
 

                                                

Chapter 14 

Diagnosis and Threat Detection Capabilities of 
the SERENITY Monitoring Framework  

Theocharis Tsigkritis, George Spanoudakis, Christos Kloukinas and Davide 
Lorenzoli1 

Abstract In addition to the basic monitoring capabilities that have been de-
scribed in Chapter 13, the SERENITY monitoring framework offers mechanisms 
for diagnosing the reasons that have caused the violation of security and depend-
ability (S&D) properties and detecting potential violations of such properties, 
called “threats”. Diagnostic information and threat detection are often necessary 
for deciding what would be an appropriate reaction to a violation and taking pre-
emptive actions that could stop the predicted violation, respectively.  In this chap-
ter, we describe the mechanisms of the SERENITY monitoring framework which 
are used to generate diagnostic information for violations of monitoring rules that 
express S&D properties within S&D Patterns, and predict potential violations of 
such properties.
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14.1 Introduction 

Monitoring security and dependability (S&D) properties during the operation of 
software systems is widely accepted as a measure of runtime verification that in-
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creases system resilience to dependability failures and security attacks. 
SERENITY advocates the need for this form of system verification and has devel-
oped a monitoring framework, called EVEREST, to support the monitoring of 
S&D properties during the operation of a system. The core capabilities of 
EVEREST have been described in Chapter 13. It should be noted, however, that 
whilst monitoring is able to detect violations of S&D properties at runtime, it can-
not always provide information that is necessary for understanding the reasons 
that underpin the violation of an S&D property and making decisions about what 
would be an appropriate reaction to it. Furthermore, it is often necessary to try to 
predict the possibility of a violation using information about the current state of a 
system rather than wait until all the information that would enable a definite deci-
sion about the violation becomes available. This is because an accurate early pre-
diction can widen the scope of possible reactions to the violation or even provide 
scope for taking pre-emptive action that prevents the violation.  

To appreciate the need for diagnosing the reasons underpinning the violation of 
an S&D property, consider the location based access control system (LBACS) that 
was introduced in Chapter 13. As discussed in that chapter, LBACS grants access 
to different resources of an enterprise (e.g. printers, intranet, and internet) from 
mobile devices depending on the credentials of these devices and their exact loca-
tion within the physical space of the enterprise. The location of a device in 
LBACS is determined by the strength of signals sent from the device to a location 
server. To ensure the availability of accurate information about the location of 
mobile devices in LBACS, each device is expected to send signals to the location 
detection server periodically. 

In EVEREST, the absence of a signal after the elapse of a given signalling pe-
riod can be detected by specifying a monitoring rule, requiring that the time be-
tween two consecutive signals from the same device should not exceed the given 
period. Detecting, however, the occurrence of a violation of this rule is not in itself 
sufficient for establishing the reasons why some device has failed to send the ex-
pected signals. In such cases, a further search for possible causes of the violation 
could be useful for deciding how to react to the violation. To appreciate why, con-
sider that the violation might, for example, have been caused because: (a) the in-
volved device malfunctions and has stopped sending signals after some time point, 
(b) the involved device is no longer present in the area covered by the server, (c) 
some of the signals sent by the device have been lost in the communication chan-
nel between the device and the server, or (d) the signal that was used to determine 
the start of the last period of checking was sent by an external agent (attacker) 
who managed to fake the identity of the device (i.e., an attacker). Although the 
above list of possible causes is not exhaustive, it demonstrates that a decision 
about what would be an appropriate reaction to the violation depends on the rea-
son(s) that have caused it and, therefore, the selection of the appropriate response 
action cannot be made solely on the basis of knowledge about the violation but re-
quires additional diagnostic information. 

In this chapter, we present the mechanisms of EVEREST that support the gen-
eration of diagnostic information for detected violations of S&D properties and 
the prediction of potential violations of S&D properties.  
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The overall aim of the diagnostic mechanism of EVEREST is the identification 
of possible explanations for the violations of rules that have been detected by the 
framework in order to aid the selection of appropriate reactions to these violations. 
To generate such explanations, the diagnostic mechanism used abductive reason-
ing [22]. Then, following the identification of possible explanations, the diagnosis 
mechanism also assesses the plausibility of explanations by identifying any effects 
that they would have beyond the events that they were generated from and check-
ing whether these effects correspond to events that have been recorded in the 
event log of the monitoring framework and are genuine. The assessment of the 
genuineness of the explanation effects and the validity of explanations is based on 
the computation of beliefs using functions that we have defined for this purpose. 
These functions have been defined using the axiomatic framework of the Demp-
ster Shafer theory of evidence [18]. The diagnostic mechanism of EVEREST has 
been tested successfully using some of the industrial scenarios of the project. Ex-
amples of the application of this mechanism in the industrial scenarios of 
SERENITY and its results are discussed in this chapter. 

The detection of potential violations of S&D properties in EVEREST builds 
upon the basic monitoring and diagnostic capabilities of the framework and is 
based upon the computation of beliefs that violations of such properties are likely 
to occur. The computation of such beliefs is based upon the diagnostic mecha-
nisms of EVEREST which provide the basic assessment of the genuineness of the 
events received by the framework and historical data about the frequency of co-
occurrence of events which are connected by temporal constraints within specific 
S&D monitoring rules. These historical data provide the basis for computing be-
liefs in the potential occurrence or not of an event when another event that it is 
constrained by has occurred and is known to be genuine.  

The rest of this chapter is structured as follows. Section 14.2 provides an over-
view of the diagnostic process of the SERENITY monitoring framework. Sections 
14.3, 14.4 and 14.5 focus on the processes of generating explanations, identifying 
their expected effects and assessing the validity of explanations and genuineness 
of events, respectively. Section 14.6 presents the threat detection mechanisms of 
the SERENITY monitoring framework and gives examples of threat detection. Fi-
nally, Section 14.7 gives an overview of related work and Section 14.8 provides 
some overall concluding remarks and outlines directions for future work. 

14.2 Overview of Monitoring and the Diagnosis Process 

As discussed in Chapter 13, the monitoring framework of SERENITY supports 
the monitoring of S&D properties during the operation of distributed systems 
which may bind (and re-bind) software components running on different devices 
dynamically. S&D properties are specified by a special form of Event Calculus 
[19] formulas, called monitoring rules. These formulas are checked against 
streams of runtime events which the SERENITY monitoring framework receives 
from the different components of the system which is being monitored, and/or in-



242                                      Theocharis Tsigkritis et al. 

formation about the state of this system. The latter information is deduced using a 
set of assumptions about the behaviour of the system and how it affects its state. 

A monitoring rule has the form B1 ∧ … ∧ Bn ⇒ H where Bi and H can be predi-
cates of one of the following two types: 

• Happens(e,t,R[t1,t2]) − this predicate indicates that an event e of instantaneous 
duration has occurred at some time point t within a given time range [t1,t2].  

• HoldsAt(f,t) − this predicate indicates that a condition f, called fluent, is valid at 
some time point t. 

The syntactic form and meaning of the terms e and f which are used to repre-
sent events and fluents in the above predicates have been discussed in chapter D3 
and, therefore, are not discussed in more detail here. 

A rule that could be specified in Event Calculus to represent the condition 
about the periodic dispatch (every m time units) of signals from the mobile de-
vices in the scenario presented in Section 13.2 within the location based access 
control S&D Pattern that has been specified to support this scenario is the follow-
ing: 
Rule 1: 

Happens(e(_e1, _devID, _locServerID, REQ, signal(_devID), 
_locServerID), t1, R(t1,t1)) 
⇒(∃t2:Time,e2:String) 
 Happens(e(_e2,_ devID, _locServerID,  REQ, signal(_devID), 
_locServerID), t2, R(t1,t1+2)) ∧ (_e1 ≠ _e2)  

The above rule would be violated by the following events that are stored in the 
log: 

(E1) Happens(e(E1, Lap33, LocSer1,REQ,signal(Lap33), LocSer1),15, R(15,15))  
             [event captor-LocSer1] 

(E2) Happens(e(E2, Lap33, AcConSer1,REQ,accessTo(Lap33,PrinterA1), 
AcConSer1),2,R(2,2))                                                 [event captor-AcConSer1] 

(E3) Happens(e(E3, Lap33, LocSer1,REQ,signal(Lap33), LocSer1),22, R(22,22))  
              [event captor-LocSer1] 
 

More specifically, when the event E1 (i.e., Happens(e(E1,Lap33, 
LocSer1,REQ,signal(Lap33),LocSer1),15, R(15,15))) which indicates the receipt 
of a signal from Lap33 by the location server LocSer1 occurs, the rule would be 
satisfied only if within 2 time units from the receipt of the event, LocSer1 had re-
ceived a second signal from the same device. Note, however, that such a signal is 
not received as shown in the log. This is because following the receipt of the sig-
nal represented by the event E1, the next signal from Lap33 is received at the time 
point t=22.  Hence, the monitor can deduce by applying the principle of negation 
as failure (NF) the absence of a signal from Lap33 from T=16 to T=17 or, for-
mally, that the predicate ¬Happens(e(E1,Lap33, LocSer1,REQ,signal(Lap33), 
LocSer1),t, R(16,17))) is True. It should be noted, however, that this deduction is 
possible only when the monitor receives event E3 in the log. This is because E3 
indicates that the time of the location server is T=22 and, therefore, the monitor 
can deduce with certainty that it had received no other event from Lap33 since re-
ceiving event E1 at T=15.  
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The diagnosis mechanism of SERENITY is invoked after the detection of a 
violation of a monitoring rule as the above in order to find possible explanations 
of the reasons underpinning the occurrence of the events involved in the violation 
the rule and assess their genuineness. This mechanism produces diagnostic infor-
mation through a process of four stages, which are shown in Figure 14.1. These 
stages are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14.1 The diagnosis process 

1. The explanation generation stage − In this stage the diagnosis mechanism gen-
erates all the possible explanations of the events which are involved in the vio-
lation. These explanations are generated using abductive reasoning based on 
assumptions about the behaviour of the components of the system. These as-
sumptions are specified as part of S&D Patterns. 

2. The explanation effect identification stage − In this stage the diagnosis mecha-
nism derives the possible consequences (effects) of the potential explanations 
that were identified in the previous stage. The consequences are generated from 
the abduced explanations and system assumptions using deductive reasoning. 

3. The plausibility assessment stage − In this stage the diagnosis mechanism 
checks the expected effects of explanations against the event log to see if there 
are events that match them or, equivalently the existence of further supportive 
evidence for the explanation. 

4. The diagnosis generation stage − In this stage the diagnosis mechanism pro-
duces an overall diagnosis for the violation including belief measures in the 
genuineness of the events involved in the violation and the most plausible ex-
planations that have been identified for these events (if any). 
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In the following we describe each of the above stages in detail. 

14.3 Generation of Explanations 

The generation of explanations is based on abductive reasoning. More specifically, 
given a set Ω  of events and fluents that are involved in the violation of a monitor-
ing rule, the diagnosis mechanism searches for explanation formulas Φ which, in 
conjunction with the set of the assumptions about the system that is being moni-
tored and the events recorded in the log of the monitor, entail the events in Ω. 

The search for explanations starts from a violation observation P that needs to 
be explained and find all assumptions of the form a: B1 ∧ … ∧ Bn ⇒ H whose 
head H can be unified with P. When such an assumption is found, the algorithm 
checks whether: (a) the unification of P with H provides concrete values for all the 
non time variables of the predicates B1, …,Bn in its body, and  (b) it is possible to 
derive concrete time ranges for the time ranges of all these predicates. If these 
conditions are satisfied, the algorithm instantiates the predicates B1, …,Bn and 
identifies which of these predicates are observable predicates (O-preds), deducible 
predicates (D-preds) or abducible predicates (A-preds). The set of the generated 
explanations of an event Ei must be a subset of A-preds. 

Then, the algorithm checks if each of the observable or deducible predicates in 
the body of a can be matched with some recorded event or can be derived from the 
events in the monitor’s log and the known system assumptions, respectively. If 
there are observable or deducible that cannot be verified via this check, the algo-
rithm tries to find abduced explanations for them recursively. If such explanations 
are found for all the non verified observable or deducible predicates, these expla-
nations along with the abduced predicates determined in the current step of the 
explanation process are reported as the possible explanation of the initial violation 
observation P. In cases, however, where there are observables and/or deducible 
predicates in the body of a that can neither be verified nor explained by abduction, 
the explanation generation path using a will fail. 

As an example of the explanation generation process consider the violation of 
Rule 1 above. When presented with the events involved in this violation, namely 
the events represented by the predicates: 
P1:Happens(e(E1,Lap33,LocSer1,REQ,signal(Lap33),LocSer1), 15, R(15,15))  

and 
P2:¬Happens(e(E1, Lap33,  LocSer1, REQ, signal(Lap33), LocSer1),t, R(16,17)) 
the diagnosis mechanism tries to find possible explanations for each of these 
predicates individually. The search for such explanations is based on assumptions 
specified about the behaviour of the different components involved in the location 
based access control S&D Pattern. Two of the assumptions of this pattern are:  
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Assumption 1:  
Happens(e(_eID1, _x1,  _x2, _x3, _x4, _x5, _x6, 
operableInPremises(_deviceID), _x7, _x8), t1, R(t1,t1))  
⇒(∃t2:Time)  
Happens(e(_eID2,_deviceID,_locationServerID, RES, si-
gnal(_deviceID),_locationServerID), t2, R(t1,t1+2)) 

 
Assumption 2:  
Happens(e((_eID1,_deviceID,_controlServerID,REQ,accessTo(_deviceID, 
_resourceID),_controlServerID), t1, R(t1,t1))  
⇒(∃t2:Time) 
Happens(_e(eID3,_deviceID,_locationServerID, 
RES,signal(_deviceID),_locationServerID), t2, R(t1-2, t1+2))  
 

The above assumptions are specified in the location based access control S&D 
Pattern to express the circumstances under which mobile devices are expected to 
send signals.  In particular, the former  assumption (Assumption 1) states that if a 
device (_deviceID) becomes operational in the area that is controlled by the access 
control system at some time point  (), it must send a signal to the location server 
within the expected signalling period (i.e., within 2 seconds). The predicate Hap-
pens(e(_eID1, _x1,  _x2, _x3, operableInPremises(_deviceID), _x4), t1, R(t1,t1)) 
in Assumption 1 represents the event that the device becomes operational in the 
space of the location based access control system and the predicate Hap-
pens(e(_eID2, _deviceID, _locationServerID, RES, signal(_deviceID), 
_locationServerID), t2, R(t1, t1+2))) expresses the event of dispatching a signal. 
The second assumption (Assumption 2) states that if a device requests the access 
control server to obtain access to a resource (see the predicate Hap-
pens(e((_eID1,_deviceID,_controlServerID, REQ, accessTo(_deviceID, 
_resourceID),_controlServerID), t1, R(t1,t1))) at some time point t1, then a signal 
must have been sent by this device in the period from 2 seconds prior to the re-
source access request to 2 seconds after it. The time period that is specified in the 
assumption for the dispatch of the device signal covers the possibility of the de-
vice having dispatched a signal prior to the request and the possibility of dispatch-
ing a signal after the request. 

Given the above assumptions, the search for an explanation of the predicate  P1 
above detects that this predicate can be unified with the predicate Hap-
pens(e(_eID2, _deviceID, _locationServerID, RES, signal(_deviceID), 
_locationServerID), t2, R(t1-2, t1)) in the head of Assumption 1 (the unifier of  the 
two predicates is {_eID2/E1, deviceID/Lap33, _locationServerID/LocSer1, 
t2/15}).  

Thus, the linear constraint system that is generated for the time variable t1 in 
Assumption 1 following the unification includes the constraints  t1 ≤ 15 and 15 ≤ 
t1+ 2 or, equivalently, 15−2  ≤ t1  and 15 ≤ t1. Hence, a feasible time range exists 
for t1 (i.e., t1∈[13,15]) and, as the non time variables in the body of Assumption 1 
are covered by the unification , the conditions of the explanation generation proc-
ess are satisfied and the predicate 
Φ11:  Happens(e(_eID1, _x1,  _x2, _x3, operableInPremises(Lap33), _x4), t1, 

R(13,15)) 
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is generated as a possible explanation of P1. Intuitively, the meaning of this ex-
planation is that as a signal has been received from the device Lap33 at the time 
point t=15, it may be assumed that this device has become operational in the area 
covered by the access control system at some time point in the range from t=13 to 
t=15. Note also that since the predicate Happens(e(_eID1, _x1,  _x2, _x3, 
operableInPremises(Lap33), _x4), t1, R(13,15)) belongs to the set of abducible 
predicates, the explanation generation process does not attempt to produce more 
refined explanations of it. 

Similarly, the predicate 
Φ12: Happens(e((_eID1, Lap33, _controlServerID, REQ,  ac-

cessTo(Lap33,_resourceID), _controlServerID), 15, R(13,17)) 
can be generated as another possible explanation of P1 from Assumption 2 and as-
suming that Φ12 is also an abducible predicate. Hence, the set of possible explana-
tions of the violation observation expressed by the predicate P1under the assump-
tions specified in the location based access control pattern includes the predicates 
Φ11 and Φ12. 

14.3 Identification of Explanation Effects 

After the generation of the possible explanations for the events involved in the 
violation of a rule, the diagnosis process identifies the expected effects of these 
explanations and uses them to assess the plausibility of the explanations. The as-
sessment of explanation plausibility is based on the hypothesis that if the expected 
effects of an explanation match with events that have occurred (and recorded) dur-
ing the operation of the system that is being monitored, then there is evidence 
about the validity of the explanation. This is because the recorded events that 
match the expected effects of the explanation may have also been caused by the 
explanation itself. It should be noted that under the same hypothesis the violation 
observation (event) that the explanation was generated for also casts positive evi-
dence for the explanation. However, the evidence that arises from this event is dis-
regarded to avoid cycles in the reasoning process. 

The identification of the expected effects of explanations is based on deductive 
reasoning. More specifically, given an explanation Exp = P1 ∧…∧ Pn that is ex-
pressed as a conjunction of abduced predicates, the diagnosis process iterates over 
its constituent predicates Pi and, for each of them, it finds the system assumptions 
B1 ∧ … ∧ Bn ⇒ H that have a predicate Bj in their body which can be unified with 
Pi and the rest of the predicates Bu (u=1,…,n and u≠j) in it are True. For such as-
sumptions, if the predicate H in the head of the assumption is fully instantiated 
and its time range is determined, H is derived as a possible consequence of Pi. 
Then, if H is an observable predicate, i.e., a predicate that can be matched with re-
corded events, H is added to the expected effects of Exp. If H, however, is not an 
observable predicate, the effect identification process tries to generate the conse-
quences of H recursively and, if it finds any such consequences that correspond to 
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observable events, it adds them to the set of the expected effects of Exp. In this 
way, the diagnosis process computes the transitive closure of the effects of Exp. 

To clarify this stage of the diagnosis process, consider again the example of 
the violation of Rule 1 in the location based access control pattern. Using Assump-
tion 1, it is possible to determine the expected effects of the predicate that was 
generated as a possible explanation of P1. More specifically, from Assumption 1 
it is possible to identify the predicate 
C111: Happens(e(_eID2, Lap33, LocSer1, REQ, signal(Lap33), LocSer1), t2, 

R(13,17)) 
as an expected effect of  Φ11. Thus, according to this predicate any signal that has 
been sent by the device Lap33 within the time range from t=13 to t=17 other than 
the signal represented by the predicate P1 as we discussed above would support 
the validity of the explanation Φ11.  

Similarly, the expected effects of the other explanation of P1, i.e., the explana-
tion Φ12  can be deduced from Assumption 2. Using this assumption, it can be de-
duced that the predicate 
C121:  Happens(e(_eID2, Lap33, _locationServerID, REQ, signal(Lap33), 

_locationServerID,), t2, R(11,19)) 
is an expected effect of Φ12. In the case of Φ12, however, as the predicate Hap-
pens(e((_eID1, Lap33, _controlServerID, REQ,  accessTo(Lap33,_resourceID), 
_controlServerID), 15, R(13,17)) is also an observable predicate, it can also be re-
garded as a consequence of itself that should be verified against the event log of 
the monitoring framework. Hence, the set of the expected effects of Φ12 will be: 
Φ12

C= {Φ12, C121}. 
 

14.4 Assessment of Event Genuineness 

14.4.1 Foundations of Assessment 

The diagnosis mechanism assesses the genuineness of violation observations and 
other events based on the validity of the explanations that have been found for 
them. The basic principles that underpin this assessment are that: 

1. an event is genuine if it has occurred and has at least one valid explanation, and 
2. an explanation is valid for an event if its preconditions and expected conse-

quences match with events in the log of the monitoring framework which are 
genuine themselves. 

Based on the above principles, event genuineness is defined as follows: 
Definition 1:  The genuineness of an event Ei given a set of previous explanations 
Eo and a time range of interest [Tmin, Tmax] is defined as: 
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Genuine(Ei,[Tmin,Tmax], Eo) =   Occurred(Ei) ∧ Explainable(Ei, [Tmin,Tmax],Eo) 
where 

• Occurred(Ei) is a proposition denoting that the event Ei has occurred. This 
proposition is defined as: 

Occurred(Ei) = True  if   ((∃Ew. Ew∈EventLog [Tmin,Tmax]) ∧ 
   mgu(Ei,Ew) ≠∅ ∧ (ti

LB≤tw≤ ti
UB)) 

Occurred(Ei) = False Otherwise 
where 
– EventLog[Tmin,Tmax]  is a subset of the events in the log of the monitor that 

includes only events which have occurred in the time range [Tmin,Tmax] 
– mgu(Ei,Ew) is the most general unifier of the events Ei and Ew  [9]  
– ti

LB and ti
UB are the lower and upper boundary of the time range within 

which Ei has occurred (or is expected to occur)1  

• Explainable(Ei, [Tmin, Tmax], Eo) is a proposition denoting that the event Ei has 
at least one valid explanation in the time range [Tmin, Tmax] that is formally de-
fined as: 

Explainable(Ei, [Tmin,Tmax],Eo) = ∨Φij∈EXPValid(Φij,[Tmin,Tmax],Eo∪{Φij}) 

     where 
– EXPi is the set of the alternative explanations that can be generated for the 

event Ei excluding any explanations already in Eo 
– Valid(Φij,[Tmin, Tmax],E) is a proposition denoting that the explanation Φij is 

valid within the time range of interest [Tmin,Tmax] This proposition is de-
fined as: 

  Valid(Φij, [Tmin, Tmax], E) = 
    ∧ Eu∈Conds(Ei,Φij, [Tmin, Tmax]) Genuine(Eu, [Tmin,Tmax], E)} ∧ 
     {∨ Ew∈Cons (Ei,Φij, [Tmin, Tmax]) Genuine(Ew, [Tmin,  Tmax], E)}) 

– Conds(Ei,Φij,[Tmin,Tmax]) is the set of the preconditions in the deductive 
path from Φij to Ei, that are expected to occur within the diagnosis range 
[Tmin,Tmax]2.  This set is defined as: 

      Cond (Ei,Φij,[Tmin,Tmax]) = {Ew| Ew∈EventLog[Tmin,Tmax]  ∧  

   ∃c,f. (f∈DeductivePath(Φij,Ei)) ∧   
   (c∈Body(f))  ∧ mgu(c,Ew) ≠∅ } 

– Cons (Ei,Φij,[Tmin,Tmax]) is the set of the consequences of the explanation 
Φij that are expected to occur within the diagnosis range [Tmin,Tmax], de-
fined as: 

 Cons(Ei,Φij,[Tmin,Tmax]) = {Ek | (Φij├ Ek) ∧ Ek∈EventLog[Tmin,Tmax] } 

                                                 
1  ti

LB and ti
UB are both equal to the timestamp ti of Ei if Ei is an event in the log of the monitor. 

2 This set is determined during the abductive reasoning process that generates the explanation Φij.  
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According to definition 1, the occurrence or not of an event is assessed by 

checking whether or not the event has been recorded in the log of the monitor. Al-
though this criterion provides only an indirect indication of the occurrence or not 
of an event and in some cases may lead to uncertainty about  the non occurrence 
of events as we discuss below, it provides the only basis for making similar deci-
sions at runtime.  It should also be noted that Definition 1 restricts the assessment 
of event genuineness within a time range [Tmin,Tmax], called “diagnosis window”. 
The diagnosis window is set by the user of the SERENITY runtime framework 
and determines the boundaries of the space within which the search for supportive 
evidence for events is performed. Imposing such boundaries is often necessary for 
the efficiency of the diagnosis process since without them the recursive definition 
of event genuineness can lead to an exhaustive search of the entire log of the 
monitor. 

Another characteristic of Definition 1 is that during the recursive assessment of 
event genuineness, it excludes from the possible explanations of the event which 
is currently being assessed any explanations that are part of a set Eo. During diag-
nosis, the set E includes any explanations that have been generated earlier in for 
other events and which need to be excluded during the assessment of the current 
event in order to avoid circles in the assessment process. In the example shown in 
Figure 14.2, for instance, the assessment of the genuineness of the event e3 will 
require the assessment of the genuineness of the event e1 since the latter event is 
an expected consequence of the explanation Φ of e3. Thus, according to Definition 
1, the genuineness of event e1 will need to be assessed as part of the process of as-
sessing the genuineness of e3. When assessing the genuineness of e1, however, the 
explanation Φ will have already been generated as an explanation of e3, and there-
fore it will be disregarded during the assessment of e1.  

 

e3 e1 e2 

Φ’ entails Φ’ entails entails

 
Fig. 14.2 Events and explanations 
 

Definition 1 establishes the logical criteria for the assessment of event genu-
ineness. It should be noted, however, that during diagnosis there might be an un-
certainty about the occurrence or not of some events and in such cases the exact 
reasoning imposed by this definition would be over restrictive characterising most 
of the events as non genuine. More specifically, when searching the log of the 
monitor to find events that could match (and, therefore, confirm) an expected con-
sequence or precondition of an explanation, as required by Definition 1, there is a 
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possibility to fail to find a matching event not because this event has not occurred 
but because it has not arrived at the monitor yet. This can happen because the time 
that it takes for an event to arrive from the source where it has been captured to 
the monitor is not negligible and may vary depending on network traffic. This 
possibility can be excluded in some cases but not all. More specifically, since the 
communication channels between different event captors and the SERENITY run-
time framework are assumed to operate in a FIFO mode (i.e., to send the events in 
the same order that they receive them3) when the diagnosis process searches for an 
event e that is expected to have occurred by some time point te at the latest and 
does not find it in the log, it can check the timestamp of the latest event that has 
been received from the event captor that is expected to send e. If this timestamp is 
greater than te then it can be guaranteed that e will not arrive at the monitor at a 
later time point and the absence of this event (i.e., ¬e) can be assumed to be true. 
If tlast, however, is less than te then it is impossible to establish with certainty 
whether or not e has occurred.  

To deal with this uncertainty, the diagnosis mechanism of SERENITY advo-
cates an approximate reasoning approach which generates degrees of belief in the 
membership of an event in the log of the monitor and the existence of some valid 
explanation for it rather than strict logical truth values. These degrees of belief are 
computed by functions founded in the axiomatic framework of the Dempster 
Shafer theory of evidence [18]. These functions are introduced in the following. 

14.4.2 Belief Functions 

The diagnosis mechanism of SERENITY uses a set of belief functions to generate 
beliefs in the explainability of events and whether or not they have occurred. The 
two main functions which are used for this purpose are:  

1. the function mEX  which measures the basic degree belief that an event E is ex-
plainable (i.e., the basic degree of belief in the proposition denoted by Explain-
able(E, [Tmin,Tmax], Eo)) , and 

2. the function mIL which measures the basic degree belief that an event E is in the 
log of the monitor (i.e., the basic degree of belief in the proposition denoted by 
Occurred(E)) 

These two functions are defined as follows: 

Definition 2: mEX is a function measuring the basic degree of belief in the exis-
tence of a valid explanation for an event Ei defined as: 

mEX(Explainable(Ei, [Tmin, Tmax], Eo)) = 1 if Ei = PNULL 
mEX(Explainable(Ei, [Tmin, Tmax], Eo)) = α1 if Ei = CNULL 
mEX(Explainable(Ei, [Tmin, Tmax], Eo)) = α2 if Ei≠PNULL, Ei≠CNULL, & EXP=∅ 
mEX(Explainable(Ei, [Tmin, Tmax], Eo)) = 

                                                 
3 Network channels that realise the TCP/IP protocol have this property. 
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∑I⊆EXP and I≠∅(–1)|I|+1{∏x∈I mVL(Valid(x, Ei,[Tmin,Tmax],Eo∪{x}))  Otherwise 

where 

• EXP is the explanation set of Ei that has been defined in Definition 1 
• mVL(Valid(x,[Tmin,Tmax],Eo∪{x}) is the basic probability in the validity of the 

explanation x of Ei that is computed according to Definition 3 below. 

 
Definition 3: mVL is a function measuring the basic probability of the validity of 
an explanation Φ for an event E, given a diagnosis window [Tmin,Tmax] and a set of 
prior explanations Eo, defined as: 

mVL(Valid(Φ, E, [Tmin,Tmax], Eo) = 
 ∏Eu∈CND(E,Φ,[Tmin,Tmax]) mGN(Genuine(Eu,[Tmin,Tmax], Eo∪{Φ})) × 
 {∑S⊆CNS(E,Φ,[Tmin,Tmax]) & S≠∅ (–1)|S|+1{∏ Ew∈S mGN(Genuine(Ew, [Tmin, Tmax], 

Eo∪{Φ}))}} 

where 

• EXP is the explanation set of E that has been defined in Definition 1 
• CND(E,Φ,[Tmin,Tmax]) is a set that includes the preconditions in the deductive 

path from an explanation Φ to the event E that are expected to be satisfied 
within the diagnosis window [Tmin,Tmax]. If there are no such preconditions, 
Conds(E,Φ,[Tmin,Tmax]) includes a single special element PNULL which denotes 
the absence of any precondition in the deductive path and is called NULL pre-
condition. CND(E,Φ,[Tmin,Tmax]) is defined as: 

 CND(E,Φ,[Tmin,Tmax]) = {PNULL}  If Conds(E,Φ,[Tmin,Tmax])=∅ 
 CND(E,Φ,[Tmin,Tmax]) =  Conds(Ei,Φij,[Tmin,Tmax]) Otherwise 

• CNS(E,Φ, [Tmin, Tmax]) is the set of the consequences of the explanation Φ of E 
that are expected to occur within the diagnosis range [Tmin,Tmax].  If no such 
consequences exist, CNS(E,Φ,[Tmin,Tmax]) contains a special element CNULL 
which denotes the absence of any consequence of Φ  in the relevant time period 
and is called null consequence. CNS(E,Φ,[Tmin,Tmax])  is defined as: 

 CNS(E,Φ, [Tmin,Tmax]) = {CNULL}  If Cons(Ei,Φij,[Tmin,Tmax])=∅ 
 CNS(E,Φ, [Tmin,Tmax]) = Cons(Ei,Φij,[Tmin,Tmax])  Otherwise 

• mGN is a function that measures the basic probability of the genuineness and 
non-genuineness of an event and is defined by Definition 4. 

 
Definition 4: mGN is a function that measures the basic probability of the genuine-
ness and non-genuineness of an event, defined as: 
mGN(Genuine(Ei,[Tmin,Tmax],Eo)) =  
 mIL(Occurred(Ei)) × mEX(Explainable(Ei,[Tmin,Tmax],Eo)) 
mGN(¬Genuine(Ei, [Tmin,Tmax], Eo)) = 

mIL(¬Occurred(Ei)) + mEX(¬Explainable(Ei, [Tmin,Tmax], Eo)) − 
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(mIL(¬Occurred(Ei)) × mEX(¬Explainable(Ei, [Tmin,Tmax], Eo)) 
 

As indicated in definitions 2 and 3, mEX
 calculates the basic probability of the 

explainability of an event Ei as the belief in the existence of at least one valid ex-
planation for it, i.e., an explanation whose preconditions for the entailment of Ei 
are all genuine and which has at least one genuine consequence other than Ei. 
Thus, the computation of mEX

i is recursive. 
It should also be noted that mEX

 assigns some belief in the genuineness of 
events which have no explanations. This is a relaxation of the logical definition of 
event genuineness in Definition 1 that is introduced for two reasons. The first rea-
son is that an event Ei with no explanations of its own may be required to provide 
confirmatory evidence for a precondition or consequence of an explanation of an-
other event Ej. If this is the case, the assignment of a zero belief in the explainabil-
ity of Ei (due to the absence of an explanation for it) would reduce to zero the ba-
sic probability of the genuineness of Ei. Thus, it could also reduce or even make 
equal to zero the basic probability of the genuineness of the event Ej whose expla-
nation had to be confirmed by Ei. The stance reflected by definitions 2 and 3 in 
this case is that the very presence of Ei in the monitor’s log should provide some 
evidence for the validity of the explanation of Ej even though Ei is not explainable 
itself and that the belief in the validity of this explanation should be higher than in 
cases where none of its consequences of preconditions were matching with events 
in the monitor’s log. The second reason for assigning a non zero basic probability 
in the explainability of events with no explanations is because during diagnosis, an 
event may end up having no explanations either because its explanations have al-
ready been considered as explanations of previous events or because they fall out-
side the selected diagnosis window. In such cases, it would not be accurate to cast 
a zero belief in the genuineness of the event. To avoid such cases, mEX assigns a 
small belief in the genuineness of events with no explanation that is determined by 
the parameter α2. The value of this parameter should be set very close to zero, in 
order to provide a close approximation of the logical definition of explainability 
(Definition 1) in cases where an event does not have any explanation.  

Finally, mEX assigns a pre-determined basic probability to null preconditions 
and consequences (i.e., 1 and α1, respectively). The former belief measure reflects 
the stance explanations with no preconditions are as valid as explanations with 
genuine preconditions. The assignment of the basic probability measure α1 to an 
explanation with no consequences addresses a different consideration. More spe-
cifically, whilst the reasoning principle underpinning the diagnosis framework of 
SERENITY favours explanations which are confirmed by the fact that they have 
consequences matched by genuine events other than the event that they were gen-
erated for, it would be unfair to disregard entirely explanations that have no other 
such consequences. Cases of such explanations are more likely to arise when the 
diagnosis window is narrow and, therefore, it may be possible to end up with ex-
planations with no further consequences falling within the given diagnosis win-
dow. For such explanations, it is important to assign some basic probability meas-
ure in their validity but at the same time keep this measure low to reflect the 
absence of any evidence of runtime event in the given diagnosis interval. The 
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definition of the basic probability function mEX introduces the parameter α1 to de-
fine the belief measure that should be used in such cases and leaves the choice of 
its exact value to the user of the framework. The expectation, however, is that this 
value will be a number close to zero to ensure that explanations with no conse-
quences cannot affect significantly the overall belief in the genuineness of events. 
Furthermore, it should be noted that α1 must be greater than α2 to ensure that ex-
planations with no consequences affect more the beliefs in the genuineness of 
events than null explanations. 

The basic probability of whether or not an event has occurred is computed by 
the function mIL. This function is defined as follows: 

Definition 5: mIL
 is a function measuring the basic probability in the occurrence of 

an event Ei defined as: 
mIL(Occurred(Ei)) = 1 if Ei ∈ EventLog or 
                                      Ei is a HoldsAt, PNULL or 
   CNULL predicate 
mIL(¬Occurred(Ei)) = 1          if Ei ∉ EventLog, and 
    Ei is not a HoldsAt, PNULL or 
    CNULL predicate, and 
    lastTimestamp(event captor(Ei)) ≥ ti

UB 
mIL(Occurred(Ei) ∨ ¬Occurred(Ei)) = 1 if Ei ∉ EventLog, 
    Ei is not a HoldsAt, PNULL or 
    CNULL predicate, and 
    lastTimestamp(event captor(Ei)) < ti

UB 
According to this definition, mIL assigns a basic probability of 1 to Oc-

curred(Ei) for any event Ei that has been recorded in the log of the monitor. This 
belief reflects the certainty about the occurrence of any event that has appeared in 
the monitor’s log. mIL assigns also a basic probability of 1 to Occurred(CNULL) and 
Occurred(PNULL) as these are special events denoting the absence of explanation 
consequences and preconditions for particular explanations and when they are es-
tablished by the reasoning processes of the diagnosis framework they can be as-
sumed to be always true4. mIL also assigns a basic probability of 1 to ¬Oc-
curred(Ei)  for any event Ei that has not been recorded in the log when mIL is 
invoked and, at the time of the invocation, the timestamp of the latest event which 
has been generated by the event captor that is expected to produce Ei and recorded 
in the log (i.e., lastTimestamp(event captor(Ei))) is greater than or equal to the 
maximum time boundary until when Ei should have occurred (i.e., ti

UB). When, 
however, at the time of the invocation of mIL, the event in question (Ei) is not in 
the log but the timestamp of the latest event that has been received from the event 
captor that is expected to produce Ei is less than ti

UB, mIL assigns a basic probabil-
ity of 1 to Occurred(Ei) ∨ ¬ Occurred(Ei) and a basic probability of 0 to each of 
Occurred(Ei) and ¬Occurred(Ei) (i.e., mIL(Occurred(Ei))  = mIL(¬Occurred(Ei)) = 
0 and  mIL(Occurred(Ei) ∨ ¬ Occurred(Ei))=1). The assignment of these basic 

                                                 
4 The need to provide an mIL basic probability measure to such events may arise due to 

the recursive definition of mEX in terms of mGN and mIL. 
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probabilities in the latter case represents the complete uncertainty about the occur-
rence or not of Ei within the time period that the event is expected to occur. This 
uncertainty is also the reason for selecting the DS theory (as opposed to the classic 
probability theory) as the axiomatic framework for the belief based assessment of 
event genuineness (if mIL(Occurred(Ei)) and mIL(¬Occurred(Ei)) were classic 
probabilities it should always be that mIL(Occurred(Ei)) + mIL(¬Occurred(Ei))=1 
and therefore it would not be possible to represent the uncertainty that may arise in 
this case). 

The functions mGN, mEX, mVL, and mIL satisfy the axioms that define basic 
probability assignments in the DS theory and are, therefore, interpreted as func-
tions of this type. A basic probability assignment m in the DS theory is a function 
from the power set of a set θ of mutually exclusive propositions, called "frame of 
discernment", to the real interval [0,1] that satisfies two conditions: 

(A1) m(∅) = 0 and 
(A2) ΣP⊆θ m(P) = 1 

Basic probability assignments in the DS theory provide measures of belief in 
the truth of the disjunction of the propositions in different subsets of θ that cannot 
be split to any of these propositions individually. This, however, is not the only 
degree of belief that can be casted to a proposition in DS theory. From the basic 
probability assignment it is possible to derive two more degrees of belief for a 
proposition: its combined belief and its plausibility. These two beliefs are com-
puted by the so called “belief functions”. A belief function is induced from a basic 
probability assignment according to the following formula (axiom): 

 (A3) Bel(A) = ΣB ⊆ A m(B)  
As expressed by axiom (A3), the belief function Bel that is induced from a basic 
probability assignment m measures the total belief that is committed to the set of 
propositions P by accumulating the basic probability measures which are commit-
ted to the different subsets of P by m. Also based on the Bel function it is also pos-
sible to compute the plausibility of a proposition using the formula: 

(A4) Pls(A) = 1 − Bel(¬A)  
Based on (A3), the basic probability assignment to event genuineness mGN in-

duces a belief function BelGN that has the following functional form:  
BelGN(Genuine(Ei,[Tmin,Tmax],Eo)) = mGN(Genuine(Ei,[Tmin,Tmax],Eo)) 
BelGN(¬Genuine(Ei,[Tmin,Tmax],Eo)) = mGN(¬Genuine(Ei,[Tmin,Tmax],Eo)) 

14.4.3 Example 

Following the introduction of the basic probability functions mEX, mVL, mIL and 
mGN we can now revisit the example of the violation of Rule 1 and explain the use 
of these functions in the computation of basic degrees of belief in the genuineness 
of the events involved in this violation.  

Recall that, as we discussed earlier in Section 14.3, the events that caused the 
violation of Rule 1 were: 
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• E1: Happens(e((E3, Lap33, LocSer1,REQ,signal(Lap33),LocSer1),15, 
R(15,15) and 

• E4: ¬Happens(e((E3, Lap33, LocSer1,REQ,signal(Lap33), 
LocSer1),t,R(15,17)) 

and the event that enabled the derivation of E4 (by application of the principle of 
negation-as-failure) was the event E3 in the log that occurred at T=22. Thus, 
assuming a required diagnosis period of 7 time units from the time point when the 
violation was detected, the boundaries of the diagnosis window will be Tmin=15 
and Tmax=22. 

Within this diagnosis window, the set of the alternative explanations that can be 
generated for E1 includes the explanations Φ11 and Φ12, as we discussed in Section 
14.4. Also, their expected consequences are Cons(E1,Φ11,[15,22])={C111} and 
Cons(E1,Φ12,[15,22])={Φ12,C121}, as they are shown in Figure 14.3. Furthermore, 
it should be noted that the deductive paths from Φ11 and Φ12 to E1 have no 
preconditions. Thus, Conds(E1,Φ11,[15,22]) = Conds(E1,Φ12,[15,22]) = ∅ and, by 
virtue of Definition 2, a null precondition will need to be considered in both of 
these cases or, equivalently, the evaluation of the basic probability in the 
explainability of E1 will need to be based on the precondition sets    
CND(E1,Φ11,[15,22]) = CND(E1,Φ12,[15,22])= {PNULL}. 

Based on the identification of these explanations and their consequences in the 
first and second phase of the diagnosis process, the third phase of the process 
starts by searching for confirmatory evidence for the identified consequences and 
preconditions of C111, C121, and Φ12 in the event log (events E1-E3). This search 
will detect that there are no recorded events that can be unified with C111 and C121 

but there is an event (E2) that can be unified with Φ12.  

 
Fig. 14.3 Possible explanations of event E1 and their consequences 

Φ12 

 E1 

entails Φ11 

C121 

entails 

C111 

entails entails 

 

C111: Happens(e(_eID2, Lap33, LocSer1, REQ,  signal(Lap33), LocSer1), t2, R(13,17)) 

C121: Happens(e(_eID2, Lap33, LocSer1, REQ, signal(Lap33), LocSer1), t2, R(11,19) 

Φ12: Happens(e((_eID1,Lap33,_controlServerID,REQ,accessTo(Lap33,_resourceID),  
_controlServerID), 15, R(13,17)) 

Φ11: Happens(e(_eID1,_x1,_x2,_x3,operableInPremises(Lap33),_x4),t1,R(13,15)) 

E1: Happens(e((E1,Lap33,LocSer1,REQ,signal(Lap33),LocSer1),15,R(15,15))                      
                                                                             [event captor-LocSer1] 
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Based on these results, the basic probability in the explainability of E1 will be: 
mEX(Explainable(E1, [15, 22], ∅) = 
{∏Eu∈CND(E1,Φ11,[15,22]) m

GN(Genuine(Eu,[15,22], {Φ11})) × 
{∑ S⊆CNS(E1,Φ11,[15,22]) and S≠∅ (–1)|S|+1{∏ Ew∈S mGN(Genuine(Ew,[15,22],{Φ11})}} + 
{∏Eu∈CND(E1,Φ12,[15,22]) m

GN(Genuine(Eu,[15,22], {Φ12})) × 
{∑ S⊆CNS(E1,Φ12,[15,22]) and S≠∅ (–1)|S|+1{∏ Ew∈S mGN(Genuine(Ew,[15,22],{Φ12})}} − 
{∏Eu∈CND(E1,Φ11,[15,22]) m

GN(Genuine(Eu,[15,22], {Φ11})) × 
{∑ S⊆CNS(E1,Φ11,[15,22]) and S≠∅ (–1)|S|+1{∏ Ew∈S mGN(Genuine(Ew,[15,22],{Φ11})}} × 
{∏Eu∈CND(E1,Φ12,[15,22]) m

GN(Genuine(Eu,[15,22], {Φ12})) × 
{∑ S⊆CNS(E1,Φ12,[15,22]) and S≠∅ (–1)|S|+1{∏ Ew∈S mGN(Genuine(Ew,[15,22],{Φ12})}} (1) 
 

As, however, CND(E1,Φ11,[15,22])=CND(E1,Φ12,[15,22])={PNULL}, we will 
have: 
∏Eu∈CND(E1,Φ11,[15,22]) m

GN(Genuine(Eu,[15,22], {Φ11})) = 1, and 
∏Eu∈CND(E1,Φ12,[15,22]) m

GN(Genuine(Eu,[15,22], {Φ12})) = 1. 
Thus, (1) will be equal to: 

mEX(Explainable(E1, [15, 22], ∅) = 
{1 × mGN(Genuine(C111,[15,22],{Φ11})} + 
{1×{mGN(Genuine(Φ12, [15, 22], {Φ12})) +  mGN(Genuine(C121, [15, 22], {Φ12})) – 
        mGN(Genuine(Φ12,[15, 22],{Φ12})) × mGN(Genuine(C121,[15, 22],{Φ12}))} − 
{1× mGN(Genuine(C111,[15,22],{Φ11})} × 
{1×{mGN(Genuine(Φ12, [15, 22], {Φ12})) +  mGN(Genuine(C121, [15, 22], {Φ12})) – 
        mGN(Genuine(Φ12,[15, 22],{Φ12})) × mGN(Genuine(C121,[15, 22],{Φ12}))} (2) 
 

Note, however, as there are no recorded events that can be unified with C111 and 
C121 in the event log, we have: 
mGN(Genuine(C111,[15,22],{Φ11})) = 0  
mGN(Genuine(C121,[15,22],{Φ12})) =  0  
 
Thus, (2) becomes: 
 
mEX(Explainable(E1, [15, 22], ∅) = mGN(Genuine(Φ12, [15, 22], {Φ12})))  (3) 
 
E2, however, can be unified with Φ12 and EXP E2 = {ENULL}. Thus, we will have  
mGN(Genuine(Φ12,[15, 22],{Φ11})) = mIL(Occurred(E2)) × mEX(Explainable(E2)) 
  = α2  
Therefore, it will be  mEX(Explainable(E1, [15, 22], ∅) =  α2  
 

The disbelief in the genuineness of the event E1 is computed using the formula 
Bel(¬Genuine(Ei, [Tmin, Tmax],E0)) =  Bel(Genuine(¬Ei, [Tmin, Tmax],E0)). As E1 
exists in the event log there will be that Occurred(E1) = True and Occurred(¬E1) 
= False and, therefore, the belief in the genuineness of absence of E1 is zero 
(Bel(¬Genuine(E1, [15, 22],∅)) = 0) 
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14.5 Diagnosis Generation 

The last phase of the diagnosis process is concerned with the generation of a final 
diagnosis of a violation based on the beliefs computed for the genuineness of the 
individual events involved in it. This final diagnosis is a report of the confirmed 
and unconfirmed predicates, which are involved in the violation that is generated 
as shown in the algorithm of Figure 14.4. 

More specifically, this algorithm takes as input a template that represents an in-
stantiation of an S&D monitoring rule that has been violated and generates expla-
nations for the individual predicates which are involved in the violation by calling 
the newly developed Explain function initially (see lines 3 and 6 in Figure 14.4). 
In the case of negated predicates, the explanations are generated for the positive 
form of the predicate. This is because negated predicates cannot appear in the head 
of assumptions and, therefore, it is not possible to generate explanations for them 
directly. By virtue, however, of attempting to generate an explanation for the posi-
tive form of a negated predicate, the diagnosis process can still establish beliefs in 
the genuineness of the event represented by the predicate as we discussed above. It 
should also be noted that, as they do not appear in assumption heads, negated 
predicates cannot have been generated by deduction from assumptions during the 
monitoring process. Thus, their presence in violated rule instances is established 
by the principle of negation as failure when the expected predicate has not been 
seen in the event log of the monitoring system within the time range that it is ex-
pected to occur. Thus, an attempt to generate an explanation for the positive form 
of the predicate during the diagnosis process provides a means of confirming or 
not whether the application of the principle of negation as failure was reasonable 
given evidence from other events in the event log. 
 
Generate_Violation_Explanation(R: Instance of Violated Rule) 
1.  For each predicate P in R Do 
2.   If P is negated Then 
3.    Explanations(P) = explain(¬P, tmin(P), tmax(P), NULL) 
4.    Generate_AE_Consequences(Explanations(P), Assumptions, P_Consequences) 
5.   Else 
6.    Explanations(P) = explain(P, tmin(P), tmax(P), NULL) 
7.    Generate_AE_Consequences(Explanations(P), Assumptions, P_Consequences) 
8.  End If 
9.  [Bel(P), …, Pls(P)] = ComputeBeliefRange(P, Explanations(P), P_Consequences) 
10.  If 1-Pls(P) < Bel(P) Then 
11.   If P is negated Then 
12.    UnconfirmedPredicates = UnconfirmedPredicates ∪ {P} 
13.   Else 
14.    ConfirmedPredicates = ConfirmedPredicates ∪ {P} 
15.   End if 
16.  End if 
17. End For 
18. For all P in ConfirmedPredicates Do report P as a confirmed predicate End for 
19. For all P in UnconfirmedPredicares Do report P as unconfirmed predicate End for 
END  
Fig. 14.4 Explanation generation algorithm 
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Having generated explanations for the individual predicates, the Gener-
ate_Violation_Explanation algorithm computes a belief range for the event repre-
sented by each predicate and classifies the predicate as confirmed or unconfirmed 
depending on whether the belief in the genuineness of the event represented by it 
exceeds the belief in the non genuineness of this event. More specifically, a non 
negated predicate P will be classified as a confirmed predicate if Bel(P) > 
Bel(¬P)5. A negated predicate ¬P, will be classified as a unconfirmed predicate if 
Bel(P) > Bel(¬P). Finally, the algorithm reports the classifications of individual 
predicates as confirmed or unconfirmed to the user (see lines 18-19 in Figure 
14.4).  

Table 14.1 Beliefs in genuineness of violation observations of Rule 1 

Event (e) Bel(Genuine(e,[15,22],∅)) Bel(¬Genuine(e,[15,22],∅)) Confirmed 

P1 2α1 - α1
2 0 YES 

P2 0 2α1 - α1
2 NO 

 
In the case of the example regarding the violation of Rule 1, the algorithm will 

report P1: Happens(signal(Lap33),15,R(15,15)) as a confirmed predicate and P2: 
¬Happens(signal(Lap33),t,R(15,17)) as an unconfirmed predicate. This will be 
due to the beliefs in the genuineness and non genuineness of the events unified 
with these predicates which are shown in Table 14.1. It should be noted that in or-
der to calculate the belief and disbelief in the genuineness of P2, the algorithm 
calculates the belief and disbelief in the genuineness of ¬P2 assuming that there is 
an event of signal sent from the device Lap33 at some time point from t=15 to 
t=17 in the event log.  
 
14.6 Detection of S&D Threats  

14.6.1 Overview 

In some cases, the detection of violations of S&D monitoring rules after they oc-
cur might not be sufficient for restoring the system back into a secure and depend-
able state. This is because the required action for doing so can be expensive to 
take or because no such action may be possible. Thus, in addition to the detection 
of occurred violations, it is also important to be able to predict whether violations 
of S&D monitoring rules are likely to occur in some future state during the opera-
tion of a system. EVEREST provides support for predicting potential violations of 
monitoring rules, referred to as threats. 

                                                 
5 Bel(P) and Bel(¬P) represent the proposition Bel(Genuine(P, [Tmin,Tmax], Eo)) and 

Bel(¬Genuine(P, [Tmin,Tmax], Eo)) respectively. 
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A threat in EVEREST is defined as a potential violation of an S&D monitoring 
rule and is associated with a belief measure indicating how likely the violation is, 
given the current state of the system that is being monitored. As an example of 
threat detection, consider the following rule for the LBACS system:  
 
Rule 6: 
 
∀ U:User; C1, C3: Device; C2: ControlServer; t1, t2:Time 

 Happens(e(_e1,_C1,_C1,REQ,login(_U,_C1),_C1),t1,ℜ(t1,t1)) ∧ 
 Happens(e(_e2,_C2,_C2,REQ,login(_U,_C2),_C2),t2,ℜ(t1,t2)) ∧ _C1 ≠_C2 

⇒ (∃ t3:Time) 
Happens(e(_e3,_C1,_C1,REQ,logout(_U,_C1),_C1),t3,ℜ(t1+1,t2+1)) 

This rule states that if a user (_U) logs on some device (_C1) and later (s)he 
logs on to another device (_C2), by the time of the second login (t2), he/she must 
have logged out from the first device. Effectively, the rule prevents users from 
logging on to different devices simultaneously in order to reduce the scope for 
masquerading attacks. Allowing for simultaneous logging provides scope for such 
attacks since when a user _U is logged on to different devices simultaneously, it is 
possible to leave one of them unattended and then some other user may start using 
the device with _U’s credentials. Monitoring Rule 6 and blocking logging attempts 
that violate it would prevent such cases. Also monitoring Rule 6 would detect 
cases where some user who has got hold of the credentials of user _U tries to use 
them to log on with the identity of _U at the same when _U is logged on with 
his/her credentials from a different device. 

Beliefs in the potential of threats with respect to Rule 6 would need to be esti-
mated in the following states of the monitoring process: 
(a) When an event that matches _e1 but no events that match _e2 have been 

received by the monitor 
(b) When an event that matches _e2 but no event matching _e1 has been re-

ceived by the monitor 
(c) When an event matching _e1 and an event matching _e2 have been re-

ceived by the monitor 
(d) When an event matching _e1 and an event matching _e2 have been re-

ceived by the monitor and an event E has been received from the event cap-
tor that should have sent _e3 at some time point t’ > t2 indicating that _e3 
will not arrive. The absence of the _e3 event could be derived from E in 
this case using the principle of negation as failure (NAF) − since from t’ > 
t2 the monitor knows that it cannot receive any event with a timestamp ear-
lier than t’ and therefore earlier than t2.  

In case (a) above, the threat likelihood for Rule 6 will be a measure of the belief 
that the event _e1 which has been matched with the rule is genuine, an event _e2 
matching the rule will occur within the time range (t1, t2], and no event matching 
_e3 will occur in the range (t1, t2]. In case (b), the threat likelihood for Rule 6 will 
be a measure of the belief that the event _e2 which has already matched the rule is 
genuine and an event of type _e1 matching the rule has already occurred within 
the time range (latestTime(captor(_e1)), t2]  but not received by the monitor and 
an event matching _e3 will occur in the range (latestTime(captor(_e1)), t2]. In 
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case (c), the threat likelihood of Rule 6 threat will be a measure of the belief that 
the _e1 and _e2 events that match the rule are genuine and an event of type _e3 
matching the rule will not occur in the time range (t1, t2]. Finally, in case (d), the 
threat likelihood of Rule 6 will be a measure of the belief that the _e1 and _e2 
events that match the rule are genuine and the event of type E which provided the 
basis for deriving ¬ _e3 is genuine and, therefore, the application of the NAF 
principle in deriving ¬ _e3 is valid. 

The functions that we use to measure these beliefs and the ways of combining 
them to provide an estimate of the threat likelihood of the rule are discussed in the 
following. 

14.6.2 Belief Functions 

The calculation of threat likelihood requires the measurement and combination of 
beliefs of three different types: (i) basic probabilities in the genuineness of events 
that have been recorded in the log of the monitor (i.e., basic probabilities in the 
genuineness of events like _e1 and _e2 in case (c) above), (ii) basic probabilities 
in the occurrence of an event of a specific type within a time range that is deter-
mined by another event (i.e., basic probabilities of seeing an event like _e2 after 
an event _e1 has occurred as in case (a) above), (iii) basic probabilities in the va-
lidity of the derivation of the negation of an event when another event’s occur-
rence indicates that the time range within which the former event should have oc-
curred has elapsed (i.e., basic probabilities in events like ¬_e3 given another event 
E as in case (d) above).  

The calculation of basic probabilities in the genuineness of events is based on 
the function mEX that we defined in Section 14.4.2 (see Definition 4). The second 
type of basic probability functions that we use in threat detection provides likeli-
hood measures in the occurrence or not of an event Ei when another event Ej that 
Ei is temporally constrained by has occurred. This type of basic probability func-
tions is defined as follows: 

Definition 6: The basic probability in the occurrence of an event Ei within the time 
range determined by another valid event Ej, mi|j, is defined as: 
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where 
• Log(Ej) is a randomly selected sample of N events of type Ej in the event log 

up to the time point when mj|i is calculated 
• Log(Ei|e) is the set of the events of type Ei in the event log that have occurred 

within the time period determined by e and up to the time point when mi|j is 
calculated 

• I ∈ ℘(Log(Ej|e)) denotes any set in the powerset of Log(Ej|e) 
• m(e) is the basic probability mEX(e) defined by Definition 4 in the case of non 

negated events Ej or the basic probability assignment mNAF
j|u defined in Defi-

nition 7 below for negated events ¬Ej 

According to the above definition, mi|j(X) measures the basic probability of the 
occurrence of a genuine event of type Ei within the time range determined by 
events of type Ej, as the average belief of seeing a genuine event of type Ei within 
the time range determined by a genuine event of type Ej. More specifically, for 
each occurrence of an Ej event, mi|j(X) calculates the basic probability of seeing at 
least one genuine event of type Ei within the period determined by Ej. Assuming 
that the set of such Ei events is Log(Ei|e), this basic probability is calculated by the 
formula ΣI⊆Log(Ei|e) and I≠∅ (−1)|I|+1{ΠEi∈Imi(Ei))}. The latter formula measures the ba-
sic probability of at least one of the events in Log(Ei|e) being a genuine event, i.e., 
an event that has at least one explanation confirmed by other events in the log of 
the system, and uses the basic probabilities of individual events mi(Ei) defined in 
Definition 4 above for positive events, or the basic probability mNAF

j|u for negative 
events ¬Ej that are themselves established by a third event Eu (see Definition 7 be-
low). Thus, mi|j(X) discounts occurrences of events of type Ei which are not con-
sidered to be genuine, and the higher the number of genuine events of type Ei 
within the period determined by an Ej event, the larger the basic probability of the 
occurrence of at least one genuine event of type Ei that it generates. It should also 
be noted that mi|j(X) takes into account the basic probability of the genuineness of 
each occurrence of an event of type Ej within the relevant period (i.e., mj(e)) and 
uses it to discount the evidence arising from Ej events which are not assessed to be 
genuine.  

The mi|j(X) basic probability function is similar to conditional probabilities in 
classic probability theory, in the sense that it provides a measure of the joint prob-
ability of seeing a genuine Ej event and at least one genuine Ei event in a given 
time period around Ej.  As we have, however, discussed in Section 14.4.1, in 
EVEREST we do not use classic probabilities but basic probability assignments 
and beliefs as defined the DS theory. This is because in some cases during the 
monitoring of a system it is not possible to know with certainty whether an event 
has occurred or not. As discussed in Section 14.4.1, such cases arise due to com-
munication channel delays – an event E may have occurred but not received by 
EVEREST yet when its occurrence needs to be established due to delays in the 
communication channel transmitting the event from its event captor to the frame-
work. The D-S theory of evidence [18] enables the explicit treatment of such un-
certain cases by allowing the award of a basic probability measure to the disjunc-
tion of the propositions denoting the occurrence and non occurrence of the event 
in question rather than to any of these propositions. 
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The basic probability functions that we have introduced above do not cover 
cases where the absence of an event is deduced by the NAF principle. As we dis-
cussed earlier, EVEREST uses this principle to deduce the absence of an event E 
(i.e. ¬ E) that is expected to occur within a specific time range [tL, …, tU] when it 
receives another event E’ from the same event captor that should sent E with a 
timestamp t’ that is greater than tU (t’ > tU) and has not received E up to that point. 
Considering, however, that the event E’ that would trigger the application of the 
NAF principle in such cases might not be a genuine event itself, it is necessary to 
estimate the basic probability of ¬E. This function that measures this basic prob-
ability is defined below: 

Definition 7: The basic probability in the absence of an event Ei or, equivalently, 
¬Ei due to the application of the NAF principle when another event Ej occurs is 
defined as: 
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where mj(Ej) is the is the basic probability in the genuineness of the event Ej  that is 
computed as defined in Definition 4. 

14.6.3 Combination of Beliefs through Belief Networks 

The computation of the threat likelihood of a rule at runtime requires the combina-
tion of basic probability functions of the types introduced in Section 14.6.2. The 
exact combinations that will be required in each stage are determined by the fol-
lowing basic principles: 
(i) The principle that the computation of the threat likelihood of a rule should be 

based on all the events that have been received by the monitor and can be 
matched with the rule or used to derive the absence of a negated event in it. 

(ii) The principle that the computation of the basic probability of the occurrence 
or not of an event that has not been received yet by the monitor should be 
based on the combination of the smallest possible number of basic probabil-
ity functions conditioned by events which the event in question has a direct 
temporal dependency upon in the rule (an event ei is said to be directly tem-
porally depend upon another event ej if the upper or lower bound of the val-
ues of the time variable of ei is defined by a formula that contains the time 
variable of ej). 

(iii) The principle that if alternative estimates of the basic probability of an event 
and its absence can be derived by different combinations of basic probability 
functions, the maximum of these estimates should be taken into account. 
 

Based on the above principles, the different combinations of basic probability 
functions that would be required in the case of Rule 6 depending on the set of 
events that have been received by the monitor at different stages of the monitoring 
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process are summarised in Table 2. As shown in the table, for example, when the 
monitor has received an event matching _e1 but not an event matching _e2 and the 
absence of an _e3 event can be established by the NAF principle (i.e., case 3 in the 
table), the threat likelihood of the rule would be estimated by the combination of 
the basic probability functions (m1⊕m2|1)⊕mNAF

3|u. Also, in cases where an event 
matching _e1 and an event matching _e2 but no event enabling the derivation of 
the absence of _e3 by the NAF principle has occurred (i.e., case 2 in the table), the 
threat likelihood of Rule 6 would be estimated by taking the maximum estimate 
generated from the combinations of the basic probability functions (m1⊕m2)⊕m3|1 

and the basic probability functions (m1⊕m2)⊕m3|2. 

Table 14.2 Derivation of threat likelihood in the case of Rule 6 

# Event _e1 Event _e2 Event ¬_e3 Required Combinations 
1 received received derived by NAF (m1 ⊕ m2) ⊕ mNAF

3|u 
2 received received not derived by NAF (m1 ⊕ m2) ⊕ m3|2 

(m1 ⊕ m2) ⊕ m3|1 
3 received not received derived by NAF (m1 ⊕ m2|1) ⊕ mNAF

3|u 
4 received not received not derived by NAF (m1 ⊕ m2|1) ⊕ m3|1 
5 not received received derived by NAF (m2 ⊕ m1|2) ⊕ mNAF

3|u 
6 not received received not derived by NAF (m2 ⊕ m1|2) ⊕ m3|2 
7 not received not received derived by NAF Cannot be estimated 
8 not received not received not derived by NAF Cannot be estimated 

 
It should be noted that the operator ⊕ in Table 2 denotes the combination of 

two basic probability assignments by applying the rule of the orthogonal sum of 
the DS theory. According to this rule, a basic probability function m1 can be com-
bined with another basic probability function m2 if m1 and m2 assign basic prob-
ability measures to at least two overlapping sets of propositions (aka focals) and 
the combined basic probability that is generated by the combination of m1 and m2 
is given by the formula m1 ⊕ m2 (P) = (ΣX ∩ Y = P m1(X) × m2(Y)) / (1 – k0) where k0 
is a normalising parameter used to increase the basic probability assigned to the 
non-empty intersections of the focals of m1 and m2 in proportion to the basic prob-
ability that would be assigned to the empty intersections of these focals that is 
computed as k0 = ΣV ∩ W = ∅ and V ⊆ θ and W ⊆  θ m1(V) × m2(W). 

To represent the different cases of combining basic probability functions in or-
der to calculate the threat likelihood of a monitoring rule, EVEREST constructs a 
graph having vertices representing the different events in the rule and directed, la-
belled edges between them indicating dependencies between the time variables of 
these events. The edges in this graph are derived from the time variables which 
constrain the occurrence of each event, and indicate how evidence can be propa-
gated at runtime by combining the different basic probability assignments that are 
associated with the observed events. This graph is called “belief graph” and is 
constructed by the algorithm of Figure 14.5. 
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Construct_DS_Belief_Graph(R, DSGR) 
1. find all n events ei in R /* R is assumed to be the negated form of a monitoring rule or an at-

tack signature */ 
2. construct a node representing the starting point in the assessment of the threat likelihood of 

R, called “Start” node. 
3. for each event ei (i ≤ n)  do: 
4.  construct a node for ei and store the mapping of the time variable of this event as 

 M(ti)= ei (i.e. store the fact that time variable ti has been used to declare the time  of 
 occurrence of event ei.) 

5.  build a list TVARSi of all time variables tk appearing in the lower and upper bound of 
 the time variable ti of  ei. 

6. end for 
7. for each event ei (i ≤ n)  do: 
8.  for each time variable t ∈ TVARSi such that t ≠ ti do: 
9.   Construct an edge to ei from ep=M(t), labelled by mi|p, i.e., the basic probability 

  of observing (or not) ei  given ep. 
10.   if ei is not a negated event then 
11.    Construct an edge from ei to ep=M(t), labelled by mp|i, i.e., the basic 

   probability of observing (or not) ep  given ei. 
12.   end if 
13.  end for 
14.  if ei  is not a negated event then 
15.    construct an edge from the “Start” node to ei, labelled by the basic 

   probability mi of ei. 
16.  else /* negated events */ 
17.    if ei  has a time range defined by constant values then 
18.     construct an edge from the “Start” node to ei, labelled by the basic 

    probability mNAF
i|<x> of ei 

19.    end if 
20.  end if 
21. end for 

end Construct_DS_Belief_Graph 
Fig. 14.5 Algorithm for constructing D-S belief graphs 

 
This algorithm initially identifies the events of a given monitoring rule R and 

constructs a start node to represent the starting point of the accumulation of evi-
dence at runtime (see line 2). Then for each event in the rule, it constructs a node 
to represent the occurrence of the event at runtime (line 4) and identifies the de-
pendencies of the event to other events (line 5). At this step an event Ej is taken to 
depend on all other events Ei whose time variables appear in the expressions that 
define the lower and upper bound of the time variable of Ej. After identifying 
these dependencies, the algorithm creates a directed edge from all the events Ei 
that Ej depends on to Ej (see line 9). These edges indicate the paths for obtaining a 
basic probability for Ej when any of the events Ei is observed. Also an opposite 
edge from Ej to each of the events Ei is created provided that Ej is not a negated 
event (see lines 10-12). The latter edges will be used when Ej is observed before Ei 
in order to indicate how the basic probability of Ei can be computed given Ej. 

Note also that no backward edges are constructed from an event Ej to the events 
that it depends on, if Ej is a negated event (see condition in line 10). This is be-
cause, in EVEREST, negated events can only be derived through the application 
of the NAF principle when their ranges have fully determined boundaries (an 
event expected in a fully determined time range [a,b] is known to not have hap-
pened when the monitor receives the first event from its captor with a time stamp t 
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> b without having received the event itself up to that point). Fully determined 
boundaries, however, will not be possible to have for Ej unless Ei has already oc-
curred. Hence, it will not be possible to derive the truth value of Ej before that of Ei 
and therefore compute a basic probability assignment for the latter event based on 
the basic probability of the former. The label attached by the algorithm on an edge 
from an event Ei to an event Ej will be mi|j, i.e., it will represent the basic probabil-
ity assignment of observing (or not) Ej given that Ei has already been observed 
(note that this is different to mj|i). 

Following the generation of edges between events, the algorithm constructs 
edges to link the Start node of the graph with the nodes representing the different 
non negated events of the rule (see lines 14−20). These edges are labelled by the 
basic probability assignment corresponding to the event Ei that they point to (i.e., 
the basic probability assignment mi). Negated events, on the other hand, are linked 
with the Start node only if they have a time range defined by constant values at the 
time of application of the algorithm (i.e., prior to runtime) and, therefore, it will be 
possible to establish their absence or not prior the seeing any other event at run-
time (see conditions in lines 14 and 17)6. The edge linking the Start node with a 
negated event Ei is labelled by the basic probability function mNAF

i|<x>. This func-
tion is partially determined as it includes the placeholder <x>. At runtime this 
placeholder will be bound to the identifier of the event Ej that triggers the applica-
tion of the NAF principle to derive the absence of Ei creating a fully determined 
basic probability function mNAF

i|j which will be used to estimate the basic probabil-
ity of  ¬Ei. 

E1 E2 

S 

m2|1 m3|2 

m2|3 

m2 m1 

¬E3 

 
Fig. 14.6 D-S belief graph for Rule 6 

 
An example of a DS belief graph is shown in Figure 14.6. This graph has been 

constructed to express the dependencies and the different paths of combining be-
liefs for Rule 6. The graph reflects that the occurrence of E2 in the rule depends on 
the occurrence of E1 since the range of the time variable of E2 (i.e., ℜ(t1,t2)) refers 
to the time variable of E1 but not vice versa (the range ℜ(t1,t1) of t1 indicates that 
E1 is an event with a not constrained time variable). Thus, an edge from E1 to E2 

                                                 
6 Such events may typically appear in rules of the form ¬Happens(e1,t1,R(a,b)) ⇒ Hap-
pens(e2,t2,R(t1,t1+c)). The event ¬Happens(e1,t1,R(a,b)) in this rule has a time range with fully de-
termined boundaries (a and b) prior to runtime and will remain as a negated event in the negated form 
of the rule, i.e., ¬Happens(e1,t1,R(a,b)) ∧ ¬Happens(e2,t2,R(t1,t1+c)) 
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labelled by m2|1 has been inserted in the graph as well as another edge from E2 to 
E1 labelled by m1|2. Similarly, as the time range of the event ¬E3 (i.e., 
ℜ(t1+1,t2−1)) refers to the time variables t1 and t2 of the events E1 and E2, the 
graph contains edges from E1 to ¬E3 and E2 to ¬E3. Note, however, that the graph 
does not contain an edge from ¬E3 to E2 or from ¬E3 to E1 as the former event 
cannot be derived by NAF unless E1 and E2 are received first. Finally, the graph 
includes edges from the starting node to E1 and E2. These edges are labelled by m1 
and m2 representing the basic probability functions that are to be used when the 
occurrence or absence of the events E1 or E2 is established from the starting node. 
 

Compute_Threat_Likelihood(Ei, DSGR, R) 
1. find the sets of the known events KE and the set of the unknown events UE in DSGR 
2. m = basic_probability_assignment(<start, Ei>) 
3. CombinedBPA = {} 
4. for each Ek in KE do /* combine the BPAs of events in KE */ 
5.  m = m ⊕  basic_probability_assignment(<start, Ek>) 
6.  CombinedBPA = CombinedBPA ∪ basic_probability_assignment(<start, Ek>) 
7. end for 
8. for each ej ∈ UE do  
9.  insert all the paths from ei to ej, which do not include any event in KE, into Pij 
10.  for each p ∈ Pij do 
11.   for each edge L in p do /* combine the BPAs of paths to unknown events */ 
12.    if basic_probability_assignment(L) ∉ CombinedBPA then 
13.     m = m ⊕  basic_probability_assignment(L) 
14.     CombinedBPA = CombinedBPA ∪ basic_probability_assignment(L) 
15.    end if 
16.   end for 
17.  end for 
18. end for 
19. mark Ei as a known event in DSGR 
20. return (m(events(¬R), m(events(R))) 
end Compute_Threat_Likelihood 

 
Fig. 14.7. Algorithm for computing threat likelihood 

 
At runtime, belief graphs are used to record the events matched with a given 

monitoring rule and determine the combination(s) of basic probability functions 
that will be needed to compute the threat likelihood of the rule. In general, given a 
set of received and a set of unknown (i.e., not received/derived) events, the threat 
likelihood of a rule is evaluated by combining the basic probabilities of the re-
ceived events that match with rule (these basic probabilities label transitions from 
the Start node of the graph to the nodes that match with the received events) and 
the conditional beliefs on the unknown events. It should be noted that in such 
cases, there may be more than one known events in the graph which are linked di-
rectly with the unknown one. In such cases, the conditional beliefs of the unknown 
events mj|i are computed by considering all paths which start from some known 
event ei and end in the unknown event ej, without passing through any other 
known events (this ensures that known events will not be considered as supporting 
evidence for unknown ones multiple times). The algorithm for evaluating the 
threat given a belief network is shown in Figure 14.7. 
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14.6.4 Example of Threat Detection 

To demonstrate the estimation of the threat likelihood of a rule in EVEREST con-
sider Rule 6 again and the following sequence of events: 
• Happens(e(e100,Lap30,Lap30,REQ, login(User1,Lap30),Lap20),80,ℜ(80,80)) 
• Happens(e(e101,Lap2,Lap2,REQ, login(User1,Lap2),Lap2),87,ℜ(87,87)) 

When it arrives at EVEREST, the first of these events (e100) can be matched 
with the nodes E1 or E2 of the belief graph of Figure 14.6. Each of these matches 
will produce a separate instantiation of the belief graph and lead to the estimation 
of different threat likelihoods. When matching e100 with node E1 in the graph of 
Figure 14.6, the threat likelihood of Rule 6 will be computed by combining the ba-
sic probability functions: (m1 ⊕ m2|1) ⊕ m3|1.  

Based on the generic definitions of these functions, in Section 14.6.2, it can be 
shown that the application of the rule of the orthogonal sum will result in the fol-
lowing functional form for (m1 ⊕ m2|1) ⊕ m3|2: 
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Thus, assuming that 
• the basic probability assignments to the genuineness and non genuineness of 

e100 are k1 = 0.8 and k1’ = 0.1, respectively; 
• the conditional basic probability assignments in observing and not observing a 

second genuine login event within L=100 time units after the observation of 
e100 are k21 = 0.6 and  k21’ = 0.4, respectively; and 

• the conditional basic probabibility assignment of not observing a genuine log-
out event in the period of L=100 time units between two genuine login events 
are k31 = 0.2 and k31’=0.6, respectively  

the threat likelihood for the first instance of the rule will be: 
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The threat likelihood estimate for the same rule instance will be updated when 

the event e101 arrives at EVEREST. Upon its arrival, e101 will be matched with 
the node E2 in the above belief graph instance. Thus, according to the Com-
pute_Threat_Likelihood algorithm of Figure 14.7, the threat likelihood will be es-
timated by the combination of the basic probability assignments (m1⊕m2)⊕m3|2. 
The application of the rule of the orthogonal sum of the DS theory for this combi-
nation will result in the following formula: 
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Thus, if the basic probability assignments in the genuineness of e101 (i.e., 
m2(Genuine(e101,…)) and the non genuineness of this event (i.e., 
m2(¬Genuine(e101,…)) are k2 =0.8 and k2’ = 0.2 respectively, and  the threat like-
lihood will be: 
 

504.0))32 =¬∧ EE ()( 11|321 ∧⊕⊕ Emmm
  

The increase in the threat likelihood in this case is due to the fact that the basic 
probability of E2 given by m2(X) is higher than the basic probability of E2 that is 
computed by the combination m1 ⊕ m2|1 (0.8 vs. 0.53).  

14.7 Related Work 

In the context of software system monitoring, diagnosis focuses on the detection 
of the reasons for system failures. Diagnosis typically involves the identification 
of trajectories of system events that have led to a failure (i.e., problematic events) 
using automata whose purpose is to recognize faulty behaviour [6,13,17]. More 
specifically, in [6] diagnosis is carried through the synchronization of automata 
modelling the expected behaviour of the system that is being monitored and the 
events captured from it. In [13] a similar but incremental approach is adopted. In 
this approach, synchronization is initially performed for individual system compo-
nents and the partial synchronised models are aggregated for the global system. 

Our approach is different from the above, as our focus is not the detection of 
the cause of faulty behaviours (this is the subject of earlier work described in [21]) 
but the explanation of such causes in the presence of incomplete and/or not trusted 
event traces. Our approach draws upon work on temporal abductive reasoning [3, 
15, 20] and its applications to diagnosis [2, 14]. However, it is based on a newly 
developed algorithm for abductive search using Event Calculus. This algorithm 
generates all the possible explanations of a formula (unlike [3, 20]) and then com-
putes beliefs in the validity of individual explanations using the DS theory [18]. 

The approach that has been undertaken for threat detection as part of the 
SERENITY monitoring framework is related to earlier work on intrusion detec-
tion [5, 12]. It should be noted, however, that most of the existing intrusion detec-
tion systems can detect only malicious actions that have already happened (aka in-
trusions). Our approach is different from this work since it views threat detection 
as the problem of trying to forecast actions that would violate certain S&D proper-
ties expressed as monitoring rules.  

Existing approaches to intrusion detection have been distinguished into anom-
aly-based and misuse-based [12]. Anomaly-based approaches [1, 5, 10] assume 
that attacks involve some abnormal behaviour of the system that is being moni-
tored. Intrusions are, thus, detected as deviations from the expected normal behav-
iour of the system. Misuse-based approaches [7, 11, 27], on the other hand, are 
based on models of known attacks.  



Diagnosis and Threat Detection Capabilities of the SERENITY Monitoring Framework         269 

The threat detection approach that has been undertaken in SERENITY can be 
seen as an anomaly-based approach. Furthermore, since threats are detected as de-
viations from a model of normal behaviour (that is expressed by the rules which 
are specified in S&D patterns and are being monitored), our approach can also be 
classified as model or specification-based [1, 10]. Finally, we should note that our 
approach has some similarity with statistical approaches to intrusion detection 
based on Bayesian networks (e.g. [27]). The difference from these approaches is 
that we use Dempster Shafer beliefs to provide measures of the genuineness of in-
dividual events and the likelihood of potential rule violations due to some inherent 
uncertainty about the occurrence or not of specific events which arises by commu-
nication delays between event sources and the reasoning system that performs the 
threat analysis. 

14.8 Conclusions 

In this chapter we have presented the mechanisms that are incorporated in the 
monitoring framework of SERENITY to support the provision of diagnostic in-
formation for violations of S&D monitoring rules and the detection of potential 
violations of such rules. 

The diagnosis of violations of S&D rules is based on the generation of possible 
explanations for the runtime events which are involved in the violations of the 
rules through the use of abductive reasoning. This process deploys the assump-
tions that have been specified about the system that is being monitored and the 
S&D Patterns which are deployed by it. The possible explanations which are gen-
erated by this process are checked against other runtime events to establish if there 
is further evidence about the validity of the explanations. The input to this search 
process includes the expected consequences of the abduced explanations and pre-
conditions that need to be satisfied for an explanation to be able to entail the event 
in question. 

The EVEREST diagnosis framework computes beliefs in the validity of the ex-
planations of the events that are involved in S&D violations, based on matches 
that may be found between the preconditions and consequences of these explana-
tions with other runtime events and a recursive assessment of the genuineness of 
these events. Ongoing work on diagnosis focuses on conducting an experimental 
evaluation of the undertaken approach. 

The detection of potential violations of S&D properties in the SERENITY 
monitoring framework is also based upon the computation of beliefs that viola-
tions of such properties are likely to occur. The computation of such beliefs is 
based upon the diagnostic mechanisms of EVEREST which provide the basic as-
sessment of the genuineness of the events received by the framework and histori-
cal data about the frequency of co-occurrence of events which are connected by 
temporal constraints within specific S&D monitoring rules. These historical data 
provide the basis for computing beliefs in the potential occurrence or not of an 
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event when another event that it is constrained by has occurred and is known to be 
genuine.  
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