
Realizable, Connector-Driven Software Architectures

for Practising Engineers

Mert Ozkaya and Christos Kloukinas

City University London

School of Informatics

London EC1V 0HB, U.K.

{mert.ozkaya.1,c.kloukinas}@city.ac.uk

Abstract. Despite being a widely-used language for specifying software sys-

tems, UML remains less than ideal for software architectures. Architecture de-

scription languages (ADLs) were developed to provide more comprehensive sup-

port. However, so far the application of ADLs in practice has been impeded by

at least one of the following problems: (i) advanced formal notations requiring

a steep learning curve, (ii) lack of support for user-defined, complex connectors,

and (iii) potentially unrealizable architectural designs.

This paper proposes XCD, a new ADL that aims at supporting user-defined, com-

plex connectors to help increase architectural modularity. It also aims to help in-

crease the degree of reusability, as now components need not specify interaction

protocols, as these can be specified independently by connectors (which increases

protocol reusability too).

Connector support requires to ensure that architectural designs are always realiz-

able, as it is currently extremely easy to obtain unrealizable ones. XCD eliminates

potentially unrealizable constructs in connector specifications.

Finally, XCD employs a notation and notions from Design-by-Contract (DbC)

for specifying software architecture behaviour. While DbC promotes a formal

and precise way of specifying system behaviours, it is not as challenging for

practising developers as process algebras that are usually employed by ADLs.

Keywords: Component Based Software Engineering; Software architecture; Mod-

ular specifications; Connector realizability; Separation of functional and interac-

tion behaviours; Design-by-Contract.

1 Introduction

A number of specialized architecture description languages (ADLs) have been proposed

for specifying software architectures [20], since the early work on software architec-

tures [12, 23]. Currently UML has become a de facto design language for specifying

and designing software systems – more practitioners use it than all other languages

(e.g., AADL, ArchiMate, etc.) combined [19], even though it is less than ideal [16].

This is despite its lack of support for formal architectural analysis, unlike many ADLs

that have formally defined semantics. In our view, there are three main problems that

ADLs suffer from: (i) formal notations for behaviour specifications that require a steep

learning curve, (ii) lack of support for complex connectors (i.e., interaction protocols),

2 Mert Ozkaya and Christos Kloukinas

and (iii) potential for producing unrealizable designs. Indeed, to the best of our knowl-

edge, there is no ADL that is easy to learn, treats connectors as first-class elements and

ensures that architecture specifications are realizable.

While condition (i) has been identified by practitioners as being a serious imped-

iment to their adoption of current ADLs [19], condition (ii) is not an issue that they

consider as crucial, as does a number of researchers since many ADLs do not support

complex connectors. Nevertheless, we believe that it can substantially help in develop-

ing concise designs, as it increases modularity and reusability by allowing designers to

reuse not only components but interaction protocols as well, thus facilitating architec-

tural exploration and avoiding reuse-by-copy. Condition (iii) is in fact something that

has not been identified at all so far to the best of our knowledge but we believe that

it is crucial to identify and resolve, if a connector-centric ADL is to succeed among

practitioners. Below we briefly examine each of these issues.

Formal notations Many ADLs (e.g., Wright [1], LEDA [6], SOFA [24], CONNECT

[15], etc.) adopt formal notations, e.g., process algebras [4], for specifying the be-

haviours of architectural elements. They do so in order to enable the architectural anal-

ysis of systems, which is extremely important in uncovering serious system design er-

rors early on in the lifetime of a project. Indeed, if such an analysis is not possible, then

there is no point in using a specialized language for software architectures – even sim-

ple drawings suffice. However, ADLs employ notations that practitioners view (with

reason) as having a steep learning curve [19]. Thus, practitioners end up avoiding them

and use instead simpler languages, even if that means that they lose the ability to prop-

erly describe and analyse their systems – better an informal description of a system

that everybody understands than a formal description of a system that people struggle

understanding.

Limited support for complex connectors Another problem with many ADLs (e.g., Dar-

win [18], Rapide [17], LEDA [6], and AADL [10]) is that they provide limited or no

support for complex connectors, treating them instead as simple connections. This is

unfortunate because connectors represent the interaction patterns between components,

i.e., the interaction protocols that are employed to achieve the system goals using the

system components, such as reliability. By instead offering support only for compo-

nents, architects end up with two alternatives. One is to ignore protocols, which inhibits

the analysis of crucial system properties, such as deadlock-freedom, and also can lead to

architectural mismatch [11], i.e., the inability to compose seemingly compatible com-

ponents due to wrong assumptions these make about their interaction. The other is to

incorporate the protocol behaviour inside the components themselves, which leads to

complicated component behaviour that is neither easy to understand nor to analyse and

makes it difficult to reuse components with different protocols, as well as to find er-

rors in specific protocol instances. Incorporating protocol behaviour inside components

is essentially following a reuse-by-copy approach, whereby each component has its

own copy of the protocol constraints. On the other hand, support for protocols through

first-class connectors promotes a reuse-by-call approach. There is only one instance of

the protocol constraints and these are simply called wherever they are needed, making it

easier to keep them correct and to replace them with those of another protocol if needed.

Realizable, Connector-Driven Software Architectures for Practising Engineers 3

(a) The nuclear power plant’s requirements (b) An unavoidable bad

behaviour

Fig. 1: A nuclear power plant [2]

connector Plant Connector =

role P1 = ur→na→P1.

role P2 = ur→na→P2.

role NA = increment→ NA ⊓ double→NA.

role UR = increment→ UR ⊓ double→UR.

glue =P1.ur→UR.increment→P1.na→NA.increment

→P2.ur→UR.double→P2.na→NA.double→ glue

�P2.ur→UR.double→P2.na→NA.double→P1.ur

→UR.increment→P1.na→NA.increment → glue.

Fig. 2: Wright’s (unrealizable) connector for Alur’s nuclear power plant

Potentially unrealizable designs The third problem of existing ADLs is that when they

do support user-defined, complex connectors, they do so in a way that can lead to unre-

alizable designs. All ADLs in this category follow the approach initiated by Wright [1]

and require connectors to include a glue element. In Wright [1], a connector role spec-

ifies the “obligations of [a] component participating in the interaction” and a glue

specifies “how the activities of the [. . .] roles are coordinated.” – a connector glue is

supposed to be more than simple definition/use relationships. The fact that the glue can

introduce inter-role interaction constraints is deeply problematic because these con-

straints cannot always be implemented in a decentralized manner by the components

that assume the connector roles, as these can only observe their local state [27, 28]. In

fact, it has been shown that the general problem of deciding whether a glue is realizable

is undecidable [2,3,27,28], so there is no general algorithm that can be implemented to

warn architects that the glue they are specifying is not realizable by the existing roles.

The only easy solution to realize a protocol then is to introduce yet another component

that will assume the role of the glue, thus transforming all protocols into centralized

ones and potentially invalidating architectural analyses concerning scalability, perfor-

mance, reliability, information flows, etc.

An example of such an unrealizable protocol is the simplified nuclear power plant

[2], shown in Fig. 1a. The interaction therein involves two client roles (P1 and P2) up-

dating the amounts of the Uranium fuel (UR) and Nitric Acid (NA) server processes in

a nuclear reactor. After the update operations, the amounts of UR and NA must be equal

4 Mert Ozkaya and Christos Kloukinas

to avoid nuclear accidents, for which reason we wish to allow only the sequences shown

in Fig. 1a. The interaction of the two clients with the NA and UR variables, can easily be

specified in Wright as in Fig. 2. Note that this glue specification does two things. First it

establishes bindings between clients and servers (e.g., P1.ur → UR.increment). Then it

constraints interactions by requiring that we only allow UR.increment → NA.increment

or UR.double → NA.double. This specification is however unrealizable [2] because it

is impossible to implement it in a decentralized manner in a way that avoids behaviours

excluded by the glue, e.g., the one depicted in Fig. 1b. The only way to achieve the

desired behaviour is to introduce another role, for a centralized controller G. Roles P1

and P2 then need to inform G when they wish to interact with UR and NA and have G

perform the interactions with UR and NA in their place.

2 Our Approach

The ADL we are developing, called XCD, tries to overcome the problems identified

in the previous section and offer: (i) first-class support for user-defined, complex con-

nectors; (ii) realizable software architectures by construction; and (iii) a simple to un-

derstand, yet formal, language for specifying behaviour, based on design-by-contract

(DbC).

2.1 Support for Complex Connectors

XCD grants connectors in software architectures first-class status, allowing designers to

specify both simple interaction mechanisms and complex protocols. These can then be

instantiated as many times as needed, allowing architects to simplify the specifications

of their components and easily reuse the specification of complex protocols.

To illustrate how important this is for both architectural understandability and also

analysis, we will use a simple example from electrical engineering. Let us consider k

concrete electrical resistors, r1, · · · ,rk, i.e., our system components. When using a se-

quential connector (→), the overall resistance is computed as R→(N,{Ri}
N
i=1)=∑

N
i=1 Ri,

where N,Ri are variables (Ri correspond to connector roles), to be assigned eventually

some concrete values k,r j. If using a parallel connector (‖) instead, it is computed as

R‖(N,{Ri}
N
i=1) = 1/∑

N
i=1 1/Ri. So the interaction protocol (connector) used is the one

that gives us the formula we need to use to analyse it – if it does not do so, then we

are probably using the wrong connector abstraction. The components (r j) are simply

providing some numerical values to use in the formula, while the system configuration

tells us which specific value (k, r j) we should assign to each variable (N, Ri) of the

connector-derived formula. By simply enumerating the wires/connections between re-

sistors/components, we miss the forest for the trees. This leads to architectural designs

at a very low level that is not easy to communicate and develop – as [8] found the case

to be with AADL.

Fig. 3a shows the number of simple connectors (identified with ellipses) that are

needed in our system. It is easy to see that there are many of them and it is not so easy

to identify the protocol logic, especially as the system size increases – this is the equiv-

alent of spaghetti code. By making interaction protocols implicit in designs, analysis

Realizable, Connector-Driven Software Architectures for Practising Engineers 5

→

(

r1, ||

(

→ (r2, r3),

r4

))

(a) Simple connectors, i.e., wires (b) Complex connectors

Fig. 3: Connectors in circuits

also becomes difficult and architectural errors can go undetected until later develop-

ment phases. Indeed, we are essentially forced to reverse-engineer the architect’s intent

in order to analyse our system – after all, the architect did not select the specific wire

connections by chance but because they form a specific complex connector. When com-

plex connectors are employed instead as in Fig. 3b then the number of connectors to be

considered is reduced substantially. This makes it much easier to understand the system

and to analyse its overall resistance by taking advantage of the connector properties as:

R→(r1,||(→(r2,r3),r4)) = r1 +R||(→(r2,r3),r4) = r1 +
1

1
R→(r2 ,r3)

+ 1
r4

= r1 +
1

1
r2+r3

+ 1
r4

The use of connectors allows us to separate interaction patterns/protocols from com-

ponents and renders components independent from these – resistors do not need to know

if they will be connected in series or in parallel. Both modularity and reuse (for both

components and protocols) are increased. Unlike physical systems, where configuration

patterns are enough to specify connectors as interaction in them is governed by known

physical laws, software systems connectors also need to specify role interaction.

2.2 Realizable Software Architectures

Connectors in our ADL are not specified with glue-like elements. Instead, we consider

connectors as a simple composition of roles, which represent the interaction behaviour

of participating components, and built-in sub-connectors (i.e., links) that allow actions

of one role to reach another. Coordination is now the responsibility of roles alone. If a

particular property is desired then it must be shown that the roles satisfy it. But this is

a problem that is decidable for finite state systems – model-checking. Thus an architect

can easily specify a protocol and be sure that it has the required properties. Designers

can also feel reassured that the architectural protocols are indeed realizable in principle,

without the need to transform them into centralized ones, which might invalidate ar-

chitectural analyses concerning scalability, performance, reliability, information flows,

etc., as aforementioned.

So in the case of Fig. 1a, the architect should quickly realize that the desired prop-

erty is not satisfied by the roles and opt for a centralized protocol instead, by adding a

centralized controller. Thus, surprises are avoided – it becomes clear early on whether

something can be made to work in a decentralized manner or not, as it is tested by

6 Mert Ozkaya and Christos Kloukinas

the more experienced architect. The less experienced designers do not have to waste

their time trying to achieve the impossible or take the easy (and dangerous) way out

and turn a decentralized protocol into a centralized one. We essentially turn the glue

from constraints to be imposed, to a property that needs to be verified, thus turning an

undecidable problem that the less experienced designers have to deal with, into a de-

cidable one for them (and pushing the responsibility to resolve the issue to the more

experienced architect).

2.3 Design-by-Contract for Architecture Specifications

The Java Modelling Language (JML) [7] seems to be gaining popularity among devel-

opers, as they use it for “test-driven development” and even for static analysis in some

instances. XCD attempts to follow this trend so as to maximize adoption by practition-

ers. Thus, it departs from the ADLs that adopt process algebras, and instead follows a

Design by Contract (DbC) [21] approach like JML, specifying behavioural aspects of

systems through simple pairs of method pre-/post-conditions, in a syntax reminiscent

of JML. DbC allows for a formal specification of systems, as it is based on Hoare’s

logic [13] and VDM’s [5] rely-guarantee specification approach. DbC has so far been

mainly considered for programming languages (e.g., Java through JML), which is why

contracts have been restricted to provided services (i.e., class methods).

There are very few ADLs that employ DbC. The work of Schreiner et al. [26] along

with the TrustME ADL [25] are some of the very few examples applying DbC at the

level of software architecture. Schreiner et al.’s work transforms connectors into com-

ponents themselves, which we believe loses many of the connector benefits, as these

are needed to essentially drive the component interactions. Doing so through wrapper-

like components [26] makes it difficult to control component required ports, i.e., the

ones initiating calls. This is because a wrapper-like explicit connector can delay a call

request, while a proper connector can ensure that it never gets triggered at all. TrustME

does not provide support for user-specified, complex connectors at all, as it essentially

follows the approach of Darwin [18], enriching it with contracts.

Our approach attempts to apply DbC in a more comprehensive manner, covering

component methods and events. As we view connectors as first-class elements, we use

DbC to specify their behaviour as well. XCD further extends DbC by structuring com-

ponent port action contracts into separate functional and interaction parts.

3 DbC-based Specifications with XCD

Fig. 4 gives the meta-model of the XCD language. There are two main elements for

specifying software architectures with XCD: components (primitive and composite ones),

used to specify abstractions of computational units in a system, and connectors, that

specify the complex interaction protocols of components.

We use the shared-data case study [1] to facilitate the presentation of the XCD lan-

guage. In this system, user components retrieve and update some shared data stored in a

memory component. The memory component accepts requests for data retrieval only if

Realizable, Connector-Driven Software Architectures for Practising Engineers 7

Fig. 4: Meta-model of XCD

the data has been initialized – otherwise, it rejects the request and commences a chaotic

behaviour.

The XCD specification of the shared-data access is given in Fig. 5. Two primitive

component types are specified, user in lines 1–13 and memory in lines 15–31. Both the

user and the memory comprise data-variables (line 2 and line 16 respectively) represent-

ing their states and ports that are the points of interaction with their environment. There

is also a connector type memory2user specified (lines 1–32 at the right side), which

represents the interaction between a memory and a user. Connector memory2user uses

some other connectors (here built-in ones) to establish the communication links be-

tween its role ports (lines 26–31). Its roles (userRole at line 6 and memoryRole at line

14) constrain the behaviour of the components that assume them. Finally, we specify a

composite component type sharedData (lines 34–44 at the right side), which includes

component and connector instances and represents their configuration.

Primitive Component Types Component user has a required port puser_r (lines 3–7)

through which it makes method calls to its environment (i.e., the memory) to retrieve the

value of some data. Port puser_r has a single method get, whose functional contract

ensures post-assignment clause (lines 4–5) assigns the method’s result to the compo-

nent data – it has no pre-condition (i.e., a requires clause). Component user also has

an emitter port puser_e (lines 8–12) to emit events. Port puser_e declares a single

event set, whose functional contract promises clause assigns its parameter to 7 – the

event has no pre-condition (i.e., a requires clause) or post-assignment (i.e., an ensures

clause) . It should be noted here that while method and event requires clauses are con-

ditions, method and event promises and ensures clauses are assignment sequences, not

conditions. A requires clause specifies the functional requirements for a method call (or

event) to be acceptable, while an ensures clause states how the state should be modified

by the call. Finally, a promises clause states what values the parameters of a call request

will have.

8 Mert Ozkaya and Christos Kloukinas

1 component user (){
2 i n t data :=0;
3 required port puser_r {
4 @Functional{
5 ensures : data := \ r e s u l t ; }
6 i n t get ();
7 }
8 e m i t t e r port puser_e {
9 @Functional{

10 promises : data_arg := 7; }
11 set(i n t data_arg);
12 }
13 }
14

15 component memory(i n t numOfUsers) {
16 bool initialized_m := f a l s e ;
17 i n t sh_data := 0;
18 provided port pmem_p[numOfUsers] {
19 @Interact ion {
20 a c c e p t s : initialized_m; }
21 @Functional{
22 ensures : \ r e s u l t := sh_data; }
23 i n t get ();
24 }
25 consumer port pmem_c[numOfUsers] {
26 @Functional{
27 ensures : intialised_m := t ru e ;
28 sh_data := data_arg; }
29 set(i n t data_arg);
30 }
31 }

1 connector memory2user(
2 userRole{pvuser_r ,
3 pvuser_e},
4 memoryRole{pvmem_p ,
5 pvmem_c }) {
6 r o l e userRole {
7 required port pvuser_r {
8 i n t get ();
9 }

10 e m i t t e r port pvuser_e {
11 set(i n t data_arg);
12 }
13 }
14 r o l e memoryRole {
15 bool initialized := f a l s e ;
16 provided port pvmem_p {
17 @Interact ion { w a i t s : initialized; }
18 i n t get ();
19 }
20 consumer port pvmem_c {
21 @Interact ion {
22 ensures : initialized := t ru e ; }
23 set(i n t data_arg);
24 }
25 }
26 channel async

27 user2memory_m(userRole{pvuser_r},
28 memoryRole{pvmem_p });
29 channel async

30 user2memory_e(userRole{pvuser_e},
31 memoryRole{pvmem_c });
32 };
33

34 component sharedData () {// Composite
35 component user user1 ();
36 component user user2 ();
37 component memory mem (2);
38 connector memory2user
39 x1(user1{puser_r ,puser_e},
40 mem{pmem_p [0], pmem_c [0]});
41 connector memory2user
42 x2(user2{puser_r ,puser_e},
43 mem{pmem_p [1], pmem_c [1]});
44 }

Fig. 5: Shared-data access in the XCD ADL

Component memory has an array of provided ports pmem_p (lines 18–24). It uses each

of these ports to provide method get to a different user component instance. Unlike the

contracts of component user, the contract of these ports have an additional @Interaction

part (lines 19–20). This states that a pmem_p port will accept a get method-call only

if the component data initialized_m is true. Otherwise, the call is rejected and the

component starts behaving in a chaotic manner. If a call is accepted, then the functional

contract (lines 21–22) is considered, which sets the result of the method call to be the

value of the component sh_data variable. The array of consumer ports pmem_c (lines

25–30) serves to receive set events. Reception of such an event modifies the component

state.

Realizable, Connector-Driven Software Architectures for Practising Engineers 9

Complex Connector Types Connector type memory2user (lines 1–32 at the right of

Fig. 5) specifies the protocol used in the system between the memory and the users.

It serves to ensure that the memory will not behave chaotically. The connector has

two roles, userRole (lines 6–13) and memoryRole (lines 14–25). Role userRole has a

required port-variable pvuser_r (lines 7–8), reflecting port puser_r of component user,

and an emitter port-variable pvuser_e (lines 10–11), reflecting port puser_e. These

port-variables do not impose any interaction constraints on the role.

Role memoryRole has a provided port-variable pvmem_p (lines 16–19) reflecting port

pmem_p of component memory. Unlike the port-variables of userRole, this port-variable

introduces extra interaction constraints on the behaviour of its methods. It requires that

calls to method get are considered only when the role’s initialized data is true, thus

delaying them while this condition is not satisfied.

The role’s consumer port-variable pvmem_c (lines 20–24) reflects port pmem_c of

component memory. It uses its interaction contract to note that the memory has been set,

through its ensures clause. The combination of the contracts of the two ports means that

the memory cannot start behaving chaotically, as requests at non-accepting states are

delayed until they are safe.

Composite Component Types The sharedData component type (lines 34–44 at the right

of Fig. 5) includes two instances of the user component and a single instance of the

memory component. The component instances are passed as arguments to the two con-

nector instances, in lines 38–43, to bind them together and constrain their interactions.

XCD Notation and Expressiveness As can be seen by Fig. 5, the notation used for

DbC in the XCD ADL follows a JML-like syntax, which should prove much easier for

practitioners to understand and use effectively than formal languages such as process

algebras. Indeed, we would expect one to be able to use XCD with minimal training. At

the same time, XCD introduces connector constructs that are essentially (decentralized)

algorithms (i.e., protocols) – configuration patterns of component variables, on which

we have imposed additional interaction constraints. Apart from π calculus’ ability to

send channels as messages, which XCD does not support, the XCD ADL should allow

architects to express the static architectures that one can express now with ADLs based

on process algebras. However, XCD does not support dynamic architectures currently.

4 XCD Semantics

Fig. 6 shows the general behaviour of a (primitive) component described using Dijk-

stra’s guarded command language [9]. Each instance is a concurrent process, that ini-

tializes its data and then enters a loop, executing the actions of its ports (lines 6–12) or

performing a skip action (line 14). The behaviour of port actions is shown in Fig. 7 for

the four different port types.

Provided and required ports (Fig. 7d and 7b) employ a pair of channels (request and

response) to realize the method call interaction protocol, while emitter and consumer

ports (Fig. 7c and 7a) employ a single channel (stream). Channels are essentially (fi-

nite) buffers of messages and a send action adds another message into them. A read

10 Mert Ozkaya and Christos Kloukinas

1 FORALL c ∈ Model.Components
2 process c ... {
3 // initialization of data
4 Start:
5 do

6 FORALL p ∈ c.EmitterPorts
7 FORALL e ∈ p.Events
8 // see Fig. 7a
9 FORALL p ∈ c.RequiredPorts

10 FORALL m ∈ p.Methods
11 // see Fig. 7b
12 FORALL p ∈ c.ConsumerPorts
13 FORALL e ∈ p.Events
14 // see Fig. 7c
15 FORALL p ∈ c.ProvidedPorts
16 FORALL m ∈ p.Methods
17 // see Fig. 7d
18 [] true → sk i p ; // do nothing
19 od

20 }

1 // all associated
2 // Role Interaction Constraints
3 RICs(port p, action a) {
4 pvs = p.associatedPortVariables;
5 return

⋃

pv∈pvs pv.a.RICs;

6 }

(a) Component (b) RICs for action a of a port p

Fig. 6: Semantics of components

1 [] true →
2 assign_params(e.FCPromises);
3 i f

4 [] e.ICWaits
5 ∧

∧

re∈RICs(p,e) re.RICWaits→ sk i p

6 [] e l s e → goto Start
7 f i ;
8

9

10

11

12 assign_data(e.FCensures);
13 FORALL re ∈ RICs(p, e)
14 assign_data(re.RICensures);
15 send(p.stream , e, e.params);

1 [] p.activeM = NULL →
2 assign_params(m.FCPromises);
3 i f

4 [] m.ICWaits
5 ∧

∧

rm∈RICs(p,m) rm.RICWaits→ sk i p

6 [] e l s e → goto Start
7 f i ; p.activeM := m;
8 send(p.request , m, m.params);
9

10 [] readCond(p.response , m, m.result ,
11 p.activeM = m) →
12 i f

13 []m.FCrequires→
14 assign_data(m.FCensures);
15 FORALL rm ∈ RICs(p, m)
16 assign_data(rm.RICensures);
17 p.activeM := NULL;
18 f i

(a) Emitter port p’s event e (b) Required port p’s method m

1 [] readCond(p.stream , e,e.params ,
2 e.ICWaits ∧

∧

re∈RICs(p,e) re.RICWaits)

3 → i f

4 [] e.ICaccepts ∧ e.FCrequires →
5 assign_data(e.FCensures);
6 FORALL re ∈ RICs(p, e)
7 assign_data(re.RICensures);
8

9 // [] ! e.ICaccepts → chaos
10 f i

1 [] readCond(p.request , m, m.params ,
2 m.ICWaits ∧

∧

rm∈RICs(p,m) rm.RICWaits)

3 → i f

4 [] m.ICaccepts ∧ m.FCrequires →
5 assign_data(m.FCensures);
6 FORALL rm ∈ RICs(p, m)
7 assign_data(rm.RICensures);
8 send(p.response , m, m.result);
9 // [] ! m.ICaccepts → chaos

10 f i

(c) Consumer port p’s event e (d) Provided port p’s method m

Fig. 7: Semantics of a port p’s actions

action retrieves some message from a channel (in a non-deterministic order). Finally,

a readCond action retrieves a message in a non-deterministic order, with the additional

Realizable, Connector-Driven Software Architectures for Practising Engineers 11

constraint that its parameters satisfy a predicate, which is passed as the fourth parameter

of the action (see lines 1–2 of Fig. 7d).

As can be seen from Fig. 7, all port actions correspond to a single atomic block

of guarded actions, apart from required port method requests that correspond to two

atomic blocks of guarded actions (separated by a single blank line at line 9). Event and

method guarded action patterns have been aligned vertically so as to make it easier to

establish their similarities and differences.

An emitter port event (Fig. 7a) attempts to assign the event parameters in a way

that satisfies its own and its roles’ interaction constraints. If successful, it assigns the

component and role data and sends the event over the port event stream channel. If the

parameter values do not satisfy the interaction constraints then it simply passes control

back to the component (possibly retrying). The role interaction constraints RICs(p, e)

are the delaying constraints imposed by the port-variables assumed by the event’s port

and associated with this event, as shown in Fig. 6b.

A required port method (Fig. 7b) is enabled if no method request is currently active

on the port, in which case it assigns the parameters of this method request and verifies

that they satisfy the method’s interaction constraints. If they do, it notes that the method

is currently active on this port and emits the method request over the channel p.request.

A second atomic block is enabled when there is a response for this method. So, if

the functional constract pre-condition (requires clause) is satisfied, then, it assigns the

component data according to the ensures clause of the method functional contract (and

similarly for its roles).

Consumer events and provided methods are the dual of these, with the difference

that a provided method is a single atomic block instead of two. Another difference is

that, unlike the former actions, these latter port actions can cause the component to

exhibit chaotic behaviour, as seen in lines 9 of Fig. 7c and 7d. This occurs when the

action’s delaying interaction constraints (in line 2) imposed by its associated roles are

satisfied but the component interaction constraints at line 4 are not satisfied.

Race Conditions Being atomic blocks of actions, emitter/consumer port events and

producer port methods do not suffer from race conditions. Required port methods on

the other hand are by necessity modelled as a pair of states – one initiating a method call

and another receiving the method response. The post-assignments (ensures clause) at the

latter can suffer from two types of race-conditions. First, an assignment may attempt to

use the value of some data at the pre-state, i.e., when the request was being made. If

another port has modified this value, then we have a write-read kind of race-condition.

If an assignment tries to update the value of some data that has been updated in the

meantime by another port, then we have a write-write kind of race-condition. In our

semantics we employ extra variables (not shown in the presented semantics) to identify

these conflicts and notify architects about them.

4.1 Data Assignments in Contracts

XCD contracts use assignments to establish values for action parameters and to update

the data after these actions. This is done so as to render the resulting formal models more

tractable. So XCD does not accept post-conditions like “ensures: 0 ≤ x+ y+ z ≤ 25;”.

12 Mert Ozkaya and Christos Kloukinas

In order to ensure that variables x,y,z receive values that meet such a condition we

would need to consider all possible combinations of their values in the range [0,25], i.e.,

consider 263 = 17576 cases. Instead, XCD requires that the specification is transformed

to a sequence of assignments, such as “ensures: x ∈ [0,25];y ∈ [0,25− x];z ∈ [0,25−
x− y];”. Through the use of a generalized form of assignment that also supports ranges

as here, XCD permits non-deterministic choices but it requires that these choices are

done sequentially and only depend on constants and variables that have been assigned

already. So in this case, there would be at most 26∗3 = 78 cases to consider, which is

a substantial reduction.

Assignments are treated differently for action parameters (assign_params) and data

updates (assign_data), e.g., as seen in lines 2 and 12 of Fig. 7a. This is because miss-

ing parameter assignments are added implicitly by assigning unconstrained parameters

some values from their domain. This is not however done for missing data updates. It

is instead assumed that these data should not be updated and retain whatever value they

have at that point. The other difference between assigning parameters and data has to

do with how the well-definedness of an assignment sequence is done in each case.

Well-definedness of Assignment Sequences Let us consider an assignment sequence

vi := ei, where 1 ≤ i ≤ n and vi and ei are a variable and an expression respectively. For

assign_params, an assignment expression sequence as a whole is well-defined iff the

left hand side is a parameter and the right hand side ei of each assignment expression is

an expression constructed according to the following rules:

Expression: 1. a Formula f

2. a range, i.e., [min,max], where min and max are Formulas and

min ≤ max.

Formula 1. a Formula f (e.g., +,−,/,∗) of formulas f1, · · · , fn.

2. a Term t

Term 1. a constant, e.g., some Boolean or integer value.

2. a (known) variable, i.e., one of:

(a) a v j, where j < i

(b) a (pre-state) value of some data dk

As aforementioned, if the set of vi is a strict subset of the set of parameters used in

the respective action, then the other parameters are assigned values in their domain in a

non-deterministic manner.

For assign_data, an assignment expression sequence as a whole is well-defined iff

the left hand side is a component or role data variable and the right hand side ei of each

assignment expression is constructed according to the same rules as previously. In this

case though all parameters are variables with known values, so a term can also be a

parameter pm.

Unlike assign_params that assigns all parameters some value by choosing some

non-deterministic value from their domain if not constrained otherwise, assign_data

does not modify data variables that have not been assigned explicitly in the model.

Realizable, Connector-Driven Software Architectures for Practising Engineers 13

Table 1: Verification results

Model Size State-vector States Memory Time

(in Bytes) Stored Matched (in MB) (in sec)

1 user 140 1954 1511 128 0.00

2 users 220 364691 575897 195 0.95

3 users 312 27327216 68152656 7024† 97.80

4 users 392 21466341 69412168 7024† 69.60
Spin (v 6.2.4) and gcc (v 4.7.2) commands used, for up to 7024MB of RAM and a search depth of 500:

spin -a model.pml
gcc -DMEMLIM=7024 -O2 -DXUSAFE -DSAFETY -DNOCLAIM -w -o pan pan.c

./pan -m500 -c1

Column “States Stored” refers to the number of unique global system states stored in

the state-space, while column “States Matched” refers to the number of states that

were revisited during the search - see: spinroot.com/spin/Man/Pan.html#L10

4.2 XCD and Architecture Realizability

All constraints in XCD are local, expressed on local component/role data and parame-

ters. Indeed, components do not even synchronize on message emission – asynchronous

channels are used to ensure that they are completely decoupled and independent.

Non-local interaction constraints, like those imposed by the glue in Fig. 2, cannot

be expressed in XCD. This ensures that XCD connectors are always realizable in a way

that respects the architecture, i.e., without transforming decentralized designs to cen-

tralized ones. When non-local interaction constraints are desired, they can be verified

as properties of some connector or configuration.

Data themselves are encapsulated either by components or connector roles, so there

are no aliasing problems, and concurrency is controlled through component ports. Each

port is a concurrent unit (a monitor), thus ensuring that actions of a port are mutually

exclusive to each other. As event emission/consumption and method servicing (at pro-

vided ports) are atomic, architects need only guarantee (and verify) that method calling

(at required ports) will not lead to data race conditions.

5 Formal Verification Analysis

The semantics of XCD described in Section 4 are used to automatically transform XCD

architectures into corresponding ProMeLa models, which can be analysed by the Spin

model-checker [14]. Each component instance of an architecture becomes a ProMeLa

process. Instances of primitive component types follow the patterns described in Fig. 6

and 7. For composite component instances we produce again ProMeLa processes that

initiate the processes of their sub-components and establish the channels that these

should be using. The transformation to ProMeLa models is done through a tool that

is available from the XCD web page [22], along with other case studies and information

about the XCD language.

We easily transformed the shared data specification in Section 3 into Promela and

analysed the Promela codes using the model checker. The verification results are given

spinroot.com/spin/Man/Pan.html#L10

14 Mert Ozkaya and Christos Kloukinas

1 r o l e userRole {
2 required port pvuser_r {
3 i n t get ();
4 }
5 e m i t t e r port pvuser_e {
6 set(i n t data_arg);
7 }
8 }

1 r o l e userRole {
2 bool initialized := f a l s e ;
3 required port pvuser_r {
4 @Interact ion { w a i t s : initialized; }
5 i n t get ();
6 }
7 e m i t t e r port pvuser_e {
8 @Interact ion {
9 ensures : initialized := t ru e ; }

10 set(i n t data_arg);
11 }
12 }

(a) Original user role (b) Constrained user role

Fig. 8: Constraining role user of connector memory2user specified in Fig. 5

Table 2: Verification results for the constrained user role of Fig. 8

Model Size State-vector States Memory Time

(in Bytes) Stored Matched (in MB) (in sec)

1 user 148 1744 1374 128 0.00

2 users 236 286735 479528 182 0.95

3 users 336 1998023 5594597 662 5.92

4 users 424 20477758 70199771 7024† 81.10

in Table 1. Its verification allowed us to quickly evaluate whether the system compo-

nents behave compatibly without deadlocking. Although in some cases, the memory

may go beyond the required amount for a full verification (indicated with a † in Ta-

ble 1), designers can still obtain useful information about their system models and in-

crease their confidence in their correctness.

In the rest of this section, we discuss some of the issues that we identified through

the formal verification.

5.1 Avoiding Chaotic Behaviour through Connector Protocols

The memory component is specified in Listing 3 with an accepts guard stating that it

will enter chaotic behaviour if it receives a call for method get when the data is not yet

initialized. This is avoided through the memory2user connector that constrains memory

such that it does not receive requests for method get before the event set that initializes

its data. Indeed, when we remove this constraint from the memory role of the connec-

tor and re-run our verification, an assertion violation error occurs identifying that the

memory component has entered a chaotic behaviour.

5.2 Reducing the State Space

When the number of user components in the system configuration becomes more than 2,

the state space of the formal model increases and hinders a full verification. Therefore,

design errors may be left uncaught. The state space can be reduced by further constrain-

ing the possible behaviour of components. To do so, we introduce further interaction

Realizable, Connector-Driven Software Architectures for Practising Engineers 15

constraints on user components via the user role of the memory2user connector. When

the user role is modified as shown in Fig. 8, user components cannot make requests for

method get before they emit event set. When we re-run the verification the state space

is reduced as shown in Table 2, enabling us to fully verify a system with three users.

6 Conclusions

The XCD ADL supports user-defined, complex connectors, that can recursively use

other connectors to model protocols and sub-protocols, in the same way as components

can have sub-components. Complex connectors allow architects to increase the modu-

larity of their specifications, and produce component specifications that are agnostic to

their usage contexts. This increases the re-usability of component specifications and can

help CBSE by permitting the development of general component specifications. It also

helps with the reuse of protocol specifications as these can be specified independently

of specific usage instances. Finally, it aids architectural exploration, since architects can

easily replace protocols and components without having to rewrite their specifications.

Many ADLs have supported connectors so far, with Wright [1] being the first one

to provide formal support for them. Unfortunately, the connector structure proposed by

Wright, and all those inspired from Wright ever since, permits the specification of un-

realizable architectures. We showed how this can occur and presented XCD’s approach

for avoiding this issue and guaranteeing that connectors will always be realizable.

The paper also presented how XCD uses and extends Design-by-Contract so as to

hopefully make it easier for practitioners to use it for specifying the architectures of their

systems and for communicating these architectures to others. The transformation of the

XCD language constructs was shown with the use of patterns of Dijkstra’s guarded com-

mands that can be easily modelled with the Spin model-checker’s language ProMeLa.

Preliminary verification results showed promise, though the current tool support

needs to be improved. In the future we plan to apply a number of patterns to reduce the

state space of the models produced and explore ways to perform other optimizations,

e.g., to reduce the state size itself.

References

1. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans. Softw. Eng.

Methodol. 6(3), 213–249 (1997)

2. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE Trans.

Software Eng. 29(7), 623–633 (2003)

3. Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC graphs. Theor.

Comput. Sci. 331(1), 97–114 (2005)

4. Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra. Elsevier (Mar

2001)

5. Bjørner, D., Jones, C.B. (eds.): The Vienna Development Method: The Meta-Language, Lec-

ture Notes in Computer Science, vol. 61. Springer (1978)

6. Canal, C., Pimentel, E., Troya, J.M.: Specification and refinement of dynamic software archi-

tectures. In: Donohoe, P. (ed.) WICSA. IFIP Conference Proceedings, vol. 140, pp. 107–126.

Kluwer (1999)

16 Mert Ozkaya and Christos Kloukinas

7. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced specification

and verification with JML and ESC/Java2. In: FMCO’05 – Formal Methods for Comp. and

Obj. LNCS, vol. 4111, pp. 342–363. Springer (2006)
8. Delanote, D., Baelen, S.V., Joosen, W., Berbers, Y.: Using AADL to model a protocol stack.

In: ICECCS. pp. 277–281. IEEE Computer Society (2008)
9. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs.

Commun. ACM 18(8), 453–457 (1975)
10. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The Architecture Analysis & Design Language

(AADL): An Introduction. Tech. rep., Software Engineering Institute (2006)
11. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch or why it’s hard to build sys-

tems out of existing parts. In: ICSE. pp. 179–185 (1995)
12. Garlan, D., Shaw, M.: An introduction to software architecture. In: Ambriola, V., Tortora,

G. (eds.) Advances in Software Engineering and Knowledge Engineering. pp. 1–39. World

Scientific Publishing Company, Singapore (1993), also appears as SCS and SEI technical

reports: CMU-CS-94-166, CMU/SEI-94-TR-21, ESC-TR-94-021.
13. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10),

576–580 (1969)
14. Holzmann, G.J.: The SPIN Model Checker - Primer and reference manual. Addison-Wesley

(2004)
15. Issarny, V., Bennaceur, A., Bromberg, Y.D.: Middleware-layer connector synthesis: Beyond

state of the art in middleware interoperability. In: Bernardo, M., Issarny, V. (eds.) SFM.

Lecture Notes in Computer Science, vol. 6659, pp. 217–255. Springer (2011)
16. Ivers, J., Clements, P., Garlan, D., Nord, R., Schmerl, B., Silva, J.R.O.: Documenting com-

ponent and connector views with UML 2.0. Tech. Rep. CMU/SEI-2004-TR-008, Software

Engineering Institute (Carnegie Mellon University) (2004)
17. Luckham, D.C.: Rapide: A language and toolset for simulation of distributed systems by

partial orderings of events. Tech. rep., Stanford University, Stanford, CA, USA (1996)
18. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: SIGSOFT FSE. pp.

3–14 (1996)
19. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs from

architectural languages: A survey. IEEE Trans. Software Eng. 39(6), 869–891 (2013)
20. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software ar-

chitecture description languages. IEEE Trans. Software Eng. 26(1), 70–93 (2000)
21. Meyer, B.: Applying “Design by Contract”. IEEE Computer 25(10), 40–51 (1992)
22. Ozkaya, M.: XCD website. http://www.soi.city.ac.uk/~abdz276/xcd.html (2013)
23. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIGSOFT Softw.

Eng. Notes 17(4), 40–52 (Oct 1992)
24. Plasil, F., Visnovsky, S.: Behavior protocols for software components. IEEE Trans. Software

Eng. 28(11), 1056–1076 (2002)
25. Schmidt, H., Poernomo, I., Reussner, R.: Trust-by-contract: Modelling, analysing and pre-

dicting behaviour of software architectures. J. Integr. Des. Process Sci. 5(3), 25–51 (Aug

2001)
26. Schreiner, D., Göschka, K.M.: Explicit connectors in component based software engineering

for distributed embedded systems. In: Proceedings of the 33rd conference on Current Trends

in Theory and Practice of Computer Science. pp. 923–934. SOFSEM ’07, Springer-Verlag,

Berlin, Heidelberg (2007)
27. Tripakis, S.: Undecidable problems of decentralized observation and control. In: Proc. of the

40th IEEE Conf. on Decision and Control. vol. 5, pp. 4104–4109. IEEE, Orlando, FL, USA

(Dec 2001)
28. Tripakis, S.: Undecidable problems of decentralized observation and control on regular lan-

guages. Inf. Process. Lett. 90(1), 21–28 (2004)

http://www.soi.city.ac.uk/~abdz276/xcd.html

	Realizable, Connector-Driven Software Architectures for Practising Engineers

