

Chapter 13
The Runtime Monitoring Framework of
SERENITY

George Spanoudakis, Christos Kloukinas and Khaled Mahbub1

Abstract This chapter describes SERENITY’s approach to runtime monitoring
and the framework that has been developed to support it. Runtime monitoring is
required in SERENITY in order to check for violations of security and depend-
ability properties which are necessary for the correct operation of the security and
dependability solutions that are available from the SERENITY framework. This
chapter discusses how such properties are specified and monitored. The chapter
focuses on the activation and execution of monitoring activities using S&D Pat-
terns and the actions that may be undertaken following the detection of property
violations. The approach is demonstrated in reference to one of the industrial case
studies of the SERENITY project.

George Spanoudakis
Dept. of Computing, City University,
Northampton Square, London, EC1V 0HB, e-mail: G.Spanoudakis@soi.city.ac.uk

Christos Kloukinas
Dept. of Computing, City University,
Northampton Square, London, EC1V 0HB, e-mail: C.Kloukinas@soi.city.ac.uk

Khaled Mahbub
Dept. of Computing, City University,
Northampton Square, London, EC1V 0HB, e-mail: K.Mahbub@city.ac.uk

214 George Spanoudakis, Christos Kloukinas, Khaled Mahbub

13.1. Introduction

Ensuring the security and dependability of complex systems operating in highly
distributed environments and frequently changing contexts, whilst maintaining
system interoperability and adaptability, is one of the major challenges of current
research in the area of security and dependability [22]. This is because, as opera-
tional conditions change, the security and dependability mechanisms of a system
may become ineffective and, when this happens, the system will need to adapt or
replace them to ensure the preservation of the desired security and dependability
(S&D) properties. In such circumstances, the ability to react dynamically requires
the monitoring of the operation of the security and dependability mechanisms that
are deployed by the system and the identification of conditions indicating the
compromise of security and dependability properties. These needs are prominent
especially in systems with distributed components that are deployed over changing
infrastructures and communicate over heterogeneous and changing networks.

This chapter presents the monitoring framework that has been developed in
SERENITY to enable the monitoring the security and dependability mechanisms
at runtime.

As discussed in previous chapters of this book, one of the key objectives of
SERENITY has been the development of a runtime framework, known as
SERENITY Runtime Framework (SRF), enabling systems which operate in dy-
namic environments to configure, deploy and adapt mechanisms for realising
S&D Properties dynamically. In particular, the SRF supports the dynamic selec-
tion, configuration and deployment of components that realise S&D Properties ac-
cording to S&D Patterns. An S&D Pattern in SERENITY specifies a reusable
S&D Solution for realising a set of S&D Properties. It also specifies the contextual
conditions under which this solution becomes applicable, and invariant conditions
that need to be monitored at run-time in order to ensure that the solution described
by the pattern behaves correctly. A set of S&D Patterns describing the same appli-
cation interface and offering the same S&D Properties forms an S&D Class.

When an application needs to deploy a solution that realises specific S&D
Properties using a specific API, it asks the SRF for patterns that can provide the
required properties and belong to an S&D Class compatible with the required API.
The SRF searches through its library of S&D Patterns and, if such patterns exist
that are applicable in the current context of the application, selects one of them
and returns a reference to its implementation to the application. Subsequently, the
application uses the selected implementation through calls to the API it had re-
quested.

During the deployment of an S&D Pattern by an application, it is necessary to
monitor whether the invariant conditions specified in the pattern are satisfied and
take corrective actions if a violation of these conditions is identified. The monitor-
ing of these conditions is the responsibility of the monitoring framework that is
discussed in this chapter.

The Runtime Monitoring Framework of SERENITY 215

The monitoring framework of SERENITY is called EVEREST (EVEnt REa-
Soning Toolkit). EVEREST is available as a service to the SRF and when an S&D
Pattern is activated it undertakes responsibility for checking conditions regarding
the runtime operation of the components that implement the pattern. These condi-
tions are specified within S&D Patterns by monitoring rules expressed in EC-
Assertion, i.e., a temporal formal language based on Event Calculus [27].
EVEREST can detect violations of monitoring rules against streams of runtime
events, which are sent to it by different and distributed event sources, the Event
Capturers. It also has the capability to: (i) deduce information about the state of
the system being monitored, by using assumptions about the behaviour of a sys-
tem and how runtime events may affect its state, (ii) detect potential violations of
monitoring rules (known as threats), by estimating belief measures in the potential
of occurrence of such violations, and (iii) perform diagnostic analysis in order to
identify whether the events causing a violation are genuine or the result of a sys-
tem fault or an attack. This chapter focuses on the basic monitoring capabilities of
EVEREST and the support that it provides for reacting to violations of monitoring
rules. The threat detection and diagnostic capabilities of EVEREST are beyond the
scope of this chapter and are discussed in the next chapter of this book [33].

The rest of this chapter is structured as follows. Section 13.2 introduces a sce-
nario demonstrating the need for runtime monitoring of the security and depend-
ability mechanisms of a system at runtime. Section 13.3 provides an overview of
the architecture of EVEREST and its relation with the SERENITY runtime
framework. Section 13.4 presents the language for specifying monitoring rules as
part of S&D Patterns. Section 13.5 discusses the core monitoring capabilities of
EVEREST. Section 13.6 provides an overview of the implementation of
EVEREST and results of experimental evaluations that have been conducted to
evaluate it. Finally, Section 13.7 reviews related work and, Section 13.8 concludes
by identifying aspects of EVEREST that require further research and develop-
ment.

13.2. A Scenario for Runtime Monitoring of Security and
Dependability

To appreciate the need for monitoring and adaptation of system security and de-
pendability mechanisms at runtime, consider a system which manages access to
different resources of an organisation, through a combination of user authentica-
tion, device identification and location detection capabilities [3].

In this system, referred to Location Based Access Control System (LBACS) in
the following, users entering and moving within the premises of an organisation
using mobile computing devices (e.g., a notebook or smart phone) may be given
access to different resources, such as the enterprise intranet, printers or the Inter-
net, depending on their user-id, the id of the mobile device that they are using, and

216 George Spanoudakis, Christos Kloukinas, Khaled Mahbub

the location of this device. Resource access is granted depending on policies,
which determine when access to a particular type of resource is considered to be
harmful or not. A policy may, for example, determine that an authenticated em-
ployee of the organisation who is trying to access a printer via the local wireless
network, whilst being in an area of the premises that is accessible to the public,
should be granted access, whilst authenticated visitors should only be given access
to printers when they are in one of the organisation’s meeting rooms.

The general architecture of LBACS is shown in Fig. 13.1. As shown in the fig-
ure, the access control solution of LBACS is based on two servers: a location and
a control server. The control server polls the location server at regular intervals, in
order to obtain the position of the devices of all the users who are currently con-
nected to the system. The location server calculates the position of different user
devices from signals that it receives from devices through location sensors. The
estimates of device positions are not exact and are associated with an accuracy
measure. The authentication of the identity of the different user devices is based
on the existence of a TPM chip on them and its ability to respond to requests by
the authentication server of the system (LBACS is discussed in more detail in
Chapter 18).

Fig. 13.1 Location Based Access Control System (based on [3])

The effectiveness of the access control solution of LBACS depends on several

conditions regarding the operation of the different components that constitute it at
runtime including, for example:

Location Server

Access Control Server

Office Room Meeting RoomOffice Room

WiFi

LS

location
request

location
response

device
signal

device
signal

LS LS
User
Device

LS

resource
request

Own Office Room

deviceID

authentication
response

LS: location sensor
WF: WiFi connection

The Runtime Monitoring Framework of SERENITY 217

(C1) The continuous availability of the location servers and TPMs on the user
devices at runtime. The availability of these components is a pre-requisite
for the availability of device position and authentication information, which
is necessary for the access control system at runtime.

(C2) The continuous periodic dispatch of signals from the mobile devices to the
location server that enables it to maintain accurate position data for the de-
vices.

Monitoring the above conditions at runtime in a system like LBACS would re-
quire the implementation of appropriate checks within the system itself or the de-
ployment of an external monitor that would undertake the relevant responsibility.
The former option would not be very flexible as it would require changes in the
implementation of the required checks when the different components of the sys-
tem change. Also depending on changes on the system components, the exact
conditions that would need to be monitored could change as well. In such cases,
giving the system the responsibility for monitoring would not be flexible.

The solution advocated in SERENITY is to delegate this responsibility to ex-
ternal components that would check the above conditions and take action when
they are violated, e.g., replace malfunctioning components, alert system adminis-
trators of detected violations etc. In particular, in SERENITY the responsibility
for monitoring runtime conditions is assigned to EVEREST and the responsibility
for reacting to violations of properties is assigned to the SERENITY runtime
framework. The generic architecture of EVEREST and its relation to the
SERENITY runtime framework are discussed in the following.

13.3. Overview of EVEREST

The architecture of EVEREST is shown in Fig. 13.2. As shown in the figure,
EVEREST is exposed as a service to the SERENITY runtime framework, offering
interfaces for submitting monitoring rules to it for checking, forwarding runtime
events from the applications which are being monitored, and obtaining monitoring
results. Internally, EVEREST has three main components: a monitor manager, a
monitor and an event collector.

The monitoring manager is the component that has responsibility for initiating,
coordinating and reporting the results of the monitoring process. As such, it re-
ceives the monitoring rules from the SRF and provides the API for obtaining
monitoring results. The event collector is responsible for receiving events from
SRF and passing them to the monitoring manager. The monitoring manager for-
wards these events to the Native Type Generator (NTG) sub-component of the
monitor, which translates the events from XML to internal Java objects. After re-
ceiving events from the manager, the monitor checks whether they violate any of
the rules given to it.

218 George Spanoudakis, Christos Kloukinas, Khaled Mahbub

Fig. 13.2 Architecture of the monitoring framework

The monitor is a generic engine for checking violations of EC-Assertion formu-
lae against a given set of runtime events. During monitoring, it also takes into ac-
count information about the state of a system, which it derives from runtime
events using assumptions. To perform the required checks, the monitor maintains
an event and a fluent database. The first of these databases keeps events which are
necessary for checking past formulae (i.e., formulas requiring that when an event
happens some other event should already have occurred or some condition should
be satisfied), while the second keeps information about the initiation and termina-
tion of state conditions by runtime events that is necessary for monitoring (see
Section 13.4). When a violation of a property is detected, the monitor records it in
a deviation database. This database is accessed by the monitoring manager when
the latter component is polled by the SRF to report detected deviations.

The event capturers intercept events during the operation of applications and
send them to the SRF, which subsequently forwards them to EVEREST. Capturers
are typically part of the implementation of the components that realise the solu-
tions described by S&D Patterns. In some cases, however, they may also be part
of the infrastructure where these components that realise S&D Patterns are de-
ployed. When a capturer intercepts an event, it wraps it into an envelope contain-
ing additional information about the event. This information includes the sender,

The Runtime Monitoring Framework of SERENITY 219

receiver and source of the event (i.e., the component where it was captured), and a
timestamp indicating when the event was captured at its source.

As the event capturers may run on separate machines from the monitoring ser-
vices, it is necessary to ensure that the timestamps of the events that they generate
are comparable. To enable this, the event capturers that are provided by imple-
mentations of S&D Patterns should realise the Network Time Protocol [23], i.e., a
protocol based on the clock synchronisation scheme described in [20]. The im-
plementation of this protocol allows event capturers to compute the difference of
their clocks with the clock of the SERENITY runtime framework at regular inter-
vals. This difference is subsequently used to transform timestamps taken accord-
ing to the clock of each capturer into timestamps that express time in terms of the
SERENITY runtime framework’s clock. This is achieved by implementing an
NTP client at each event capturer and an NTP server at the machine that hosts the
SERENITY runtime framework. The NTP clients call the NTP server at regular
intervals to synchronise their clocks with the clock of the server. The use of NTP
can synchronise distributed clocks at a very high level of accuracy since recent
versions of NTP (e.g. version 4) use a resolution of less than one nanosecond.

13.4. Specification of Monitoring Rules and Assumptions in
S&D Patterns

The rules that need to be monitored at runtime and other functional and non func-
tional assumptions about the solutions which are being monitored are specified
within S&D Patterns using an XML based language, called EC-Assertion. EC-
Assertion is based on event calculus [27], a first-order temporal logic language
that was originally developed to represent and reason about actions and their ef-
fects over time. The basic modelling constructs of Event Calculus are events and
fluents. An event in EC is something that occurs at a specific instance of time, is
of instantaneous duration, and may cause some change in the state of the reality
that is being modelled. This state is represented by fluents.

To represent the occurrence of an event, EC uses the predicate Happens(e, t,
ℜ(t1,t2)). This predicate represents the occurrence of an event e that occurs at
some time point t within the time range ℜ(t1, t2) and is of instantaneous duration.
The boundaries of ℜ(t1, t2) can be specified by using either time constants or
arithmetic expressions over the time variables of other predicates in an EC for-
mula. The EC predicate Initiates(e, f, t) signifies that a fluent f starts to hold after
the event e occurs at time t. The EC predicate Terminates(e, f, t) signifies that a
fluent f ceases to hold after the event e occurs at time t. An EC formula may also
use the predicates Initially(f) and HoldsAt(f, t) to signify that a fluent f holds at the
start of the operation of a system and that f holds at time t, respectively.

EC defines a set of axioms that can be used to determine when a fluent holds
based on initiation and termination events that regard this fluent. These axioms are

220 George Spanoudakis, Christos Kloukinas, Khaled Mahbub

listed in Table 13.1. Axiom EC1 states that a fluent f is clipped (i.e., ceases to
hold) within the time range from t1 to t2, if an event e occurs at some time point t
within this range and e terminates f. Axiom EC2 states that a fluent f holds at time
t, if it held at time 0 and has not been terminated between 0 and t. Axiom EC3
states that a fluent f holds at time t, if an event e has occurred at some time point t1
before t, which initiated f at t1 and f has not been clipped between t1 and t. Finally,
axiom EC4 states that the time range in a Happens predicate includes its bounda-
ries.

Table 13.1. Axioms of Event Calculus

(EC1) Clipped(t1,f,t2) ⇐ (∃e,t) Happens(e,t,ℜ(t1,t2))
 ∧ Terminates(e,f,t)
(EC2) HoldsAt(f,t) ⇐ Initially(f) ∧ ¬Clipped(0,f,t)
(EC3) HoldsAt(f,t) ⇐ (∃e,t1) Happens(e,t,ℜ(t1,t))
 ∧ Initiates(e,f,t1)
 ∧ ¬Clipped(t1,f,t)
(EC4) Happens(e,t,ℜ(t1,t2)) ⇒ (t1 < t) ∧ (t ≤ t2)

EC-Assertion adopts the basic representation principles of EC and its axiomatic

foundation and introduces special terms to represent the types of events and condi-
tions that are needed for runtime monitoring. More specifically, given its focus on
monitoring the operation of software systems at runtime, events in EC-Assertion
can be invocations of system operations, responses from such operations, or ex-
changes of messages between different system components. To represent these
types of events, EC-Assertion defines a specific event structure that is syntacti-
cally represented by the event term

event(_id, _sender, _receiver, _status, _sig, _source)
In this event term:
• _id is a unique identifier of the event;
• _sender is the identifier of the system component that sends the mes-

sage/operation call/response;
• _receiver is the identifier of the system component that receives the mes-

sage/operation call/response;
• _status is the processing status of an event (i.e., REQ if the event represents

an operation invocation and RES if the event represents an operation re-
sponse);

• _sig is the signature of the dispatched message or the operation invoca-
tion/response that is represented by the event, comprising the operation name
and its arguments/result;

• _source is the identifier of the component where the event was captured.
 Fluents are defined as relations between objects and represented as terms of

the form rel(O1, …, On). In fluent terms, rel is the name of a relation which associ-
ates the objects O1, …, On.

The rules to be monitored at runtime are specified in terms of the above predi-
cates and have the general form body ⇒ head. The meaning of a rule is that if its

The Runtime Monitoring Framework of SERENITY 221

body evaluates to True, its head must also evaluate to True. The Happens predi-
cates in a rule with no constraints for their lower and upper time boundaries are
what we call “unconstrained” predicates. During the monitoring process, rules are
activated by events that can be unified with the unconstrained Happens predicates
in them. When this unification is possible, the monitor generates a rule instance to
represent the partially unified rule and keeps this instance active until all the other
predicates in it have been successfully unified with events and fluents of appropri-
ate types or it is deduced that no further unifications are possible. In the latter
case, the rule instance is deleted. When a rule instance is fully unified, the monitor
checks if the particular instantiation that it expresses is satisfied.

Considering the location based access control scenario that we introduced in
Section 13.2, the condition (C1) about the availability of location servers during
the operation of LBACS can be checked by monitoring whether each time that the
control server sends a request for the position of a specific device to the location
server, the latter component responds to it within a predefined time interval, e.g.,
within 10 time units after the receipt of the request. This would be a bounded
availability check which can be expressed in EC-Assertion by the following moni-
toring rule:
Rule-1:

Happens(e(_e1, _controlServer, _locationServer, REQ

 location(_dev,_loc,_acc), _controlServer), t1, ℜ(t1,t1))
⇒ (∃ t2:Time, e2:String)
Happens(e(_e2, _locationServer, _controlServer, RES,

 location(_dev,_loc,_acc),_controlServer),
 t2, ℜ(t1+1,t1+10))

The specification of Rule-1 assumes that the operation of the location server
providing the latest known position of a device is location(_dev, _loc, _acc),
where _dev identifies the device and _loc, _acc the location returned by the server
and the estimation of its accuracy respectively.

Also the condition (C2) about the continuous periodic dispatch of signals from
the mobile devices to the location server can be specified by the following two
rules:

Rule-2:

Happens(e(_e1, _dev, _locationServer, REQ, signal(_dev),

 _locationServer), t1, ℜ(t1,t1))
 ⇒ (∃ t2:Time, e2:String))
Happens(e(_e2, _dev, _locationServer, REQ, signal(_dev),

_locationServer), t2, ℜ(t1,t1+m)) ∧ (_e1 ≠ _e2)

Rule-3:

Happens(e(_e1, _controlServer, _locationServer, REQ,

 location(_dev,_loc,_acc), _controlServer), t1, ℜ(t1,t1))

222 George Spanoudakis, Christos Kloukinas, Khaled Mahbub

∧ ¬∃t. Happens(e(_e3, _controlServer, _locationServer, REQ,
 location(_dev,_loc,_acc), _controlServer), t, ℜ(0,t1))
⇒ (∃ t2:Time, e2:String)
Happens(e(_e2, _dev, _locationServer, RES, signal(_dev),

 _locationServer), t2, ℜ(t1,t1+m))

Rule-2 checks whether each mobile device (_dev), sends signals signal(_dev)
periodically to the location server (_locationServer), with a maximum delay of up
to m time units between two signals. A violation of this rule by a device would in-
dicate that either the device malfunctions or that it is no longer present in the area
covered by the system. Rule-2 would be able to capture the latter case after a de-
vice becomes known to the system by sending it a signal for the first time but
would not be able to capture cases where a known user with a malfunctioning de-
vice enters the area covered by the system. Rule-3 above covers this case by
checking whether the location server receives a signal from a device within a pe-
riod of at most m time units after the first time that the control server makes a re-
quest for the location of this device.

13.5. Core Monitoring Capabilities

As discussed in Section 13.3, runtime events may come from distributed compo-
nents operating with different time clocks. Furthermore, distributed system com-
ponents may have different types of connections with the monitor and, therefore,
generate events that arrive at EVEREST with different communication delays and
possibly in an order that is not the same as the order of their generation.

Thus, EVEREST has to overcome two problems when checking properties in-
volving events from distributed components: (i) to synchronise the clocks of the
various event sources, so that the timestamps of the different events can be or-
dered and comparable to each other, and (ii) to establish until when a particular
event needs to be stored, so that it can reason about the system properties in a
sound way or, equivalently, to compute the required monitoring lifetime of each
event.

Consider, for instance, the case where the system of Fig. 13.1 needs to be pro-
tected against attackers flooding the servers with false device signals. To detect
such attacks, one possible condition to monitor is whether the signals sent to the
location server have indeed been sent by the devices they appear to be coming
from and that these devices have been authenticated to the system. This condition
can be monitored using the following monitoring rule:
Rule-4:

Happens(e(_e1, _dev, _locationServer, REQ, signal(_dev),

 _locationServer), t1, ℜ(t1,t1))

The Runtime Monitoring Framework of SERENITY 223

 ⇒ (∃ t2:Time)
Happens(e(_e2, _dev, _locationServer, REQ, signal(_dev),

 _dev), t2, ℜ(0,t1))
 ∧ (∃ t3:Time)
Happens(e(_e3, _controlServer, _locationServer, REQ,

 location(_dev,_loc,_acc), _controlServer), t3, ℜ(0,t1))

In this rule, the predicate Happens(e(_e1, _dev, _locationServer, REQ, sig-

nal(_dev),_locationServer), t1, ℜ(t1,t1)) represents the receipt of a signal from a
device _dev by the location server and the predicate Happens(e(_e2, _dev,
_locationServer, REQ, signal(_dev), _dev), t2, ℜ(0,t1)) represents the dispatch of
a matching signal from the same device which has occurred earlier. Also, the
predicate Happens(e(_e3, _controlServer, _locationServer, REQ, loca-
tion(_dev,_loc,_acc), _controlServer), t3, ℜ(0,t1)) represents a request regarding
the position of the particular device that has been issued by the control server of
LBACS at some time point before the receipt of the device signal by the control
server. The existence of such an earlier request indicates that the device is known
to the system.

It should be noted that Rule 4 tries to combine events from different sources,
namely the location server (_locationServer), mobile devices (_dev) and control
server (_controlServer) and these events may reach the monitor in an order that is
different from the order of their creation. Thus, when the monitor receives the
event _e1 in the rule that represents a device signal captured at the location server,
it will have to decide for how long it should wait for a correlated event _e2 repre-
senting the same signal as captured at the device side, and wait for this event be-
fore deciding whether the rule has been violated. Otherwise, it may report a false
violation of Rule 4. This would happen in cases where, after receiving _e1, the
monitor receives events _e2 and _e3 corresponding to it.

The clock synchronisation, which is performed by the monitoring framework
through the use of the Network Time Protocol (NTP), solves the first problem of
how to synchronise the clocks of the different event sources but not the second,
that is, the problem of estimating for how long events should be maintained to en-
sure the completeness of reasoning.

In the following, we present the mechanism that EVEREST uses for computing
the lifetime of events received from distributed sources, along with the monitoring
process that is realised by the framework

13.1.1. Computing the Lifetime of Events

Let us assume without loss of generality that _dev, _locationServer and _dev in
Rule 4 above denote both the source of the event and the clock of this source. As

224 George Spanoudakis, Christos Kloukinas, Khaled Mahbub

the occurrence of events of type e1
locationServer in Rule 4 is unconstrained1, events of

this type can instantiate the rule during monitoring. Unlike them, events of type
e2

dev and e3
controlServer are temporally constrained by e1

locationServer events in the rule
and cannot, therefore, create new instances of the rule; they can only be unified
with existing rule instances.

Normally, if the monitor would receive an event of type e1
locationServer then it

would create a new template of Rule 4 for it and attempt to retrieve past e2
dev and

e3
controlServer events from the past event database to unify them with this template. If

no such past events existed then it would report a violation. However, it is possible
that such past events of type e2

dev and e3
controlServer might have occurred but not re-

ceived yet by the monitor due to communication delays. Thus, to be certain that
the monitor does not report a false violation of Rule 4, the evaluation of the rule
needs to be postponed until it is guaranteed that events of types e2

dev and
e3

controlServer cannot have occurred. Thus, there is a need to compute an upper time
limit until which the monitor has to delay the evaluation of the rule’s template to
guarantee that no such events might have occurred but not received by it. This up-
per limit can be computed by examining the temporal constraints of the events in
the rule – i.e., (1) t2≤ t1 and (2) t3≤ t1. It should be noted, however, that t1, t2 and
t3 all refer to different clocks, i.e., the clocks of _locationServer, _dev and
_controlServer, respectively.

In general, for a rule with n+1 Happens predicates, there will be at most 2n+1
such constraints (inequalities) to solve. This is because at least one of the rule
predicates is unconstrained (needed for triggering the rule), the remaining Hap-
pens predicates contribute two inequalities each (one for the lower boundary of the
time variable of the predicate and one for the upper boundary), and there will be
an extra constraint (equality) establishing the exact value of the time variable of
the event in question (i.e., the t2 variable that is associated with the e2

dev event in
our example).

Fig. 13.3 presents the algorithm for computing the lifetime of an event. When
an event e occurs, this algorithm first determines the set of rules R(e) which have
predicates that can be unified with the event. This set includes rules that have
event types which are the same as the type of e or super-types of it. Subsequently,
the constraints of each rule in R(e) are identified and expanded with an equality
expressing that the time variable of the predicate of the rule that has been unified
with e is equal to the timestamp of e (step 2.a). Given the time constraint set that
results from this process, the algorithm computes the maximum possible value for
each of the time variables of the rule using the Simplex method [11] (step 2.b.i).
By doing so for each rule, it effectively produces a set of constraints for the clocks
of the various event sources, since the time variables refer to these clocks. It then
groups the different time variables according to the clock of the event source they

1 e1

locationServer abbreviates the event e(e1, dev, locationServer, REQ, signal(dev), locationServer), where
the subscript refers to the event ID and the superscript to the event source. Such abbreviated references
are used in the rest of the chapter in all cases where other event variables are not important.

The Runtime Monitoring Framework of SERENITY 225

are related to (step 3), and generates a set of all the conditions, Lifetime(e), for
computing the upper bound of the lifetime of e (step 4). A condition in Lifetime(e)
states that e will not be needed after the last event that is seen from a source/clock
which is relevant to e has a timestamp, last_observed(cj), that is greater than the
maximum possible value of the time variables grouped in this clock’s group, as
expressed by the condition last_observed(cj)> maxti∈Gj(max(ti)). The reason for us-
ing the timestamp of the last event that has been observed from a clock in the
evaluation of the Lifetime(e) conditions is because events are communicated from
each source (event capturer) to the SERENITY runtime monitoring framework
(and, therefore, to EVEREST) using TCP/IP protocol which guarantees a FIFO
transmission within the same source/SRF channel. The conditions in Lifetime(e)
determine the lifetime of e, since the lifetime of e expires when their conjunction
becomes true.

Compute_Lifetime(e):

1. R(e) = { r | r has a predicate p that can be unified with e}

2. Forall r ∈ R(e) do
a. CNr= {time constraints of r} ∪ {time variable of predicate p that matches e =

timestamp of e}
b. Forall ti ∈ CNr do

i. Find max(ti) given CNr
3. Group the time variables ti into as many groups Gj as the different event sources

(clocks) cj in R(e)
4. Lifetime(e) = ∪j ((last_observed(cj) > maxti∈Gj(max(ti))))

Fig. 13.3 Computing the lifetime of an event – I

Assuming that Rule 4 is the only rule being monitored and an event of type
e1

locationServer is observed at t1=20, step 1 will produce the set R(e1
locationServer) =

{Rule-4}, step 2.a will produce CNr = {t2 ≤ t1, t3 ≤ t1, t3 = 20}, step 2.b.i will
produce the solutions max(t1)= max(t2)= max(t3)=20 by finding the maximum
value of t1 for which the constraints in CNr are satisfied, and step 3 will produce
two groups of time variables {t1} and {t2}, for the two clocks locationServer and
dev, respectively. Finally, in step 4, the lifetime constraint set for e1

locationServer will
be established as:

Lifetime(e1
locationServer)={last_observedcontrolServer>20,last_observeddev>20,

last_observedlocationServer>20}
The current implementation of the algorithm of Fig. 13.3 uses the Simplex

method to find the maximum time of a time variable in step 2.b.i. Simplex has ex-
ponential complexity, O(2n), for a problem with n variables. Simplex has been
chosen over algorithms with polynomial complexity (e.g., the worst case complex-
ity of Karmarkar’s algorithm [1] is O(n3.5)). This is because for small numbers of
variables, as the ones normally appearing in monitoring rules (n ≤ 10), Simplex
has better performance. It should also be noted that the algorithm of Fig. 13.3

226 George Spanoudakis, Christos Kloukinas, Khaled Mahbub

computes the maximum value of a time variable for each rule separately, rather
than combining them into a single larger problem. This is because the individual
rule problems can be solved independently and a larger set of rules would take
more time to solve due to the additional time variables (since 2n + 2m < 2n+m for
n,m ≥ 2). Due to this approach, once the individual rule inequality systems have
been solved, the different time variables of events coming from the same clock
need to be grouped together. This is done in step 3 of the algorithm.

Note also that the algorithm of Fig. 13.3 works under the assumption that the
clocks/sources of the events in the rules are fully specified when a rule is matched
with an incoming event. In the example of Rule 4 this is the case, since all the
sources are known. However, there might be cases where the exact source of
events that could potentially be matched with a rule is not known after the rule is
matched with arrived events. Consider, for instance, the following rule:
Rule-5:

∀ e1, e2, U: String; C1, C3: Terminal; C2: Component; t1, t2: Time
 Happens(e(_e1,_C1,_C2, REQ, login(_U,_C1), _C1),t1,ℜ(t1,t1))
 ∧ Happens(e(_e2,_C3,_C2, REQ, login(_U,_C3), _C3),t2,ℜ(t1,t2))

∧ _C1 ≠_C3 ⇒ ∃ e3: String; t3:Time
Happens(e(_e3,_C1,_C2, REQ-A, logout(_U,_C1),_C1),t3,ℜ(t1+1,t2-1))

Compute_Lifetime(e):

1. R(e) = { r | r has a predicate p which unifies with e}
2. Forall r ∈ R(e) do

a. CNr= {time constraints of r} ∪ { time variable of predicate p that matches e
= timestamp of e}

b. Forall ti ∈ CNr do
i. Find max(ti) given CNr

3. Group the time variables ti into as many group types TGu as the different
types of event sources cu in R(e)

4. Forall group types g ∈ TGu do
c. Forall the known sources j of type g do

i. Create a group Gj and assign copies of the time variables of g to it
5. Lifetime(e) = ∪j {(last_observed(cj) > maxti∈Gj(max(ti)))}

Fig. 13.4 Computing the lifetime of an event – II

Rule 5 requires that if a user U logs in to a system C2 from a terminal C1 and
later he/she logs in again from a different terminal C3, he/she must have logged
out from the former terminal before the second login. The rule effectively moni-
tors cases where users are logged in from different terminals at the same time.
When an event e(e2,…,C3) (or e2

C3 in our abbreviated form) arrives at the moni-
tor, its lifetime will need to be estimated in reference to the maximum possible
values of time variables t1 and t3. In this case, however, the algorithm of Fig. 13.3
does not work, since at step 3 it is not known which other terminals the user of

The Runtime Monitoring Framework of SERENITY 227

e2
C3 may be using or, equivalently, which source clocks should be associated with

the time variables t1 and t3.
To deal with such cases, the algorithm of Fig. 13.3 is extended as shown in Fig.

13.4. The extended algorithm initially groups time variables into groups corre-
sponding to the types of the event sources that are associated with them in the
rules. Then, for each of the source type groups, it finds all the sources of the par-
ticular type that are known to the system, creates different groups for them and as-
signs copies of the time variables of each source type to each of the source groups
that were generated from the type. Thus, if it is known that the system being moni-
tored with Rule 5 has 3 terminals, the algorithm of Fig. 13.4 will create different
variable groups for each of these terminals and assign copies of the time variables
t1 and t2 to each of these groups.

Having computed the Lifetime(e) constraint set upon the arrival of an event e at
runtime, we use it to compute a vector with the maximum time values for e with
respect to the different clocks related to it. For the ongoing example of Rule 4, the
vector of e1

locationServer would be <20, 20, 20>. The event and its vector are then
stored in the database of the monitor. At that point, the monitor also checks if the
lifetime of some previous event, which depends on the clock of the new event, has
expired and removes all these events, if any. This process is shown in Fig. 13.5.

1. Observe an event e
2. Update the global vector of observed clock values
3. Lifetime(e) = Compute_Lifetime(e)
4. Store e in the DB with its vector of different clock limits
5. Remove events from the DB if their clock limits have been exceeded

Fig. 13.5 Algorithm for using event lifetimes

13.1.1. Monitoring Algorithm

To check for violations of monitoring rules, EVEREST maintains templates that
represent different instantiations of the rules generated from the events sent to it at
runtime. A template for a rule r stores:
• The identifier (ID) of r.
• A set of value bindings (VB) for the variables of the rule predicates that is

generated from the unification of different events with these predicates.
• For each predicate p in r :

– The quantifier of its time variable (Q) and its signature (SG).
– The boundaries (LB, UB) of the time range within which p should occur.

228 George Spanoudakis, Christos Kloukinas, Khaled Mahbub

– The truth-value (V) of p. V can be: UN if the truth value of the predicate is
not known yet; T if the predicate is known to be true, or F if the predicate is
known to be false.

– The source (SC) of the evidence for the truth value of p. The value of SC
can be: UN if the truth value has not been established yet; RE if the truth
value of the predicate has been established by a recorded event; or NF if
the truth value of the predicate has been established by the principle of ne-
gation as failure.

– A time stamp (TS) indicating the time in which the truth-value of p was es-
tablished.

EVEREST creates a set of deviation templates that represent instantiations of
monitoring rules and are used to check for rule violations of rules.

These templates are updated by recorded and derived events. More specifi-
cally, when a new event e occurs, EVEREST identifies the templates that contain
predicates which could be unified with e and templates having predicates whose
truth value can be affected by the time indicated by e (e.g. predicates expected to
be true by a specific time point which e shows that has passed) and updates them.
The update can affect the variable binding of an identified template and/or the
truth value of the predicates in it. This depends on the quantification of the time
variable of each predicate.

Template-1

ID Rule 1

VB (_e1,?) (_e2,?) (_controlServer,?) (_locationServer,?) (_dev,?)(_loc,?)(_acc,?)

P Q SG TS LB UB TV SC

1 ∀ Happens(e(_e1,_controlServer,_locationServer,REQ, loca-

tion(_dev,_loc,_acc), _controServer),t1,ℜ(t1,t1))
t1 t1 t1 UN UN

2 ∃ Happens(e(_e2,_locationServer,_controlServer,RES, loca-

tion(_dev,_loc,_acc),_locationServer),t2,ℜ(t1+1,t1+10))

t2 t1+1 t1+10 UN UN

Fig. 13.6 Template for Rule 1

In particular, the truth value of a predicate of the form (∀t)p(x,t) where t is un-
constrained (i.e., it is defined to be in a range of the form ℜ(t,t)) is set to T(true) as
soon as an event that can be unified with p is encountered. The truth value of a
predicate of the form (∀t)p(x,t) where t is constrained to be in the range ℜ(t1,t2) is
set to F (false) as soon as an event which is not unifiable with p occurs between t1
and t2, and to T (true) if all the events that occur at the distinguishable time points
between t1 and t2 can be unified with p. The truth value of predicates of the form
¬(∀t)p(x,t) where t must be in the range ℜ(t1,t2) is set to T (true) as soon as the
first event that is not unifiable with p occurs within the time range ℜ(t1,t2, and
F(false) if all the events at the distinguishable time points between t1 and t2 can
be unified with p.

The truth value of a predicate of the form (∃t)p(x,t) where t is in the range
ℜ(t1,t2) is set to T (true) as soon as the first event e that can be unified with p oc-

The Runtime Monitoring Framework of SERENITY 229

curs between t1 and t2. If no such event occurs within ℜ(t1,t2), the truth value of
p is set to F (false) by virtue of the principle of the negation as failure (NAF). The
absence of events unifiable with p is confirmed as soon as the first event that can-
not be unified with p occurs after t2. The truth value of a predicate of the form
¬(∃t)p(x,t) is established in the opposite way: as soon as an event e that can be
unified with p occurs between t1 and t2 the truth value of p is set to F (false) and
if no such event occurs between t1 and t2, the truth value of p is set to T(true).

As an example of this process consider the monitoring of Rule 1. Initially, the
template for this rule will have no bindings for the time and non time variables of
any of the predicates of the rule as shown in Fig. 13.6. Furthermore, the truth val-
ues of all the predicates in the template will be UN (unknown).

Then, assuming that an event E1: Happens(e(id1, S1, R1, REQ, loca-
tion(d1,l1,a1), S1), 24500) occurs, EVEREST will detect that E1 can be unified
with the first predicate in the template (i.e., the predicate Hap-
pens(e(_e1,_controlServer,_locationServer,REQ,location(_dev,_loc,_acc),_contro
Server),t1,ℜ(t1,t1))) and create a new instance of the template in which E1 is uni-
fied with this predicate. Following the unification, the truth value (TV) of the
predicate will be set to T and a new template representing the update will be cre-
ated. This template is shown in Fig. 13.7. In the new template, the source (SC) of
the truth value of the Happens(e(_e1,…),t1,ℜ(t1,t1))) will be set to RE (since the
event that determined the truth value a recorded event), the timestamp at which the
truth value of the predicate was determined will be set to 24500 (i.e., the time-
stamp of the event that was unified with the predicate) and the lower (LB) and up-
per (UB) time boundaries of the time variable of the predicate are both set to
24500.

Template-2

ID Rule 1

VB (e1,id1) (e2,?) (controlServer,R1) (locationServer,S1) (dev,d1)(loc,l1)(acc,a1)

P Q SG TS LB UB TV SC

1 ∀ Happens(

e(_e1,_controlServer,_locationServer,REQ, loca-

tion(_dev,_loc,_acc), _controServer),t1,ℜ(t1,t1))

24500 24500 24500 T RE

2 ∃ Happens(e(_e2,_locationServer,_controlServer,

RES,location(_dev,_loc,_acc),_locationServer),t2,

ℜ(t1+1,t1+10))

t2 24501 24510 UN UN

Fig. 13.7 Template for Rule 1 updated due to event E1

The update of the template due to the event E1 will also change the variable

binding (VB) of the template. More specifically, the variables e1, server, and cli-
ent of the predicate Happens(e(e1,…),t1,ℜ(t1,t1)) will be bound to the values id1,
R1, and S1 respectively. Furthermore, the update will affect the lower boundary
(LB) upper boundary (UB) of t2, i.e., the time variable of the predicate Hap-

230 George Spanoudakis, Christos Kloukinas, Khaled Mahbub

pens(e(_e2,_locationServer,_controlServer,RES,location(_dev,_loc,_acc),_locatio
nServer),t2,ℜ(t1+1,t1+10)) in the template. This is because the boundaries of t2
depend on the value of the time variable t1 that has been changed (set) by the up-
date. In particular, the lower and upper boundary of t2 will be set to 24501 (i.e.,
t1+1) and 24510 (i.e., t1+10) respectively.

Subsequently, if an event E2: Happens(e(id2, S1, R1, REQ, authorise(), R1),
24507) occurs at the time point t=24507, the template of Fig. 13.7 will be updated
again. This is because E2 can be unified with the predicate Hap-
pens(e(_e2,_locationServer,_controlServer,RES,location(_dev,_loc,_acc),_locatio
nServer),t2,ℜ(t1+1,t1+10)) in the template and has occurred within the time
boundaries of this predicate (i.e., between 24501 and 24510). The result of this
update is shown in Fig. 13.8. As shown in the figure, the truth value of the predi-
cate Happens(e(_e2,_...),t2,ℜ(t1+1,t1+10)) is set to true (T), its timestamp is set
to 24507 and the source of the truth value of the predicate is set to RE as E2 was
also a recorded event.

Template-2

ID Rule 1

VB (e1,id1) (e2,id2) (controlServer,R1) (locationServer,S1) (dev,d1)(loc,l1)(acc,a1)

P Q SG TS LB UB TV SC

1 ∀ Happens(

e(_e1,_controlServer,_locationServer,REQ,

location(_dev,_loc,_acc),

_controServer),t1,ℜ(t1,t1))

24500 24500 24500 T RE

2 ∃ Happens(

e(_e2,_locationServer,_controlServer,RES,

location(_dev,_loc,_acc),

_locationServer),t2,ℜ(t1+1,t1+10))

24507 24501 24510 T RE

Fig. 13.8 Template for Rule 1 as updated following events E1 and E2

Once the truth values of all the predicates in a template have been determined,

the template is checked for violations. At this point if the truth value of all the
predicates in the body of the template is true and the truth value of at least one
predicate in the head is false then the instance of the rule represented by the tem-
plate is violated. Otherwise, the template is satisfied.

The monitoring process described above is followed in cases of rules like Rule
1 which are future EC-Assertion formulas (i.e., formulas in which the uncon-
strained time variable of the rule can only take values which are less than the val-
ues of the constrained time variables) and assuming that the events arrive at the
monitor in the exact order of their occurrence. A monitoring rule, however, can
also be a past formula, i.e., a formula having at least one constrained time variable
that is constrained to take values which are less than or equal to the value of the

The Runtime Monitoring Framework of SERENITY 231

unconstrained time variable of the formula. An example of a past monitoring rule
is Rule 4.

In this rule, the unconstrained time variable is t1 (since its boundaries are de-
fined without reference to other time variables) and the constrained time variables
are t2 and t3. A rule of this type is checked by a different procedure. More specifi-
cally, if EVEREST receives an event which can be unified with a constrained
predicate in a rule whose unconstrained predicate has not been instantiated yet
(e.g. an event that could be unified with the predicates Happens(e(_e2, _dev,
_locationServer, REQ, signal(_dev), _dev), t2, ℜ(0,t1)) or Happens(e(_e3,
_controlServer, _locationServer, REQ, location(_dev,_loc,_acc), _controlServer),
t3, ℜ(0,t1)) in Rule 4), it stores the event in a database of past events, shown as
“Events Database” in Fig. 13.2 but does not instantiate the template. Later, when
EVEREST receives an event which can be unified with the unconstrained predi-
cate of the rule, it proceeds with the creation of a new template and then searches
the past events database to check if there are already events which could currently
be unified.

A similar approach is applied for HoldsAt predicates in rules, since according
to the EC axioms shown in Table 13.1, HoldsAt is a derived predicate whose truth
value depends on the existence of past Initiates and Terminates predicates. These
predicates are derived from the assumptions of a theory, which state what events
initiate and respectively terminate a particular fluent. To check the truth values of
HoldsAt predicates, EVEREST stores Initiates and Terminates predicates into its-
Fluent Database (see Fig. 13.2) and when it needs to evaluate a HoldsAt at some
future time instance t1, it searches this database for the most recent Initiates and
Terminates predicates which precede t1 and satisfy the axioms in Table 13.1 for
HoldsAt predicates.

13.6. Implementation and Evaluation

EVEREST has been implemented in Java and can be deployed either through the
SRF or as a standalone web service. The implementation of EVEREST has been
evaluated in a series of experiments that have focused on the performance of the
core monitoring process that is realised by the framework and the effect that it has
on the performance of the systems that it monitors. A detailed account of this
evaluation is beyond the scope of this chapter and may be found in [17]. In the fol-
lowing, however, we summarise the main findings of the evaluation experiments
of the framework to enable a better understanding of its capabilities and limita-
tions.

More specifically, the evaluation of EVEREST has demonstrated that in the
general case the time required to detect violations of monitoring rules after all the
events that would enable this become available, increases exponentially with the
number of the events that are sent to the monitor.

232 George Spanoudakis, Christos Kloukinas, Khaled Mahbub

The violation detection time depends on the number of active templates when
the last event that enables making a decision about the violation or not of a rule
becomes available. The latter number depends on the exact form of the rules that
are being monitored and, thus, it may be reduced substantially for specific types of
rules. For example, in the case of rules that express typical security properties, no-
tably confidentiality, integrity and availability, the number of active templates
and, consequently, the violation detection time increases linearly with the number
of events, as discussed in [17]. This is because confidentiality and integrity prop-
erties are expressed by past EC-Assertion rules as it has been shown in [29]. As
discussed earlier, past rules are of the form Happens(e1,t1,R(t1,t1)) ⇒ Hap-
pens(e2,t2,R(0,t1)) and therefore when the event(s) that satisfy the conditions in
the body of the rule (e1) occur(s), the event(s) in the head of the rule (e2) must
have occurred already. Thus, the monitor has only to check whether other events
have taken place previously or certain conditions hold. Consequently, in such
cases there is no need for maintaining partially instantiated instances of rules
(templates) and wait for future events that could be unified with these instances,
something that would add a considerable computational cost to the monitoring
process. Also in the case of bounded availability rules (as Rule-1 in this chapter),
the key factor for performance is the period within which a response is expected
following a request. As in most cases of synchronous communication the accept-
able delay for a response is very low, the use of bounded availability rules with
short waiting periods does not affect the performance of the monitor significantly,
as observed in [17].

Furthermore, the evaluation in [17] and evaluations of predecessors of
EVEREST [19, 30] have demonstrated that the performance of the monitor is not
affected significantly by the use of assumptions and the subsequent deployment of
the deductive reasoning capability of the toolkit in order to deduce information
from these assumptions. The reason for this is that in typical monitoring scenarios,
the number of successive deductive steps which are required in order to derive the
information required from monitoring assumptions is very small (1 or 2 steps)
and, therefore, the computational overhead of deductions during monitoring is also
small.

Finally, previously conducted experiments have indicated that the performance
of the monitor is not significantly affected by the size of the domains of the vari-
ables used in monitoring rules. Also the evaluation in [17] has indicated that the
overhead of event capturing on the performance of the system that is being moni-
tored depends on the type of the deployed capturer. This overhead ranges from a
18%−20% drop in performance, when events are captured from the execution plat-
form of the application, to 800%, in cases where event capturers are implemented
as wrappers of components of the system that is being monitored [17].

The Runtime Monitoring Framework of SERENITY 233

13.7. Related Work

Dynamic verification enables a software system to improve its dependability (and
therefore security) [4], by checking whether its behaviour satisfies specific de-
pendability and security properties while it is running. Dynamic system verifica-
tion has emerged more recently and has been investigated in the context of differ-
ent areas including requirements engineering, program verification, safety critical
systems and service centric systems.

In requirements engineering, dynamic verification has focused on system re-
quirements and investigated: (i) ways of specifying requirements for monitoring
and transforming them into events that can be monitored at run-time; (ii) the de-
velopment of event-monitoring mechanisms; (iii) the development of mechanisms
for generating system events that can be used in monitoring (e.g., instrumentation,
use of reflection [6]); and (iv) the development of mechanisms for adapting sys-
tems so as to deal with deviations from requirements at run-time as, for example,
in [34].

In dynamic program verification, research has focused on the development of
programming platforms with generic monitoring capabilities including support for
generating program events at run-time, e.g., jMonitor [8], embedding specifica-
tions of monitoring properties into programs, and producing code that can verify
these properties during the execution of the programs, e.g., monitoring-oriented
programming [8]. The Java PathExplorer (JPaX) is a tool for monitoring systems
at their runtime [14]. The use of JPaX enables the automatic instrumentation of
code and observation of its runtime behaviour. JPaX can be used during develop-
ment to provide more robust verification. It can also be used in an operational set-
ting, to help optimize & maintain systems as they mature. In [15,16], a framework
for evolvable software systems is proposed, based on runtime verification. In this
framework components are considered as supervisors (monitor) and supervisees
(evolvable component), where supervisor is the process that monitors and may
evolve the supervisee. The supervisor maintains a meta-level theory for the object
level of the supervisee, where the theory is specified in revision based logic. Meta
level states are able to record observations of the supervisor’s computational state
and as well as the observations at the object level. The meta level and the object
level states must be in accord. Thus, any revision action in the meta level that
transforms the state of the supervisor may induce an accompanying transformation
of the object level through reflection.

In service-centric systems, i.e., systems that deploy autonomous web services
[18], the interest in dynamic verification has emerged due to the need to specify
and monitor service level agreements between the providers and consumers of
web-services being deployed in service-centric systems. As a result of recognizing
the importance of this form of verification, work in this area has focused on the
development of standards and languages for specifying monitoring properties and
methods for monitoring them [5,18,26]. Dynamic verification has also focused on

234 George Spanoudakis, Christos Kloukinas, Khaled Mahbub

monitoring service level agreements (SLAs) [12,21]. In [24] a framework is pre-
sented to allow non-intrusive adaptation of partner services within a BPEL proc-
ess, without any down time of the overall system. In this approach a BPEL process
is monitored according to certain QoS criteria and existing partner services may be
replaced (in case a partner fails to satisfy QoS criteria) based on various replace-
ment strategies. The replacement service can either be syntactically or semanti-
cally equivalent to the interface used in BPEL.

Research on dynamic verification has also focused on system security. Work in
this area has mainly been concerned with the development of Intrusion Detection
Systems (IDS) [10] that use dynamic verification techniques for detecting security
threats. In the literature, IDSs are classified based on different criteria. For exam-
ple based on the source of the input to the IDS, these systems are classified as
Host Based IDS and Network Based IDS [2]. Host Based IDS are mostly con-
cerned with the examination of system logs of one or more application hosts [31,
32]. On the other hand, Network Based IDSs perform protocol analysis and con-
tent searching/matching on network traffic. These systems are commonly used to
actively block or passively detect a variety of attacks and probes on IP networks
[13, 28]. IDSs have also been distinguished into centralized and distributed sys-
tems depending on the form of intrusions that they focus: in centralized IDSs, in-
trusion detection occurs in a single monitored system [13,32], while in distributed
IDSs, intrusion detection is performed across multiple network sites [7,8,25].

In comparison with the monitoring platforms overviewed above, EVEREST
provides a more comprehensive monitoring framework as it can be applied not
only to systems implemented in a specific programming language (e.g. Java), sup-
ports the specification of a wide range of monitoring rules with precise time con-
straints, and can deal with events that may be captured and notified from distrib-
uted sources and through different communication channels. Furthermore,
EVEREST can support the monitoring of conditions at various levels (e.g. net-
work and application levels).

13.8. Conclusions

This chapter has discussed the core monitoring capabilities that are available in the
SERENITY runtime framework. These capabilities are offered by a generic run-
time monitoring toolkit called EVEREST that can detect violations of properties
expressed as monitoring rules in EC-Assertion − a formal temporal logic language
that is based on Event Calculus.

Monitoring in SERENITY is activated when an S&D Pattern is selected and
the SERENITY runtime framework activates a specific implementation of it. At
this point, the SERENITY runtime framework extracts the monitoring rules speci-
fied within the pattern and submits them to EVEREST for monitoring. EVEREST

The Runtime Monitoring Framework of SERENITY 235

subsequently checks these rules against events that are captured by event capturers
associated with the active implementation of the pattern and sent to EVEREST via
the SERENITY runtime framework.

EVEREST provides comprehensive monitoring support, enabling checks of
monitoring rules that are expressed as past or future EC-Assertion formulas and
against events that might have been captured by distributed event capturers. The
toolkit has been implemented in Java and evaluated in a series of experiments with
positive results.

Current work on EVEREST focuses on the expansion of its core monitoring
capabilities to provide support for the detection of potential violations of monitor-
ing rules (aka threats). This work is further discussed in [33]. Another area of in-
vestigation concerns the scope for possible optimisations of the reasoning process
of EVEREST and, in particular, ways for distributing the checking of rules.

References

1. Adler I et al (1989) An Implementation of Karmarkar's Algorithm for Linear Programming.
Mathematical Programming, 44: 297–335

2. Lazarevic A, Kumar V, Srivastava J (2006) Intrusion Detection: A Survey. Massive Com-
puting, In: Kumar V, Srivastava J, Lazarevic A (eds), Managing Cyber Threats: Issues, Ap-
proaches and Challenges, Springer, ISBN 0387242260

3. Armenteros A, Garcia L, Muoz A, Maña A (2008) Realising the Potential of SERENITY in
Emerging AmI Ecosystems: Implications and Challenges. In: Spanoudakis G, Maña A,
Kokolakis S (eds) Security and Dependability for Ambient Intelligence, Information Secu-
rity Series, Springer

4. Avizienis A, Larpie C, Randell B (2001). Fundamental Concepts of Dependability. LAAS-
CNRS, Tech. Rep. N01145.

5. Baresi L, Guinea S (2005) Dynamo: Dynamic Monitoring of WS-BPEL Processes. Pro-
ceedings of 3rd International Conference On Service Oriented Computing, Amsterdam, The
Netherlands.

6. Campbell A, Safavi-Naini R, Pleasants A (1992) Partial Belief and Probabilistic Reasoning
in the Analysis of Secure Protocols. Proceedings of 5th IEEE Computer Security Founda-
tions Workshop, 84-91. IEEE Computer Society Press.

7. Chatzigiannakis V, Androulidakis G, Grammatikou M, Maglaris B (2004) A Distributed In-
trusion Detection Prototype using Security Agents. Proceedings of HP Open View Univer-
sity Association (HPOVUA)

8. Chatzigiannakis V, Androulidakis G, Grammatikou M, Maglaris B (2004) An Architectural
Framework for Distributed Intrusion Detection using Smart Agents. Proceedings of
SAM04, Las Vegas

9. Chen F, Rosu G (2003) Towards Monitoring-Oriented Programming: A Paradigm Combin-
ing Specification and Implementation. In Electronic Notes in Theoretical Computer Sci-
ence, 89(2), Elsevier Science B.V.

10. Denning D (1987) An Intrusion-Detection Model. IEEE Transactions on Software Engi-
neering, 13(2): 222-232.

11. Gale D (2007) Linear programming and the simplex method. Notices of the AMS,
54(3):364–369`.

236 George Spanoudakis, Christos Kloukinas, Khaled Mahbub

12. Ghezzi C, Guinea S (2007) Runtime Monitoring in Service Oriented Architectures. In:
Baresi L and di Nitto E. (eds), Test and Analysis of Web Services, Springer, 237-264, 2007.

13. Gudkov V, Johnson J (2002) Multidimensional Network Monitoring for Intrusion Detec-
tion. CoRR: Cryptography and Security/0206020

14. Havelund K, Roşu G (2004) An Overview of the Runtime Verification Tool Java PathEx-
plorer. Form. Methods Syst. Des. 24, 189-215.

15. Barringer H, Rydeheard D, Gabbay D (2007) A Logical Framework for Monitoring and
Evolving Software Components. Proceedings of 1st Joint IEEE/IFIP Symposium on Theo-
retical Aspects of Computer Science (TASE07), Shanghai.

16. Howard B, Dov G, Rydeheard D, (2007) From Runtime Verification to Evolvable Systems.
7th International Workshop on Runtime Verification

17. Kloukinas C, Mahbub K, Spanoudakis G (2007) Evaluation of V1 of Dynamic Validation
Prototype, Deliverable A4.D3.2, SERENITY Project, http://www.serenity-
forum.org/IMG/pdf/A4.D3.2_Evaluation_of_v1_of_dynamic_validation_prototype_v.-
2.pdf, Accessed 9 December 2008

18. Mahbub K, Spanoudakis G. (2004) A Framework for Requirements Monitoring of Service
Based Systems. Proceedings of 2nd International Conference on Service Oriented Comput-
ing, NY, USA.

19. Mahbub K, Spanoudakis G. (2005) Run-time Monitoring of Requirements for Systems
Composed of Web-Services: Initial Implementation and Evaluation Experience. Proceed-
ings of 3rd Int. IEEE Conf. on Web Services

20. Mahbub K, Spanoudakis G, Kloukinas C, (2007). V2 of dynamic validation prototype”. De-
liverable A4.D3.3, SERENITY Project, http://www.serenity-forum.org/IMG/pdf/A4.D3.3_-
_V2_of_Dynamic_validation_Prototype.pdf. Accessed 9 December 2008

21. Mahbub K, Spanoudakis G (2007) Monitoring WS-Agreements: An Event Calculus Based
Approach. In: Baresi L, and di Nitto E (eds), Test and Analysis of Web Services, Springer

22. Maña A et al (2006) Security engineering for ambient intelligence: A manifesto. In: Inte-
grating Security and Software Engineering: Advances and Future Vision. Idea Group Pub-
lishing, 244–270

23. NTP, www.ntp.org, Accessed on 9 December 2008
24. Moser O, Rosenberg F, Dustdar S (2008) Non-intrusive monitoring and service adaptation

for WS-BPEL. Proceedings of 17th International Conference on World Wide Web
25. Zhang Q, Janakiraman R (2001) Indra: A Distributed Approach to Network Intrusion De-

tection and Prevention. Washington University Technical Report # WUCS-01-30
26. Li Q (2007) A Dynamic Verification Platform for BPEL Environments. MSc. Thesis, De-

partment of Electrical & Computer Engineering, University of Alberta
27. Shanahan M.P. (1999) The event calculus explained. In: Artificial Intelligence Today. Vol-

ume 1600 of Lecture Notes in Artificial Intelligence. (1999) 409–430
28. SNORT Intrusion Detection System, www.snort.org, 2004. Accessed 9 December 2008
29. Spanoudakis G, Kloukinas C, Androutsopoulos K.(2007) Towards security monitoring pat-

terns. Proceedings of ACM Symposium on Applied Computing (SAC07) - Track on Soft-
ware Verification, Volume 2, Seoul, Korea, 1518–1525

30. Spanoudakis G, Mahbub K (2006) Non intrusive monitoring of service based systems. Int.
J. of Cooperative Information Systems 15: 325–358

31. Staniford-Chen S, Tung B, Porras P, Kahn C, Schnackenberg D, Feiertag R, Stillman M
(1998) The Common Intrusion Detection Framework - Data Formats. IETF,
www.watersprings.org/pub/id/ draft-staniford-cidf-data-formats-00.txt, Accessed on 9 De-
cember 2008

32. Stephen E, Hansen, E, Atkins T (1993) Automated System Monitoring and Notification
With Swatch. Proceedings of 7th USENIX conference on System administration, Monterey,
California, USA, 1993

33. Tsigritis T, Spanoudakis G, Kloukinas C, Lorenzoli D (2009) Diagnosis and Threat Detec-
tion Capabilities of the SERENITY Monitoring Framework. In Spanoudakis G, Maña A,

The Runtime Monitoring Framework of SERENITY 237

and Kokolakis S (eds), Security and Dependability for Ambient Intelligence, Information
Security Series, Springer

34. van Lamsweerde A (1996) Divergent Views in Goal-Driven Requirements Engineering.
Proceedings of Viewpoints ’96 – ACM SIGSOFT Workshop of Viewpoints in Software
Development

