
C3DS Design and Development Methodology

Edited by Val�erie Issarny

Solidor Research Group

INRIA-Rennes and INRIA-Rocquencourt

Email: Valerie.Issarny@inria.fr

Abstract

The C3DS project aims at easing the design and implementation of complex services

out of existing ones. Towards that goal, the project is designing and prototyping the

TCCS environment, which decomposes into: (i) the TCCS development environment

for the design and implementation of complex services based on the combined speci�-

cations of software architecture and workow schema, and (ii) the TCCS platform for

the execution of complex services, which is a middleware platform that builds on the

CORBA standard and o�ers middleware services for the execution of software agents

and workows. In this report, we detail the C3DS design and development methodology,

that is the development process for complex service provisioning using the overall TCCS

environment. Speci�cally, we concentrate on the process phases that relate to exploiting

the TCCS environment and hence do not consider complementary phases such as those

appertained to requirement analysis and testing. The overall development process as

addressed in the C3DS project comprises the phases for the design, implementation, and

deployment of complex services, which come along with associated tool support.

1 Introduction

The C3DS project targets the provisioning of complex services out of existing ones. In other

words, the project aims at providing means for the easy composition of existing services.

Thus, the resulting TCCS environment that is being developed in the C3DS project for

complex service provisioning naturally builds upon the following technologies:

� Software architecture, which has been proven successful for the design, analysis and

implementation of complex software systems by enabling their abstract description in

terms of the composition of components via connectors, using an Architecture Descrip-

tion Language (ADL).



� Workow management systems, which were initially introduced for the automation of

business processes by supporting the composition of various activities, possibly crossing

distinct organizations. In general, such systems may serve for realizing any kind of

distributed processes since their primary functionality lies in the coordination of a set

of inter-dependent tasks. Basically, a workow management system o�ers a language

for the de�nition of workow schemas (or workow scripts), and a number of runtime

services for supporting the execution of those schemas.

� Software agent systems, which enable enriching existing software through additional

computation as achieved by agents. In addition, the mobile agent technology is now

being considered as a key technology for meeting the requirements imposed by the new

shift in the area of distributed systems, i.e., increasing mobility and usage of the Internet

[Cardelli 1998].

� Middleware infrastructures that provide reusable solutions to problems frequently en-

countered in many di�erent types of distributed applications, e.g., heterogeneity, inter-

operability, security, transactions, fault tolerance, etc. We base more speci�cally our

work on the CORBA standard that is now widely accepted.

In the above framework, complex service provisioning amounts to:

(i) Designing the service schema (where this term is used by analogy with the notion of

workow schema) and associated service software architecture, i.e, precisely de�ning

the ow of computation to be achieved by the given service through the composition

of base services o�ered by the underlying software architecture. This may be achieved

in a number of ways depending on the speci�cs of both the schema and architecture.

In the framework of C3DS, we speci�cally focus on service schemas that translate into

workow schemas.

(ii) Implementing the workow schema, i.e. implementing the underlying service architec-

ture, and mapping the schema onto it.

(iii) Deploying the complex service together with necessary monitoring and control support

for further evolution.

The above roughly corresponds to the overall C3DS development process, which is further

discussed in the next section. Let us notice here that the aforementioned development

phases may be realized in a modular way in that a complex service may actually be de�ned

through a number of service schemas, possibly de�ned hierarchically. In addition, all the

above phases are aided through the provision of CASE tools, especially those for carrying out

analyses of complex services so as to assess the undertaken development decisions. Analysis

support is presented in Sections 3 to 5, which respectively detail the design, implementation,

and deployment phases of our development process. Finally, we conclude in Section 6,



summarizing the C3DS design and development methodology and highlighting the associated

tool support provided by the TCCS environment.

2 The C3DS Development Process

In this section, we give an overview of the overall C3DS development process, which relates

to exploiting the TCCS environment for complex service provisioning. Hence, the proposed

process is not to be considered as being complete, and ignores complementary phases such

as those appertained to requirement analysis and testing, which should be addressed using

existing processes. For instance, the interested reader may refer to [Baresi et al. 1999]

and [Weske et al. 1999] for examples of development processes appertained to workow

applications. In addition, we provide an informal de�nition of the process using box-and-line

diagrams. However, these are precise enough to give a clear understanding of the proposed

process.

Prior to address the process de�nition, we �rst have to qualify the complex services for which

the TCCS environment targets provisioning. As previously discussed in Deliverable A1, the

C3DS project does not target a speci�c application domain. However, there is a number

of assumptions that underly the project, and hence enable precising the kind of complex

services that we consider in the framework of C3DS:

� We assume a number of provided base services for composing more complex ones. Hence,

we consider that there exists a repository of base services, or at least a repository of

their abstract description under the form of components1. Such a repository is then

exploited by software designers when elaborating complex services. In the same way,

for the sake of software reuse, workow schemas that are developed are stored in the

service repository.

� Complex services are inherently distributed and possibly involve distinct organizations.

In particular, interactions among base services may be realized over the Internet.

� Participating organizations are TCCS-enabled, i.e., they all provide execution environ-

ments that conform to the TCCS environment.

Figure 1 depicts the resulting model of the overall C3DS development process. Phases writ-

ten in italic correspond to those that we do not address and for which the use of software

development methods as provided by existing processes should be investigated; other phases

could further be considered based on the selected process. As depicted by dotted arrows in

the �gure, the undertaken development decisions may be revised at each phase, leading to

1Let us notice here that according to the general de�nition of ADLs, a component may actually be a

complex one (i.e. a con�guration or architecture) built out of more primitive components.



Design Phase

Implementation phase middleware

services

Requirement analysis phase

Deployment phase

Test phase

Repository of 

Repository of 

base services

Figure 1: The C3DS development process model

return to some previous development phase. The three phases that are of interest here are

the ones relating to the design, implementation, and deployment of complex services. The

design phase takes as input an abstract description of the service schema to be developed,

and uses the repository of available base services, which are the ones available in the given

context of development. The output of this phase is the overall abstract speci�cation of the

complex service under the form of a workow script and associated software architecture.

This speci�cation is then provided to the implementation phase. During this phase, the

developer implements the components that were introduced during the design phase. In ad-

dition, this phase comprises the implementation of a customized TCCS-based middleware for

the execution of the complex service according to required non-functional properties. This

latter development step is aided through a CASE tool, which uses a repository of the TCCS-

compliant middleware services that are available within all the participating organizations.

As depicted by the double-edge arrows, repositories may be updated during the implementa-

tion phase, hence making available for future complex service provisioning, the new service

together with the associated underlying middleware architecture. The result of the imple-

mentation phase is the complex service's overall software architecture that prescribes the

service's con�guration in terms of application-level components and complementary mid-

dleware components. The latter set of components actually embeds the ones relating to

workow execution (i.e. task and task controller objects), and those appertained to middle-

ware customization. Finally, the service con�guration is exploited by the deployment phase



for distribution of the con�guration components over the sites of the participating organi-

zations. The con�guration is further enriched so as to support later evolution in response

to changes in the user requirements or in environmental factors. The result of this last

development process phase is a ready-to-use complex service.

Example: For the sake of illustration, we take the example of a business process from the

e-commerce domain throughout the report [Shrivastava & Wheater 1999]. The example is

based on the order and pay steps of a browse, order, pay then deliver style electronic com-

merce interaction. The order and pay steps involve four organizations: customer, supplier,

and two banks. They further rely on the following interactions, which set the composing

base services distributed over the organizations:

(1) The customer places an order with the supplier.

(2) The supplier validates the order and assuming OK calculates the value of the order.

(3) The supplier sends a quote to the customer.

(4) The customer processes the quote.

(5) The customer instructs its bank to initiate payment; the customer also con�rms the

order to the supplier

(6) The supplier con�rms payment; if OK, it will initiate goods shipment, else the order is

cancelled.

3 The Design Phase

Let us now concentrate on the design phase of complex service provisioning. Here, we assume

that an abstract service schema is provided as input, resulting from the requirement analysis

phase. Basically, this schema characterizes the complex service to be developed in terms of

its composing base services and the temporal dependencies among them. The design phase

then consists of two inter-dependent sub-phases:

� Designing the service's structural view, i.e, designing the components providing the base

services that are to be composed.

� Designing the service's behavioral view, i.e., designing the workow schema that coor-

dinates the execution of the base services.

The two above design sub-phases are further complemented with a number of analyses so

as to carefully assess the undertaken design choices. The overall design phase is depicted in

Figure 2 and is further detailed below.



ADL description Workflow script

Abstract service schema from requirement analysis

Structural View Behavioural view

Service repository

schemas

QoS

Behavioral

Analyses Analyses

Analyses

Analyses

architectures

Base services’
software

toolset
ASTER

LTSA
toolset

Workflow

Figure 2: The C3DS design phase

3.1 Designing the service's structural and behavioral views

Given available base services, possibly resulting from the previous development of complex

services, the design of a given service requires to elaborate the various base services to be

coordinated using a workow schema.

Structural view: The structural view serves characterizing the various base services to

be coordinated, using software architecture description. In the simplest case, the service is

already available and hence belongs to the repository of services. However, it is expected

that available services will have to be enriched so as to �t the complex service's requirements

as identi�ed by the service schema. Using the TCCS environment, making evolve a given

base service may be achieved in two ways through the introduction of either (i) CORBA



objects, or (ii) software agents. Then, each constituent service is precisely de�ned using the

TCCS ADL (see Deliverables B1.1 and B1.3) as a software architecture, which sets all the

components (i.e. available base services and additional ones) and the interactions among

them. In that context, the software architecture associated to a complex service is the set of

software architectures de�ning the base services composing the complex service, which may

possibly share common components.

Behavioral view: The behavioral view re�nes the service schema by precisely setting the

workow schema to be run so as to provide the targeted complex service. The workow

schema to be deployed characterizes the temporal and data-ow dependencies among the

components speci�ed by the complex service's structural view (or software architecture).

Furthermore, this schema accounts for possible failures, and thus integrates treatment re-

lating to the occurrence of either underlying system or application-level exceptions. The

description of workow schemas is provided using the TCCS workow language (see Deliv-

erable B1.3).

Example: Let us consider the example from the e-commerce domain that was introduced

in the previous section. Focusing on the order and pay steps, the six interactions that were

mentioned actually de�ne the abstract service schema. Such a schema may be rewritten

in terms of a box-and-line diagram as depicted in Figure 3. Although quite informal, the

depicted schema shows that the complex service is made out of four base services, each

being provided by the involved organizations. In addition, those base services are themselves

complex, being composed of inner services, which may possibly be already available within

the service repository. In particular, the process order and con�rm order services are inner

service schemas, the latter being nested within the former. Concentrating further on the

process order service, this includes the calculate order value base service, which may possibly

be already o�ered by the supplier organization. If so, the service description belongs to the

service repository and is used for further design elaboration. On the other hand, if the base

service is not provided by the supplier, two cases have to be considered:

(1) The service has formerly been designed in the context of another similar organization,

in which case the corresponding software architecture belongs to the service repository.

Should this software architecture match the given supplier organization (i.e. embedded

components and connectors are available), the service's design is used for further pro-

cessing. If there is only a partial match (i.e. some architectural elements are missing)

then the matching part of the architecture is taken as an initial design and is handled

according to the alternate case given below.

(2) The service has to be designed, possibly using an initial partial architecture. In this

case, the software architecture needs to be enriched through the revision of existing

components, integration of new components, or a combination of both. Typically, those



components will correspond to either CORBA objects or software agents. Let us further

notice that in the case of component revision, this may lead to, possibly dynamic,

software recon�guration within the given organization if the revision impacts upon

existing persistent services.

process_order at Supplier confirm_order at customer

accept

reject

accept

failed

done

do

done

failed

Browse step

Order from customer

reject

done

Order-and-Pay steps

Deliver step

reject

process_quotedonecalculate_order_value

reject

initiate_payment at Bank_cust

confirm_payment at Bank_sup

Figure 3: The abstract service schema for order-and-pay processing

As previously mentioned, service schemas actually correspond to workow schemas and

hence are described using the TCCS workow language (see Deliverables C2.1, B1.2 and

B1.3). Figure 4.(a) gives the resulting graphical representation for the process order work-

ow schema [Shrivastava & Wheater 1999]. Software architecture description is given using

the TCCS ADL, which aggregates the ASTER, DARWIN, and OLAN ADLs where the two

�rst provide notations for performing architecture analyses, while the third o�ers notations

for base structural de�nitions and con�guration deployment (see Deliverables B1.1, B1.2 and

B1.3). For illustration, Figure 4.(b) gives a graphical representation of the software archi-

tecture relating to the supplier organization. In the �gure, boxes represent component and

circles represent ports, black (resp. white) ports corresponding to provided (resp. required)

services. The supplier embeds at least two services as required by the workow schema:

process order and calculate order value. The former translates into a workow schema while

the latter is a primitive workow task that interfaces with a base service of the supplier.



do

do

do

do

done

done

done

reject

reject

reject

failed
accept

calulate_order_value
<supplier>

confirm_order

confirm_payment

<customer>

<bank_sup>

process_order <supplier>

(a) The process order workow schema

Supplier

process_order

Product

Customer

DB

DB

Calculation

order_
calculation

calculate_order_value

(b) The supplier software architecture

Figure 4: Sample of workow schema and software architecture descriptions for order-and-

pay processing



This service is a complex component, i.e. a con�guration (or software architecture) that

is made out of a set of interacting components. Let us notice that the proposed graphi-

cal representation does not distinguish between ports corresponding to workow tasks and

those corresponding to operations provided by components. Such a distinction is however

explicit from the overall description of a given complex service, which comprises the service's

workow schema (service's behavioral view) and associated software architecture (service's

structural view).

3.2 Analyzing the service's structural and behavioral views

In order to help designers assessing design decisions, the TCCS environment provides CASE

tools for service analyses. As pointed out in the bibliography from the software architecture

domain (see Deliverable A3.1), a major advantage of complex software development based

on software architecture description is that it enables thorough software design and analyses,

based on formal methods. In general, methods that have been proposed in the literature

further come along with CASE tools that non solely aid the designers' task but also make

accessible those methods to practising engineers that are not experts with formal techniques.

In the context of the C3DS project, we focus more speci�cally on tool support for behavior

and QoS analyses due to the expertise of the project partners in this area. In addition,

we are interested in applying provided analyses support to both structural and behavioral

views of complex services. This constitutes one of the major contributions of the TCCS

environment compared to existing ADL-based development environments. While those en-

vironments together provide extensive support for complex software design and analysis from

the standpoint of the software's structural view, they o�er limited support with respect to

design and analysis of the software's behavioral view. In general, the latter aspect is tackled

using model checking techniques (e.g. see the LTSA toolset provided by the TCCS), which

enable specifying the behavior of interacting components. However, these do not address

temporal dependencies among comments, which constitute a prominent aspect of complex

service provisioning. This latter aspect is addressed in the TCCS environment through work-

ow schemas that may be conveniently analyzed with respect to liveness, safety and QoS

properties.

Behavior analyses: Means for analyzing liveness and safety properties are provided in

the TCCS environment through the LTSA toolset. Use of the LTSA toolset for the behavior

analysis of software architectures has formerly been presented in Deliverable B1.1. Basically,

such an analysis consists of de�ning primitive components in terms of �nite state processes

using action pre�x and choice. The behavior of a composite component that is constructed

from interconnected instances is then the parallel composition of the processes de�ning the

instances (i.e. the process given for the component corresponding to the instance). Given

the above behavior speci�cation of components, the LTSA toolset allows the user to explore

di�erent execution scenarios by displaying the trace of actions resulting from a given set



of actions. The toolset further enables checking general properties concerning a software

architecture, with respect to safety and liveness properties.

As detailed in Deliverable B1.3, the LTSA toolset may further be exploited for checking

workow schemas against safety properties. The undertaken approach to modeling workow

behavior is similar to that of architecture behavior. Basically, the interface set of a workow

task is modeled as the parallel composition of processes, which correspond to the task's

interfaces, and inbound and outbound noti�cations. A speci�c primitive task is then de�ned

as the parallel composition of instances of its input and output interface sets plus a default

implementation process that prescribes the primitive behavior of any task. Finally, the

behavior of a workow schema is de�ned through the parallel composition of the embedded

task instances. Given the above speci�cation of a workow schema, the LTSA toolset may

be exploited for simulating its behavior and for checking safety properties.

QoS analyses: QoS analyses in the TCCS environment are supported through the ASTER

toolset. As discussed in Deliverable B1.1, QoS analysis is in particular aimed at easing

the development of middleware customized for the applications based on the required non-

functional properties. This issue relates to the implementation of complex services, and is

thus further addressed in the next section.

In addition to QoS analysis aimed at middleware customization, tool support for the QoS

analysis of complex services regarding temporal properties is being investigated for both

structural and behavioral views, within the TCCS environment. Temporal analysis of soft-

ware architectures is detailed in Deliverable B1.3, concentrating more speci�cally on architec-

tures relating to multimedia applications. In this framework, architectural elements handle

data streams and binding among them set data-ow dependencies. Temporal analysis then

relies on specifying temporal properties associated to components (i.e., timing guarantees

between two successive output frames, and between input and output ports within a com-

ponents; temporal constraints on time distribution between arrivals of frames), and on the

composition of these temporal behaviors. The architectural style underlying the proposed

temporal analysis is actually close to a workow schema from the standpoint of describing

data-ow dependencies. Hence, extension of the proposed approach for temporal analysis of

workow schemas is being investigated, as further discussed in Deliverable B1.3.

Example: Considering our example for order-and-pay processing, the above analysis toolset

leads to annotate software architecture and workow schema descriptions with correspond-

ing property speci�cations. These speci�cations are then provided as input to the TCCS

analysis tools (i.e. LTSA and Temporal analysis tools). This analysis sub-phase is depicted

in Figure 5, the reader being referred to the aforementioned deliverables for details regarding

corresponding annotations.



�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

LTSA toolset

Animation

Property

checking

Annotation
confirm_order

process_order

Workflow schemas

order_calculation

FSP

Software architecture

ASTER toolset

Temporal

analysis

Temporal annotation Mdw

cust.

Temporal properties
specifications

 specifications
FSP

Behavior analyses

QoS analyses

Figure 5: Analyzing complex services using the TCCS environment

4 The Implementation Phase

Once the complex service design has been thoroughly assessed, the implementation phase is

provided with the description of the corresponding structural and behavioral views. Dur-

ing this phase, the developer is in charge of implementing those views together with the

underlying middleware (see Figure 6).

4.1 Implementing the service's structural and behavioral views

Implementation of the complex service's structural and behavioral views relates to exploiting

the functionalities of the TCCS platform, i.e. using the overall features as o�ered by the base

CORBA infrastructure enriched with software agent and workow management systems (see

Deliverable C3.2).



Structural view Behavioural view

Complex service’s

Implementation of service components

Systematic middleware customization

Complex service’s overall configuration

Figure 6: The C3DS implementation phase

Structural views: Implementing the service's structural view lies in providing implemen-

tation for the components that were added during the design phase, i.e. components that

did not belong to the service repository. Such components may be either CORBA objects

or software agents and will be developed according to the TCCS platform speci�cs.

Behavioral views: From the standpoint of implementing the service's behavioral view,

this is quite straightforward using the TCCS workow management system. The provided

workow schema is used directly by the system for execution. In particular, let us notice

that the repository of workow schemas that comes along with the system is the one used

within the service repository (see Figure 2). The task left to the developer is then the imple-

mentation of the task objects, which wrap the service components implementing primitive

tasks so as to interface them with the workow management system.

Example: For illustration, Figure 7 depicts a possible implementation for the order cal-

culation component that was depicted in Figure 4.(b). In this implementation, we assume

that the component is complex and that the calculate order value primitive task is realized

through the implementation of four new components (i.e. 3 software agents and a CORBA

object) combined with interactions with available database systems. This implementation

further introduces wrapping components among the various management systems composing

the TCCS platform, including those relating to the execution of workow scripts and software



����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
����� �����

�����
�����
�����
�����

�����
�����
�����
�����
�����

CORBA-based implementation

Interfacing with

legacy applications

Product DB

Customer DB

calculate_order_value
Task

wrapperworkflow
CORBA wrappers

CORBA object

Agent-based implementation

Software agemts

Interfacing with software agent

Figure 7: Implementing a complex service

agents.

4.2 Customizing middleware for complex services

As stated in the previous section, C3DS work on QoS analysis includes the provision of

automated support for the customization of middleware according to the non-functional

requirements of complex services. Latest results in this area are further detailed inDeliverable

B1.3, and are outlined below. Let us point out here that as for the TCCS support for

service design analysis, the one for middleware customization accounts for both structural

and behavioral views of complex services, the latter being under study. Hence, this extends

existing results in the area of software architecture to the domain of workow.

Customizing middleware for service components: Base services used for complex

service provisioning may be built through a number of interacting components (i.e. base

services may be described as a software architecture). Interaction among components is

then achieved using the communication services of the TCCS platform. However, various



non-functional properties may be enforced over the interactions using complementary mid-

dleware services, and in particular available implementations for CORBA Common Object

Services (COSs). Support for middleware customization then consists of abstractly char-

acterizing required non-functional properties for interactions within software architecture

description. Such a speci�cation is then used by the ASTER toolset for the systematic

customization of the required middleware through the selection of adequate middleware ser-

vices and generation of corresponding proxies for service components. In the framework of

TCCS middleware, customization is addressed for the CORBA infrastructure, which o�ers a

number of middleware services. On the other hand, middleware customization for software

agents is not being investigated.

Customizing middleware for workow execution: Just like the TCCS middleware

may be customized for base services, the middleware used for the execution of workow

schemas may be customized so as to enforce various non-functional properties in addition

to the acidity of transaction management. More speci�cally, the execution of a workow

schema lies in interactions among the task controllers associated with the workow tasks.

Currently, those interactions rely on the TCCS-based middleware comprising the TCCS

ORB and OTS COS. However, additional non-functional properties may be required for the

interactions. In particular, let us mention middleware customization with respect to security

due to interactions among distinct organizations.

Example: Figure 8 depicts the process of middleware customization for the process order

workow schema and order calculation software architecture. Basically, the workow schema

and software architecture descriptions are annotated with non-functional requirements upon

interactions, which are then provided to the ASTER toolset for middleware customization.

The �gure further gives an overview of the resulting customization process for the workow

schema; interactions among the workow objects take place over the middleware comprising

the TCCS ORB, CCS COS, and authentication service.

5 The Deployment Phase

The result of the implementation phase is the overall con�guration of the complex service.

This con�guration embeds the software components relating to base services, workow ex-

ecution, and middleware services. The C3DS deployment phase then lies in instantiating

these components over participating sites, together with the integration of additional ser-

vices for supporting complex service monitoring and evolution (see Figure 9). Let us notice

here that the C3DS deployment phase is currently under investigation and is subject to

further elaboration.



����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

Workflow schema

process_order

����
����
����
����
����

����
����
����
����
����

order_calculation

Software architecture

Task Task

Task
controller

Task
controller

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

������
������
������

������
������
������

Mdw 

architecture

selection

Middleware

architecture

integration

Middleware

architecture

repository

Non-functional properties

Annotation

QoS Analysis

ASTER toolset

Mdw

cust.

Temporal

analysis
Customized middleware for

order_calculation

process_order

Customized middleware for

...

...

CCS

ORB

AUTH

Figure 8: Customizing middleware for complex services

5.1 Initial deployment

The initial deployment phase consists of setting the distribution pattern for the complex

service's con�guration given the underlying distributed system (characterized as Distributed

system view in Figure 9), i.e., the various organization sites from which available base services

originate. Currently, placement decisions are left under the responsibility of developers and

administrators, as discussed below. Providing tool support for systematic con�guration

distribution is an area for future research.

Deployment of the software components relating to the implementation of base services

is achieved using the OLAN support, which enables annotating software components with

location information (see Deliverable B1.3). Components relating to workow execution

subdivide into task and task controller objects. The former are associated with base ser-

vices, and hence each task object is co-located with its corresponding base service. With

respect to the latter objects, a novel feature of the Workow system is that task controllers

of an application can be grouped in an arbitrary manner. The coordination scheme could

be distributed, where a task controller is co-located with its corresponding task object, or a

centralized scheme, where the controllers have been grouped together at a given machine. A

suitable con�guration can be selected using the workow administration application that is

responsible for instantiating a schema. The choice of a given schema could depend on various



Complex service configuration Distributed system view

Initial deployment decision

Final deployment

Complex service configuration
available for execution

Complex service configuration 

annotated with distribution pattern

Figure 9: The deployment phase

factors (e.g., dependability, performance, monitoring, administrative convenience etc.), and

is left to the users and administrators. If dependability is crucial to the workow applica-

tion, then the task controllers can be placed on multiple machines so that the failure of a

single machine will have a minimal e�ect on the progress on the workow application. If

the monitoring of the progress of the workow application is more important than its de-

pendability, then the task controllers can be grouped on the monitoring machine so reducing

communications overhead. In most cases the placement policy for the task controllers within

the workow application will be a compromise between these two extremes.

5.2 Final deployment for service evolution

The initial con�guration deployment as discussed below does not account for complex ser-

vice evolution due to change of either user requirements or environmental factors. The latter

aspect is partly addressed during workow execution due to the fact that the correspond-

ing schema may embed exception handling and that workow executions are transactional.

However, further support is to be investigated so as to support the evolution of base services



(i.e. dynamic recon�guration) or even of workow schemas (e.g. revised de�nition of the

schema). The C3DS project is addressing the above issues by investigating tool support for

service monitoring and dynamic recon�guration.

6 Conclusion

This report has presented the C3DS design and development methodology that lies in ex-

ploiting the provided TCCS environment for the provisioning of complex services out of

existing ones. In that context, complex service design relies on the complementary descrip-

tion of the service's structural view and dynamic view. The former prescribes the service's

software architecture, which abstractly characterizes all the base services composing the

complex service. The latter de�nes the workow schema to be applied onto the software

architecture so as to actually provision the complex service. While there is an extensive

body of research work on analysis support for software architecture design, analysis support

for workow schemas has been barely examined. The TCCS environment provides support

for both analyses, applying results from the software architecture domain to the workow

domain. Implementation of a complex service from its design then lies in implementing the

missing software components. In addition, the TCCS environment provides tools for system-

atic middleware customization with respect to non-functional requirements over interactions

among the base services' components but also among the software components managing

the execution of workow schemas. The result of the complex service implementation is the

service's overall con�guration, which is to be deployed among the participating sites. The

TCCS environment as discussed in this report is currently under elaboration. The current

prototype includes a signi�cant part of the environment constituents. Further development

is still needed regarding the application of the QoS analysis toolset to workow schemas,

and support for complex service evolution. In addition, work is under way for making the

environment user-friendly by enabling environment usage through graphical interfaces.

References

[Baresi et al. 1999] L. Baresi, F. Casati, S. Castano, M.G. Fugini, I. Mirbel and B. Pernici.

WIDE Workow Development Methodology. In Proc. of WACC'99 { Joint Conference on

Work Activities, Coordination and Collaboration. 1999.

[Cardelli 1998] L. Cardelli. Abstractions for Mobile Computation. In Secure Internet Pro-

gramming: Security Issues for Distribution of Mobile Objects. 1998.

[Shrivastava & Wheater 1999] S. K. Shrivastava and S. M. Wheater. OPENow Demo: E-



Commerce (Internal C3DS working report). 1999.

[Weske et al. 1999] M. Weske, T. Goesmann, R. Holten and R. Striemer. A reference Model

for Workow Application Development Processes. In Proc. of WACC'99 { Joint Conference

on Work Activities, Coordination and Collaboration. 1999.


