, REQ, loca-
tion(_dev,_loc,_acc), _controlServer), t3, ℜ(0,t1)) represents a request regarding 
the position of the particular device that has been issued by the control server of 
LBACS at some time point before the receipt of the device signal by the control 
server. The existence of such an earlier request indicates that the device is known 
to the system. 

It should be noted that Rule 4 tries to combine events from different sources, 
namely the location server (_locationServer), mobile devices (_dev) and control 
server (_controlServer) and these events may reach the monitor in an order that is 
different from the order of their creation. Thus, when the monitor receives the 
event _e1 in the rule that represents a device signal captured at the location server, 
it will have to decide for how long it should wait for a correlated event _e2 repre-
senting the same signal as captured at the device side, and wait for this event be-
fore deciding whether the rule has been violated. Otherwise, it may report a false 
violation of Rule 4. This would happen in cases where, after receiving _e1, the 
monitor receives events _e2 and _e3 corresponding to it. 

The clock synchronisation, which is performed by the monitoring framework 
through the use of the Network Time Protocol (NTP), solves the first problem of 
how to synchronise the clocks of the different event sources but not the second, 
that is, the problem of estimating for how long events should be maintained to en-
sure the completeness of reasoning. 

In the following, we present the mechanism that EVEREST uses for computing 
the lifetime of events received from distributed sources, along with the monitoring 
process that is realised by the framework
 

13.1.1. Computing the Lifetime of Events 

Let us assume without loss of generality that _dev, _locationServer and _dev in 
Rule 4 above denote both the source of the event and the clock of this source. As 
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the occurrence of events of type e1
locationServer in Rule 4 is unconstrained1, events of 

this type can instantiate the rule during monitoring. Unlike them, events of type 
e2

dev and e3
controlServer are temporally constrained by e1

locationServer events in the rule 
and cannot, therefore, create new instances of the rule; they can only be unified 
with existing rule instances. 

Normally, if the monitor would receive an event of type e1
locationServer then it 

would create a new template of Rule 4 for it and attempt to retrieve past e2
dev and 

e3
controlServer events from the past event database to unify them with this template. If 

no such past events existed then it would report a violation. However, it is possible 
that such past events of type e2

dev and e3
controlServer might have occurred but not re-

ceived yet by the monitor due to communication delays. Thus, to be certain that 
the monitor does not report a false violation of Rule 4, the evaluation of the rule 
needs to be postponed until it is guaranteed that events of types e2

dev and 
e3

controlServer cannot have occurred. Thus, there is a need to compute an upper time 
limit until which the monitor has to delay the evaluation of the rule’s template to 
guarantee that no such events might have occurred but not received by it. This up-
per limit can be computed by examining the temporal constraints of the events in 
the rule – i.e., (1) t2≤ t1 and (2) t3≤ t1. It should be noted, however, that t1, t2 and 
t3 all refer to different clocks, i.e., the clocks of _locationServer, _dev and 
_controlServer, respectively. 

In general, for a rule with n+1 Happens predicates, there will be at most 2n+1 
such constraints (inequalities) to solve. This is because at least one of the rule 
predicates is unconstrained (needed for triggering the rule), the remaining Hap-
pens predicates contribute two inequalities each (one for the lower boundary of the 
time variable of the predicate and one for the upper boundary), and there will be 
an extra constraint (equality) establishing the exact value of the time variable of 
the event in question (i.e., the t2 variable that is associated with the e2

dev event in 
our example).  

Fig. 13.3 presents the algorithm for computing the lifetime of an event. When 
an event e occurs, this algorithm first determines the set of rules R(e) which have 
predicates that can be unified with the event. This set includes rules that have 
event types which are the same as the type of e or super-types of it. Subsequently, 
the constraints of each rule in R(e) are identified and expanded with an equality 
expressing that the time variable of the predicate of the rule that has been unified 
with e is equal to the timestamp of e (step 2.a). Given the time constraint set that 
results from this process, the algorithm computes the maximum possible value for 
each of the time variables of the rule using the Simplex method [11] (step 2.b.i). 
By doing so for each rule, it effectively produces a set of constraints for the clocks 
of the various event sources, since the time variables refer to these clocks. It then 
groups the different time variables according to the clock of the event source they 

                                                           
1 e1

locationServer abbreviates the event e(e1, dev, locationServer, REQ, signal(dev), locationServer), where 
the subscript refers to the event ID and the superscript to the event source. Such abbreviated references 
are used in the rest of the chapter in all cases where other event variables are not important. 
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are related to (step 3), and generates a set of all the conditions, Lifetime(e), for 
computing the upper bound of the lifetime of e (step 4). A condition in Lifetime(e) 
states that e will not be needed after the last event that is seen from a source/clock 
which is relevant to e has a timestamp, last_observed(cj), that is greater than the 
maximum possible value of the time variables grouped in this clock’s group, as 
expressed by the condition last_observed(cj)> maxti∈Gj(max(ti)). The reason for us-
ing the timestamp of the last event that has been observed from a clock in the 
evaluation of the Lifetime(e) conditions is because events are communicated from 
each source (event capturer) to the SERENITY runtime monitoring framework 
(and, therefore, to EVEREST) using TCP/IP protocol which guarantees a FIFO 
transmission within the same source/SRF channel. The conditions in Lifetime(e) 
determine the lifetime of e, since the lifetime of e expires when their conjunction 
becomes true.  

 
Compute_Lifetime(e): 

1. R(e) = { r | r has a predicate p that can be unified with e} 

2. Forall r ∈ R(e) do 
a. CNr= {time constraints of r} ∪ {time variable of predicate p that matches e = 

timestamp of e} 
b. Forall ti ∈ CNr  do 

i. Find max(ti) given CNr 
3. Group the time variables ti into as many groups Gj as the different event sources 

(clocks)  cj in R(e) 
4. Lifetime(e) = ∪j ((last_observed(cj) > maxti∈Gj(max(ti)))) 

Fig. 13.3 Computing the lifetime of an event – I 

Assuming that Rule 4 is the only rule being monitored and an event of type 
e1

locationServer is observed at t1=20, step 1 will produce the set R(e1
locationServer) = 

{Rule-4}, step 2.a will produce CNr = {t2 ≤ t1, t3 ≤ t1, t3 = 20}, step 2.b.i will 
produce the solutions max(t1)= max(t2)= max(t3)=20 by finding the maximum 
value of t1 for which the constraints in CNr are satisfied, and step 3 will produce 
two groups of time variables {t1} and {t2}, for the two clocks locationServer and 
dev, respectively. Finally, in step 4, the lifetime constraint set for e1

locationServer will 
be established as: 

Lifetime(e1
locationServer)={last_observedcontrolServer>20,last_observeddev>20, 

last_observedlocationServer>20} 
The current implementation of the algorithm of Fig. 13.3 uses the Simplex 

method to find the maximum time of a time variable in step 2.b.i. Simplex has ex-
ponential complexity, O(2n), for a problem with n variables. Simplex has been 
chosen over algorithms with polynomial complexity (e.g., the worst case complex-
ity of Karmarkar’s algorithm [1] is O(n3.5)). This is because for small numbers of 
variables, as the ones normally appearing in monitoring rules (n ≤ 10), Simplex 
has better performance. It should also be noted that the algorithm of Fig. 13.3 
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computes the maximum value of a time variable for each rule separately, rather 
than combining them into a single larger problem. This is because the individual 
rule problems can be solved independently and a larger set of rules would take 
more time to solve due to the additional time variables (since 2n + 2m < 2n+m for 
n,m ≥ 2).  Due to this approach, once the individual rule inequality systems have 
been solved, the different time variables of events coming from the same clock 
need to be grouped together. This is done in step 3 of the algorithm. 

Note also that the algorithm of Fig. 13.3 works under the assumption that the 
clocks/sources of the events in the rules are fully specified when a rule is matched 
with an incoming event. In the example of Rule 4 this is the case, since all the 
sources are known. However, there might be cases where the exact source of 
events that could potentially be matched with a rule is not known after the rule is 
matched with arrived events. Consider, for instance, the following rule: 
Rule-5: 

∀ e1, e2, U: String; C1, C3: Terminal; C2: Component; t1, t2: Time 
 Happens(e(_e1,_C1,_C2, REQ, login(_U,_C1), _C1),t1,ℜ(t1,t1)) 
 ∧ Happens(e(_e2,_C3,_C2, REQ, login(_U,_C3), _C3),t2,ℜ(t1,t2))    

∧ _C1 ≠_C3 ⇒ ∃ e3: String; t3:Time 
Happens(e(_e3,_C1,_C2, REQ-A, logout(_U,_C1),_C1),t3,ℜ(t1+1,t2-1)) 

 
Compute_Lifetime(e): 

1. R(e) = { r | r has a predicate p which unifies with e} 
2. Forall r ∈ R(e) do 

a. CNr= {time constraints of r} ∪ { time variable of predicate p that matches e 
= timestamp of e} 

b. Forall ti ∈ CNr  do 
i. Find max(ti) given CNr 

3. Group the time variables ti into as many group types TGu as the different 
types of event sources cu in R(e) 

4. Forall group types g ∈ TGu do 
c. Forall the known sources j of type g do 

i. Create a group Gj and assign copies of the time variables of g to it 
5. Lifetime(e) = ∪j {(last_observed(cj) > maxti∈Gj(max(ti)))} 

Fig. 13.4 Computing the lifetime of an event – II 

Rule 5 requires that if a user U logs in to a system C2 from a terminal C1 and 
later he/she logs in again from a different terminal C3, he/she must have logged 
out from the former terminal before the second login. The rule effectively moni-
tors cases where users are logged in from different terminals at the same time. 
When an event e(e2,…,C3) (or e2

C3 in our abbreviated form) arrives at the moni-
tor, its lifetime will need to be estimated in reference to the maximum possible 
values of time variables t1 and t3. In this case, however, the algorithm of Fig. 13.3 
does not work, since at step 3 it is not known which other terminals the user of 
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e2
C3 may be using or, equivalently, which source clocks should be associated with 

the time variables t1 and t3. 
To deal with such cases, the algorithm of Fig. 13.3 is extended as shown in Fig. 

13.4. The extended algorithm initially groups time variables into groups corre-
sponding to the types of the event sources that are associated with them in the 
rules. Then, for each of the source type groups, it finds all the sources of the par-
ticular type that are known to the system, creates different groups for them and as-
signs copies of the time variables of each source type to each of the source groups 
that were generated from the type. Thus, if it is known that the system being moni-
tored with Rule 5 has 3 terminals, the algorithm of Fig. 13.4 will create different 
variable groups for each of these terminals and assign copies of the time variables 
t1 and t2 to each of these groups.  

Having computed the Lifetime(e) constraint set upon the arrival of an event e at 
runtime, we use it to compute a vector with the maximum time values for e with 
respect to the different clocks related to it. For the ongoing example of Rule 4, the 
vector of e1

locationServer would be <20, 20, 20>. The event and its vector are then 
stored in the database of the monitor. At that point, the monitor also checks if the 
lifetime of some previous event, which depends on the clock of the new event, has 
expired and removes all these events, if any. This process is shown in Fig. 13.5. 
 

1. Observe an event e 
2. Update the global vector of observed clock values 
3. Lifetime(e) = Compute_Lifetime(e) 
4. Store e in the DB with its vector of different clock limits 
5. Remove events from the DB if their clock limits have been exceeded 

Fig. 13.5 Algorithm for using event lifetimes 

13.1.1. Monitoring Algorithm 

To check for violations of monitoring rules, EVEREST maintains templates that 
represent different instantiations of the rules generated from the events sent to it at 
runtime. A template for a rule r stores: 
• The identifier (ID) of r.  
• A set of value bindings (VB) for the variables of the rule predicates that is 

generated from the unification of different events with these predicates. 
• For each predicate p in r : 

– The quantifier of its time variable (Q) and its signature (SG). 
– The boundaries (LB, UB) of the time range within which p should occur. 
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– The truth-value (V) of p. V can be: UN if the truth value of the predicate is 
not known yet; T if the predicate is known to be true, or F if the predicate is 
known to be false. 

– The source (SC) of the evidence for the truth value of p. The value of SC 
can be: UN if the truth value has not been established yet; RE if the truth 
value of the predicate has been established by a recorded event; or NF if 
the truth value of the predicate has been established by the principle of ne-
gation as failure. 

– A time stamp (TS) indicating the time in which the truth-value of p was es-
tablished. 

EVEREST creates a set of deviation templates that represent instantiations of 
monitoring rules and are used to check for rule violations of rules. 

These  templates are updated by recorded and derived events. More specifi-
cally, when a new event e occurs, EVEREST identifies the templates that contain 
predicates which could be unified with e and templates having predicates whose 
truth value can be affected by the time indicated by e (e.g. predicates expected to 
be true by a specific time point which e shows that has passed) and updates them. 
The update can affect the variable binding of an identified template and/or the 
truth value of the predicates in it. This depends on the quantification of the time 
variable of each predicate. 
 

Template-1 

ID Rule 1 

VB (_e1,?) (_e2,?)  (_controlServer,?) (_locationServer,?)  (_dev,?)(_loc,?)(_acc,?) 

P Q SG TS LB UB TV SC 

1 ∀ Happens(e(_e1,_controlServer,_locationServer,REQ, loca-

tion(_dev,_loc,_acc), _controServer),t1,ℜ(t1,t1)) 
t1 t1 t1 UN UN 

2 ∃ Happens(e(_e2,_locationServer,_controlServer,RES, loca-

tion(_dev,_loc,_acc),_locationServer),t2,ℜ(t1+1,t1+10)) 

t2 t1+1 t1+10 UN UN 

Fig. 13.6 Template for Rule 1 

In particular, the truth value of a predicate of the form (∀t)p(x,t) where t is un-
constrained (i.e., it is defined to be in a range of the form ℜ(t,t)) is set to T(true) as 
soon as an event that can be unified with p is encountered. The truth value of a 
predicate of the form (∀t)p(x,t) where t is constrained to be in the range ℜ(t1,t2) is 
set to F (false) as soon as an event which is not unifiable with p occurs between t1 
and t2, and to T (true) if all the events that occur at the distinguishable time points 
between t1 and t2 can be unified with p. The truth value of predicates of the form 
¬(∀t)p(x,t) where t must be in the range ℜ(t1,t2) is set to T (true) as soon as the 
first event that is not unifiable with p occurs within the time range ℜ(t1,t2,  and 
F(false) if all the events at the distinguishable time points between t1 and t2 can 
be unified with p.  

The truth value of a predicate of the form (∃t)p(x,t) where t is in the range 
ℜ(t1,t2) is set to T (true) as soon as the first event e that can be unified with p oc-
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curs between t1 and t2. If no such event occurs within ℜ(t1,t2), the truth value of 
p is set to F (false) by virtue of the principle of the negation as failure (NAF). The 
absence of events unifiable with p is confirmed as soon as the first event that can-
not be unified with p occurs after t2. The truth value of a predicate of the form 
¬(∃t)p(x,t) is established in the opposite way: as soon as an event e that can be 
unified with p occurs between t1 and t2 the truth value of p is set to F (false) and 
if no such event occurs between t1 and t2, the truth value of p is set to T(true). 

As an example of this process consider the monitoring of Rule 1. Initially, the 
template for this rule will have no bindings for the time and non time variables of 
any of the predicates of the rule as shown in Fig. 13.6. Furthermore, the truth val-
ues of all the predicates in the template will be UN (unknown). 

Then, assuming that an event E1: Happens(e(id1, S1, R1, REQ, loca-
tion(d1,l1,a1), S1), 24500) occurs,  EVEREST will detect that E1 can be unified 
with the first predicate in the template (i.e., the predicate Hap-
pens(e(_e1,_controlServer,_locationServer,REQ,location(_dev,_loc,_acc),_contro
Server),t1,ℜ(t1,t1))) and create a new instance of the template in which E1 is uni-
fied with this predicate. Following the unification, the truth value (TV) of the 
predicate will be set to T and a new template representing the update will be cre-
ated. This template is shown in Fig. 13.7. In the new template, the source (SC) of 
the truth value of the Happens(e(_e1,…),t1,ℜ(t1,t1))) will be set to RE (since the 
event that determined the truth value a recorded event), the timestamp at which the 
truth value of the predicate was determined will be set to 24500 (i.e., the time-
stamp of the event that was unified with the predicate) and the lower (LB) and up-
per (UB) time boundaries of the time variable of the predicate are both set to 
24500. 

 
Template-2 

ID Rule 1 

VB (e1,id1) (e2,?)  (controlServer,R1) (locationServer,S1) (dev,d1)(loc,l1)(acc,a1) 

P Q SG TS LB UB TV SC 

1 ∀ Happens( 

e(_e1,_controlServer,_locationServer,REQ, loca-

tion(_dev,_loc,_acc), _controServer),t1,ℜ(t1,t1)) 

24500 24500 24500 T RE 

2 ∃ Happens(e(_e2,_locationServer,_controlServer, 

RES,location(_dev,_loc,_acc),_locationServer),t2,

ℜ(t1+1,t1+10)) 

t2 24501 24510 UN UN 

Fig. 13.7 Template for Rule 1 updated due to event E1 

 
The update of the template due to the event E1 will also change the variable 

binding (VB) of the template. More specifically, the variables e1, server, and cli-
ent of the predicate Happens(e(e1,…),t1,ℜ(t1,t1)) will be bound to the values id1, 
R1, and S1 respectively. Furthermore, the update will affect the lower boundary 
(LB) upper boundary (UB) of t2, i.e., the time variable of the predicate Hap-
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pens(e(_e2,_locationServer,_controlServer,RES,location(_dev,_loc,_acc),_locatio
nServer),t2,ℜ(t1+1,t1+10)) in the template. This is because the boundaries of t2 
depend on the value of the time variable t1 that has been changed (set) by the up-
date. In particular, the lower and upper boundary of t2 will be set to 24501 (i.e., 
t1+1) and 24510 (i.e., t1+10) respectively. 

Subsequently, if an event E2: Happens(e(id2, S1, R1, REQ, authorise(), R1), 
24507) occurs at the time point t=24507, the template of Fig. 13.7 will be updated 
again. This is because E2 can be unified with the predicate Hap-
pens(e(_e2,_locationServer,_controlServer,RES,location(_dev,_loc,_acc),_locatio
nServer),t2,ℜ(t1+1,t1+10)) in the template and has occurred within the time 
boundaries of this predicate (i.e., between 24501 and 24510). The result of this 
update is shown in Fig. 13.8. As shown in the figure, the truth value of the predi-
cate Happens(e(_e2,_...),t2,ℜ(t1+1,t1+10))  is set to true (T), its timestamp is set 
to 24507 and the source of the truth value of the predicate is set to RE as E2 was 
also a recorded event. 

 
Template-2 

ID Rule 1 

VB (e1,id1) (e2,id2)  (controlServer,R1) (locationServer,S1) (dev,d1)(loc,l1)(acc,a1) 

P Q SG TS LB UB TV SC 

1 ∀ Happens( 

e(_e1,_controlServer,_locationServer,REQ, 

location(_dev,_loc,_acc), 

_controServer),t1,ℜ(t1,t1)) 

24500 24500 24500 T RE 

2 ∃ Happens( 

e(_e2,_locationServer,_controlServer,RES, 

location(_dev,_loc,_acc), 

_locationServer),t2,ℜ(t1+1,t1+10)) 

24507 24501 24510 T RE 

Fig. 13.8 Template for Rule 1 as updated following events E1 and E2 

 
Once the truth values of all the predicates in a template have been determined, 

the template is checked for violations. At this point if the truth value of all the 
predicates in the body of the template is true and the truth value of at least one 
predicate in the head is false then the instance of the rule represented by the tem-
plate is violated. Otherwise, the template is satisfied. 

The monitoring process described above is followed in cases of rules like Rule 
1 which are future EC-Assertion formulas (i.e., formulas in which the uncon-
strained time variable of the rule can only take values which are less than the val-
ues of the constrained time variables) and assuming that the events arrive at the 
monitor in the exact order of their occurrence. A monitoring rule, however, can 
also be a past formula, i.e., a formula having at least one constrained time variable 
that is constrained to take values which are less than or equal to the value of the 
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unconstrained time variable of the formula.  An example of a past monitoring rule 
is Rule 4. 

In this rule, the unconstrained time variable is t1 (since its boundaries are de-
fined without reference to other time variables) and the constrained time variables 
are t2 and t3. A rule of this type is checked by a different procedure. More specifi-
cally, if EVEREST receives an event which can be unified with a constrained 
predicate in a rule whose unconstrained predicate has not been instantiated yet 
(e.g. an event that could be unified with the predicates Happens(e(_e2, _dev, 
_locationServer, REQ, signal(_dev), _dev), t2, ℜ(0,t1)) or Happens(e(_e3, 
_controlServer, _locationServer, REQ,  location(_dev,_loc,_acc), _controlServer), 
t3, ℜ(0,t1)) in Rule 4), it stores the event in a database of past events, shown  as 
“Events Database” in Fig. 13.2 but does not instantiate the template. Later, when 
EVEREST receives an event which can be unified with the unconstrained predi-
cate of the rule, it proceeds with the creation of a new template and then searches 
the past events database to check if there are already events which could currently 
be unified.  

A similar approach is applied for HoldsAt predicates in rules, since according 
to the EC axioms shown in Table 13.1, HoldsAt is a derived predicate whose truth 
value depends on the existence of past Initiates and Terminates predicates. These 
predicates are derived from the assumptions of a theory, which state what events 
initiate and respectively terminate a particular fluent. To check the truth values of 
HoldsAt predicates, EVEREST stores Initiates and Terminates predicates into its-
Fluent Database (see Fig. 13.2) and when it needs to evaluate a HoldsAt at some 
future time instance t1, it searches this database for the most recent Initiates and 
Terminates predicates which precede t1 and satisfy the axioms in Table 13.1 for 
HoldsAt predicates.  

13.6. Implementation and Evaluation 

EVEREST has been implemented in Java and can be deployed either through the 
SRF or as a standalone web service. The implementation of EVEREST has been 
evaluated in a series of experiments that have focused on the performance of the 
core monitoring process that is realised by the framework and the effect that it has 
on the performance of the systems that it monitors. A detailed account of this 
evaluation is beyond the scope of this chapter and may be found in [17]. In the fol-
lowing, however, we summarise the main findings of the evaluation experiments 
of the framework to enable a better understanding of its capabilities and limita-
tions. 

More specifically, the evaluation of EVEREST has demonstrated that in the 
general case the time required to detect violations of monitoring rules after all the 
events that would enable this become available, increases exponentially with the 
number of the events that are sent to the monitor. 
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The violation detection time depends on the number of active templates when 
the last event that enables making a decision about the violation or not of a rule 
becomes available. The latter number depends on the exact form of the rules that 
are being monitored and, thus, it may be reduced substantially for specific types of 
rules. For example, in the case of rules that express typical security properties, no-
tably confidentiality, integrity and availability, the number of active templates 
and, consequently, the violation detection time increases linearly with the number 
of events, as discussed in [17]. This is because confidentiality and integrity prop-
erties are expressed by past EC-Assertion rules as it has been shown in [29]. As 
discussed earlier, past rules are of the form Happens(e1,t1,R(t1,t1)) ⇒ Hap-
pens(e2,t2,R(0,t1)) and therefore when the event(s) that satisfy the conditions in 
the body of the rule (e1) occur(s), the event(s) in the head of the rule (e2) must 
have occurred already. Thus, the monitor has only to check whether other events 
have taken place previously or certain conditions hold. Consequently, in such 
cases there is no need for maintaining partially instantiated instances of rules 
(templates) and wait for future events that could be unified with these instances, 
something that would add a considerable computational cost to the monitoring 
process. Also in the case of bounded availability rules (as Rule-1 in this chapter), 
the key factor for performance is the period within which a response is expected 
following a request. As in most cases of synchronous communication the accept-
able delay for a response is very low, the use of bounded availability rules with 
short waiting periods does not affect the performance of the monitor significantly, 
as observed in [17]. 

Furthermore, the evaluation in [17] and evaluations of predecessors of 
EVEREST [19, 30] have demonstrated that the performance of the monitor is not 
affected significantly by the use of assumptions and the subsequent deployment of 
the deductive reasoning capability of the toolkit in order to deduce information 
from these assumptions. The reason for this is that in typical monitoring scenarios, 
the number of successive deductive steps which are required in order to derive the 
information required from monitoring assumptions is very small (1 or 2 steps) 
and, therefore, the computational overhead of deductions during monitoring is also 
small. 

Finally, previously conducted experiments have indicated that the performance 
of the monitor is not significantly affected by the size of the domains of the vari-
ables used in monitoring rules. Also the evaluation in [17] has indicated that the 
overhead of event capturing on the performance of the system that is being moni-
tored depends on the type of the deployed capturer. This overhead ranges from a 
18%−20% drop in performance, when events are captured from the execution plat-
form of the application, to 800%, in cases where event capturers are implemented 
as wrappers of components of the system that is being monitored [17].  
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13.7. Related Work 

Dynamic verification enables a software system to improve its dependability (and 
therefore security) [4], by checking whether its behaviour satisfies specific de-
pendability and security properties while it is running. Dynamic system verifica-
tion has emerged more recently and has been investigated in the context of differ-
ent areas including requirements engineering, program verification, safety critical 
systems and service centric systems.  

In requirements engineering, dynamic verification has focused on system re-
quirements and investigated: (i) ways of specifying requirements for monitoring 
and transforming them into events that can be monitored at run-time; (ii) the de-
velopment of event-monitoring mechanisms; (iii) the development of mechanisms 
for generating system events that can be used in monitoring (e.g., instrumentation, 
use of reflection [6]); and (iv) the development of mechanisms for adapting sys-
tems so as to deal with deviations from requirements at run-time as, for example, 
in [34].  

In dynamic program verification, research has focused on the development of 
programming platforms with generic monitoring capabilities including support for 
generating program events at run-time, e.g., jMonitor [8], embedding specifica-
tions of monitoring properties into programs, and producing code that can verify 
these properties during the execution of the programs, e.g., monitoring-oriented 
programming [8]. The Java PathExplorer (JPaX) is a tool for monitoring systems 
at their runtime [14]. The use of JPaX enables the automatic instrumentation of 
code and observation of its runtime behaviour. JPaX can be used during develop-
ment to provide more robust verification. It can also be used in an operational set-
ting, to help optimize & maintain systems as they mature. In [15,16], a framework 
for evolvable software systems is proposed, based on runtime verification. In this 
framework components are considered as supervisors (monitor) and supervisees 
(evolvable component), where supervisor is the process that monitors and may 
evolve the supervisee. The supervisor maintains a meta-level theory for the object 
level of the supervisee, where the theory is specified in revision based logic. Meta 
level states are able to record observations of the supervisor’s computational state 
and as well as the observations at the object level. The meta level and the object 
level states must be in accord. Thus, any revision action in the meta level that 
transforms the state of the supervisor may induce an accompanying transformation 
of the object level through reflection.  

In service-centric systems, i.e., systems that deploy autonomous web services 
[18], the interest in dynamic verification has emerged due to the need to specify 
and monitor service level agreements between the providers and consumers of 
web-services being deployed in service-centric systems. As a result of recognizing 
the importance of this form of verification, work in this area has focused on the 
development of standards and languages for specifying monitoring properties and 
methods for monitoring them [5,18,26]. Dynamic verification has also focused on 
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monitoring service level agreements (SLAs) [12,21]. In [24] a framework is pre-
sented to allow non-intrusive adaptation of partner services within a BPEL proc-
ess, without any down time of the overall system. In this approach a BPEL process 
is monitored according to certain QoS criteria and existing partner services may be 
replaced (in case a partner fails to satisfy QoS criteria) based on various replace-
ment strategies. The replacement service can either be syntactically or semanti-
cally equivalent to the interface used in BPEL. 

Research on dynamic verification has also focused on system security. Work in 
this area has mainly been concerned with the development of Intrusion Detection 
Systems (IDS) [10] that use dynamic verification techniques for detecting security 
threats. In the literature, IDSs are classified based on different criteria. For exam-
ple based on the source of the input to the IDS, these systems are classified as 
Host Based IDS and Network Based IDS [2]. Host Based IDS are mostly con-
cerned with the examination of system logs of one or more application hosts [31, 
32]. On the other hand, Network Based IDSs perform protocol analysis and con-
tent searching/matching on network traffic. These systems are commonly used to 
actively block or passively detect a variety of attacks and probes on IP networks 
[13, 28]. IDSs have also been distinguished into centralized and distributed sys-
tems depending on the form of intrusions that they focus: in centralized IDSs, in-
trusion detection occurs in a single monitored system [13,32], while in distributed 
IDSs, intrusion detection is performed across multiple network sites [7,8,25]. 

In comparison with the monitoring platforms overviewed above, EVEREST 
provides a more comprehensive monitoring framework as it can be applied not 
only to systems implemented in a specific programming language (e.g. Java), sup-
ports the specification of a wide range of monitoring rules with precise time con-
straints, and can deal with events that may be captured and notified from distrib-
uted sources and through different communication channels. Furthermore, 
EVEREST can support the monitoring of conditions at various levels (e.g. net-
work and application levels). 

 

13.8. Conclusions 

This chapter has discussed the core monitoring capabilities that are available in the 
SERENITY runtime framework. These capabilities are offered by a generic run-
time monitoring toolkit called EVEREST that can detect violations of properties 
expressed as monitoring rules in EC-Assertion − a formal temporal logic language 
that is based on Event Calculus. 

Monitoring in SERENITY is activated when an S&D Pattern is selected and 
the SERENITY runtime framework activates a specific implementation of it. At 
this point, the SERENITY runtime framework extracts the monitoring rules speci-
fied within the pattern and submits them to EVEREST for monitoring. EVEREST 
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subsequently checks these rules against events that are captured by event capturers 
associated with the active implementation of the pattern and sent to EVEREST via 
the SERENITY runtime framework. 

EVEREST provides comprehensive monitoring support, enabling checks of 
monitoring rules that are expressed as past or future EC-Assertion formulas and 
against events that might have been captured by distributed event capturers. The 
toolkit has been implemented in Java and evaluated in a series of experiments with 
positive results. 

Current work on EVEREST focuses on the expansion of its core monitoring 
capabilities to provide support for the detection of potential violations of monitor-
ing rules (aka threats). This work is further discussed in [33]. Another area of in-
vestigation concerns the scope for possible optimisations of the reasoning process 
of EVEREST and, in particular, ways for distributing the checking of rules.  
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