
DSoS

IST-1999-11585

Dependable Systems of Systems

State of the Art Survey

Report : Deliverable BC2

Report Delivery Date: 30 September 2000

Classification: Public Circulation

Contract Start Date: 1 April 2000 Duration: 36m

Project Co-ordinator: University of Newcastle upon Tyne

Partners: DERA, Malvern – UK; INRIA, Rocquencourt – France; LAAS-CNRS, Toulouse – France; TU Wien

– Austria; Universität Ulm – Germany; LRI, Orsay - France

Project funded by the European Community under the

“Information Society Technology” Programme (1998-

2002)

LAAS-CNRS Report No. 00353

Technical Report CS-TR-708, University of Newcastle upon Tyne

List of Authors

Dependable Systems of Systems 3

List of Authors

Jean Arlat .. LAAS-CNRS, Toulouse, F

Jean-Charles Fabre.. LAAS-CNRS, Toulouse, F

Valérie Issarny ..INRIA, Rocquencourt, F

Mohamed Kaâniche .. LAAS-CNRS, Toulouse, F

Karama Kanoun .. LAAS-CNRS, Toulouse, F

Christos Kloukinas..INRIA, Rocquencourt, F

Bruno Marre... LRI, Orsay, F

Eric Marsden ... LAAS-CNRS, Toulouse, F

David Powell ... LAAS-CNRS, Toulouse, F

Alexander Romanovsky.. University of Newcastle upon Tyne, UK

Pascale Thévenod-Fosse ... LAAS-CNRS, Toulouse, F

Hélène Waeselynck... LAAS-CNRS, Toulouse, F

Ian Welch .. University of Newcastle upon Tyne, UK

Irfan Zakkiudin .. DERA, Malvern, UK

Apostolos Zarras ...INRIA, Rocquencourt, F

Table of Contents

Dependable Systems of Systems 5

Table of Contents

List of Authors .. 3

Table of Contents .. 5

Table of Figures .. 6

Introductory Remarks.. 7

Chapter 1 – Architecture and Design .. 9
1.1 Introduction ... 9
1.2 Architecture-based Development of Software Systems.. 10
1.3 ADL as the Supporting Notation... 12
1.4 Architecture-based Development of Distributed Systems 17
1.5 Concluding Remarks... 20

Chapter 2 – Mechanisms for Enforcing Dependability of Services.................................... 23
2.1 Introduction ... 23
2.2 Structuring and Fault Tolerance Mechanisms for Complex Systems 23
2.3 Middleware-based Systems and Fault Tolerance Mechanisms............................... 28
2.4 Fault tolerance and DSoS.. 33

Chapter 3 – Wrapping Technology ... 35
3.1 Introduction ... 35
3.2 Wrapping in Component-based Systems .. 35
3.3 Wrapping for Error-confinement... 40
3.4 Wrapping and DSoS.. 42

Chapter 4 – Validation Techniques... 45
4.1 Testing of Component Systems and their Composition.. 45
4.2 Fault Injection ... 48
4.3 Model Checking for Compositional Validation.. 54

Chapter 5 – Dependability Evaluation of Large Systems ... 63
5.1 Introduction ... 63
5.2 Analytical Modelling... 63
5.3 Measurement-based Assessment... 67
5.4 Conclusion... 71

References ... 73
Chapter 1 – Architecture and Design .. 73
Chapter 2 – Mechanisms for Enforcing Dependability of Services................................ 79
Chapter 3 – Wrapping Technology ... 83
Chapter 4 – Validation Techniques... 85
Chapter 5 – Dependability Evaluation of Large Systems ... 93

State of the Art Survey

6 Deliverable BC2

Table of Figures

Figure 1 – Different Levels of Wrapping.. 36

Figure 2 – Virtual Machine as a Wrapper ... 37

Figure 3 – Operating System Wrapper.. 37

Figure 4 – Middleware Wrappers.. 38

Figure 5 – Application Wrapping.. 39

Figure 6 – Reflective Implementation of Wrappers.. 42

Figure 7 – Classification of Test Techniques.. 45

Figure 8 – Results of Fault Injection Experiments with MESSALINE 52

Figure 9 – Sample of Measures Obtained with MAFALDA .. 52

State of the Art Survey

Dependable Systems of Systems 7

State of the Art Survey

Jean Arlat1, Jean-Charles Fabre1, Valérie Issarny2, Mohamed Kaâniche1,
Karama Kanoun1, Christos Kloukinas2, Bruno Marre3, Eric Marsden1, David Powell1,

Alexander Romanovsky4, Pascale Thévenod-Fosse1, Hélène Waeselynck1,
Ian Welch4, Irfan Zakkiudin5, Apostolos Zarras2

1LAAS-CNRS (Toulouse, F), 2INRIA (Rocquencourt, F), 3LRI (Orsay, F),
4University of Newcastle upon Tyne (UK), 5Dera (Malvern, UK)

Introductory Remarks

This report provides a state of the art survey related to the work package on architecture and design,
and to the work package on validation. The report is organised into 5 chapters, the first 3 relate to
DSoS work on architecture and design, and the last 2 to work on validation. These chapters may be
read independently, and corresponding bibliographical references are given separately at the end of
the report. The 5 chapters address the following areas:

1. Architecture and Design: This chapter focuses on work in the field of architecture-based
development of software systems. It discusses proposed notations for the rigorous
description of software architectures, together with associated methods and tools for the
design, analysis and building (construction) of software systems from their architectural
description.

2. Mechanisms for Enforcing Dependability of Services: This chapter addresses both the
essential mechanisms for enforcing dependability of services, and the architectural concepts
for the design and implementation of dependable systems of systems.

3. Wrapping Technology: This chapter summarises the work done in the area of wrapping
technology with respect to both solving architectural mismatch issues, and protecting
components against erroneous interacting components.

4. Validation Techniques: This chapter provides an overview of work in the field of
validation, addressing related methods based on testing, fault injection, and model checking.

5. Dependability Evaluation of Large Systems: This chapter surveys the two complementary
approaches that can be undertaken for the dependability evaluation of systems of systems,
i.e., analytical modelling and measurement-based assessment.

Architecture and Design

Dependable Systems of Systems 9

Chapter 1 – Architecture and Design

Valérie Issarny, Christos Kloukinas, Apostolos Zarras (INRIA)

1.1 Introduction

Easing the development of complex software systems such as the ones targeted in the DSoS project
calls for addressing their intrinsic complexity that comes from a number of key concerns:

- Means should be provided for reasoning about the system’s functional properties and
quality (e.g., dependability, extensibility, performance, scalability, ...) throughout the
system development process, so as to enable undertaken design and implementation
decisions to be checked against the requirements specification, and discovering
misconceptions as early as possible.

- The software development process must reduce the costs associated with the
development, maintenance, and support of the software system.

- Reducing the aforementioned costs has in particular led to the notion of component-
based software systems. This notion enables developing the system out of existing
software components should they be either COTS components or legacy systems, and
hence should be of great value for developing systems of systems. However, it
necessitates means for easing the robust integration of such components, which were not
designed for use within the specific system.

Dealing with the above issues requires adequate support for specifying, analysing, simulating,
building, documenting, and visualising the software system, in a way that is comprehensible by
various stakeholders (e.g., designers, developers, integrators, users, ...). The architecture of the
software system is a convenient base vehicle to tackle this need: it prescribes the set of significant
decisions regarding the gross organisation of the system by abstractly characterising the system’s
composing software elements [Perry & Wolf 1992, Shaw & Garlan 1996]. However, for the
description of the system’s software architecture to actually bring aid in the software development
process, it is necessary to provide notations, methods and tools that enable describing the system’s
software architecture in a way that allows systematic analysis, verification and further elaboration of
the developed system. Towards that goal, there has been a number of research works undertaken in
the software architecture community since the early 90’s, which is outlined in the following sections.
Section 1.2 discusses further architecture-based development of software systems giving its base
ground and the issues it raises. Section 1.3 focuses on the notations that have been introduced for the
precise description of software architectures and their processing. Section 1.4 concentrates on
architecture-based development of distributed systems, which now requires accounting for
component and middleware technologies. Finally, Section 1.5 gives concluding remarks,
highlighting some of the open research issues that remain when concerned with the development of
dependable systems of systems.

State of the Art Survey

10 Deliverable BC2

1.2 Architecture-based Development of Software Systems

The software architecture of a system provides a very abstract description of the system by focusing
on its structure and abstracting away implementation detail. Hence, architecture-based software
development is concerned with assembling well-defined architectural elements, according to some
guiding principles, in order to satisfy the major functional and quality requirements of the target
system. The bases of software architecture elaboration then lie in the abstraction of the architectural
elements, their composition, and the definition of architectural styles that guide the development
process. The following subsection defines the conceptual building blocks of software architectures
that resulted from this concern, and is followed by a discussion on how to effectively exploit those
building blocks for the thorough development of robust software systems.

1.2.1 Conceptual Building Blocks

It is now accepted by the vast majority of the software architecture community that the description of
a system architecture should be based on the following building blocks:

- Components that abstractly characterise units of computation or data stores. In general,
the specification of a component gives the behavioural specification of the component
together with the component’s interfacing points (i.e., both provided and required
interfaces, which are often referred to as ports) with the other architectural elements.

- Connectors that abstractly characterise composition patterns among components. A
connector thus prescribes the interaction protocol that takes place among the components
that are composed through it. Hence, a connector specification gives the behavioural
specification of the connector together with the connector’s interfacing points (often
referred to as ports or roles) with the other architectural elements.

- Configurations that define the structures of (sub-)systems by composing collections of
component instances through bindings via connector instances. A system’s software
architecture is then defined as a configuration together with the component and
connector types that are instantiated within the configuration. Notice further that a
configuration may be integrated within a system, in which case it corresponds to either a
component or a connector for which the architectural design has been elaborated.

While the above notions are rather straightforward to interpret at a first glance, it appears that the
distinction between component and connector has been a source of misunderstanding and that the
notion of connector is not well established. In particular, this has led some researchers to retain a
single kind of architectural element, i.e., the component, and to define configurations in terms of
direct bindings among components (e.g., [Magee et al. 1995]). However, the notion of connector is
of primary interest when concerned with the development of complex distributed systems. It enables
abstracting complex distributed system management functions as for instance embodied in
middleware infrastructures, while separating them from the application-specific components
composing a given software system. Works in the software architecture community that do consider
connectors as first-class entities have mainly focused on the specification of connectors with respect
to the interaction pattern they enforce among application-specific components (e.g., [Allen & Garlan
1997]). Complementary aspects of software connectors such that the functions they embody towards
improving the overall system quality through dedicated mechanisms, has also been examined from

Architecture and Design

Dependable Systems of Systems 11

the perspective of middleware synthesis out of the application’s non-functional requirements (e.g.,
[Issarny et al. 1998a]); however, this approach assumes a single type of interaction pattern, i.e.,
remote procedure call. Thus, the clear understanding and detailed specification of software
connectors is still at an early stage and calls for further investigation. This first requires a survey and
a classification of relevant work in the areas of operating, distributed, and communication systems
such as the one recently presented in [Mehta et al. 2000].

The aforementioned base architectural building blocks serve structuring the software system.
However, they are not sufficient per se to guide the elaboration of the system software architecture,
which should build upon previous knowledge about how related systems or architectural elements
were developed. This issue is captured through the notion of architectural style that provides means
for exploiting commonalities between systems and for leveraging analysis and implementation
efforts [Garlan et al. 1994a, Allen 1997]. Basically, an architectural style defines a set of properties
that are shared by the configurations that are members of the style; such properties may prescribe the
kinds of software connectors that may be used (e.g., when the underlying infrastructure is partly
fixed), and topology constraints (e.g., connectors may not be directly connected). The notion of
architectural style is a significant aid in the development process in several respects. For instance, it
helps cope with needed architectural evolution as encountered in the development of software
product families (e.g., see [Kuusela 1999] for issues raised in the development of a specific family)
by setting the architectural commonalities among the members of a given family. Another area of
relevance is the one of exploiting knowledge on how to enforce a given quality property through the
adequate structuring of the architecture (e.g., see [Saridakis & Issarny 1999] for the treatment of
fault-tolerance). This latter aspect relates to the wider issue of describing solutions for specific
problems reoccurring in systems development, which may be addressed by applying corresponding
design and architectural patterns [Buschmann et al. 1996]. Some promising results have further been
achieved in this area from the standpoint of developing patterns assisting in applying different fault
tolerance techniques: exception handling [Garcia et al. 2000], Coordinated Atomic actions [Beder et
al. 2000] etc. Specifying such patterns using architectural styles should ease further their effective
reuse and the analysis of the system architectures based on them.

1.2.2 Issues in Effectively Supporting Architecture-based Development

Effectively supporting architecture-based development requires elaborating and maintaining models
of the system architecture under development since models constitute the primary means to help
understanding the problems that are addressed and their solutions. Such models are necessary in all
the phases of the (possibly iterative) development process, which are typically the requirements,
design and analysis, implementation, testing, and deployment phases. It is thus needed to define
adequate notations associated with the specification of the architectural building blocks, for the sake
of architecture-based system modelling. These notations should further come along with methods
and tools for assisting in the elaboration of the model as well as for assessing it during the various
phases of the development process.

Given that the elaboration of a system architecture involves various stakeholders and development
dimensions, it is advisory to enforce the separation of concerns principle within the development
process and to provide different views (or perspectives) of the architecture model. This is in
particular highlighted in [Kruchten 1995] where the following “4+1” views are introduced: the
logical view that is the functional model of the design; the process view that focuses on the

State of the Art Survey

12 Deliverable BC2

concurrency and synchronisation aspects of the design; the physical view that gives the mapping of
the software onto the hardware platform; the development view that describes the static organisation
of the software in its development environment; the “+1” view is the one concerned with
constraining the overall system architecture with selected use cases (or scenarios).

Work in the software architecture community has been on providing effective solutions to
architecture-based system modelling. Proposed solutions may further be divided into two areas at
this stage of our presentation, depending on whether they are concerned with the definition of
notations for describing software architectures or with the overall architecture-based development
process. In the former category, we meet the definition of Architecture Description Languages
(ADL) that mainly originate from academia and research laboratories; these are discussed in the next
section. In the latter category, we find development processes that are mainly proposed in industry
such as the one used at Siemens [Borrmann & Newberry-Paulish 1999], and the RUP process
[Kruchten 1999] from Rational that is based on the “4+1” view model of software architecture
sketched above and that is supported by the ROSE development environment1. Notice that rather
than relying on novel notations for architecture description, these processes rely on a standard
notation, namely UML [OMG 1997a, OMG 1997b]. We defer until the next section a discussion
about the respective advantages of either using a novel ADL, or not for the specification of
architecture-based system models.

In addition to the above research directions, we find studies that focus more specifically on the a
posteriori architecting of existing software systems. While it is now common concern (if not
practice) to provide well-defined architectures for software systems, there exist systems for which
the information is not readily available and that is necessary for making the system evolved. To help
in this process, methods and tools are proposed for both recovering the system’s architecture
[Bratthall & Runeson 1999, Guo et al. 1999] and for modifying it [Pree & Koskimies 1999]. Close to
this concern and in fact addressed in the aforementioned references, comes the issue of dealing with
software product families. As previously mentioned, defining an architectural style eases tackling the
affordable evolution of a software product. However, this only partly addresses the problem [Perry
1998], since all the future needed evolutions of a software system cannot be anticipated, and may
later call for system rearchitecting. Although the development of systems of systems is concerned
with the integration of existing systems, we do not intend addressing their internal modification but
rather explore how to compose them with additional architectural elements so as to make them fit
within the overall system. Hence, we do not further address the recovery of architectures and their
evolution in the remainder of this chapter.

1.3 ADL as the Supporting Notation

Defining notations for the description of software architectures has been one of the most prominent
areas of research in the software architecture community since the early papers about the need for a
disciplined elaboration of system architectures [Schwanke et al. 1989, Shaw 1989, Perry & Wolf
1992]. Regarding the overall development process, ADLs that have been proposed so far are mainly
concerned with architecture modelling during the analysis and design phase. Recently, close

1 http://www.rational.com

Architecture and Design

Dependable Systems of Systems 13

coupling with a requirements engineering method has been proposed in [Riemenschneider et al.
2000]. Notice further that some existing ADLs enable deriving system implementation and
deployment (referred to as system construction in the following) given available implementation for
the system’s primitive components and connectors. Hence, although all the above efforts are
conducted independently, we may envision the provisioning of architecture-based development
environments that do ease building robust software systems since, as discussed below, one of the
contributions of the software architecture field lies in providing methods and tools for the thorough
design and assessment of the system’s architecture.

A major objective in the definition of ADLs is to provide associated CASE tools, which enable
automating (at least partly) tasks underpinning the development process. In particular, a special
emphasis has been put on the usage of formal methods and associated tools, whose application to the
analysis of complex software systems is eased due to the focus on the system’s architecture that is
abstract and concise. In that context, the description of software architectures has first been
examined without introducing any new specific notations but rather using as is existing formal
notations and exploiting their support for achieving analyses. For instance, we meet the following
works in the above category. The CHAM (Chemical Abstract Machine) formalism has been used for
describing the structure and abstract behaviour of a specific architecture (i.e., the one of a compiler)
in [Inverardi & Wolf 1995]. The Z language has been used to characterise architectural styles and
has later led to define a framework for such characterisations so as to enable comparing styles
sharing a common semantic model [Abowd et al. 1995]. Logic has been used in [Moriconi et al.
1995] for supporting correct stepwise refinement of configurations. Graph grammars are exploited in
[Le Metayer 1996] for enabling constrained architecture evolution. The advantages of introducing
ADLs over the above works are obvious with respect to leveraging the elaboration of software
architectures. An overview of existing ADLs is provided hereafter, and is followed by a discussion
about the relation of such notations with the UML standard software modelling language that is
becoming a major player in industry. We conclude this section by sketching some ongoing research
work in the software architecture community, focusing more specifically on work relevant to the
development of dependable systems of systems.

1.3.1 Architecture Description Languages

Basically, an ADL offers notations for the characterisation of the architectural building blocks that
were introduced in the previous section. Hence, any ADL provides means to describe the structure of
a system, in general both in a textual and a graphical form. It is not our intention to provide an
exhaustive list of existing ADLs in the following. Instead, we refer the interested reader to existing
surveys and in particular the ones presented in: [Allen 97] that further compares ADLs with other
development languages; [Issarny 97] that focuses on ADLs based on the use of formal methods; and
[Medvidovic & Taylor 2000] that proposes a classification and comparison framework for ADLs.
Here, we concentrate specifically on the assistance brought by existing ADLs regarding the thorough
elaboration of system architectures, and reference illustrative ADLs from this standpoint.

Existing ADLs differ on the intended exploitation of the elaborated architecture within the
development process. To the best of our knowledge, all of the ADLs that have been proposed in the
literature target aid in the system’s design, and fall into (sometimes both) two categories depending
on whether they provide assistance in the analysis or in the construction of the designed system.

State of the Art Survey

14 Deliverable BC2

Detailing further, existing ADLs may be distinguished according to the support they provide with
respect to the three above aspects of system development:

- System design: As already raised, this is the central target of ADLs. However, ADLs
differ at this level according to the assistance they offer for stepwise architectural
refinement. In general, this takes the form of a classical type system defined over
architectural elements where a subtyping relation is often included towards checking the
correct refinement of the architectural elements and possibly of architectural styles. For
instance, this is the approach undertaken in the definition of the C2 language
[Medvidovic et al. 1999]. Refinement correctness may be assessed more thoroughly by
accounting for the behavior of the architectural elements. Such a capability is offered by
the SADL language [Moriconi & Riemenschneider 1997] based on the work presented in
[Moriconi et al. 1995] that uses logic theories for checking correct architecture
refinement with respect to the embedded interaction protocols (i.e., the focus is on the
refinement of connectors). Specification of the behaviour of architectural elements in
logic is also exploited in [Saridakis & Issarny 1999] for assisting in the refinement of
architectures enforcing fault tolerance properties.

- System analysis: Support for behavioural analysis using model checking technology has
received a great deal of attention in the definition of ADLs. These ADLs are based on
existing formalisms and exploit associated tools for enabling checking liveness and/or
safety properties. The Wright language [Allen & Garlan 1997] belongs to this family of
ADLs; it is based on CSP and is coupled with the FDR tool for checking deadlock
freedom. The use of CSP further enables checking architecture consistency with respect
to the correct usage of connectors according to the interaction protocols expected by
components. Although the use of the CSP formalism does not prevent the description of
dynamic architectures as presented in [Allen et al. 1997], it is quite restrictive with this
respect. This has in particular led to the definition of ADLs based on the Π-calculus such
as the one presented in [Canal et al. 1999]. Behavioural analysis is also supported by the
Darwin language [Magee et al. 1995] through its extension with labelled transition
systems that comes along with a tool for compositional reachability analysis. This allows
analyzing system models with respect to both safety [Cheung & Kramer 1996] and
liveness [Cheung et al. 1997] properties. Yet another approach to behavioural analysis
has been undertaken in the definition of the Rapide language [Luckham et al. 1995]; this
ADL enables simulating the system model through the use of partial order sets of events.

Another key aspect in the analysis of a system architecture lies in assessing the qualities
of both the architecture (e.g., evolvability, scalability, ...) and the system itself (e.g.,
dependability, performance, ...). Quality analysis of system architectures is quite an open
area of research as it raises a large number of issues and is made more complex by the
subjective nature of quality properties. However, quality assessment of software
architectures has already been examined with respect to the quality of the software
[Kazman et al. 1994], and to performance and reliability properties of architectural
styles [Klein et al. 1999]. The latter work focuses on the integration of quality attributes
within the description of architectural styles so as to assist in the development of systems
offering quality properties. The assessment of the overall system quality relies on
existing methods and tools for reliability and performance assessment where the

Architecture and Design

Dependable Systems of Systems 15

designer translates the architecture-based system model into models understood by the
quality assessment tools. A similar approach is undertaken in [Zarras & Issarny 2000]
but considering the use of a standard notation (i.e., UML) for modeling architectures,
and addressing the systematic translation of these models into models processed by tools
for reliability and performance assessment.

- System construction: The third area of extensive contribution in the definition of ADLs
to assist in the software development process, is on easing system construction. In this
context, the ADL is coupled with tools that generate executable configurations from the
description of system architectures whose primitive components and connectors
correspond to either source files or executables. Examples of ADLs belonging to this
category, to give a few, are Aster [Issarny et al. 1998a], C2 [Medvidovic et al. 1999],
Darwin [Magee et al. 1997], and Unicon [Shaw et al. 1995].

There are other dimensions in the distinction of ADLs as in particular highlighted in [Medvidovic &
Taylor 2000]. The additional criteria that are introduced there relate to further refining the above
three areas where ADLs contribute to the development process. However, one significant distinction
that we have not made so far relates to whether the ADL enables the definition of any kind of
architectures or whether it is domain-specific. While most of the ADLs aimed at system analysis are
general-purpose architecture modelling languages, a number of those aimed at system construction
targets a particular domain. For instance, the C2 language enables modelling only layered systems.

Although there are ADLs that offer similar capabilities, existing ADLs in general offer a
complementary rather than a competing aid. This has led to the definition of the ACME interchange
language, which aims at enabling the combination of various ADLs and associated tools in a single
development environment [Garlan et al. 1997]. In the same spirit, the AML architecture meta-
language has been proposed in [Wile 1999]. These efforts together with useful design assistance
brought by the various ADLs enable foreseeing the provision of an ADL-based environment that
effectively supports the overall software development process. However, the actual usage of such an
environment does not depend solely on the benefits it brings regarding the quality of the software
products that can be developed. It first requires acceptance from architects, designers and developers
who may not be willing to invest in acquiring knowledge about some novel notations, which is most
likely to happen when those are based on formal methods. This issue is already highlighted by the
actual usage of ADLs that have been around for some time. To the best of our knowledge, such
ADLs have been used for the analysis of complex software systems (e.g., Wright was used for
analyzing the HLA architecture [Allen et al. 1998]) but this was within research projects. Use in
industry of ADL-based development environments still requires further evolution of ADLs. In
particular, the growing acceptance of the UML standard within industry, for modeling software
systems raises the concern of coupling ADL notations with UML rather than considering them as
two separate (possibly conflicting) notations serving distinct purposes.

1.3.2 Relation with the UML Standard Modelling Notation

UML is a notation for object-oriented design and analysis, which was standardised by the OMG in
1997 [OMG 1997a, OMG 1997b]. UML consists of a meta-model, the definition of the semantics of
concepts identified in the meta-model, and a notation guide that identifies different diagram types
that utilise the concepts of the meta-model. A UML model of a system then consists of several

State of the Art Survey

16 Deliverable BC2

partial models where each addresses a certain set of software aspects. Models are specified using
diagrams, which fall into the following categories: (i) static structure diagrams including those
defining object types, (ii) use case diagrams to represent the functionalities of a system (or any
model element) as manifested to external actors, (iii) sequence and collaboration diagrams for
describing patterns of interactions among instances, (iv) state diagrams to characterise the dynamic
behaviour of model elements, (v) activity diagrams to represent state machines of actions that are
generated internally, and (vi) implementation diagrams to show aspects of the system
implementation, i.e., the structure of the source code and of the runtime implementation.

Considering UML as a possible notation for describing software architectures is not widely accepted
in the software architecture research community. In particular, it is often argued that UML is
specifically aimed at object-oriented design and is thus concerned with a lower level of abstraction
than ADL. It is further argued that UML lacks supporting formalisms and is thus not suited for the
rigorous analysis of software systems. The latter restriction is not significant since there is a number
of ongoing work about coupling UML with formal notations, including the associated OCL language
[OMG 97c] that enables specifying semantics constraints in terms of first-order logic predicates
within UML-based system models. In general, nothing prevents extending UML so as to enable
formal specifications within diagrams for more rigorous analyses, in the same way it has been
adopted for the definition of ADLs. Considering the former argument against using UML as a base
notation for architecture description, this is a subjective matter as UML classes may correspond to
“coarse-grained” architectural elements such as components. Alternatively, architectural description
using an ADL may well be exploited to detail a low-level architecture where objects correspond to
some programming language objects. The distinction is further blurred when considering the
architectures of distributed object systems such as CORBA 32. The only pre-requisite in describing
architectures using UML is to maintain a clear distinction among the various levels of abstraction
that are addressed during the system design so as to always be able to capture the system’s gross
organization at the right level of detail.

Furthermore, as already raised in the previous section, the use of UML for architecture description
has already been successfully adopted in industry for assisting in architecture-based development
processes [Borrmann & Newberry-Paulish 1999, Kruchten 1999]. However, these approaches do not
enable taking benefit of the various results in the area of ADL definition. Towards that goal, the
integration of ADL-based specifications (i.e., specifications written in Wright and C2) within a UML
model has been studied in [Robbins et al. 1998]. As a result, this enables architecture-based design
using an a priori well-known standard notation while allowing usage of analysis tools coming along
with ADLs. From our point of view, it seems more viable in the long term to consider direct
extensions of UML for architecture-based development. In particular, the tools coming along with
ADLs, which were sometimes developed prior to the ADL (e.g., the FDR tool exploited for the
analysis of Wright-based architectures), can be reused in this context without much effort. The issue
is then on providing appropriate guidelines for the description of UML-based architectures, that is, to
set the UML notations and their semantics, which are to be used for characterizing architectural
building blocks. The actual provisioning of such an environment as opposed to an environment

2 http://www.omg.org

Architecture and Design

Dependable Systems of Systems 17

relying partly on an ADL is still an open issue, which will in particular be considered within the
DSoS project.

1.3.3 Research Directions

Ongoing research in the software architecture domain relates to further promote the disciplined
elaboration of system architectures by enhancing existing results whose overview was provided in
the previous sections. Considering the development of dependable systems of systems architectures,
a great deal of attention needs to be put on the thorough assessment of the system’s dependability as
well as on the exploitation of integration technologies for building up architectures. The former issue
will be addressed through extensive work on validation and evaluation techniques within the DSoS
project, which shall be combined with the architecture-based design methods that will also be
investigated within the project. The latter issue is concerned with the specification and design of
connectors relying on existing component-based and middleware technologies, which is further
addressed in the next section.

An area of research works in the software architecture domain that is relevant to the DSoS project
objectives is the one concerned with novel systems resulting from technological evolutions. In
particular, one application domain for provisioning systems of systems relate to systems developed
over the Internet, which are typically dynamically formed and coalitions of distributed autonomous
resources. In this context, it has been argued that the design of the system’s software architecture
must account for partial knowledge about the behaviour of the constituent architecture elements and
hence requires adapting the corresponding specifications [Shaw 2000]. In addition, Internet-based
systems as well as a number of other emerging distributed software systems must be self-adaptive
due to their continuously changing environments. An infrastructure supporting such a feature has
been proposed in [Oreizy et al. 2000], which is based on architecture-oriented design and
implementation. Although at a preliminary stage, this work shows the benefits of using an
architecture-based approach for the development of systems of systems, in addition to the ones that
have been mentioned so far. As a longer term research initiative in the software architecture domain
that relate to developing next-generation systems of systems, we meet studies about enabling
invisible (or pervasive) computing where services and information are seamlessly brought to users
out of existing systems. In particular, this brings a number of challenges for the definition of
systems’ software architectures as for instance discussed in [Garlan 2000].

1.4 Architecture-based Development of Distributed Systems

The development of distributed software systems is recognised as a complex task: in addition to the
development of the system-specific parts, issues raised by distribution management should be
addressed. However, since the early 90s, the development of such systems has been made simpler
through the emergence of standardised software infrastructures that offer solutions to problems
frequently met in application families. Such infrastructures lie in component and middleware
technologies. Briefly stated, components correspond to the building blocks of distributed systems,
and may be easily composed for interaction. Thus, this corresponds to the notion of component used
in architectural descriptions, except it is closely coupled with some middleware technology that is a
middleware layer lying between the application and the network operating system, and providing
reusable solutions to problems like heterogeneity, interoperability, security, transactions, fault

State of the Art Survey

18 Deliverable BC2

tolerance etc. Middleware and component technologies are now exploited for the development of
most distributed systems and shortly discussed in the following subsection. This leads us to refine
the notions of architectural building blocks as well as to examine the architecture-based design of
middleware underpinning the development of distributed software systems.

1.4.1 Component and Middleware Technologies

The main constituents of any distributed system are the system components, which offer services to
other components that can request service execution. The system’s component model then defines
the way services are defined and accessible, and the way components are identified. Considering
distributed systems that are developed nowadays, these rely on some distribution middleware, which
sets the system’s model [Lewandowski 1998]. Available middleware can be classified into three
gross categories: (i) transaction-oriented middleware that mainly aim at system architectures whose
components are database applications; (ii) message-oriented middleware that target system
architectures whose component interactions rely on publish/subscribe communication schemes; and
(iii) object-oriented middleware that are originally based on the remote procedure call paradigm and
that enable the development of system architectures complying with the object paradigm (e.g.,
inheritance, state encapsulation) and hence enforce an object model for the system (i.e., the
architectural components are objects and connectors abstract at least the interaction protocols offered
by the middleware). Notice further that although originally based on the remote procedure call
interaction paradigm, object-oriented middleware may be extended with features enabling the
development of system architectures similar to the ones targeted by the two other categories of
middleware.

We refer the interested reader to [Emmerich 2000] for a detailed presentation of distributed object
engineering, including supporting object-oriented middleware. Basically, we find the three following
current major object-oriented middleware for building distributed applications:

- The standard Common Object Request Broker Architecture (CORBA) [OMG 1995]
from the Object Management Group (OMG) defines an object model for building
CORBA applications. In this context, an application is a collection of objects where each
object is an identifiable encapsulated entity that may provide an interface defined in the
CORBA Interface Definition Language (IDL). An interface is a set of operations that can
be requested by objects. Requests are then issued through a CORBA proxy, which
combines functionalities provided by the CORBA Object Request Broker (ORB) that
mediates the interactions among objects. A CORBA proxy subdivides into the client-side
proxy (called stub) and the server-side proxy (called skeleton). In addition to the above,
CORBA-compliant middleware infrastructures may provide a set of standard Common
Object Services (COSs) for distribution management [OMG 1998] (e.g., COSs for the
management of concurrency control, objects, security, transactions). Recently, the
definition of a new CORBA version, called CORBA 3, has been undertaken for further
promoting component-based development. Basically, the resulting extension lies in
enabling the specification of components out of objects, which are closer to the
component notion of software architectures.

- The proprietary Distributed Common Object Model (DCOM) middleware infrastructure
[Microsoft 1998] from Microsoft offers functionalities similar to the CORBA standard,

Architecture and Design

Dependable Systems of Systems 19

introducing an object model and a broker mediating object interactions. Interfaces are
here defined using the DCOM IDL, called MIDL. The infrastructure also comes along
with services for enhanced distribution management.

- The proprietary Enterprise Java Beans (EJB) infrastructure [Sun 1998] from Sun enables
the development of applications built out of a collection of objects, called beans, which
may be either persistent or not, and are both hosted and managed by entities called
containers. Object interfaces are defined using an IDL that is a subset of Java. The Java
Remote Method Invocation (RMI) broker is used for managing interactions among
objects and additional services are offered for implementing enhanced functionalities
within containers.

The above middleware need to be accounted for in the development of any distributed system.
However, although they have distinct features and rely on slightly different object models, a
development environment prototype that exploits a single kind of object-oriented middleware should
be easy to adapt to support the others. In particular, this is substantiated by the existing support for
interoperation among components belonging to the three above types of middleware and by the fact
that they can be considered as prescribing a model that is a subset of the Open Distributed Processing
Reference Model (RM-ODP) [ISOIEC 1995]. The recent Simple Object Access Protocol (SOAP)
from the W3C is also likely to play a prominent role in the development of Internet-based distributed
systems; it is an XML-based lightweight protocol for exchange of information using remote
procedure calls. However, it is still at an early design stage and will be examined in the course of the
DSoS project when getting more elaborated.

1.4.2 Matching Architectural and Middleware Building Blocks

The building blocks of distributed software systems relying on some middleware infrastructure fit
quite naturally with the ones of software architectures. Hence, the development of such systems can
be assisted with an architecture-based development process in a straightforward way. This is already
supported by a number of ADL-based development environments targeting system construction (see
Section 1.2.1) such as Darwin and Aster. In this context, the architectural components correspond to
the application components managed by the middleware, and the architectural connectors correspond
to the supporting middleware. However, as noticed previously, most of the work on the specification
of connectors have focused on the characterisation of the interaction protocols among components
whilst connectors abstracting middleware embed additional complex functionalities (e.g., support for
the management of fault tolerance, security, transactions).

The above concern has led the software architecture community to examine the specification of the
non-functional properties offered by connectors. For instance, these are specified in terms of logic
formulae in [Issarny et al. 1998b], which further enables synthesising middleware customised to the
application’s requirements as supported by the Aster ADL [Issarny et al. 1998a]. Dually, domain-
specific ADLs such as C2 target the description of architectures based on connectors enforcing
specific interaction patterns, which may not be directly supported by middleware infrastructures.
This issue has been investigated in [Dashofy et al. 1999], which explores the applicability of
middleware infrastructures to the construction of domain-specific software architectures.

State of the Art Survey

20 Deliverable BC2

Another issue that arises when integrating existing components, as promoted by middleware
infrastructures, is that of assembling components that rely on distinct interaction patterns. This
aspect is known as architectural mismatch [Garlan et al. 1994b] and is one of the criteria
substantiating the need for connectors as first-class entities in architecture description. The abstract
specification of connector behavior as for instance supported by the Wright ADL enables reasoning
about the correctness of component and connector composition with respect to the interaction
protocols that are used. However, from a more pragmatic standpoint, software development is greatly
eased when provided with means of solving architectural mismatches, which further promotes
software reuse. Such a systematic aid is presented in [DeLine 1999], which introduces a number of
notations and associated tools that resolve mismatches during the integration of reused software.

Connectors implemented using middleware infrastructures actually abstract complex software
systems comprising a broker, proxies but also services for enhanced distribution management.
Hence, middleware design deserves as much attention as the overall system design and must not be
treated as a minor task given reliance on some middleware infrastructure. Architecture-based design
is again of significant assistance here. In particular, existing ADLs enable describing conveniently
middleware architectures as addressed in [DiNitto & Rosenblum 1999]. In addition, the fact that
middleware architectures build upon well known solutions regarding the enforcement of non-
functional properties, the synthesis of middleware architectures that comply with the requirements of
a given application may be partly automated through a repository of known middleware architectures
[Zarras 2000]. In the same way, this a priori knowledge about middleware architectures enables
dealing with the safe dynamic evolution of the middleware architectures according to environmental
changes, by exploiting both the support for adaptation offered by novel reflexive middleware
infrastructures and the rigorous specification of software architectures as enabled by ADLs [Blair et
al. 2000].

1.5 Concluding Remarks

This chapter has given an overview of past and ongoing work in the software architecture domain for
effectively enabling architecture-based development of robust software systems. Results in the area
primarily lie in the definition of ADLs that allow the rigorous specification of the elements
composing a system architecture, which may be exploited for aiding in the system design and in
particular in the assessment and construction of software systems.

Ongoing research work focuses on closer coupling with solutions that are used in practice for the
development of software systems. This includes integration of ADLs with the now widely accepted
UML standard for system modeling. From this perspective, one issue that remains is whether
architecture description should only be given in terms of UML diagrams with a possible extension of
the UML language, or be a combination of ADL-based specifications and UML diagrams.
Practically, the former approach should be encouraged so as to ensure the actual usage of solutions
aimed at easing architecture-based development of software systems. However, it is not yet obvious
that this is achievable. Another area of concern when considering the development of actual
distributed systems is the one of exploiting middleware infrastructures and in particular the CORBA
standard for the systems’ development. This issue has already deserved a great deal of attention and
there exist architecture-based development environments that do ease the design and construction of
middleware underlying the system execution out of middleware infrastructures. However, addressing
all the features enabled by middleware within the architecture design is not yet fully covered. For

Architecture and Design

Dependable Systems of Systems 21

instance, this requires capturing the composition of, possibly interfering, middleware services
enforcing distinct non-functional properties. Another area of ongoing research work from the
standpoint of architecture specification relates to handle needed architectural evolution as required
by emerging applications, including those based on the Internet. In this context, it is mandatory to
enable the design of system architectures that can adapt to the environment.

The above research issues are of prime interest for the development of any distributed system, and in
particular for the one of dependable systems of systems. Hence, solutions that are to be proposed
shall be examined in the course of the project. Concentrating more specifically on the development
of dependable systems of systems, their intrinsic features raise two issues for a thorough
architecture-based development. First, although the abstract notion of architectural component does
enable considering an autonomous system as a component instance, most of the results from the
software architecture domain target components that correspond (possibly implicitly) to pieces of
software. Hence, the adequate specification of components abstracting autonomous systems should
be investigated. This distinctive feature also impacts upon the system construction from architectural
description. For instance, wrapping technology for integrating systems need be devised. Dealing
further with dependability of the overall system adds on to the above. In particular, architectural
solutions to the enforcement of dependability properties must be precisely characterised and easy to
integrate within systems. Also, it is crucial to be able to assess the system’s dependability, which will
rely on the work done within the DSoS project in the area of validation techniques and dependability
evaluation.

Mechanisms for Enforcing Dependability of Services

Dependable Systems of Systems 23

Chapter 2 – Mechanisms for Enforcing Dependability of Services

Jean-Charles Fabre, Eric Marsden, David Powell (LAAS-CNRS);

Alexander Romanovsky (University of Newcastle upon Tyne)

2.1 Introduction

The objective of this chapter is not only to address the essential mechanisms for enforcing
dependability of services but also to discuss architectural concepts for the design and the
implementation of dependable systems of systems. In Section 2.2, we discuss modern approaches,
which have proven to be useful for structuring complex applications and for providing their fault
tolerance: exception handling mechanisms, transaction models, advanced workflow systems, various
atomic actions based strategies. In Section 2.3, we summarise the conventional distributed fault
tolerance techniques together with an example and talk about middleware-based fault tolerant
architectures, in particular, ones based on CORBA. Open middleware and reflective architectures are
briefly addressed as a promising field of investigation within DSoS. Section 2.2 is in fact devoted to
application-specific fault tolerance techniques whereas Section 2.3 is directed at application-
transparent fault tolerance mechanisms and architectural solutions. Section 2.4 summarises the work
we intend to do in the DSoS project concerning both topics.

2.2 Structuring and Fault Tolerance Mechanisms for Complex Systems

2.2.1 System Structuring, Fault Tolerance and Exception Handling

Providing fault tolerance is an immanent part of all steps of developing modern complex
applications. The choice of the ways the system is structured should depend on the ways the system
will tolerate faults. There are many reasons supporting the fundamental principle that such system
design should be accompanied by designing features providing its fault tolerance, so that at each
phase of system development (starting from the first ones) fault tolerance issues are addressed. The
best practice uses approaches combining in a natural way system development and structuring
techniques to be applied with the fault tolerance techniques and forcing system developers to apply
appropriate measures for tolerating faults.

The importance of structuring for developing complex systems is well recognised. It allows us to
develop system recursively, reasoning in terms of higher level abstractions by hiding several steps of
data and behaviour modification. Action nesting, multi-layer system structuring, nested method calls
and classes are some of the examples of structuring.

Errors of different types can occur in complex systems of systems and very often the responsibility
of tolerating them is laid on or transferred to the application level (e.g., environmental faults,
residual software faults, transient faults, faults which the underlying software or hardware is not able
to handle transparently, etc.). The most general and beneficial approach to providing application-
specific fault tolerance is to associate it with the system structuring while developing such
applications. It is clearly much more complicated to deal with faults if the units of system structure
are not units of error containment, error detection or error recovery. Many researchers and system

State of the Art Survey

24 Deliverable BC2

developers believe that the atomicity property, understood here as indivisibility of a unit execution
with respect to errors (all-or-nothing semantics), is vital for proper system structuring and providing
fault tolerance. Systems are easier to develop, to understand and to analyse if their execution is built
out of atomic units encapsulating several components and/or operations provided no information
crosses the border of such units. The ability to nest such units is essential for dealing with system
complexity in a scalable way (a unit is called nested if it contains a subset of components or/and
operations from the containing one).

Exception handling [Cristian 1995] is accepted to be the most general technique for dealing with any
faults which can hit an application (including application-specific faults and, in particular,
environmental faults [Rubira 1994]) because it offers several ways of separating normal and
abnormal behaviour. To define the rules of exception handling and, in particular, exception
propagation, one has to relate exception handling to a structuring technique. A set of exceptions and
exception handlers is associated with an exception context. If one cannot handle an exception raised
within the context or if there is no handler for the exception raised, then an exception is propagated
to the containing context. Each context is associated with a structuring unit. We will say that, for a
given component, the containing context is associated with the component which uses it (or that the
former component is associated with the nested context with respect to the latter). “Uses” means here
that the component refers to the interface of another component.

The considerations above clearly show that system structuring, fault tolerance and exception
handling are concerns which should be addressed together while both choosing the approaches to
system design and developing complex applications. Good system development should use
appropriate techniques for dynamic and static system structuring out of units incorporating general
fault tolerance features based on exception handling. It is extremely beneficial to associate different
meanings with the same concept of a structuring unit and by doing this to minimise the number of
concepts used in system development.

Complex systems of systems are distributed systems with intensive parallelism and concurrency.
There are many complex scenarios and many subsystems involved in SoS execution. Many abnormal
events can happen and should be dealt with in a disciplined fashion. This requires special techniques
for structuring, fault tolerance and exception handling. We will briefly outline several main trends in
research that are relevant, from our point of view, to the specific characteristics of complex systems
of systems.

2.2.2 ACID Transactions and Advanced Transaction Models

Atomic transactions were one of the first structuring techniques developed for concurrent and
distributed systems. Preserving and guaranteeing important properties of data (or, objects, resources)
affected by several operations are in the focus of this approach, which takes care of atomicity,
consistency, isolation and durability (the ACID properties) of these structuring units [Gray & Reuter
1993]. Consistency means that the execution of any transaction on its own is a correct transformation
of the data states and does not violate their integrity. Isolation plays a major role in providing inter-
transaction concurrency: when it holds, the designer of a transaction which uses some data does not
have to know about other transactions using them. It is guaranteed that, even when several
transactions are executed simultaneously, they do not affect each other, and the recovery of any of
them is separated from the execution of the others. Durability is understood as the ability of data to

Mechanisms for Enforcing Dependability of Services

Dependable Systems of Systems 25

survive any assumed hardware faults which can happen after the transaction has been successfully
completed (committed). The atomic transaction scheme relies on three standard operations: start,
abort and commit, which mark the boundaries of a transaction. Each transaction encompasses several
operations on data and, in this sense, is a concept of a higher level than any individual operation.

Although atomic transactions have been successfully applied in many applications, developing new
and extended transaction models has always been an area of a very active research, mainly because
the original model is either too general or too restrictive in many respects.

To provide more flexible features for programming complex systems and their recovery, the concept
of nested transactions was developed [Moss 1981] in which a transaction can start subtransactions,
thus creating a tree of sibling transactions. A subtransaction can either commit or abort; but its
commit does not take effect (is not visible to the outside world) until the parent transaction commits.
The advantages of nested transactions are: they can be aborted independently without causing the
abortion of the whole transaction, sibling transactions are executed concurrently.

Recently the concept of multithreaded transactions (MTT) has been developed to allow several
active components (threads, processes) to take part in the same transaction and to operate together on
the same set of data. One of them starts a transaction, then others learn its identity, using this identity
they can access data within such transaction. Very typical examples of MTT are the CORBA
transaction service and Arjuna [Parrington et al. 1995]. The object-based language Argus [Liskov
1988] is a very interesting example of MTT enriched by powerful exception handling: applications
are composed out of guardians, each of which provides an interface consisting of callable
procedures, called handlers. Handlers can fork concurrent threads which are joined when the handler
is completed. Handler execution forms an atomic transaction, nested handler calls form nested
transactions. Argus provides a very powerful extension of sequential exception handling: handlers
can have exceptions declared in their interface which are propagated to a single-threaded caller when
any thread inside the transaction signals it. Any thread may decide to signal an exception with or
without transaction abort. The Argus model proved to be very influential: several systems have been
developed which rely on similar computational models.

A number of generalised transaction models have been developed recently in order to overcome some
of the limitations of traditional (flat or nested) transactions, such as lack of support for long-lived
actions, cooperative activities and multidatabase systems. Much of this work is surveyed
comprehensively in [Elmagarmid 1993]. Long-lived activities, for example, can keep data locked for a
very long period of time and considerable computation can be lost if they are aborted. Usually, these
models extend the canonical transactional model by breaking or softening some of the ACID
properties. In the Sagas model [Garcia-Molina & Salem 1987], for example, each saga consists of
several ACID transactions T1, …, Tn; the support guarantees that either all of them are successfully
completed or compensation transactions are run to eliminate partial results. It is required that each Ti
has Ci - the compensation ACID transaction, so that if an execution of a saga is interrupted/aborted
when Tj is executed then the support aborts Tj and runs Cj-1, ..., C1. The Dynamic Action model
[Nett & Mock 1995] allows the isolation property to be relaxed on the grounds that it neither matches
the general-purpose character of distributed systems, which should support communication and
cooperation nor does it allow for flexible concurrency. In this model, data uncommitted within one
transaction can be accessed by another transaction, but the support transparently traces all transactions

State of the Art Survey

26 Deliverable BC2

which have used or might have used these uncommitted data and aborts them if the initial transaction
is aborted.

2.2.3 Advanced Workflow Systems

Another important research area relevant to the DSoS project is developing modern workflow
systems, which are used for designing and controlling complex business processes [Leymann &
Roller 1999]. Workflow systems are concerned with both activity control and data integrity of such
applications; they usually describe all possible paths of the process execution, structure the execution
of these systems as sequences of activities (some of which can have nested activities in their turn).
Workflow management systems are useful mainly for bottom-up design. They fit well to the object
model: activities can be implemented as invocations of objects. Usually, such systems use languages
of two types: scripting (or, modelling) languages for describing the sequences of activities and
conventional programming languages for manipulation of data. Workflow management systems deal
with long-lived activities or with activities involving human beings, this is why they typically
provide support for tracing dependencies which are created when data from the completed activity
are used by another activities: appropriate actions involving all dependant activities can be taken if
necessary. This feature can be used, for example, if data inconsistency is created or an error in the
completed activity is found.

It has been recognised for many years that workflows could benefit from using the transactional
paradigm and in many respects developing modern workflow systems became the main driving force
and application area for research on transactions [Hsu 1993]. Systems are much easier to design if
their parts have the ACID properties. Transactional workflows allow system designers to view these
parts as atomic transactions. For example, the OPENflow system [Wheater et al. 2000] is based on
Arjuna. It uses a scripting dataflow language (with many elaborate features for component
coordination) for describing the schema and Java for programming data manipulation. This approach
promotes a recursive view of workflow execution. In this system, component activities can be
programmed to have the ACID properties but if they do not, it is the responsibility of the system
designer to trace dependencies and undertake the required actions (e.g., to guarantee the consistency
or to perform the recovery). The OPENflow system is CORBA compliant and it has robust
distributed support implemented using service ACID transactions.

Many workflow systems use extended transactional models to deal with the peculiarities of this
application area: weakening the ACID properties for some activities (e.g., for long-lived
components) is often required. In this case, the support systems often trace the dependencies and
perform some special actions on all dependent activities (informing or aborting them, executing
separate compensation or replacement activities, etc.).

Modern business processes have to deal with numerous abnormal situations, which cannot be treated
simply either in an ad hoc way or by transactional abort, this is why introducing exception handling
models into workflows is now a topic of active research. It is clear that abnormal situations and
handling them are very much specific for these applications and that exception handling models
should fit well into the workflow development process. Analysis of existing systems clearly shows
that general exception handling features always support disciplined, structured and unified ways for
dealing with exceptions of different types. For example, the OPERA process support system [Hagen
& Alonco 1998] offers flexible features combining exception handling and an advanced transaction

Mechanisms for Enforcing Dependability of Services

Dependable Systems of Systems 27

model. The scripting language incorporates special features for error detection and handling, which
are conceptually similar to exception handling features found in programming languages. In effect,
this approach offers an advanced fault tolerance mechanism for incorporating both transactions and
exception handling into workflow systems. This model allows parent activity to define handlers for
each nested activity whose execution can be either aborted or resumed after handling. The choice of
the way exceptions are handled depends on the type of activities; the OPERA system allows system
designers to develop activities of 5 types: non-atomic, semi-atomic (activities, which do not provide
automatic rollback but keep enough information to allow undo), atomic (activities, which have no
side effect if they fail), restartable (activities, which can be restarted after failure), compensatable
(activities, which can be rolled back after they have successfully completed).

2.2.4 Atomic Actions and Coordinated Atomic Actions

Concurrent systems can be classified into three categories [Horning & Randell 1973, Hoare 1976]:
independent (disjoint), competing and cooperating systems. Transactions are intended for
competitive systems as they guarantee the consistency and atomicity of data (objects) accessed by
multiple clients but they do not deal with structuring multiple clients, or, to put in a more general
context, they are not suitable for developing cooperative systems. In reality, many complex systems
are cooperative. The general concept of atomic actions, proposed in [Campbell & Randell 1986] is
intended for designing such systems and for providing their fault tolerance by a disciplined exception
handling mechanism. Several participants enter an action and cooperate inside it to achieve joint
goals. To guarantee atomicity no information is allowed to cross the action border. Participants leave
the action together when all of them have completed their job. If an error is detected inside an action,
all participants take part in a cooperative recovery. Atomic actions can be nested, so that when a
nested action fails, a containing action is responsible for recovery. Many implementations of atomic
actions have been developed (e.g., using CSP, Ada, OCCAM, C and C++ extended by concurrency
features, multicast libraries, specialised operating systems).

A more general approach, which deals with both competitive and cooperative systems is
Coordinated Atomic (CA) actions [Xu et al. 1995] allowing designers to choose the relationship
between components, i.e., whether they compete or cooperate. CA actions are a unified scheme for
coordinating complex concurrent activities and supporting error recovery between multiple
interacting components in distributed systems: they integrate and extend atomic actions and
transactions, the former are used to control cooperative concurrency and to implement coordinated
error recovery, the latter are used to maintain the consistency of shared resources in the presence of
failures and competitive concurrency. This allows various types of faults to be tolerated, as well as
combinations of faults occurring in different components involved in the CA action execution (using
an extended resolution mechanism [Campbell & Randell 1986]). Fault tolerance is provided by a
safe and simple exception handling model where:

- Internal and interface (external) exceptions are clearly separated.

- All action participants are involved in coordinated exception handling when any of them
raises an exception.

- Each of the participants has to have a handler for each internal exception.

- Concurrent exceptions are resolved before handling.

State of the Art Survey

28 Deliverable BC2

- Only interface exceptions can be propagated from an action.

A number of distributed Java and Ada schemes have been developed and various case studies have
been used to check the applicability of this approach (e.g., [Romanovsky et al. 1998, Zorzo et al.
1999, Xu et al.1999]: a series of Production Cell case studies, including a fault tolerant one and a
real time one; a distributed internet Gamma computation. An auction system, and a subsystem of a
railway control system, which deals with train control and coordination in the vicinity of a station are
under development now.

2.2.5 Spheres of Control

C.T. Davies pioneered in developing a general conceptual view on both the atomic transactions and
atomic actions [Davies 1979]. He addressed many concepts concerned with concurrent systems,
recovery and integrity within an overall scheme that he called data processing spheres of control.
Spheres of control are intended to deal with various problems including coordinating multiple
processes within recovery regions, sharing partial (uncommitted) data between processes, and
controlling concurrency across machine boundaries. However, the descriptions of spheres of control
provided little implementation advice for general applications, and early work on transactions,
though influenced by Davies, was much less ambitious in its goals. Spheres of control define process
bounding for various purposes and allow for both dynamic and static system structuring with a clear
definition of properties of this structuring. Many kinds of control are considered in the spheres to
make it possible for system designers to have a flexible choice: they include atomicity, consistency,
recovery, auditing, commitment, resource control, etc. All phases of fault tolerance are addressed
using spheres of control. The intention is to be as general and as flexible as possible to allow for a
flexible choice of the amount of processing one wishes to consider as a unit of action, for maximum
process independence while maintaining consistency and for a choice of the level of atomicity which
suits the application best.

2.3 Middleware-based Systems and Fault Tolerance Mechanisms

Independently from their basic principles, fault tolerance is tightly connected to architectural design
choices as far as application-transparent mechanisms are concerned. From typical hardware-based
solutions in the seventies, the development of large distributed systems played in favor of software-
based solutions. Their objective is to provide distributed fault tolerance strategies on networks of
standard computers, mainly based on the replication of software components. Key ingredients are
group communication protocols that are the basis for the development of distributed error recovery
strategies.

In this section, we summarise the most recent works concerning fault tolerance architectures for
distributed systems and analyse the most promising solutions for large systems. We focus in
particular on middleware technology and CORBA because of their widespread usage in large
industrial computer systems. The combination of reflection and middleware technology is certainly
the most promising field of investigation for the development of adaptable fault tolerance. The key
features of reflective middleware seem of high interest for introducing dependability mechanisms
into systems of systems.

Mechanisms for Enforcing Dependability of Services

Dependable Systems of Systems 29

2.3.1 Distributed Fault Tolerance Mechanisms

The definition of fault assumptions to be considered is a major activity in the design of fault tolerant
systems. Faults can be accidental or intentional. They may be introduced during the design process
or occur in operation. The choice of appropriate fault tolerance techniques depends very much on the
nature of the faults and other parameters such as their persistence. Design faults can be handled by
diverse design techniques [Randell 1975, Chen & Avizienis 1978, Laprie et al. 1995]. Intentional

faults are addressed by security techniques (authentication, ciphering techniques, FRS3 techniques).
FRS [Deswarte et al. 1991] addresses both intentional and accidental faults. Physical faults in
operation are often handled by replication techniques, in particular in distributed systems.

In the context of distributed systems, the fault model is defined at the level of communicating nodes
or processes. The most common fault model is that of simple crash faults. The underlying
assumption is that computing elements are fail-silent. This fault model is adopted not because
systems necessarily employ extensive self-checking (the inverse is usually the case) but because
there are many reasons for which the type of process-level fault can occur, over and above just
underlying hardware faults: power failures, unscheduled maintenance, network disconnections,
process abort, process blocking due to lack of resources, etc. Dealing with this type of fault is thus
often the main focus as far as availability is concerned. In very critical systems, such as safety-
critical systems, more general faults such Byzantine faults might need to be taken into account.
However, these require complex agreement protocols, described in many papers, such as [Dolev et
al. 1997, Guerraoui & Shiper 1997].

For crash faults, possible solutions are based on either stable storage or replication strategies. The
various protocols suppose that detection of a crash is based on the absence of some sort of I’m alive
or heartbeat message between interacting processes. However in asynchronous distributed systems,
it is impossible to distinguish a failed process from a very slow process [Fisher et al. 1985]. In many
practical systems, time-outs are used to empirically detect whether remote processes have crashed,
even if assumptions of synchrony are not really substantiated by an appropriate design. In effect, a
synchronous model is assumed, but it is admitted that there is some probability of this assumption
being violated [Powell 1992]. It may just be the case that the distributed application is not very
critical, so the occasional lack of fault-tolerance has no dire consequences. Alternatively, time-outs
are over-dimensioned to the extent that the probability of false detection is considered negligible.

Much recent research has been devoted to defining models that are intermediate between
asynchronous and synchronous models. Among them, we can cite the asynchronous model
augmented with the notion of unreliable failure detectors [Chandra & Toueg 1996], the timed
asynchronous model [Cristian & Fetzer 1998], and the quasi-synchronous model [Veríssimo &
Almeida 1995].

Fault tolerance strategies based on stable storage consider that a memory storage device is designed
and implemented as a fault tolerant unit. A snapshot of the state of the running entities is regularly
stored in this unit. Recovery consists in this case in creating a new copy of the object and in
performing its initialisation from the last state saved on stable storage. When the fault tolerance

3 FRS: Fragmentation-Redundancy-Scattering.

State of the Art Survey

30 Deliverable BC2

strategy is based on replication, a set of replicas executes the same computation on different sites.
We can identify passive, semi-active and active replication strategies [Chérèque et al. 1992]. In the
former, only one replica is active, the primary, and returns the results to the calling entity; the other
replicas, the backups, are passive and update their state according to the last snapshot transmitted by
the primary (in checkpoint messages). In the semi-active strategy, all replicas are active but there is
one, the leader that dictates some decisions (e.g. message acceptance or process preemption) to the
other replicas, namely the followers [Barrett et al. 1990]. This means that, in this case, a consensus
protocol is not mandatory. In addition, the leader replica may take sole responsibility for sending
output messages. The other object replicas are called followers. The current state of the computation
is acquired by the followers if (i) they process the same input messages in the same order and if (ii)
the same input messages produce the same results. The first assumption can be fulfilled (but not
required) by a group communication service (as in ISIS [Birman 1985]) ensuring total order of input
messages to all correct recipients. The second assumption relates to the determinism of the replicas
computation and relies on a design discipline: identical input data must lead to the same output
results at all replicas. For instance, local values (time, random numbers, etc.) must be avoided or
agreed among the replicas (in fact, imposed by the leader). Intra-object concurrency can also lead to
non-deterministic behaviour. These assumptions are also mandatory for the last strategy, the active
replication strategy; in this case all the replicas are active, process the request autonomously and may
be able to send the results to the calling object. Agreement on the final results is performed by
majority voting either (i) between replicas before the results are sent to the calling object (source
validation) or (ii) at the calling object receiving a copy of the results from all active replicas
(destination validation). In this solution, not just omission faults are tolerated but also value faults.
Recovery after a crash may differ slightly from one strategy to another. In the passive and semi-
active replication strategies, a backup must be elected to replace the primary or the leader
respectively. Reconfiguration leads to the creation of a new object replica (cloning). In the active
replication strategy, there is no recovery (it is a masking strategy) and just reconfiguration is
achieved (a new object replica is created and inserted into the group of object replicas) in order to
restore the initial fault tolerance level. More details about these strategies can be found in [Speirs &
Barrett 1989, Chérèque et al. 1992, Barrett et al. 1990, Powell 1991].

2.3.2 Middleware-based Fault Tolerant Systems: An Example

Middleware-based systems provide facilities to compose systems together, whatever the hardware
and the basic software layers are (e.g., the executive). This is in particular the case for CORBA,
which also provides interoperability between interacting components developed in different
programming languages.

An early example of middleware-based fault tolerant system is certainly the DELTA-44 system
[Powell 1991], a complete object-based fault tolerant system. The various steps of its development
included the definition, design and implementation of the architecture, and its validation by fault
injection and formal verification. One of the initial objectives of this system was to consider
distributed systems as networks of (as far as possible) off-the-shelf computers (Unix workstations).
Its concepts are based on ODP (Open Distributed Processing concepts) and OSI (Open Systems

4 DELTA-4 Esprit Projects n°818/2252: Definition and Design of a Dependable Distributed Architecture

Mechanisms for Enforcing Dependability of Services

Dependable Systems of Systems 31

Interconnection). Distributed fault tolerance is based on objects and message passing. All
mechanisms are based on a Multicast Communication System (MCS) providing group membership
and atomic multicast protocols running on a fail-silent network attachment controller (NAC). The
NAC implementation is based on hardware-implemented self-checking and memory protection. The
group membership and multicast communication protocols are based on basic LAN protocols: 802.4
token bus and 802.5 token ring.

The DELTA-4 system was a reference for object-based distributed fault tolerant systems in which
several conventional replication mechanisms were developed. Many similarities exist between
DELTA-4 and CORBA, at least from a development viewpoint using an IDL (Interface Definition
Language).

2.3.3 CORBA-based Fault Tolerant Systems

Given that middleware-based applications are generally distributed over multiple machines, they are
more likely to experience faults than traditional centralised systems. However, standard middleware
platforms such as CORBA have (until recently) provided little support for dependability. In this
section, we describe why traditional process-based fault tolerance techniques are insufficient, discuss
research work on dependability in CORBA-based systems, and present the recent FT-CORBA
standardisation work.

Traditional process-based fault tolerance techniques are inadequate for CORBA-based systems. A
method based on detecting process failure is insufficient, since the failure of a single CORBA object,
or of a thread in a broker, may not cause the crash of the container process. Furthermore, standard
process-based state recovery techniques are insufficient to restore the interconnected object
relationships typical in distributed object systems.

The standard CORBA specification provides little support for fault tolerance. Clients will normally
be informed of communication failures, since IIOP (Internet Inter-ORB Protocol, used for remote
method invocations) provides error detection inherited from the underlying internet protocols.
Detection of server crashes is more dependent on the ORB implementation: the POA (Portable
Object Adapter, which mediates between the ORB and server objects) may detect the failure of a
server and restart it automatically (possibly restoring state from a checkpoint), transparently
redirecting invocations against that object to the freshly started instance. However, developers often
resort to implementing a heartbeat mechanism manually to detect failures.

More sophisticated approaches to fault tolerance in CORBA-based systems are based on replicating
servers, using some form of group communication service. There are a number of approaches [Felber
1998]:

- The integration approach incorporates an existing group communication system within
an ORB. This is the approach taken by Electra [Maffeis & Schmidt 1997] and Orbix+Isis
[Landis & Maffeis 1997]. Fault tolerance is transparent to clients and servers (though an
extended (Application Programming Interface) is available to clients that wish to
implement specialised mechanisms), but requires a customised ORB to be used.

- The interception approach captures messages issued by an ORB and funnels them
through a group communication toolkit. This is the approach taken by Eternal [Moser &

State of the Art Survey

32 Deliverable BC2

Melliar-Smith 1997], which intercepts all IIOP traffic before it reaches the network stack
and transfers it to a group communication system. Either active or passive replication
strategies can be used. While the interception approach is transparent for clients and
servers, it provides only a low level view of the activity of a server process, limiting the
nature of the faults which can be tolerated.

- The service approach provides group communication as a CORBA service alongside
the ORB. This is the approach taken by the Object Group Service and by DOORS
[Natarajan et al. 2000]. This approach is less transparent for clients, which must make
explicit use of the group service API.

More recently, fault tolerance mechanisms were provided to CORBA applications using a reflective
approach [Killijian & Fabre 1998, Killijian & Fabre 2000]. This reflective solution relies on open
compilers, namely OpenC++ [Chiba 1995] and OpenJava [Tatsubori 1999].

Recent standardisation efforts by the OMG (Object Management Group, an industry consortium)
have led to the FT-CORBA specification, which incorporates the interception and service approaches
to replication. The main points of the specification are:

- The notion of object group reference, which allows clients to invoke operations on a
group of servers. Upon failure, the client ORB falls back on alternate object
references contained in the group reference. The service context of invocations is
augmented to allow the server ORB to detect duplicate requests and maintain at-
most-once semantics (the server returns the cached result of the request).

- Mechanisms for replica management, using active, semi-active or passive replication
strategies.

- Standardised interfaces for fault detection and notification by specialised CORBA
objects called Fault Detectors, using either a push- or pull-based strategy.

- Mechanisms for logging and recovery: Network traffic related to remote invocations
is recorded to be played back to the new primary upon recovery (when a passive
replication strategy is used).

- Standardised interfaces which allow fault tolerance strategies to be modified
dynamically (setting the maximum number of replicated instances for example).

Limitations: the FT-CORBA standard requires deterministic behaviour of application objects and of
ORBs to ensure strong replica consistency. This is very difficult to achieve in practice. There are no
mechanisms for handling correlated faults, or for coping with network partitioning.

2.3.4 Reflective Middleware Technology and Fault Tolerance

One aspect of research in the dependability community is the investigation of new techniques for
introducing fault tolerance mechanisms in a flexible and non-intrusive manner. Indeed, given their
long lifetimes, large software systems are often required to satisfy evolutions in their functional and
non-functional requirements. It is important that the architectural choices made when designing or
integrating such systems allow a sufficient degree of adaptation. The application of reflective

Mechanisms for Enforcing Dependability of Services

Dependable Systems of Systems 33

techniques in middleware is a promising approach to developing adaptable and dependable
distributed systems from pre-existing components, without incurring excessive integration costs.

Reflection is a useful mechanism for introducing flexibility and openness in system design. The
standard approach to hiding the complexity of a software component is to view it as a black box,
with implementation details being hidden from the user. In the reflective approach, certain details of
the internal functioning of the component can be accessed via its meta-interface. This provides the
meta-level of the system with a causally connected view of the activity of the base-level.

Reflection is a useful technique for providing a clean separation between an application’s functional
requirements (which are implemented in the base-level), and non-functional requirements such as
security and fault tolerance (which are implemented in the meta-level). Reflective techniques have
been used for the implementation of fault tolerance mechanisms both at the programming language
level [Fabre & Perennou 1998] and in operating system kernels [Garbinato et al. 1995].

Current research is investigating the use of reflective notions at the middleware level. Benefits
expected from this approach include:

- Separation of concerns between the application and the implementation of the
dependability mechanisms (using introspection to provide transparent support for
checkpointing, for example).

- The possibility of implementing more efficient dependability mechanisms, by giving
them access to information from low level system layers. For instance, access to details
of the scheduling mechanisms could be used for fine grained synchronisation of
replication strategies, and information about the state of the network stack could provide
improved error detection.

- Simple and well defined mechanisms for parameterising the system’s non functional
mechanisms, in particular in response to dynamic changes in the runtime environment.

- Improved support for the reuse of components implementing fault tolerance and security
mechanisms.

The most advanced work to date on reflective middleware includes DynamicTAO [Roman et al.

1999], a reflective ORB implementation which concentrates on the need to maintain consistency
when reconfiguring a system in response to changes in environmental conditions (network
bandwidth, processor load for example), and the investigation of agent-based approaches to
reconfiguration of large-scale systems. Another approach is taken by Jonathan [Dumant et al. 1998],
a modular framework for the construction of flexible ORBs based around customisable binding
mechanisms.

2.4 Fault tolerance and DSoS

The application-specific fault tolerance approach to be developed within the project will make use of
the respective strengths of Davies’ spheres of control (as the conceptual framework), CA actions and
workflows. CA actions can serve as a solid starting point in developing structuring techniques
suitable for complex systems of systems as they:

State of the Art Survey

34 Deliverable BC2

- Allow system developers to design, structure and provide fault tolerance of complex
concurrent systems in which components cooperate and compete.

- Provide support for exception handling, which is vital for components that are not
capable of rolling back and which allows actions to have multiple outcomes.

- Provide some of the generality of spheres of control and within this limited area offer
a full support for maintaining consistency and achieving fault tolerance.

- Allow the tolerance of environmental faults, software design faults and crashes of
nodes with transactional objects.

- Are built on a much richer concept of atomicity than traditional workflow systems
and allow for a more general way for achieving fault tolerance.

Workflows, on the other hand, offer powerful features for invoking flows of activities and for
constructing complex activities, which might be very useful in the context of the project. Other
important features which transactional workflows provide allow one to deal with long-lived activities
and with activities involving people. This is achieved by weakening some of the ACID properties. A
thorough comparative study will be carried out to find in which extent these features are more
suitable for developing systems of systems than general features which CA actions offer. The
“action” concept at the SoS level will provide support for: multiple participating components,
recursive system structuring, autonomous component behavior (e.g., asynchronous action entry,
degradation), safe exception handling inside and outside actions, robust distributed support, error
containment at the action level, action atomicity.

Our further intention is to investigate the advantages offered by applying reflective concepts to
industry-standard middleware platforms such as CORBA brokers, in order to provide advanced
application-transparent fault tolerance mechanisms. The DSoS work packages concerned with the
characterisation of middleware robustness by fault injection will provide essential inputs for this
work.

We expect that this research will also illustrate innovative ways of reifying to the system integrator
the dependability attributes which can be customised at the middleware level. For instance, the
approach could be useful in providing details of the non functional properties of an IFS, and in
customising its behaviour.

In summary, the approach should provide principled mechanisms for enabling the dynamic
reconfiguration of systems of systems while maintaining consistency.

Wrapping Technology

Dependable Systems of Systems 35

Chapter 3 – Wrapping Technology

Jean-Charles Fabre, Eric Marsden (LAAS-CNRS);

Alexander Romanovsky, Ian Welch (University of Newcastle upon Tyne)

3.1 Introduction

The use of wrapping techniques in the context of DSoS is mainly motivated by two different
objectives; roughly speaking, the first one relates to the problem of interface mismatch, the second
relates to protection. A wrapper is a software layer that sits around a given target component. This
software layer is responsible for intercepting all service calls to the target component from other
components. Ideally, this software layer cannot be bypassed for both safety and security reasons. The
notion of wrapper was initially defined by the ISAT working group of DARPA (Information Science
And Technology) as a software entity that is composed of essentially two parts: an adaptor providing
additional services to applications, an encapsulation mechanism responsible for linking components.

This general definition is more oriented towards adaptation to a given operational environment rather
than for the procurement of defense mechanisms. The notion of protection was raised as soon as the
use of COTS (Commercial Off-the-Shelf) components was considered in the design and the
implementation of dependable systems.

This chapter summarises the work done on both of the above aspects of wrapping technology. In the
former, the wrapper provides an API (Application Programming Interface) to its environment that is
implemented on the functions provided by the wrapped component. In the latter, the role of the
wrapper is to protect the target component from erroneous interacting components and also prevent
error propagation from the target component to the outside world.

3.2 Wrapping in Component-based Systems

3.2.1 Why Component Wrapping

Component-based development has been a focus of research for industry and universities because it
promises decreased system complexity and reduced cost of development. Szyperski [Szyperski 1998]
gives the following definition of a component that reflects the idea that components are reused and
composed together to create a system :

- A component is a unit of independent deployment. A component encapsulates its
constituent features, and is well separated from its environment and other
components.

- A component is a unit of third-party composition. It must encapsulate its
implementation and interact with its environment through well-defined interfaces.

- A component has no persistent state. The only state a component might have is state
that does not contribute to its functionality. This implies that in most cases there will
never be a need for multiple copies of components.

State of the Art Survey

36 Deliverable BC2

There is considerable confusion between objects and components. The term component has been
used in different ways in different contexts. Current implementations of components (COM, Java
Beans, etc.) exhibit only some of the properties described above. In fact components and objects are
distinct from each other. Components may be implemented using objects but also may be
implemented using procedures and static or global variables, or a functional language or directly
using assembly language. Objects have the properties of unique identity, state and encapsulation of
state and behaviour. There is no guarantee that these properties are exhibited by components.

Developing complex systems by component integration is often complicated by the following
factors: introducing new or extended functional and non-functional requirements (e.g., adding
functionality, improving dependability), using components in a different (wider or narrower) context
or environment, heterogeneity of components. There are many reasons why components may not fit
well into the integration process or match each other. For example, components are designed with a
set of assumptions in mind that may not match the assumptions in the environment where they are
deployed. Component wrapping is used to overcome such problems as it addresses them without
having to modify the components themselves. Wrapping in component-based systems has many
specific characteristics. First of all, general wrapping techniques can be developed for a particular
implementation of components (e.g. for CORBA) because in this case all components follow the
same interface agreements. Secondly, component wrappers can be easily re-used; this can improve
productivity and give a possibility of separate validation of component wrappers therefore reducing
the validation effort for the composed system.

It is important, from our point of view, to separate clearly aims (of using wrapping) and means

(structured approaches to wrapper implementation) while discussing component-oriented wrapping
techniques. Traditionally wrappers are used in the security domain [OMG 2000, Erlingsson &
Schneider 1999]. A new emerging area is error confinement (discussed in detail in Section 3.3).
There are some other applications, such as caching, management, testing.

3.2.2 How to Wrap Components

Developing structuring techniques for component wrapping is an area of active research. The choice
of techniques depends mainly on the system architecture, the level on which the component
functions, the way it is plugged into environment, trade-offs and, in a less degree, on the aims of
wrapping. We will survey some of the existing approaches using a general view on system
architecture shown in Figure 1.

Application

Middleware

Operating System

Hardware

Figure 1 – Different Levels of Wrapping

A virtual machine can be used to isolate the hardware from the operating system or to isolate
applications from the hardware (Figure 2). For example, various authors (e.g., [de Oliveira

Wrapping Technology

Dependable Systems of Systems 37

Guimarães 1998]) have used a modified Java Virtual Machine to implement the traps necessary to
develop wrappers. The advantages of this approach is that it is highly transparent as it requires no
changes to code in the upper layers, and is very powerful. The disadvantage of the approach is the
potential complexity of developing a virtual machine implementation, the performance costs, the
level of abstraction may be too low for some applications because working at the instruction level
may lead to mapping problems when dealing with application level abstractions, compatibility
problems can arise if hardware differs from the target hardware for which the
middleware/application has been compiled.

Application

Middleware

Operating System

Hardware

Virtual
Machine

Application

Middleware

Operating System

Hardware

Virtual
Machine

Figure 2 – Virtual Machine as a Wrapper

Another possible solution is to wrap the operating system (Figure 3). The usual way to do this is to
replace the system libraries with proxies that intercept system calls. A well-developed example of
this approach is generic wrappers. The wrappers can be used, for example, to bring components
under the control of a security policy. The wrappers act as localised reference monitors for the
wrapped components. An interesting example of this approach is found in [Fraser et al. 1999]. Here
the emphasis is on binary components and their interaction with an operating system via system
calls. Wrappers are defined using a Wrapper Definition Language (WDL) and are instantiated as
components are activated. The wrappers monitor and modify the interactions between the
components and the operating system. Generic policies (in this case for access control, auditing,
intrusion detection) can be specified using the WDL.

Application

Middleware

Operating System

Hardware

O/S
Wrapper

Figure 3 – Operating System Wrapper

The use of generic wrappers and a wrapper definition language is an attractive approach as it is
flexible and is generalisable to many platforms. However, there are some drawbacks. Wrappers can
only control flows across component interfaces and cannot control internal operations such as access
to state or flows across outgoing interfaces (outgoing interfaces [Szyperski 1998] are defined by the

State of the Art Survey

38 Deliverable BC2

set of method calls the component can make upon other components). Also the level of abstraction
does not easily map to the application level, the wrappers are better suited to system level policies.

Middleware provides transparent distribution and access to services, including, for example,
persistence and transactional ones, to components as it mediates interaction between components.
Examples of middleware are CORBA2, CORBA3, DCOM+ and Enterprise Java Beans (EJB). Most
middleware use the ideas of wrappers (Figure 4) in order to transparently insert calls to services.
These are termed interceptors in CORBA and DCOM+, and proxies in CORBA3 and Enterprise Java
Beans.

Application

Middleware

Operating System

Hardware

Middleware Wrapper

Figure 4 – Middleware Wrappers

The CORBA2 specification allows for interceptor services. These are services that can be inserted
into the normal invocation path for CORBA objects. The interceptor service is registered with the
ORB that then ensures that when the client sends a request to an object the request is passed through
the interceptor service and on return the result also passes through the interceptor service. The
interceptor can then implement the non-functional requirements such as security [OMG 2000].
DCOM+ interceptors are generated automatically by component containers and intercept cross
process calls.

EJB and CORBA3 generate proxies that stand in place of the target component and allow
interception of method invocations sent to the component. The degree to which these interception
services and proxies are open varies. For example, ORBIX has a feature called filtering that is in
effect a CORBA interception service. However, in general they are not open and are tuned to support
particular services. This requires users to generate proxies manually or using particular tools. The
other drawback is that it only applies to distributed interactions, and ignores internal events such as
field access and exception raising that may be useful to have under wrapper control.

The most common way to implement application level wrappers (Figure 5) is to generate proxies for
components or objects. Unfortunately this suffers from a number of problems which Holzle gives a
good overview of in [Holzle 1993]: needs to create a new wrapper every time new object needs to be
adapted; reusable wrappers can cause problems in languages where identity checks are performed via
pointer equality checks; wrappers have a tendency to spread “infecting” everything; in languages
without delegation we cannot override methods of the wrapped object; indirection can be expensive.
The main point Holzle makes is that complications ensue because we have added another object to
the system that has the related invariant that all interactions must be via that object, this invariant is
expensive and difficult to maintain.

Wrapping Technology

Dependable Systems of Systems 39

Application

Operating System

Hardware

Middleware

Application Wrapper

Figure 5 – Application Wrapping

These problems can be overcome by performing the wrapping at the binary level (rather than the
language one) thus allowing a unification of the wrapper and the object. This is implemented in the
system Binary Component Adaptation [Keller & Holze 1998]. Here, Java compiled class files are
rewritten under the control of a delta file that specifies what changes to make to the code. Example
of changes would be the addition of new methods, changes to the class hierarchy, etc. This is quite a
low-level approach working at the level of the implementation and very specific to particular
component implementations. Other examples of this approach are the Java bytecode rewriting
toolkits (e.g., [Chiba 2000]). These toolkits provide object-oriented frameworks for writing programs
that manipulate the structure of class files and load time representations of elements of class files
such as methods, types, instructions etc. Java programs can then be written that describe how class
files can be rewritten as late as load time. The main drawback with this approach is that the
programmer has to have a detailed understanding of both the structure of class files and Java virtual
machine programming. A more abstract approach is to allow programmers to work at the level of the
protocols governing execution of the application and to implement changes to these protocols
through the application of bytecode rewriting toolkits. Kava [Welch & Stroud 2000] is an example of
this meta-object protocol [Kiczales et al. 1991] approach. Kava is a portable implementation for Java
that allows control over behaviours such as method invocation sending, method execution, field
access etc. Using Kava wrappers can be implemented as meta-objects using the Java language that
take control the behaviour of applications at runtime. These meta-objects are bound to the
application objects at the time at application load time.

There are approaches that abstract away from particular component implementations and use policy
files to specify required transformations in order for components to meet new or modified
requirements. For example, SASI [Erlingsson & Schneider 1999] uses a security automaton to
specify security policies and enforces policies through software fault-isolation techniques. The
security automaton is merged into application code by a language specific rewriter that adds code
implementing the automaton before each instruction. Partial evaluation techniques are used to
remove unnecessary checks. One of the problems the authors found when applying SASI was the
lack of high level abstractions. SASI is very powerful and can place controls on low level operation
such as push and pop allowing rich security policies to be described. However, the security policy
language is low level with the events being used to construct the policies almost at the individual
machine language instruction level.

State of the Art Survey

40 Deliverable BC2

3.3 Wrapping for Error-confinement

3.1.1 Motivations and Principles

The main worry of designers of complex and large systems relates to the faulty behaviour of existing
component systems, including COTS components. This is particularly true when connecting legacy
systems together, in the context of DSoS.

To tackle this problem two types of activities must be undertaken. The first one is to characterise the
failure modes of the target system or component, the second one is to provide strong encapsulation
using wrappers, providing complementary protection and error detection mechanisms. These
activities must be done in sequence, since results obtained in the former step are inputs for the
second one, i.e., the design and the implementation of wrappers. Because they are core components
of system architecture, works concerned with wrapping for error confinement focus on executive
components, namely off-the-shelf operating systems and real-time kernels. This is why most of the
ideas reported in this section address the wrapping of COTS operating systems. We believe however
that the various approaches discussed here can be of high interest for reusing other existing
components, including legacy systems.

When weak features of the executive support have been clearly identified, wrapping leads to an
encapsulated version of the executive that is the basis for the development of architectural solutions
that include fault tolerance strategies at upper layers. It is worth noting that the fault tolerance
strategies rely on assumptions, the coverage of which is a very important factor for dependability
figures [Powell 1992].

Fault injection is often used to tackle the first aspect of the problem, recently using SWIFI
techniques (SoftWare Implemented Fault Injection) [Kao et al. 1993, Hsueh et al. 1997, Carreira et
al. 1998, Kroop et al. 1998, Fabre et al. 1999, Shelton et al. 2000] (see Section 4.2 on fault injection
techniques). However, as far as legacy systems are concerned, a detailed analysis of their structure
and behaviour can give enough information for the design of protection and fault containment
wrappers.

Wrapping is often based on filtering inputs and outputs [Voas & Miller 1997, Voas 1998]. The use of
some services can be restricted or even forbidden because of their a priori well-known weak
behaviour regarding dependability. This notion of filtering for protection (a wrapper is a filter) was
initially used for security purposes [Cheswick & Bellovin 1994]. The idea here is to provide access
control to services in both directions, from the outside world to the wrapped component and vice-
versa.

3.3.2 Filtering and Verification of Properties

As far as the confinement of errors due to accidental hardware and software faults is concerned, the
efficiency of the wrapping depends very much on the colour of the box, namely the openness of the
target component. Filtering can only be applied to the inputs and the outputs of the component when
it is considered as a black box. Although this assumption is often made for existing components,
having no observation and control over a component is really a very limiting factor. This is
particularly true for executive components because of their complexity but also because their

Wrapping Technology

Dependable Systems of Systems 41

behaviour cannot be verified only by filtering external information. At the other extreme, a white box

provides, beyond the source code more documents about its development process. This is of course
very positive for the overall system integrator since it provides more information, in particular for
entering the standardisation processes. However, even in this case, the component’s behaviour in the
presence of faults is something that is often ignored in the standard bodies. Improving this behaviour
by means of wrappers is certainly of high interest for the system integrator in order to put in
operation the system with a better level of confidence. The white box approach can thus play an
important role in the development of wrappers. However, this approach is sometimes not possible
from an economic and industrial viewpoint.

Regarding the weakness of current wrapper technology, recent ideas rely on the development of
formal logic expressions describing the expected behaviour of executive services. These expressions
are the basis for the verification of the correct behaviour at runtime either using executable assertions
[Salles et al. 1999] or using a model checker that interprets on-line the formulae [Rodriguez et al.

2000]. When these formulae are expressed in temporal logic, both value and timing faults can be
considered. In any case, the formulae need access to some internal information within the target
component. Regarding the colour of the box, the implementation of the proposed wrappers relies on
a grey box approach based on the notion of reflective component. This approach provides an
intermediate approach between the full black and white approaches and is based on the concept of
behavioural reflection [Maes 1987]. It enables the system integrator to consider the COTS executive
as a black box, provided the COTS supplier provides an additional interface for the implementation
of efficient wrappers.

The encapsulation consists in the verification of predicates that specify the correct functional and
temporal behaviour of the executive component with respect to their main services (e.g. scheduling,
time, synchronisation, and clock interrupts). When a predicate is violated, two types of action can be
triggered depending on the severity of the diagnosed situation.

- The wrapper can be passive and only delivers an extended error status to the upper
layers. In this case, the recovery action is left open to the surrounding environment.

- The wrapper can put the executive in a safety state (or shutdown of the executive) and
have a corrective role.

When the failure situation can be clearly analysed as the consequence of a given combination of
input parameters, the wrapper can be able to correct the activation profile or deliver an error status to
the invoking component. The correction of the component’s behaviour is something that is limited
by the knowledge of the activation context and internal state at the wrapper level.

3.3.3 Implementation Issues

Various implementation techniques can be envisaged. The most conventional ones rely on the use of
notion of front-end software package or on the use of libraries. The former is similar to the notion of
proxy (as in the implementation of firewalls). Depending on the type of faults that must be handled,
the implementation strategy must be selected carefully. When intentional faults are considered, then
the wrapper must be implemented in such way that it cannot be bypassed. The library approach has a
limited efficiency in this case. The library approach can cope with accidental faults but a more
efficient implementation for executive software is to include the wrappers into the executive address

State of the Art Survey

42 Deliverable BC2

space. When possible, this option has many benefits, since the wrapper cannot be bypassed and also
because it may have access to internal information for both detection and recovery.

As mentioned earlier, a reflective approach provides a clean way of separating the executive
software and the wrapper from a conceptual viewpoint. This implementation framework (see. Fig. 6)
provides separation of concerns between the wrapper itself and its related target component. The
meta-level of the system is the wrapper of the target component, the base-level of the reflective
component being the target component. The reflective implementation framework enables the
verification of predicates that need internal information of the target component (some internal
events and function calls, some data structures can be observed and controlled). Beyond
conventional solutions only filtering calls and input/output parameters, a reflective implementation
of formal wrappers seems very promising, at least for the use of COTS real-time executives in
dependable systems. The above approach can certainly be applied to many software components,
executive packages being prime candidates.

Application

Middleware

Operating System / RT Kernel

Hardware

WrapperReflection module
Metainterface

Executable assertions
or model checker

Figure 6 – Reflective Implementation of Wrappers

Figure 6 illustrates the basic reflective implementation framework. The wrapper implements the
verification of properties by means of executable assertions or using a model checker. The reflection
module provides the access to the necessary information for this verification by reification and
introspection facilities. This module also provides intercession facilities, i.e., means to change the
internal state and behavior of the wrapped component.

As far as wrapping applications is concerned, an interesting approach is the Sandboxing approach.
Sandboxing is a wrapping technique used to protect against malicious faults in untrusted code. It is
widely used in Internet applications, in particular to protect host machines when executing applets
(mobile code executed on Java virtual machine embedded in Web browsers). The sandbox executes
the untrusted code, controlling its access to resources on the local machine. Depending on the
policies applied by the sandbox, it may disallow write access to the file system, limit access to the
network, or refuse to allocate more than a certain amount of memory. In this way, the wrapped
software cannot compromise the integrity of the host machine.

3.4 Wrapping and DSoS

The importance of subsystem wrapping is even higher in the context of the DSoS project than in
component-based systems because of the following characteristics of systems of systems.
Subsystems have to be always treated as ready-made items whose code is not known. It is often the
case that they are not developed for integration and that their main responsibly/requirement is to

Wrapping Technology

Dependable Systems of Systems 43

function correctly in isolation and to provide local services to their users. These subsystems are quite
autonomous and they should function properly even if other subsystems are down. They are
developed meeting different standards, fault assumptions, agreements, types of time behaviour, etc.
The reasons above can cause mismatches of several types [ConceptualModel 2000] that can be
successfully dealt with by applying wrappers. Because of all these reasons there always will be a
need in a unification and standardisation of both the subsystem behaviour and interfaces to apply
general structuring, fault tolerance, etc. techniques at the SoS level. Wrapping software can be used
in the DSoS to transform heterogeneous systems into components meeting the same interoperability
“standards” (e.g., CORBA objects or EJB beans); to provide unified interfaces, including a unified
propagation of the component system interface exceptions; to guarantee known and consistent fault
assumptions; to protect subsystems from malfunctioning environment and vice versa; to guarantee
the consistency of several interfaces of a component system.

Some of the considerations about pros and cons of different approaches to component wrapping
discussed in Section 3.2.2, can be less applicable in the context of the DSoS project. Moreover it
may be the case that some approaches will be difficult to apply given the nature of systems of
systems, in which case new approaches will be needed for subsystem wrapping.

In practice, the error confinement mechanisms implemented by the wrappers depend very much on
the nature of the target component: its type, size, and failure modes. Information on the
dependability characterisation of components obtained from techniques described in Section 4 will
be of great importance, both in determining the required behaviour of the wrappers, and later in
testing the efficiency of the dependability mechanisms they implement.

We believe that the reflective framework presented in Section 3.3.3 is of high interest when stringent
dependability requirements are needed. While it has to date only been applied to executive
components, the basic principles are applicable to other off-the-shelf components. The main benefits
of this approach are the separation of concerns between the wrapper and the target component, but
also the limited intrusiveness within the legacy component. Nevertheless, for large and legacy
systems this approach has not been envisaged yet. This is something that has to be done within
DSoS.

Clearly, as far as large systems are concerned in DSoS (e.g., ATC systems or enterprise systems),
wrapping is closer to the notion of firewalling as it is done for security. The firewall in this case is a
linking interface (LIF) between systems that includes software packages for error confinement.

Validation Techniques

Dependable Systems of Systems 45

Chapter 4 – Validation Techniques

4.1 Testing of Component Systems and their Composition

Pascale Thévenod-Fosse, Hélène Waeselynck (LAAS-CNRS);

Bruno Marre (LRI)

Testing is a widespread verification technique [Beizer 1990, Harrold 2000] that consists in executing
a program by supplying it with valued inputs in the form of test inputs. Test outputs are observed
according to a decision procedure (the oracle) which determines their acceptance or rejection.

Basic testing concepts are introduced in Section 4.1.1. Then, Section 4.1.2 briefly presents current
functional test techniques. Section 4.1.3 is concentrated on a particular family of functional test
techniques, called property-based testing, that should be of interest in the framework of DSoS.
Finally, the place of testing within DSoS is discussed in Section 4.1.4.

4.1.1 Basic Testing Concepts

Save under exceptional circumstances, exhaustive testing cannot be carried out, and, therefore, a
(small) subset of the input domain must be selected. Current methods for the determination of test
inputs can be considered from two points of view: criteria for selecting the test inputs, and generation
of the test inputs. The combination of these two points of view allows the test techniques to be
pooled in four groups depicted in Figure 7.

STRUCTURAL
MODEL

FUNCTIONAL
MODEL

deterministic
structural

deterministic
functional

statistical
structural

statistical
functional

SELECTIVE
CHOICE

RANDOM

Selection

Generation

Figure 7 – Classification of Test Techniques

The selection of the test inputs may be related to a model of either the structure of the program which
defines structural (or white box) testing, or the function of the software which defines functional (or
black box) testing. As regards structural testing, classical criteria are linked to the program control
graph providing a compact view of the algorithm implemented in the program. Examples of such
criteria demand testing of all instructions, all branches, or all paths. Unlike structural testing for
which the reference model is the program control graph, there currently exists no standard model to
describe the expected software behaviour. Functional testing, therefore, covers a range of techniques
according to the mode of representation retained. For example, transition testing can be associated to
finite state machine models; criteria associated to algebraic specifications extract input cases from
the specification axioms.

State of the Art Survey

46 Deliverable BC2

Whatever the selection criterion, input generation can be deterministic or probabilistic. In the first
case, which defines deterministic testing, inputs are determined by a selective choice so as to satisfy
the test criterion retained. In the second case, which defines statistical testing, inputs are randomly
generated according to a probabilistic distribution over the input domain; the distribution and number
of test data being determined by the criterion retained [Thévenod-Fosse et al. 1995]. Statistical
testing is intended to compensate for the imperfect connection of criteria with software faults.

4.1.2 Functional Test Techniques

Within DsoS, test suites and their decision procedures (oracles) should be designed from
specifications following a functional approach rather than from coding details such as in structural
approaches. The functional approach allows the component test to be grasped almost independently
of component size. Indeed, functional modelling can be more or less detailed and/or based on a
hierarchical break-down of the expected functions, so that the models taken individually remain of a
tractable complexity. Note, however, that testing raises an implementation difficulty, which must not
be overlooked: an instrumentation for test submission (drivers) and test diagnosis (oracles) must be
developed. While it is easier to derive abstract test suites when the level of abstraction hides
implementation details, it becomes more difficult to submit and diagnose concrete test experiments
in the test execution environment.

The automation of the test selection process strongly relies on the formalisms used for the
description of the available specifications. Current state of the art concerning testing from formal
descriptions shows that the research community is divided according to two main aspects: one part of
the community focuses on data aspects, while the other focuses on communication or
synchronisation aspects.

Data aspects (and sometimes some synchronisation aspects) are generally addressed through
symbolic techniques (symbolic evaluation, rewriting, constraint solving techniques) and the
underlying formalisms have semantics close to first order logic. Some representatives of these formal
test approaches are based on algebraic specifications [Bernot et al. 1991], [Doong & Frankl 1994],
VDM specifications [Dick & Faivre 1993], B abstract machines [Van Aertryck et al. 1997], [Behnia
& Waeselynck 1999], or LUSTRE descriptions [Marre & Arnould 2000].

Communication and synchronisation aspects were initially addressed in the protocol testing
community. Theoretical bases strongly rely on the theory of process algebra [De Nicola & Hennessy
1984], [Brinksma 1989]. Test suites are selected from finite state machines [Chow 1978], [Fujiwara
et al. 1991], [Lee & Yannakakis 1994], [Waeselynck & Thévenod-Fosse 1999] or from labelled
transition systems [Pitt & Freestone 1990], [Tretmans 1992].

Some test methods address both data and synchronisation aspects. For example, [Dick & Faivre
1993] uses a finite state automaton derived from a VDM specification, [Thévenod-Fosse &
Waeselynck 1993] uses statecharts developed with the aid of the STATEMATE tool; other methods
use the control automaton derived from a LUSTRE description [Thévenod-Fosse et al. 1994],
[Raymond et al. 1998], [Du Bousquet et al. 1999], or address data types and communications aspects
from full LOTOS specifications [Gaudel & James 1998].

Validation Techniques

Dependable Systems of Systems 47

4.1.3 Property-based Testing

Property-based testing is a special case for functional testing that should be of great interest within
DsoS. It uses the specification of a property to drive the testing process. The aim is to validate a
program with respect to a target property, that is, to exercise the program and observe whether or not
a property is violated. With the emphasis put on properties and not on full specification, test oracles
confine themselves to the verification of the property conditions. Previous work on property-based
testing is focused on safety properties (essentially invariant properties for [Jagadeesan et al. 1997]
and [Raymond et al. 1998], but also reachability properties for [Marre & Arnould 2000]), and
security properties [Fink & Bishop 1997].

Work on safety properties applies to programs that conform to the synchrony hypothesis. The target
safety property is translated into either an ESTEREL program [Jagadeesan et al. 1997], or a LUSTRE

program [Raymond et al. 1998], [Marre & Arnould 2000]. In any case, the property is used as the
oracle procedure, but its impact on the selection of test inputs may be weak depending on the
approach. In [Jagadeesan et al. 1997] and [Raymond et al. 1998], the selection is performed
according to hypotheses on the behaviour of the external environment, in order to avoid generating
scenarios that would be impossible in operation. Within these environmental constraints, how to
select a priori test inputs that correspond to dangerous scenarios with respect to the target property,
and how to define when to stop testing, remain open issues. The work of [Marre & Arnould 2000]
generates test sequences from LUSTRE “testing descriptions” involving a (possibly partial) model of
the object under test, some environmental constraints and the target property. An interactive
decomposition mechanism applied to the testing description allows them to tune coverage of any
relevant part of the testing description, including the property description.

The approach presented in [Fink & Bishop 1997] consists of a new specification language called
TASPEC (Tester’s Assistant SPECification language), static slicing, path coverage criteria, and
execution monitoring. TASPEC can serve as an intermediary language between a Z specification and
the testing process. It has primitive constructs which enables it to be translated automatically into
slicing criteria (to facilitate the extraction of all code affecting conformance to a target property) and
test oracles. But the process of selecting input test data is left to the human tester.

As regards the issue of selecting input test data that correspond to dangerous scenarios with respect
to a target property, a pioneer work based on the use of optimisation techniques, specifically
simulated annealing, is reported in [Tracey et al. 1998]. First results are promising although limited
to small combinatorial programs and local properties.

4.1.4 Place of Testing within DSoS

Testing activities in the DSoS project are focused on the validation of properties expected from
component systems and of emergent properties coming from their composition. Both safety and fault
tolerance properties will be considered. Their expression must be strongly connected to the notations
and specification formalisms coming from the CM and the AD themes, and the description of the
involved components should be precise enough to allow test instrumentation (drivers and oracles) to
be implemented. Based on these models, our contribution will put emphasis on improving the
combination of functional and non-functional test inputs, the combination being guided by the target
property to be validated.

State of the Art Survey

48 Deliverable BC2

We adopt a more liberal definition of safety properties than [Jagadeesan et al. 1997], [Raymond et
al. 1998] and [Marre & Arnould 2000]. Safety properties are any high level requirements related to
the most critical failure modes of one component system. For improved composability, it must be
verified that the required property cannot be destroyed by the result of interactions that are engaged
with the other component systems. Testing will be used as a means to determine whether or not the
constraints (e.g., pre- and postconditions) placed at the component interface are sufficient to ensure
the absence of some unacceptable failure behaviour in the integration environment. As explained
above, few authors have addressed the issue of selecting input test data that correspond to dangerous
scenarios. We will investigate whether the optimisation approach proposed by [Tracey et al. 1998]
can be merged with another sampling approach, namely statistical testing, to offer a tractable
solution to this issue. The dangerous scenarios that “stress” the target property are expected to
combine both functional and non-functional inputs.

Fault tolerance properties are emergent properties whose implementation is tightly connected to
architectural design choices. As will be explained in the next section, fault injection is a privileged
approach for validating such properties. Since this approach raises issues that are close to the testing
problem (see Section 4.2.3), it will be investigated whether integration testing policies and test
selection criteria can be used to improve the definition of fault injection experiments.

4.2 Fault Injection

Jean Arlat (LAAS-CNRS)

Fault injection corresponds to the artificial insertion of faults into a real or simulated target computer
system [Carreira et al. 1999]. Actually, fault injection experiments are intended to yield three
benefits:

- An understanding of the effects of real faults and thus of the related behaviour of the
target system.

- An assessment of the efficacy of the fault tolerance mechanisms included into the
target system and thus a feedback for their enhancement and correction (e.g., for
removing designs faults in the fault tolerance mechanisms).

- A forecasting of the faulty behaviour of the target system, in particular encompassing
a measurement of the efficiency (coverage) provided by the fault tolerance
mechanisms.

As such, in spite of the continuous progress made both in verification, especially using formal
methods, and in modelling, using stochastic processes (encompassing imperfect coverage models as
well) — see Section 5, fault injection provides a pragmatic complementary approach towards the
dependability validation of fault-tolerant systems.

Initially applied to centralised systems (especially dedicated fault-tolerant computer architectures)
[Avizienis & Rennels 1972], fault injection has then addressed distributed systems [Kao & Iyer
1995], and also, more recently, the Internet [Labovitz et al. 1999]. Also, the various layers of a
computer system (ranging from hardware [Martínez et al. 1999] to software: executive [Kao et al.

1993], middleware [Pan 2000], application [Tsai & Singh 2000]) can be targeted by fault injection.

Validation Techniques

Dependable Systems of Systems 49

It is important to note that such an approach, based on controlled experiments, is very much suitable
when non-development items (e.g., COTS components) are integrated and interact into the system
being considered, which is particularly the case for the kind of systems addressed by the DSoS
project. Indeed, COTS components exhibit usually little information on their development process,
on their architecture and on their actual failure behaviour, to allow for a detailed analysis to be
carried out. Fault injection thus allows for objective data to be obtained in particular on their failure
modes so as to be able to elaborate suitable architectural solutions — such as fault containment and
error processing mechanisms (e.g., wrappers) — to better detect/tolerate their errors (see Section
3.3). Such insights and measurements are also useful to feed any higher-level models that may be
developed for dependability verification or evaluation purpose.

This section further exemplifies the role of fault injection into the dependability validation process.
First, the types of faults and the related injection techniques are discussed, then after a clear
identification of the scope of relevance of fault injection, examples of results are given that show the
type of insights that one can derive from fault injection experiments and their impact on the
validation process. Finally, the place of fault injection within DSoS is briefly addressed.

4.2.1 Injecting Faults

Two main questions arise when dealing with fault injection:

- What kind of faults are to be injected?

- How to inject faults?

To date, two main kinds of faults have been targeted by fault injection activities: physical (hardware)
faults and design (software) faults. Indeed, little work has been devoted to devising controlled
experiments addressing human-related interaction faults (being they accidental or intentional).

As is also the case for other efforts made in dependable and fault-tolerant computing, most mature
advances and techniques concerning fault injection deal with physical fault injection. Moreover,
supported by the fault statistics available, transient faults have dominated this effort (over permanent
faults). Dedicated tools are available to flip bits at the pins of an IC, alter the power supply or even
bomb the system/chips with electromagnetic interferences (EMI) or heavy-ion radiations [Karlsson
et al. 1998]. Although significant work has been carried out dealing with software mutation [Voas &
McGraw 1998], software bug injection gave rise to much less investigations and is still largely an
open research issue. Injecting software faults is a more difficult task. Also, although they are the
result of a (permanent or hard) bad design, their perceived faulty behaviour is often transient (or soft)
[Gray 1986].

Nevertheless, it is important to point out that what really matters when probing the behaviour of a
target system in presence of faults is much less the faults themselves than the consequences
provoked/observed. Indeed, in practice, similar error patterns often originate from various distinct
causes (faults). Besides it allows to overcome the high costs and practical restrictions (e.g.,
intrusiveness, repeatability, controllability, etc.) attached to the use of physical injection techniques
with recent hardware technologies (e.g., high density chip packing and high clock speed), such a
matter of fact is one main driver for the emergence of the so-called software implemented fault-
injection (SWIFI, in short) technique. SWIFI flips bits in processor register cells or in memory, thus

State of the Art Survey

50 Deliverable BC2

simulating the consequences of either transient hardware faults and to some extent software faults as
well, [Madeira et al. 2000]. In particular, several studies have shown that such simple bit flips allows
for generating errors similar to those provoked by physical injection (e.g., see [Kanawati et al.

1995]). Recently several powerful and generic tools have been developed that support this technique;
Xception [Carreira et al. 1998] and MAFALDA [Rodríguez et al. 1999] are two examples of such
tools. Moreover, SWIFI is generic, as it can be applied at the various layers of the target system
(processor, microkernel, OS, middleware, application).

Both physical and software techniques assume that at least a prototype of the target system is
available. An alternative, usable as early as the design phase, is to apply fault injection on a
simulation model. This way, the main design choices and architectural solutions, including fault
tolerance mechanisms, can be assessed in the early phases of the development process. Simulation-
based fault injection is also generic as it can be applied at various levels (device, gate, RTL (Register
Transfer Level), Processor Memory Switch, Network, etc.) [Kaâniche et al. 1998]. Of course, there is
an inevitable trade-off between i) the level of detail/abstraction of the simulation model and ii) the
length (duration) of the simulation runs that can be carried out. As VHDL (Very high speed
integrated circuits Hardware Description Language) is of widespread use, significant efforts were
carried out on fault injection into VHDL simulation models both worldwide (e.g., see [DeLong et al.

1996]) and also within the framework of the ESPRIT PDCS and DeVa projects, both from the
evaluation and verification viewpoints (e.g., see [Jenn et al. 1995] and [Arlat et al. 1999],
respectively). In addition, simulation also provides useful support for the objective characterisation
of fault models to be applied with the SWIFI technique (e.g., see [Yount & Siewiorek 1996]).

4.2.2 Relevance and Impact of Fault Injection

While it allows for a detailed analysis of the behaviour of a target system in presence of faults, fault
injection can only contribute partially to the overall dependability assessment of a fault-tolerant
system or a fault tolerance mechanism. For testing purpose, in principle, devising fault injection
experiments is relatively straightforward: one has simply to select the kind of faults (the fault model)
foreseen during the design of the system or of the specific mechanism; however developing both
effective and high coverage experiments is not always easy in practice. Statistical techniques (as
those developed for software testing [Thévenod-Fosse et al. 1995] — see also Section 4.1) can be
used to guide the fault selection process (e.g., see [Arlat et al. 1999]). When fault tolerance
efficiency (such as the error detection coverage) has to be evaluated, things become more complex:
fault injection experiments alone cannot provide a proper answer. Indeed, besides the selection of a
representative5 fault model, one must consider with which relative frequency each fault category
within the fault model is likely to occur to obtain an unbiased estimation of the coverage. Such an
issue, that was identified as early as in [Rennels & Avizienis 1973], was formally analysed in
[Powell et al. 1995] and then refined in [Cukier et al. 1999] by considering both frequentist and
Bayesian estimates.

Moreover, when dependability measures for a specific target system need to be evaluated, one has to
account also for the frequency of occurrence of the faults, and fault injection alone cannot help on

5 What kind of faults/errors will actually occur in operation?

Validation Techniques

Dependable Systems of Systems 51

that neither. For example, stochastic models can be developed that feature parameters accounting not
only for component failure and repair distributions, but also for fault handling and error processing
(e.g., coverage and latency) [Arlat et al. 1993]. The measurements obtained during fault injection
experiments can then be used to value the fault tolerance parameters of the models. Putting it in
another way, dependability evaluation is thus a compound approach that must closely associate
analytical and experimental evaluations. By providing objective results on the faulty behaviour of the
target system, fault injection has thus a key role in this process.

Similar problems (as the one of having access to trustworthy information on the fault occurrence
profile), arise in many fields. For example, one is faced with an identical problem for evaluating the
performance of a computer: the ideal is to test it with the workload it is meant to run. Still, such a
workload may be unknown, or it could be varying during lifetime. The standard solution to this
problem has been to define benchmarks, by choosing some specific (but widely accepted and
recognised) set ups, programs and conditions, trusting that the derived measurements that provide
good clues on the behaviour of the target system. Such performance benchmarks are now well
established, and are widely used, for example to rate database or web servers. A good example is the
SPEC benchmarks developed for the Unix world [Gray 1993]. However, in the dependability area,
no such comprehensive benchmarks exist yet, although some advances have been made (e.g., see
[Koopman et al. 1997, Mukherjee & Siewiorek 1997]). Furthermore, a dedicated project is now been
launched within the IST Programme to tackle this issue.

Nevertheless, even if they are somewhat restricted to a specific set of circumstances (e.g., x% of the
injected faults of category y are detected when the target system is submitted to activity z), fault
injection actually provides useful insights on the complex behaviour of a computer system in the
presence of faults. Two examples taken from our previous studies are provided hereafter. The first
one concerns the experimental validation of a distributed fault-tolerant architecture developed within
the framework of the ESPRIT Delta-4 project [Powell 1994]. The second one is related to the
characterisation of the failure modes of a COTS microkernel [Fabre et al. 1999].

Figure 8 shows a typical graphical representation of the experimental results obtained when
submitting an instance of the Delta-4 (hardware and software) architecture to physical transient faults
injected on IC pins with the MESSALINE tool [Arlat et al. 1990]. The percentages indicate the
coverage values associated to predicates characterising the behaviour of the system in presence of
faults: Error (activation of the injected fault), Detected error (the error is detected by the
hardware mechanisms), Tolerated error (the error is tolerated by the internode communication
protocol), Failure (the error cannot be tolerated, being it detected or not). For example, 94% of
the injected faults were actually activated as errors6 (which reveals a very high testing power for pin-
level fault injection), and 86% of these errors were detected. One main feature of this graph concerns
the inclusion of a transition that might have been omitted in an a priori model of system behaviour:
this transition corresponds to the 13.5% of errors that were not detected, but still were tolerated at
system level. Such a transition depicts a form of “extra-coverage” that results from the intrinsic
resiliency of any real design due to non deliberate redundancies — in that case, of the Delta-4
internode atomic multicast protocol (AMp). These experiments complemented the other efforts
(formal verification and analytical modelling) used to validate the architectural designs supporting

6 This information is obtained by means of current sensors attached to each injection device connected to the faulted pins.

State of the Art Survey

52 Deliverable BC2

the Delta-4 architecture. The results were used both as design aids and for dependability evaluation
purpose (in connection with Markov chains [Arlat et al. 1993]). In particular, the traces obtained
during the fault injection experiments were very much helpful to the designers for developing the
successive versions of the AMp.

94%

13.5%

Error Detected
errorFault

86% 99%

Failure

1%0.5%

Tolerated
error

Figure 8 – Results of Fault Injection Experiments with MESSALINE

Figure 9 illustrates the types of results that were obtained when subjecting a Chorus/ClassiX
microkernel instance (composed of basic executive services such as synchronisation, memory,
scheduling, etc.) to a series of SWIFI experiments conducted using MAFALDA [Rodríguez et al.
1999].

APPHANG
6.0%
SYSHANG

1.4%

EXCEPTION
38.1%

KDB
13.9%

APPLICATION
FAILURE

9.0%

ERROR
STATUS

3.0%

NO
OBSERVATION

28.5%

36.7 %

COM
84.2% Application Failure (AF)
0% Exceptions (EXC)
15.8% Error Status (ES)

SYN

MEM

63.3 %

100% AF
0% EXC
0% ES

Errors propagated: 330/3010

Failure ModesWrapping

Confidence Interval Global

Failure Modes Results

Oracle

Fault Injection Experiments

Error StatusException

Error Propagation

Latency

microseconds

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10

F
re

q
u

en
cy

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%
100%

Oracle

Fault Injection Experiments

Error StatusException Error Propagation

Latency

87.0%

9.0%

0.0%2.2%
0%

20%

40%

60%

80%

100%

Microkernel Fault Injection Parameter Fault Injection

No Wrapper

SYN Wrapper

Wrapping

Confidence Interval

Global

Failure Modes

Results

Wrapping

Confidence Interval

Global

Failure Modes

Results

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

APPFAIL APPHANG SYSHANG KDB EXCEPTION ERROR
STATUS

NO OBS.

%

Figure 9 – Sample of Measures Obtained with MAFALDA

The four left windows show the detailed results concerning the synchronisation component; among
these, the bottom right window compares the results obtained for the standard and wrapped
component. The right most window shows the global results for all the faulted components of the
Chorus/ClassiX microkernel. For instance, the pie diagram shows the failure modes observed when
about 3000 faults (transient single bit flips) were injected in the code segment of the standard
synchronisation component. Regarding the failure modes, about 50% of the errors were successfully
detected by the microkernel error detection mechanisms (“error status”, “exception”, “kernel

Validation Techniques

Dependable Systems of Systems 53

debugger [KDB]”), while a hang (“system hang [SYSHANG]”, “application hang [APPHANG]”)
occurred in 7.4% of the cases. Nevertheless, 9% of the errors led to an incorrect service (“application
failure [APPFAIL]”). Finally, the “no observation [NO OBS]” category (29%) corresponds to errors
that had no observable consequences although the injected faults were actually activated. As far as
error propagation between functional components is concerned, most of the errors propagated from
the synchronisation to the communication component, which means that the communication
component is more dependent on synchronisation than the memory component. Error latency is
illustrated for exceptions: about 30% of the exceptions were raised immediately, while about 50% of
them were distributed in an interval from 2.4 to 4 microseconds. Concerning wrapper efficiency, the
synchronisation wrapper reduced the rate of application failures from 9% to 2.2% when injecting bit
flips in the code segment of the microkernel. The wrapper detected all the errors when fault injection
was performed on the parameters of the service requests to the microkernel components, resulting in
a reduction from 87% to 0%. The 87% of application failure observed when applying fault injection
to the parameters passed to the synchronisation primitives is very surprising. The reason for this
singular behaviour is that Chorus basic synchronisation mechanisms (essentially mutex semaphores)
do not make any verification of input parameters. This design option at the very basic microkernel
layer was made on purpose in order to leave total freedom on this respect to the upper layer designer.
Recently, MAFALDA was also used to analyse the LynxOS microkernel [Fabre et al. 2000].

4.2.3 Place of Fault Injection within DSoS

Due to its major impact on the validation process, as illustrated in the previous sections, fault
injection is definitely part of the validation framework to be developed within DSoS. Two main
forms of activities related to fault injection will be carried out.

The first one concerns the methodological point of view. It is intended to foster the relationship
between formal specification, software testing and testing of fault tolerance. In fact, to some extent,
fault injection can be viewed as a testing method for the fault tolerance mechanisms, where in
addition to the usual functional activity, the input domain extends to the kind of specific inputs the
fault tolerance mechanisms are meant to deal with: the faults. Elaborating on previous related
research (e.g., see [Thévenod-Fosse et al. 1995, Avresky et al. 1996, Gaudel & James 1998]), the
intent is to guide the testing with the help of a formal description of the fault tolerance mechanisms,
both for i) selecting the input patterns (including dynamic links between faults and activity patterns),
and ii) defining the observation predicates.

The second form of activity is more technology-oriented. It is intended to extend the application of
the fault injection methodology developed for assessing COTS microkernels (i.e., the MAFALDA
tool) to the CORBA middleware layer that will support the implementation of the linking interfaces
(LIF). Indeed, such a layer is intended to embody the mechanisms that will be part of the fault
tolerance framework (wrapping and recovery) developed by the project (see Chapters 2 and 3). The
planned analyses encompass the conduct of fault injection experiments both on the standard and on
the fault-tolerant middleware layers.

As such, both efforts will build upon and contribute to the conceptual model elaborated by the
project.

State of the Art Survey

54 Deliverable BC2

4.3 Model Checking for Compositional Validation

Irfan Zakkiudin (DERA)

Model-checking [Clarke et al. 1999] has emerged, in recent years, as a powerful technology for
system validation and verification. The fundamental idea behind model-checking is to:

1. Generate a finite representation of a system – in effect a model of the system.

2. Validate critical properties of the system by exhaustively exploring all possible behaviours
of the finite model.

This simple and brutal approach has some appealing advantages, model-checking is:

− Highly automated, since the exhaustive exploration is done entirely by the model-checking
tool.

− Revealing, since if the critical property fails, then the tool finds the behaviour leading to the
violation.

− Incisive, since the exhaustive exploration can find property violations which may have gone
undetected by non-exhaustive validation methods.

A disadvantage of exploring all reachable states is that the number of states can grow very fast, and
the model-checker’s task can quickly become intractable. This limitation is the proverbial state
explosion problem. Effective applications of model-checking technologies, for system verification
and validation, require solutions to the state explosion problem. Model-checking work, in the DSoS
project, will develop techniques to mitigate the state explosion problem, thus enabling model-
checking to support compositional validation.

The rest of this section is organised as follows. First, we give a brief overview of model-checking
technologies and their limitations. Then, we introduce the process algebra CSP [Hoare 1985][Roscoe
1998], and the FDR model-checker [Formal Systems (Europe) Ltd 1976][Roscoe 1998] that supports
CSP. The explanation of CSP and FDR will (it is hoped) be sufficient to describe how the property,
required to be validated, can support alleviating the state explosion problem and we will, very
briefly, describe how this can done. We conclude with a discussion of compositional model-checking
techniques in a CSP/FDR context.

4.3.1 Model-checking Technologies and their Limitations

For the last decade research in model-checking has grown steadily and it is now a thriving research
community, rich with ideas [Emerson & Sistla 2000]. The bulk of model-checking research
addresses verifying models of discrete reactive systems. If two or more processes interact to affect
each other’s state, then this is a reactive system. There are a few model-checkers for analysing:

− Timed reactive systems [Bozga et al. 1998].

− Probabilistic reactive systems [Baier et al. 1997].

Validation Techniques

Dependable Systems of Systems 55

− Hybrid reactive systems, where states and state transitions may be parameterised by various
continuous variables and differential equations between variables, the principal example is
HyTech [Cassez & Laroussine 2000].

− Combinations of timed and probabilistic reactive systems [Kwiatkowska 1999], and others.

However, most model-checking tools are for discrete reactive systems. In such systems, the model’s
total state arises from the discrete interactions of many processes. Typically, these processes will
themselves have small and simple local states. There are now very many model-checking tools for
discrete reactive systems, the better known ones are FDR, SPIN [Holzmann 1991] and SMV
[McMillan 1993].

An interesting departure from the paradigm of reactive systems is Dan Jackson’s model-checker, the
Alloy Constraint Analyser [Jackson 2000]. This tool can verify properties of relations defined over
sets, using a Z-like language to specify the models. This approach can, for example, potentially be
used to analyse a set of routes across a network, for properties such as loop freedom.

To understand the field we need to understand the basic aspects of a model-checking technology,
these are:

1. The formalism used to specify models and their properties.

2. Methods by which the model’s behaviours are represented.

We discuss them in the next two sections, we conclude our brief summary of the field with a
discussion of the limitations of model-checking.

4.3.1.1 Specification Languages Used by Model-checkers

We have said that most model-checkers verify discrete reactive models and these models consist of
interacting processes. The modelling language must be capable of expressing process interaction and
concurrency; it usually consists of:

− An imperative style language to express sequential model behaviour.

− A shared variable model of concurrency to implement process interaction.

Some model-checkers have used established formalisms for shared variable concurrency as an
inspiration. Examples include SPIN’s use of the original shared variable version of CSP [Hoare
1978] and Murphi’s use of UNITY [Chandy & Misra 1988].

The CSP/FDR technology is distinct from the mainstream, shared variable and imperative, style in
two respects:

1. CSP is a process algebra, which uses shared events to implement process interaction (CSP is
discussed below). FDR in fact uses a machine readable form of the blackboard language,
called CSPM.

2. The CSP algebra is augmented by embedding it in a functional programming language (all
part of CSPM).

State of the Art Survey

56 Deliverable BC2

A model-checker also needs a specification of the property to be verified of the model. The
conventional approach is to use temporal logics [Pnueli 1977]. Examples of these are Linear
Temporal Logic (LTL), branching temporal logic (CTL), Alternating Temporal Logic (ATL) and
other variants. These logics are used to specify the two classic types of property, namely:

− Safety, being the absence of something bad.

− Liveness, being the availability of something good.

Alternatives to temporal logics include the µ-calculus, which is first order logic augmented with a
least fixed point operator [Berezin et al. 2000].

Once more, the CSP/FDR approach is distinctive. FDR uses CSP to define models but properties of
the models are also expressed in CSP. FDR verifies models by checking that the CSP model refines

the CSP property, this is discussed below (see Section 4.3.2.3). There is no notion of safety and
liveness, as such, in CSP, but it is common to verify safety and liveness properties with FDR by
checking refinement in the appropriate denotational semantics, namely:

− Safety properties are verified by checking refinement in traces semantics.

− Liveness properties are verified by checking refinement in failures semantics.

It may be argued that temporal logics are an intuitively clear way to specify properties and that to
express properties in CSP is counter intuitive, and so clumsy. However, the difficulty is not great and
the benefits make the effort very worthwhile. The benefits include:

− Free support for compositional reasoning, obviating the need to develop complex
compositionality rules [Namjoshi & Trefler 2000], this is outlined in Section 4.3.4.

− The ability to use the property to support reducing the state space, this is discussed in
Section 4.3.3.

4.3.1.2 Representing Models Behaviours

A model-checker will need to compile the system model into a representation inside the model-
checking engine. The model-checking engine will manipulate this to representation to do the
verification.

The various ways to code a model’s behaviour, in the model-checking engine, are now also very
many, but the most common is the Binary Decision Diagram (BDD). This representation arose from
the initial application of model-checking to circuit verification. A BDD is a particularly efficient way
to code the Boolean values that characterise a circuit’s state. It was subsequently discovered that a
BDD could also code a Boolean function, and this Boolean function could represent the state
transition relation for a circuit. Using BDDs to code Boolean functions is the origin of symbolic
model-checking. It should be clear that BDD-based technologies are best suited for hardware
verification, or for verifying similar synchronous systems. BDDs have themselves diversified into
many flavours, including MDDs and QDDs [Wolper & Boigelot 1998].

The canonical representation of a model’s behaviour is a labelled transition system, which is simply
a state machine. For more asynchronous systems (such as protocol verification) an approach based

Validation Techniques

Dependable Systems of Systems 57

on explicitly using state machines tends be superior. Tools such as FDR and SPIN are explicit state
machine tools. While FDR simply used state machines, SPIN represents a state machine as a Buchi
automata. Both tools employ an on-the-fly philosophy, in that they try to generate the state machine
as they verify it, rather than first generating the whole machine and then verifying it.

As research in model-checking grows, more techniques are emerging to code and verify a model’s
behaviour. These include using Boolean formulas [Biere et al. 1999] instead of BDDs and labelled
transition systems [Lazic & Nowak 2000], which are parameterised by type variables (for exploiting
data independence).

4.3.1.3 Limitations of Model-checking Technologies

While model-checking thrives and its applications grow, model-checking technologies have a
number of limitations. We discuss these limitations below:

1. The state explosion. This is commonly regarded as the most significant limitation and it
probably receives the most attention from the research community. While the state explosion
is a major limitation, model-checkers have been applied in a number of industrially
significant contexts. This is possible because there are now many techniques to address this
limitation. A skilled user can perform impressive verifications by carefully abstracting the
problem and by using the various techniques that now exist. While an expert can often
control the state explosion, it does require time and ability on the part of the user. Exploiting
the benefits of model-checking requires enabling the state explosion to be controlled as
quickly and easily as possible, for a full discussion see [Zakiuddin 1999]. The techniques
discussed in 4.3.3 will automate one more attack on the state explosion. Recent work on
automated abstractions is another attack on the state explosion, which is now receiving a lot
of interest [Shankar 2000].

2. The restriction to finite state systems. A model-checker will always check a finite state
space. In theory, this means that if a potentially unbounded problem is studied, then the
analysis will be limited to a finite case of that problem. In practise a number of techniques
have been developed to address this limitation, this is also an area that attracts significant
research [Abdulla & Jonsson 2000]. Recent work on data independence provides powerful
mathematical techniques, in the form of parametric operational semantics, to study the
models parameterised by arbitrary types [Lazic & Nowak 2000]. Inductive approaches have
long been studied [Kurshan & McMillan 1989]; and recent work on combining data
independence and induction [Creese & Roscoe 2000] extends the state-of-the-art in
interesting ways.

3. The restriction to ‘control intensive’ applications. ‘Control intensive’ is a more applied way
of saying that model-checkers analyse discrete reactive systems. Model-checkers are clumsy
at dealing with ‘data intensive’ problems – precisely because these cannot easily be
modelled as a collection of discrete interacting processes. In the mid-to-late 90s, there was
some research seeking to combine model-checking and theorem proving to remedy this
limitation. The aim was to use model-checking for the control intensive parts and theorem
proving for the data intensive parts. This line of investigation did not prove to be fruitful,
because it is not easy to separate the two parts. As far as we are aware, this area is not an

State of the Art Survey

58 Deliverable BC2

active subject of research; though it is indirectly studied through recent work on automated
abstractions [Shankar 2000]. For a different approach, recall the Alloy Constraint Analyser
as an interesting departure from the reactive systems paradigm. Potentially, it offers a
capability to verify data intensive problems. Hoare’s recent work on Unified Theories [Hoare
& He 1999] defines a framework for combining theories, like Z and CSP. This framework
can be used to combine FDR and the Alloy Constraint Analyser to verify problems that
combine control rich and data rich behaviour. Concrete problems that are both control rich
and data rich include reliable multicasting and topology-aware distributed algorithms.

In our opinion, this limitation of model-checking is more significant, for industrial
applications, than the limitation to finite state models.

4. Separation from the subject of analysis. A model-checker verifies a model of a system. It
does not study the system itself. This obvious fact lies behind one of the hardest and least
studied limitations of model-checking. A model of a system will invariably be an
abstraction; it typically will elide a great deal. Often justifications for such abstractions are
either informal on not given at all. This attitude may seem reprehensible, but recall that in
many industrial applications the value of model-checking is seen in its ability to find design
flaws. Thus if a design flaw is found, then value has accrued, but if it is not, then no claim of
correctness in made. DERA’s applications of model-checking (FDR) have been to support
safety cases of military systems. Our approach to ensuring the veracity of the model is to
obligate models to be subject to rigorous review by people not responsible for generating the
models. Another approach to bridging the gap between the subject and its model is to
compile the subject source code into the model-checking engine. This approach has two
significant drawbacks:

− Automatically generated models suffer from a very serious state explosion. Recall
that the state explosion is often controlled by a skilled user carefully ‘pulling out’ a
minimal model.

− It is simply not possible for many applications, and this is the main reason we cannot
deploy it in DERA. Our models are drawn from large sets of engineering
documentation.

4.3.2 Model-checking Using CSP and FDR

Having discussed the technology field and our place in it, we turn to the specific technology
deployed on the DSoS project, namely CSP and FDR.

4.3.2.1 The CSP Algebra

Communicating Sequential Processes [Hoare 1985][Roscoe 1998] is a process algebra for specifying
and reasoning about concurrent systems. Processes in CSP are built from atomic, black box events;
CSP processes perform sequences of events. The set of events a process performs is called its
alphabet. Concurrency is implemented, in CSP, by shared event synchronisation. If P and Q are two
CSP processes, then process P || Q, is a concurrent process, in which:

Validation Techniques

Dependable Systems of Systems 59

− Events in the alphabet of P, but not Q, occur only under the control of P, and similarly,
events in the alphabet of Q, but not P, will occur only under the control of Q;

− Events in the alphabets of both P and Q must be performed as a single event, shared by
both P and Q.

CSP is an algebra, thus CSP processes can be composed by a wide variety of algebraic operators, to
yield further CSP processes. The ||-operator, mentioned above, is an example of an algebraic operator
for composing CSP processes. The CSP algebra’s expressiveness yields its utility for modelling and
validation. The compositionality of the CSP algebra, as we shall see, supports compositional
validation.

4.3.2.2 Ordering CSP Terms

CSP is an algebraic syntax for specifying processes. To use CSP for specifying, modelling and
verifying systems it is necessary to compare processes. Comparing means identifying when
processes are the same or when one process is less than another process. But how can we order or
equate syntactic terms? The answer is to assign semantics to the syntactic terms. The semantics will
have natural orderings and the order relations on the semantics can order their associated CSP
processes. Ordering processes is the second ingredient for compositional reasoning in CSP.

The algebraic theory of CSP is supported by three main semantics, viz:

− Denotational semantics – where a process is assigned a set of values.

− Operational semantics – where a process is assigned a labelled transitions system, or a
state machine.

− Algebraic semantics – where a process is assigned a set of processes, to which it is
equivalent, according to some transformation rules.

There are other ways of comparing process, in addition to the above, but for the purposes of
compositional validation with FDR we only need the denotational and operational semantics.

One way to order processes is to use the denotational semantics to assign a set of values to a process
and then to use the set inclusion operator to order the processes. The denotational semantics are
themselves of three types, but we can explain concepts using just the traces semantics. In this
semantics, a process is assigned the set of sequences of events it can perform. Two processes P and
Q can be ordered when the traces of one process are a subset of the traces of the other. For example,
if

P = a → STOP, traces(P) = {〈a〉},

Q = a → Q, traces(Q) = {〈a〉, 〈a,a〉, 〈a,a,a〉,…},

then P and Q can be ordered because traces(P) ⊆ traces(Q).

This is conventionally written Q P, and read as P refines Q, and this simply means that the
behaviour of P is contained in the behaviour of Q.

State of the Art Survey

60 Deliverable BC2

Finally, we need to observe a few mathematical properties of our operators and orderings. We state
them here:

1. Monotonicity. If P Q||R and Q Q’, then P �Q’||R.

2. Transitivity. If P �Q and Q R, then P �R.

Thus we have the basic mathematical ingredients to support a compositional validation technology –
all we need is the tool.

4.3.2.3 Introducing FDR

FDR is a model-checker for CSP; it is also often described as a refinement checker. FDR verifies
whether or not one CSP process is a refinement of another, in any one of the denotational models, by
exhaustive exploration. Thus FDR is a model-checker that checks for refinement. If the refinement
relation between two processes fails, then, as with all model-checkers, FDR finds at least one
behaviour responsible for the violation.

FDR’s basic capability can be used in a number of ways, but the most common is to verify whether a
system implements a specification, or supports a property. To do this, we:

− Create a CSP model of the system, call it SYS.

− Define the specification, or property, in CSP, call it SPEC.

− Use FDR to check, in one of the denotational semantics, whether or not SPEC �SYS.

To understand how to do property based validation, we need to know a little about how FDR works.

FDR will compile CSP processes into state machines and then do model-checking on these state
machines. Recall that state machines are an operational semantics for CSP. Thus FDR verifies
refinement assertions over the denotational semantics, by manipulating its representations of
processes, which are in fact operational semantics. Consequently, FDR depends on CSP processes
having both operational and denotational semantics.

Recall that the perennial problem in model-checking is the state explosion problem. In FDR terms,
the state explosion is that the state machine, which FDR manipulates for verification, becomes
intractably large. FDR can mitigate this explosion with its compression operators [Roscoe et al.
1995]. These operators reduce the state machine (the operational semantics), without changing the
associated denotational semantics. As a consequence, the state space is reduced, but the truth of any
refinement assertions remains unchanged. For example,

if comp1 and comp2 are two compressions, SPEC, P1 and P2 are CSP processes, then the
following are equivalent:

1. SPEC �P1 || P2

2. SPEC �comp1(P1 || P2)

3. SPEC �comp1(comp2(P1) || comp2(P2))

Validation Techniques

Dependable Systems of Systems 61

While these compression operators can be effective, they are difficult to use effectively. In some
cases the cost of computing the reduced state machine can greater than the benefit of having a
reduced state machine.

To make effective use of the compression we use property based validation.

4.3.3 Property Based Validation Using CSP and FDR

Suppose we are using FDR to check the refinement assertion:

SPEC �SYS,

in the traces semantics. This means that FDR will check all behaviours of SYS to see if it can do any
sequence of events not permitted by SPEC. It turns out that we can use the property, SPEC, to
transform the right hand side of the refinement assertion so that compressions can be applied more
effectively. Thus we are using the property to support validation, and in particular to reduce the state
space. We will give a minimally technical description of how to do this, for the trace semantics.

The essential idea is to transform SPEC into a process that monitors SYS. This monitoring process,
which we call W_SPEC, is composed in with SYS using the ||-operator. If SYS can perform a
sequence of events, not permitted by SPEC, then W_SPEC will emit a distinguished event, which we
call fail. The refinement assertion above will now be:

STOP �SYS || W_SPEC \ • ,

Where:

− • is the alphabet of SYS, namely all the events that occur in the model.

− fail ∉ • .

− ‘\’ is the hiding operator, given a CSP process, P, and subset, A, of the alphabet of P,
then P \ A is the same process as P, except that events from A have been hidden, they
occur invisibly at the discretion of P.

− STOP is a special CSP process, it does no events, so its traces is the empty set.

This new refinement assertion has all events hidden, except the fail event. Now, this new refinement
assertion will be violated only if the fail event can happen, and this corresponds to SYS violating
SPEC. If the fail event cannot happen, then SYS must satisfy SPEC. Recall that the motivation for
transforming the refinement assertion was to aid applying the compression operators. It is a fact of
the compression operators that the new right hand expression:

SYS || W_SPEC \ • ,

is much more amenable to compressing, than the former right hand expression. The reason for this is
that the compression operators work by removing hidden events from the state machine. Clearly the
state machine for the expression above, with only the fail event visible, will be much smaller than the
state machine for SYS. Thus the property, SPEC, has been used to aid validation, by reducing the
state explosion.

State of the Art Survey

62 Deliverable BC2

We conclude this section with an example of generating W_SPEC from SPEC. But to do this we
need to introduce one more CSP operator, the []-operator. If P and Q are CSP processes, then P [] Q
is the process that can either do an initial event from P and proceed as P, or an initial event from Q,
and proceed as Q. If P [] Q is composed with another processes using the ||-operator, then the choice,
of P or Q, is made by the other process. Now suppose:

SPEC = a → STOP, and

• = {a,b}, then

W_SPEC = a → STOP [] b → fail → STOP [] a → a → fail → STOP

Note that W_SPEC is a function of SPEC and • only, it does not depend on SYS, this is always the
case. Furthermore, it is possible to systematically compile W_SPEC.

4.3.4 Compositional Model-Checking Using CSP and FDR

CSP and FDR can also be used to support compositional reasoning. Compositional model-checking
with FDR depends on the compositionality of CSP. In a model-checking context, compositional
reasoning is another way to alleviate the state explosion problem. Of the operators in the CSP
algebra, the ||-operator causes the largest blow up in states. As a rule, the size of the state space of P1
|| P2 is a product of the sizes of the state spaces of P1 and of P2. Thus the focus of compositional
reasoning is to decompose verifications down through the ||-operator. Suppose,

SYS = P1 || P2, and we want to verify if SPEC �SYS, then we can instead just verify,

SPEC P1 and SPEC P2, then

P1 || P2

by the monotonicity rule on P1

SPEC || P2

by the monotonicity rule on P2

SPEC || SPEC

⇒ by the transitivity rule

SPEC || SPEC �P1 || P2.

In the traces semantics, P || P = P. Using this and another application of transitivity, we get:

SPEC �P1 || P2.

Dependability Evaluation of Large Systems

Dependable Systems of Systems 63

Chapter 5 – Dependability Evaluation of Large Systems

Mohamed Kaâniche, Karama Kanoun (LAAS-CNRS)

5.1 Introduction

Two approaches can be used to support dependability evaluation of systems of systems: (i) analytical
modelling, and (ii) measurement-based assessment. Modelling and measurement are complementary.
Measurement experiments can provide estimates for the parameters used in the model as well as
demonstrate the validity of the modelling assumptions and evaluations. On the other hand, models
can be used to design measurement experiments in order to gather the evidence needed to support
model elaboration and processing.

In this chapter, we summarise the state-of-the art related to dependability modelling and operational
assessment of computer systems, and identify the research directions that will be followed for the
dependability evaluation of systems of systems.

5.2 Analytical Modelling

Dependability evaluation of large computing systems based on analytical modelling requires the
description of the failure and repair behaviour of hardware and software system components and the
numerous interactions between them, resulting in complex models. Depending on the dependability
measures to be evaluated, the modelling level of detail can furthermore increase this complexity.
State-space models, in particular homogeneous Markov chains, are commonly used to model the
dependability of fault-tolerant systems. The latter are able to capture various functional and
stochastic dependencies among components and allow evaluation of various measures related to
dependability and performance (i. e., performability measures) based on the same model, when a
reward structure is associated to them. The resulting model is referred to as Reward Markov model.

To facilitate the generation of large state-space models, high-level specification languages such as
GSPNs (Generalized Stochastic Petri Nets with timed and immediate transitions) are generally used.
Also a reward structure can be associated to GSPNs leading to Generalised Stochastic Reward Petri
Nets (GSRPNs). GSRPNs allow a compact representation of the behaviour of systems involving
synchronisation, concurrency and conflict phenomena. Also, they provide means for structural
verification of the model and can be automatically converted to Reward Markov models.

Surveys of the problems related to techniques and tools for dependability and performance
evaluation can be found for example in [Reibman & Veeraraghavan 1991] and [Trivedi et al. 1994].
In this state-of-the-art report, we concentrate on techniques for mastering the complexity of state-
space models associated with large-scale systems.

One of the major drawbacks for the use of state-space models, in dependability and performance
evaluation of real systems, is the state explosion problem. Several techniques have been published to
address model largeness; they can be grouped into two categories as suggested in [Trivedi et al.

1994]: “largeness avoidance” and “largeness tolerance” techniques.

State of the Art Survey

64 Deliverable BC2

In the rest of the section, we will first present the two categories of techniques before commenting on
their combined use.

5.2.1 Largeness Avoidance Techniques

These techniques try to circumvent the generation of very large models. The basic idea is to
construct small sub-models that can be processed in isolation. The results of the sub-models are
integrated in a single overall model that is small enough to be processed. Among these techniques,
we have:

- The decomposition technique for stochastic reward net models [Ciardo & Trivedi
1993].

- The behavioural decomposition technique [Balbo et al. 1988].

- The hybrid hierarchical modelling technique (fault trees and Markov chains)
[Balakrishnam & Trivedi 1995].

- The resolution technique based on quasi-decomposability [Bobbio & Trivedi 1986].

- The net-driven decomposition technique for numerical computation of the stochastic
Petri net (based on the reachability graph decomposition) [Pérez-Jiménez & Compos
1999].

- The data structure technique for he efficient Kronecker solution of GSPNs [Ciardo &
Miner 1996, Ciardo & Miner 1999].

These techniques usually address model processing (in an exact way or using approximate solutions)
and lead undeniably to a gain in memory (by avoiding complete storage of the model) and in
computation time. However, from a practical point of view and to the best of our knowledge, most of
these techniques are efficient when the sub-models are loosely coupled and become hard to
implement when interactions are too complex. For the dependability modelling of fault-tolerant
systems, multiple and complex interactions between system components have to be considered
because of the dependencies induced by component failures and repairs.

5.2.2 Largeness Tolerance Techniques

The main objective of these techniques is to master the complexity of the generation of the global
system model through the use of concise specification methods and automated generation of the
model. The specification consists of a set of rules allowing an easy construction of the Markov chain.
These rules may be either a) specifically defined for model construction (see e.g., [Goyal et al.
1986], [Carrasco & Figueras 1986], [Bouissou 1993] or [Berson et al. 1991]) or b) more well-known
and formal rules, based on GSPNs or their off-springs. Most of the time, the specification methods
are integrated into tools (respectively, SAVE, METFAC, FIGARO, TANGRAM and SMART for the
above referenced methods).

Specification and construction methods based on GSPNs are modular. The basic idea is to generate
the model of a modular system by composition of the sub-models of its components; they are
referred to as model composition techniques. In addition to the GSNP formalism, these techniques i)

Dependability Evaluation of Large Systems

Dependable Systems of Systems 65

make use of composition rules for sub-model interfacing and integration, ii) impose some restrictions
or add new operators to the formalism to facilitate model generation, master the complexity and/or
preserve the formalism properties. Several model composition techniques have been published.
Some of them are intended to be general methods (see e.g., [Meyer & Sanders 1993], [Rojas 1996],
[Kanoun & Borrel 1996], [Fota et al. 1999b], [Bondavalli et al. 1999], [Rabah & Kanoun 1999]);
whereas the others are just applied to a specific system (see e.g., [Muppala et al. 1992]).

In [Meyer & Sanders 1993], two composition operators are defined (join and replicate) to compose
system models from repeated structures (through the replicate operator) in an asynchronous manner
(through the join operator). In [Rojas 1996], a more complete set of composition operators for the
generation of Stochastic Well-formed Nets (SWN), (i.e., GSPNs permitting the identification of
symmetry by means of symmetric reachability graph) from the SWN of it components has been
defined. These operators preserve the functional structure of the model and support several types of
communications between components. This approach is intended to support the modelling of
distributed and parallel systems where both synchronous and asynchronous communications are
required. However, it addresses only a class of systems that can be modelled by SWN.

The modelling approaches presented in [Kanoun & Borrel 1996], [Fota et al. 1999b], [Bondavalli et
al. 1999] and [Rabah & Kanoun 1999] are more specially devoted to performability evaluation and
are based on GSRPNs. [Bondavalli et al. 1999] and [Rabah & Kanoun 1999] define modelling
approaches where the system model is composed of two levels.

[Bondavalli et al. 1999] addresses phased-mission systems: the upper-level models the mission
phases and the lower-level details the behaviour of the system inside each phase. [Rabah & Kanoun
1999] addresses multipurpose multiprocessor systems: the upper level models the service concerns, it
is related to the application running on the architectural system (it defines the service levels, the
needs in terms of resources, the maintenance policy, etc) whereas the lower-level models the
behaviour of the architecture components with their interactions.

[Kanoun & Borrel 1996] and [Fota et al. 1999b] present approaches for constructing a GSPN of a
complex system from the GSPNs of its components taking into account the interactions between the
components. These approaches are referred to as block modelling approach and Incremental
approach respectively and are outlined hereafter.

The block modelling approach in [Kanoun & Borrel 1996] defines a framework for modelling the
dependability of hardware and software fault-tolerant systems taking into account explicitly the
dependency between the various components. These dependencies may result from functional or
structural interactions between the components or from interactions due to global system fault-
tolerance, reconfiguration and maintenance strategies. The modelling approach is modular: the
behaviour of each component and each interaction is represented by its own GSPN, and the system
model is obtained by composition of these GSPNs. The GSPNs of the components and interactions
are called block nets. Composition rules are defined and formalised through identification of the
interfaces between the component and interaction block nets. In addition to modularity, the
formalism brings flexibility and re-usability thereby allowing for easy sensitivity analysis with
respect to the assumptions that could be made about the behaviour of the components and the
resulting interactions.

State of the Art Survey

66 Deliverable BC2

The main advantage of this modelling approach, lies in its efficiency for modelling several
alternatives for the same system. These alternatives may differ by their architecture or by the fault
tolerance and maintenance strategies. One can clearly identify from the beginning the components
and interactions that are specific or common to all alternatives. The blocks related to components
and interactions that are common are thus developed and validated only once. It has been applied to a
Regional Centre of the French Air Traffic Control system for which 16 alternative architectures
(based on a reference architecture) have been modelled in an efficient way [Kanoun et al. 1999].
Most of the block nets developed for the reference architecture have been re-used for the 15 other
alternatives, and only a few block nets have been either modified or newly developed.

The block modelling approach is very suitable to model systems where the number of components is
not very high and the number of interactions is relatively limited so as to be able to construct a model
in a flat way.

In the incremental modelling approach, the model is built and validated in an incremental manner
[Fota et al. 1999b]. At the initial step, the behaviour of the system is described taking into account
the failures of only one selected component, assuming that the others are in an operational nominal
state. The failures of the other components are then integrated progressively in the following steps of
the modelling process. At each step, a new component is added and the GSPN model is updated by
taking into account the impact of the additional assumptions on the behaviour of the components that
have been already included in the model. The component’s behaviour is described by sub-models
(called modules) and the interactions between components are modelled using module-coupling
mechanisms. To efficiently build the GSPN model, a set of guidelines related to module-coupling
mechanisms have been defined to facilitate the construction of a structurally valid GSPN. In
addition, as for the block modelling approach, the associated rules aim to assist the user in the
implementation of the system behaviour and failure assumptions into the GSPN formalism, while
mastering the model complexity and avoiding modelling errors.

At each integration step, the GSPN model is validated. The validation is carried out at the GSPN
level (structural verifications) and also at the Markov level in order to check the different scenario
represented by the model. When the Markov chain size increases, the exhaustive analysis of the
Markov chain is impractical. In this case, sensitivity analyses are used to check the validity of the
model assumptions. During model specification, emphasis is put on enhancing model readability and
compactness (via the use of a reduced number of places and transitions and well-defined modelling
constructs), as well as flexibility and reusability of parts of the model to ensure easy modification of
the model when new assumptions are considered.

This approach has been successfully used to model the dependability of the main subsystems of the
French air traffic control computing system referred to as CAUTRA [Fota et al. 1999a]. The
CAUTRA is implemented on fault-tolerant computers geographically distributed over five Regional
Centres (those modelled by the above presented block modelling approach) and one Centralised
Operating Centre, connected through a Wide Area Network. The models (GSPN and Markov)
constructed for the different subsystems are very complex. For example the GSPN of the Radar Data
Processing and the Flight Plan Data Processing Systems has about 100 places and 500 transitions and
corresponds to a reduced Markov chain of about 25 000 states.

Dependability Evaluation of Large Systems

Dependable Systems of Systems 67

The Incremental approach is suitable for the dependability modelling of computer systems with
numerous hardware and software components, multiple interactions, and complex procedures for
fault tolerance and restoration.

5.2.3 Largeness Avoidance-and-tolerance

It is worth noting that the two categories of techniques (largeness avoidance and largeness tolerance)
are complementary and, most of the time, all techniques use both of them putting more emphasis on
one or the other. For example, even though largeness avoidance, in the sense that the whole system
model is not generated and processing is performed on the sub-models, is not the prime concern of
largeness tolerance techniques, state-space reduction constitutes a real concern. Generally, in most of
the largeness tolerance techniques, rules for model generation are also defined in such a way that
they generate the less superfluous states by construction.

Finally, largeness avoidance by means of truncation of the least important states (i. e., states with
very small probabilities) can be used to complement efficiently largeness tolerance techniques as in
[Muppala et al. 1992].

5.3 Measurement-based Assessment

There is no better way to understand the dependability characteristics of an operational computing
system than by direct measurement, analysis and assessment. Measuring a real system means
monitoring and recording naturally occurring errors and failures in the system while it is running
under user workloads. Analysis of such measurements can provide valuable information on actual
error/failure behaviour, quantify dependability measures and identify system bottlenecks.

There is a wide variety of research related to the analysis of error and failure data collected from
operational computer systems. The main issues addressed are summarised in this section,
considering standalone as well as networked computer systems.

5.3.1 Measurement

Measurement involves three main steps: (1) data collection, (2) data validation and (3) data
processing.

Data collection consists in the definition of what to collect and how to collect the data. The kind of
data to be collected is directly linked to the kind of behaviour to be analysed and to the quantitative
measures to be evaluated to characterise such behaviour. There are two ways to obtain the data:
online automatic logging and human manual logging. Many computer systems such as IBM
mainframes, Unix/Solaris and Windows NT based systems include an event-logging software in the
operating system. This software records events occurring in the various components of the system
including detected errors as well as other system events such as reboots and shutdowns. The main
advantage of automatic online logging is its ability to record a large amount of information, in
particular with respect to transient errors that cannot be done manually. Disadvantages are that an
online log does not usually include information about the cause and propagation of the error or about
offline diagnosis or maintenance. Also under some crash scenarios, the system may fail too quickly

State of the Art Survey

68 Deliverable BC2

for any error messages to be recorded. Therefore, other sources of information are generally needed
in conjunction with online logging to provide the missing data.

Data validation consists in analysing the collected data for correctness, consistency, and
completeness. This consists in particular in filtering-out invalid data and in coalescing redundant or
equivalent data. Usually, the collected data contains a large amount of redundant and irrelevant
information, as well as incorrect or incomplete information. Such problems have been observed in
several studies, e.g. those reported in [Kaâniche et al. 1990, Levendel 1990, Buckley & Siewiorek
1995, Thakur & Iyer 1996]. Thus, preliminary investigation of the data must be performed to classify
this information and to facilitate subsequent analyses. In online error logs, a single fault in the
system can result in many repeated errors occurring close in time. Indeed, as the effects of the fault
propagate through a system, hardware and software detectors are triggered resulting in multiple error
records. To ensure that the subsequent analyses will not be biased by these repeated reports, related
events should be coalesced into a single event. This observation led to the development of the tuple,
or cluster concept [Tsao & Siewiorek 1983]. Several techniques have been proposed for event
tupling, e.g. in [Tsao & Siewiorek 1983, Iyer et al. 1986, Hansen & Siewiorek 1992]. A comparative
analysis of some of these techniques is reported in [Buckley & Siewiorek 1996].

Once invalid data is filtered-out and data is coalesced, the basic dependability characteristics of the
measured system can be identified through data processing.

Data processing consists in performing statistical analyses on the validated data to identify and
analyse trends and to evaluate quantitative measures that characterise dependability. Descriptive
statistics can be derived from the data to analyse the location of faults, errors and failures among
system components; the severity of failures; the time to failure or time to repair distribution; the
impact of the workload on the system behaviour; the efficiency of error detection and recovery
mechanisms; etc. Commonly used statistical measures in the analysis include frequency, percentage,
probability distribution, and hazard rate function. Basic statistical techniques can be applied to
estimate the mean, variance, and confidence intervals of the parameters characterising these
measures (see e.g. [Kendall 1977] for a comprehensive study of statistical methods). More
sophisticated analyses can also be performed using trend tests [Kanoun & Laprie 1996] and
analytical modelling [Reibman & Veeraraghavan 1991].

5.3.2 Study of Failures in Operational Computer Systems

There is a large body of literature related to the analysis of failures occurring in operational computer
systems. These analyses cover several aspects including:

- Investigation of the classes of errors/failures reported in the field, their relative
importance, and the correlation among errors;

- Analysis of error/failure inter-arrival times and recovery times distributions;

- Analysis and modelling of software and hardware error detection & recovery
mechanisms and their efficiency

In this section, we outline some of the results and lessons learnt from these studies. Some of these
results are detailed and discussed in [Iyer & Tang 1996].

Dependability Evaluation of Large Systems

Dependable Systems of Systems 69

Early dependability-related experimental studies based on field data focused on the measurement,
analysis and modelling of transient or intermittent errors in digital systems. In particular, the analysis
of errors collected on DEC computer systems reported in [Siewiorek et al. 1978, McConnel et al.

1979] showed that transient failures occur at least an order of magnitude higher than permanent
failures. These studies also found that the inter-arrival time of transient errors follows a Weibull
distribution with decreasing error rate, instead of the traditional exponential distribution generally
assumed for modelling permanent failures. This distribution was shown to fit the software failure
data collected from an IBM operating system [Iyer & Rossetti 1985]. The predominance of transient
failures has been observed also for the software. In [Gray 1986], an analysis of operational failures in
Tandem computers revealed that most software faults are soft faults that can be tolerated by simply
restarting the failed process with different input conditions.

The dependence of system failure behaviour on system activity has been pointed out in the early
1980s. An early study at the University of Illinois, focussed at the analysis of system failures and
workloads on IBM machines, showed that the average system failure rate was strongly correlated
with the average workload on the system [Butner & Iyer 1980, Iyer & Rossetti 1985]. Similar results
were presented in [Castillo & Siewiorek 1981], based on measurements at Carnegie-Mellon
University, and in [Moran et al. 1990]; they are based on error data collected on VAX8600
computers.

Correlation among system component failures is another source of stochastic dependency that has a
significant impact on computer systems dependability modelling and evaluation. Such correlation
might exist among software failures, hardware failures as well as among both. For example, in [Iyer
& Velardi 1985], nearly 35% of software failures observed on the MVS/SP operating system running
on an IBM 3081 machine were hardware related. Measurements on VAXclusters [Tang et al. 1990,
Wein & Sathaye 1990] and Tandem GUARDIAN machines [Lee et al. 1991] found that correlated
failures exist significantly in distributed systems. Most of correlated failures observed on the
VAXcluster study were related to the network interconnecting the VAX machines.

Software, and design faults in general, have become the major dependability bottleneck during the
last fifteen years, This is confirmed by field data collected on largely deployed systems, e.g. [Gray
1990, Moran et al. 1990, Cramp et al. 1992, Wood 1995]. For example, the analysis of field failures
in Tandem computer systems between 1985 and 1990 [Gray 1990] revealed that more than 60% of
system failures reported in 1989 were due to software. Accordingly, many experimental studies
focussed at the analysis of software related errors. The analysis and modelling of software errors to
provide feedback to the development process have been addressed in several papers, e.g., [Musa et
al. 1987, Lyu 1995, Kanoun et al. 1997]. Several experimental studies have been published to
support the analysis of software error characteristics and the modeling of the impact of software
failures on dependability, e.g. [Kanoun & Sabourin 1987, Levendel 1990, Kenney & Vouk 1992,
Sullivan & Chillarege 1992, Kaâniche et al. 1994, Chillarege et al. 1995]. The issues addressed in
these papers include: (1) categorisation of software errors; (2) monitoring of software processes and
products through the use of trend tests and statistical quality control, (3) evaluation of quantitative
measures characterising the software failure intensity and time to failure using reliability growth
models.

Although there is a wide variety of research that is based upon the analysis of error and failure data
collected from operational computer systems, very few studies have addressed interconnected

State of the Art Survey

70 Deliverable BC2

systems. Distributed and network-based computing systems, are notoriously difficult environments
in which to detect and diagnose faults. The research reported in [Maxion & Feather 1990] provided
an elaborate discussion on the problems related to the diagnosis and analysis of network anomalies
and proposed a methodology based on the monitoring of performance degradation or deviations from
expected behaviour as a means for characterising dependability related problems in networked
environments. Dependability analysis of networked applications in distributed environments requires
the definition of representative fault models and meaningful dependability measures that characterise
the system behaviour as perceived by the users. An example is provided in [Wood 1995] where a
framework for analysing and measuring availability as perceived by the users in client-server
distributed environments is defined and illustrated with experimental data collected from different
sources (customers, network component providers, university studies, etc.) The lack of real data
collected from the monitoring of networked applications and failures is one of the reasons for the
lack of published results on dependability analysis and modelling of interconnected systems.
Examples of such real data can be found in [Thakur & Iyer 1996], where an environment for
collecting and analysing the failures in a network of Unix workstations is presented, and in
[Kalyanakrishnan et al. 1999b], where failure data from a network of 70 Windows NT mail servers is
analysed. Both studies concern measurement performed in local area network environments and are
based only on event logs recorded by the hosts. In this context, it is difficult to diagnose the cause of
a failed client request: it might result from a server failure, a network component failure, or simply to
network performance degradation. The use of data collected with network management tools for the
monitoring of network components and systems, in addition to the events recorded by the operating
system, should help to improve failure and dependability analysis in networked environments, (see
e.g., [Orfali et al. 1996, Harnedy 1998] for a presentation of network management functions,
standards, and tools).

With the ever-increasing use and rapid expansion of the Internet, several recent research efforts
focussed on Internet measurement, with the perspective of evaluating network performance metrics
from an end-users perspective [Paxson et al. 1998, Matthews & Cottrell 2000]. Internet measurement
studies focussed at dependability analysis is an emerging area of active research. Two main
directions have been followed: (1) study of Internet hosts availability and reliability, and (2) study of
failures affecting the Internet backbone infrastructures.

Internet hosts reliability studies address issues such as: (a) What is the probability that a user’s
request to access an Internet host succeeds? (b) What percentage of hosts remain accessible to the
user at a give moment? (c) What are the major causes of access failures as seen by the user? In
[Sriram 1993, Long et al. 1995, Kalyanakrishnan et al. 1999a] availability and reliability measures
are evaluated for a sample of Internet hosts by repeatedly polling the hosts from different sites.
Generally, these studies consider the Internet and the underlying infrastructure as a “black box”.
Studies focussing on Internet backbone infrastructures are aimed at the analysis of Internet routing
problems and network related failures. For example, in [Labovitz et al. 1999], two categories of
Internet failures are analysed: failures in the connections between service provider backbones, and
failures occurring within provider backbones. This analysis is based on data collected from
experimental measurements of largely deployed wide area networks and on data obtained from the
operational records of an Internet service provider.

Dependability Evaluation of Large Systems

Dependable Systems of Systems 71

5.4 Conclusion

This chapter covered two complementary approaches that will be used to support SoS dependability
evaluation: analytical modelling and measurement-based assessment.

With respect to analytical modelling, the main problem remains the state-space explosion when
considering a large number of systems connected together. The work that will be performed within
DSoS will address model construction based on a compositional approach. To master progressively
the complexity of the model, we will explore methods for progressive refinement of a GSPN: starting
from a high level model, some places and transitions can be expanded to include more details. Such
approaches have been investigated for Non Stochastic Petri Nets. Our aim is to extend them to
GSPNs.

As regards measurement-based assessment, although there is a wide variety of research that is based
upon the analysis of error and failure data collected from operational computer systems, very few
studies have addressed interconnected systems. Today’s network environments integrate a set of
heterogeneous multi-vendor hardware, software and network resources, and are subject to continuous
change in network configuration, applications, traffic, etc. The analysis of faults and errors in this
context and the evaluation of their impact on dependability raise several open questions: (1) What is
the definition of a failure? (2) What are the quantitative measures to be defined to assess the
dependability of the system? (3) What kind of data needs to be collected to evaluate these measures?
(4) What is the infrastructure needed to perform data collection and processing for dependability
measurements? (5) How to evaluate comprehensive dependability measures for the global system
based on measures evaluated for the components? (6) What kind of feedback can be provided to
improve the design? DSoS aims to address these questions. The local area computing network at
LAAS will be used as an experimental environment to support this research.

References (Architecture and Design)

Dependable Systems of Systems 73

References

Chapter 1 – Architecture and Design

[Abowd et al. 1995] G. Abowd, R. Allen and D. Garlan “Formalizing Style to Understand
Descriptions of Software Architecture”, ACM Transactions on Software Engineering and
Methodology (TOSEM), 4(4), pp. 319-364, 1995.

[Allen 1997] R. Allen, A Formal Approach to Software Architecture, PhD thesis, CMU, 1997.

[Allen & Garlan 1997] R. Allen and D. Garlan, “A Formal Basis for Architectural Connection”,
ACM Transactions on Software Engineering and Methodology (TOSEM), 6(3), pp. 213-249, 1997.

[Allen et al. 1997] R. Allen, R. Douence and D. Garlan, “Specifying Dynamism in Software
Architectures”, in Proc. Foundations of Component-based Systems Workshop, 1997.

[Allen et al. 1998] R. Allen, D. Garlan and J. Ivers, “Formal Modeling and Analysis of the HLA
Component Integration Standard”, in Proc. ACM SIGSOFT’98 Symposium on Foundations of
Software Engineering (FSE), pp. 70-79, 1998.

[Blair et al. 2000] G.S. Blair, L. Blair, V. Issarny, P. Tuma and A. Zarras, “The Role of Software
Architecture in Constraining Adaptation in Component-Based Middleware Platforms”, in Proc.
Middleware’2000: IFIP/ACM International Conference on Distributed Systems Platforms, LNCS
1795, pp. 164-184, 2000.

[Beder et al. 2000] D. M. Beder, A. Romanovsky, B. Randell, C.R. Snow and R.J. Stroud, “An
Application of Fault Tolerance Patterns and Coordinated Atomic Actions to a Problem in Railway
Scheduling”, ACM Operating System Reviews, 34, 4, pp 21-31, October 2000.

[Borrmann & Newberry-Paulish 1999] L. Borrmann and F. Newberry-Paulish, “Software
Architectures at Siemens: The Challenges, our Approaches and Some Open Issues”, in Proc. 1st

Working IFIP Conference on Software Architecture (WICSA), pp. 539-544, KAP, P. Donohe ed.,
1999.

[Bratthall & Runeson 1999] L. Bratthall and P. Runeson, “Architecture Design Recovery of a Family
of Embedded Software Systems”, in Proc. 1st Working IFIP Conference on Software Architecture
(WICSA), pp. 3-14, KAP, P. Donohe ed., 1999.

[Buschmann et al. 1996] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and M. Stal, A
System of Patterns: Patterns-Oriented Software, John Wiley & Sons, 1996.

[Canal et al. 1999] C. Canal, E. Pimentel and J. M. Troya, “Specification and Refinement of
Dynamic Software Architectures”, in Proc. 1st Working IFIP Conference on Software Architecture
(WICSA), pp. 107-126, KAP, P. Donohe ed., 1999.

[Cheung & Kramer 1996] S.C. Cheung and J. Kramer, “Checking Subsystem Safety Properties in
Compositional Reachability Analysis”, in Proc. 18th International Conference on Software
Engineering (ICSE), pp. 144-154, 1996.

State of the Art Survey

74 Deliverable BC2

[Cheung et al. 1997] S.C. Cheung, D. Giannakopoulou and J. Kramer, “Verification of Liveness
Properties using Compositional Reachability Analysis”, in Proc. 6th European Software Engineering
Conference/5th ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE), LNCS 1301, pp. 227-243, 1997.

[Dashofy et al. 1999] E.M. Dashofy, N. Medvidovic and R.N. Taylor, “Using Off-The-Shelf
Middleware to Implement Connectors in Distributed Software Architectures”, in Proc. 21st

International Conference on Software Engineering (ICSE), pp. 3-12, 1999.

[DeLine 1999] R. DeLine, “A Catalog of Techniques for Resolving Packaging Mismatch”, in Proc.
Symposium on Software Reusability, 1999.

[DiNitto & Rosenblum 1999] E. Di Nitto and D. Rosenblum, “Exploiting ADLs to Specify
Architectural Styles Induced by Middleware Infrastructures”, in Proc. 21st International Conference
on Software Engineering (ICSE), pp. 13-22, 1999.

[Emmerich 2000] W. Emmerich, Engineering Distributed Objects, J. Wiley & Sons, 2000.

[Garcia et al. 2000] A. Garcia, D. Beder and C. Rubira, “A Software Architecture Based on Patterns
for Exceptional Condition Handling”, in Proc. 5th IEEE International Symposium on High Assurance
Systems Engineering (ISHASE), 2000.

[Garlan et al. 1994a] D. Garlan, R. Allen and J. Ockerbloom, “Exploiting Style in Architectural
Design Environments”, in Proc. ACM SIGSOFT’94 Symposium on Foundations of Software
Engineering (FSE), pp. 175-188, 1994.

[Garlan et al. 1994b] D. Garlan, R. Allen and J. Ockerbloom, “Architectural Mismatch: Why Reuse
Is So Hard”, in IEEE Software, pp. 17-26, 1994.

[Garlan et al. 1997] D. Garlan, R. Monroe and D. Wile, “ACME: An Architecture Interchange
Language”, in Proc. CASCON’97, 1997.

[Garlan 2000] D. Garlan, “Architectures for Pervasive Computing”, in Proc. 4th International
Software Architecture Workshop (ISAW), pp. 42-45, 2000.

[Guo et al. 1999] G.Y. Guo, J.M. Atlee and R. Kazman, “A Software Architecture Reconstruction
Method”, in Proc. 1st Working IFIP Conference on Software Architecture (WICSA), pp. 15-34, KAP,
P. Donohe ed., 1999.

[Hofmeister et al. 1999] C. Hofmeister, R.L. Nord and D. Soni, “Describing Software Architecture
with UML”, in Proc. 1st Working IFIP Conference on Software Architecture (WICSA), pp. 145-160,
KAP, P. Donohe ed., 1999.

[Issarny 97] V. Issarny, “Configuration-Based Programming Systems”, in Proc. SOFSEM’97:
Theory and Practice of Informatics, LNCS 1338, pp. 183-200, 1997.

[Issarny et al. 1998a] V. Issarny, C. Bidan and T. Saridakis, “Achieving Middleware Customization
in a Configuration-based Development Environment: Experience with the Aster Prototype”, in Proc.
4th International Conference on Configurable Distributed Systems (ICCDS), pp. 275-283, 1998.

References (Architecture and Design)

Dependable Systems of Systems 75

[Issarny et al. 1998b] V. Issarny, C. Bidan, and T. Saridakis, “Characterizing Coordination
Architectures According to Their Non-Functional Execution Properties”, in Proc. 31st Hawaii
International Conference on System Sciences (HICSS), pp. 275-285, 1998.

[Inverardi & Wolf 1995] P. Inverardi and A. Wolf, “Formal Specification and Analysis of Software
Architectures using the Chemical Abstract Machine Model”, IEEE Transactions on Software
Engineering (TSE), 21(4), pp. 373-386, 1995.

[ISOIEC 1995] ISO/IEC, Reference Model for Open Distributed Processing Part 1: Overview,
Technical Report 10746-1, 1995.

[Kazman et al. 1994] R. Kazman, L. Bass, G. Abowd and M. Webb, “SAAM: A Method for
Analyzing the Properties of Software Architectures”, in Proc. 16th International Conference on
Software Engineering (ICSE), pp. 81-90, 1994.

[Klein et al. 1999] M. H. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbacci and H. Lipson,
“Attribute-based Architecture Style”, in Proc. 1st Working IFIP Conference on Software Architecture
(WICSA), pp.225-244, KAP, P. Donohe ed., 1999.

[Kruchten 1995] P. Kruchten, “Architectural Blueprints: The 4+1 View Model of Software
Architecture”, IEEE Software, 12(6), pp. 42-50, 1995.

[Kruchten 1999] P. Kruchten, The Rational Unified Process: An Introduction, Addison-Wesley,
1999.

[Kuusela 1999] J. Kuusela, “Architectural Evolution”, in Proc. 1st Working IFIP Conference on
Software Architecture (WICSA), pp.471-478, KAP, P. Donohe ed., 1999.

[Le Metayer 1996] D. Le Métayer, “Software Architecture Styles as Graph Grammars”, in Proc.
ACM SIGSOFT’96 Symposium on Foundations of Software Engineering (FSE), pp. 15-23, 1996.

[Lewandowski 1998] S. C. Lewandowski, “Frameworks for Component-Based Client/Server
Computing”, in ACM Computing Surveys, 30(1), pp. 3-27, 1998.

[Luckham et al. 1995] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan and W.
Mann, “Specification and Analysis of System Architecture Using Rapide”, IEEE Transactions on
Software Engineering (TSE), 21(4), pp. 336-355, 1995.

[Magee et al. 1995] J. Magee, N. Dulay, S. Eisenbach and J. Kramer, “Specifying Distributed
Software Architectures”, in Proc. 5th European Software Engineering Conference (ESEC), LNCS
989, pp. 137-153, 1995.

[Magee et al. 1997] J. Magee, A. Tseng and J. Kramer, “Composing Distributed Objects in
CORBA”, in Proc. International Symposium on Autonomous Decentralized Systems (ISADS), 1997.

[Medvidovic & Taylor 2000] N. Medvidovic and R. N. Taylor, “A Classification and Comparison
Framework for Software Architecture Description Languages”, IEEE Transactions on Software
Engineering (TSE), 26(1), pp. 70-93, 2000.

State of the Art Survey

76 Deliverable BC2

[Medvidovic et al. 1999] N. Medvidovic, D.S. Rosenblum and R.N. Taylor, “A Language and
Environment for Architecture-based Software Development and Evolution”, in Proc. 21st

International Conference on Software Engineering (ICSE), pp. 44-53, 1999.

[Mehta et al. 2000] N.R. Mehta, N. Medvidovic and S. Phadke, “Towards a Taxonomy of Software
Connectors”, in Proc. 22nd International Conference on Software Engineering (ICSE), pp. 178-187,
2000.

[Microsoft 1998] Microsoft, DCOM: A Technical Overview, Technical Report, Microsoft
Corporation, 1998, http://www.microsoft.com/ntserver/appservice/.

[Moriconi & Riemenschneider 1997] M. Moriconi and N. Riemenschneider, Introduction to SADL
1.0: A Language for Specifying Software Architecture Hierarchies, Technical Report SRI-CSL-97-
01, SRI Int’l, 1997.

[Moriconi et al. 1995] M. Moriconi, X. Qian and N. Riemenschneider, “Correct Architecture
Refinement”, IEEE Transactions on Software Engineering (TSE), 21(4), pp. 356-372, 1995.

[OMG 1995] OMG, The Common Object Request Broker: Architecture and Specification Revision
2.0, 1995.

[OMG 1997a] OMG, UML Notation Guide, 1.1 Edition, 1997.

[OMG 1997b] OMG, UML Semantics, 1.1 Edition, 1997.

[OMG 1997c] OMG, Object Constraint Language Specification, 1.1 Edition, 1997.

[OMG 1998] OMG, CORBA Services: Common Object Services Specification, 1998.

[Oreizy et al. 1999] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, N.
Medvidovic, A. Quilici, D.S. Rosenblum and A.L. Wolf, “An Architecture-Based Approach to Self-
Adaptive Software”, IEEE Intelligent Systems, pp. 54-62, May/June 1999.

[Perry 1998] D. Perry, “Generic Architecture Description for Product Lines”, in Proc. Workshop on
Software Architecture for Product Families, 1998.

[Perry & Wolf 1992] D. Perry and A. Wolf, “Foundations for the Study of Software Architecture”, in
Software Engineering Notes, 17(4), pp. 40-52, 1992.

[Pree & Koskimies 1999] W. Pree and K. Koskimies, “Rearchitecting Legacy Systems”, in Proc. 1st

Working IFIP Conference on Software Architecture (WICSA), pp.51-64, KAP, P. Donohe ed., 1999.

[Riemenschneider et al. 2000] R.A. Riemenscheneider, J. Salasin and A. van Lamsweerde, “From
System Requirements to System Architecture”, in Proc. 4th International Software Architecture
Workshop (ISAW), pp. 1-6, 2000.

[Robbins et al. 1998] J.E. Robbins, N. medvidovic, D.F. Redmiles and D.S. Rosenblum, “Integrating
Architecture Description Languages with a Standard Design Model”, in Proc. 20th International
Conference on Software Engineering (ICSE), pp. 209-217, 1998.

References (Architecture and Design)

Dependable Systems of Systems 77

[Saridakis & Issarny 1999] T. Saridakis and V. Issarny, “Developing Dependable Systems Using
Software Architecture”. in Proc. 1st Working IFIP Conference on Software Architecture (WICSA),
pp.83-103, KAP, P. Donohe ed., 1999.

[Shaw 1989] M. Shaw, “Larger Scale Systems Require Higher-Level Abstractions”, in Proc. 5th

International Workshop on Software Specification and Design, Appeared in ACM SIGSOFT Notes

14(3), pp. 143-146, 1989.

[Shaw 2000] M. Shaw, “Sufficient Correctness and Homeostasis in Open Resource Coalitions”, in
Proc. 4th International Software Architecture Workshop (ISAW), pp. 46-50, 2000.

[Shaw & Garlan 1996] M. Shaw and D. Garlan, Software Architectures: Perspectives on an
Emerging Discipline, Prentice Hall, 1996.

[Shaw et al. 1995] M. Shaw, R. DeLine, D.V. Klein, T.L. Ross, D.M. Young and G. Zelesnik,
“Abstractions for Software Architecture and Tools to Support Them”, in IEEE Transactions on
Software Engineering (TSE), 21(4), pp. 314-335, 1995.

[Schwanke et al. 1989] R.W. Schwanke, R.Z. Altucher and M.A. Platoff, “Discovering, Visualizing
and Controlling Software Structure”, in Proc. 5th International Workshop on Software Specification
and Design, Appeared in ACM SIGSOFT Notes 14(3), pp. 147-150, 1989.

[Sun 1998] Sun Microsystems, Enterprise Java Beans Technology, Technical Report, 1998,
http://java.sun.com/products/ejb/

[Wile 1999] D. Wile, “AML: An Architecture Meta-Language”, in Proc. IEEE International
Conference on Automated Software Engineering (ASE), 1999.

[Zarras 2000] A. Zarras, Systematic Customization of Middleware, Thèse de Doctorat de l’Université
de Rennes I, English version available from http://www-rocq.inria.fr/solidor/doc/doc.html, 2000.

[Zarras & Issarny 2000] A. Zarras and V. Issarny, Assessing Software Reliability at the Architectural
Level, in Proc. 4th International Software Architecture Workshop (ISAW), 2000.

References (Mechanisms for Enforcing Dependability of Services)

Dependable Systems of Systems 79

Chapter 2 – Mechanisms for Enforcing Dependability of Services

[Barrett et al. 1990] P. A. Barrett, A. M. Hilborne, P. G. Bond, D. T. Seaton, P. Veríssimo, L.
Rodrigues and N. A. Speirs, “The Delta-4 Extra Performance Architecture (XPA)”, in 20th Int.
Symp. on Fault-Tolerant Computing Systems (FTCS-20), (Newcastle upon Tyne, UK), pp.481-8,
IEEE Computer Society Press, 1990.

[Birman 1985] K. P. Birman, “Replication and Fault-Tolerance in the ISIS System”, ACM Operating
Systems Review, 19 (5), pp.79-86, 1985.

[Campbell & Randell 1986] R. H. Campbell and B. Randell, “Error Recovery in Asynchronous
Systems”, IEEE Transactions on Soft. Eng., SE-12, 8, pp.811-26, 1986.

[Chandra & Toueg 1996] T. D. S. Chandra, Toueg, “Unreliable Failure Detectors for Reliable
distributed Systems”, Journal of the ACM, Vol. 43 (2), pp.225-67, 1996.

[Chen & Avizienis 1978] L. Chen, A. Avizienis, “N-version Programming: A Fault Tolerant
Approach to Reliability of Software Operation”, in Proc. of the 8th IEEE Int. Symp. on Fault
Tolerant Computing (FTCS-8), IEEE Computer Society Press, pp.3-9, 1978.

[Chérèque et al. 1992] M. Chérèque, D. Powell, P. Reynier, J-L. Richier and J. Voiron, “Active
Replication in Delta-4”, in Proc. of the 22nd IEEE Int. Symp. on Fault Tolerant Computing (FTCS-
22), Boston (MA, USA), pp.28-37, 1992.

[Chiba 1995] S. Chiba, “A Metaobject Protocol for C++”, in Proc. of OOPSLA’95 (ACM
Conference on Object-Oriented Programming, Systems, Languages and Applications), Austin (TX-
USA), October 1995, pp.285-99.

[Cristian 1995] F. Cristian, “Exception Handling and Tolerance of Software Faults,” In Software
Fault Tolerance (ed. M. Lyu), Wiley, pp.81-107, 1995.

[Cristian & Fetzer 1998] F. Cristian and C. Fetzer, “The Timed Asynchronous System Model”, in
28th Int. Symp. on Fault-Tolerant Computing (FTCS-28), (Munich, Germany), pp.140-9, IEEE
Computer Society Press, 1998.

[Davies 1979] C. T. Davies, “Data Processing Integrity”, in Computing System Reliability,

T. Anderson and B. Randell (Eds.), Cambridge University Press. 1979.

[Deswarte et al. 1991] Y. Deswarte, L. Blain, J.C. Fabre, “Intrusion Tolerance in Distributed
Computing Systems”, in Proc. of the 1991 IEEE Symp. on Research in Security and Privacy,
Oakland, May 1991, pp. 110-121.

[Dolev et al. 1997] D. Dolev, “On the Minimal Synchrony Needed for Distributed Consensus”,
Journal of the ACM, Vol. 43(2), Jan., pp.77-97, 1997.

[Dumant et al. 1998] B. Dumant, F. Horn, F. Dang Tran and J.-B. Stefani, “Jonathan: an Open
Distributed Processing environment in Java”, in Proc. of the IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing, Sept., pp.175-90, 1998.

State of the Art Survey

80 Deliverable BC2

[Elmagarmid 1993] A. K. Elmagarmid (ed.), “Database Transaction Models for Advanced
Applications”, Morgan Kaufmann Publ., 1993.

[Fabre & Perennou 1998] J. C. Fabre, T. Pérennou, “A Metaobject Architecture for Fault Tolerant
Distributed Systems: The FRIENDS Approach”, IEEE Transactions on Computers, Special Issue on
Dependability of Computing Systems, Jan., pp.78-95, 1998.

[Felber 1998] P. Felber, The CORBA Object Group Service: A Service Approach to Object Groups in
CORBA, PhD thesis, EPFL, Switzerland, 1998.

[Fisher et al. 1985] M. Fisher, N. Lynch, M. Paterson, “Impossibility of Distributed Consensus with
One Faulty Process”, Journal of the ACM, Vol. 32 (2), April, pp.374-82, 1988.

[Garbinato et al. 1995] B. Garbinato, R. Guerraoui and K. Mazouni, “Implementation of the GARF
Replicated Objects Platform”, Distributed Systems Engineering Journal, 2, March pp.14-27, 1995.

[Garcia-Molina & Salem 1987] H. Garcia-Molina and K. Salem, “SAGAS”, in Proc. of the SIGMod
1987 Annual Conference, Dayal, U.; Traiger, I. (Eds.), San Francisco, CA, May 1987, ACM, ACM
Press, pp.249–59.

[Gray & Reuter 1993] J. Gray and A. Reuter, “Transaction Processing: Concepts and Techniques”,
Morgan Kaufmann Publishers, San Mateo, California, 1993.

[Guerraoui & Shiper 1997] R. Guerraoui and A.Shiper, “Consensus: the Big Misunderstanding”, in
Proc. of the 6th IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’97),
Tunis (Tunisia), Oct., pp.183-8, 1997.

[Hagen & Alonco 1998] C. Hagen and G. Alonco, “Flexible Exception Handling in the OPERA
Process Support System”, in Proc. 18th Int. Conf. on Distributed Computing Systems, Amsterdam,
The Netherlands. 1998.

[Hoare 1976] C. A. R. Hoare, “Parallel Programming: an Axiomatic Approach”, in Languages,
Hierarchies and Interfaces (G. Goos and J. Hartmaur, Eds.), LNCS-46. Spinger-Verlag, Berlin. 1976.

[Horning & Randell 1973] J. J. Horning and B. Randell, “Process Structuring”, in Comp. Surveys, 5,
pp.5-30. 1973.

[Hsu 1993] M. Hsu, “Special Issue on Workflow and Extended Transaction Systems”, Data
Engineering, 16, 2, 1993.

[Killijian & Fabre 1998] M. O. Killijian, J. C. Fabre, J. C. Ruiz-Garcia, S. Chiba, “A Metaobject
Protocol for Fault Tolerant CORBA Applications”, IEEE Symposium on Reliable Distributed
Systems (SRDS’98), West Lafayette, October 98, pp.127-34.

[Killijian & Fabre 2000] M. O. Killijian and J. C. Fabre, “Implementing a Reflective Fault-Tolerant
CORBA System”, in Proc. of 19th IEEE Symposium on Reliable Distributed Systems (SRDS2000),
Nurnberg, Germany, Oct. 2000.

[Landis & Maffeis 1997] S. Landis and S. Maffeis, “Building Reliable Distributed Systems with
Corba”, in Theory and Practice of Object Systems, (special issue on the future of Corba 3), 3 (1),
pp.59-66, 1997.

References (Mechanisms for Enforcing Dependability of Services)

Dependable Systems of Systems 81

[Laprie et al. 1995] J. C. Laprie, J. Arlat, C. Beounes, K. Kanoun, “Definition And Analysis Of
Hardware -And-Software Fault-Tolerant Architectures”, Advances In Ultra-Dependable Distributed
Systems, Eds. N. Suri, C. J. Walter, M. M. Hugue, IEEE Computer Society Press, pp.42-54, 1995.

[Leymann & Roller 1999] F. Leymann and D. Roller, “Production Workflow: Concepts and
Techniques”, Prentice Hall. 1999, 479 p.

[Liskov 1988] B. Liskov, “Distributed Programming in Argus,” Communications of the ACM, 31, 3,
pp.300-12, 1988.

[Maffeis & Schmidt 1997] S. Maffeis and D. C. Schmidt, “Constructing Reliable Distributed
Communication Systems with Corba”, in IEEE Communications Magazine, Vol. 14(2), Feb. 1997,
6p.

[Moser & Melliar-Smith 1997] L. E. Moser and P. M. Melliar-Smith, “The Interception Approach to
Reliable Distributed CORBA Objects”, P. Narasimhan, L. E. Moser and P. M. Melliar-Smith, Panel
on Reliable Distributed Objects, in 3rd USENIX Conference on Object-Oriented Technologies and
Systems, Portland, (Or, USA), June, pp 245-8, 1997.

[Moss 1981] J. E. B. Moss, Nested Transactions: An Approach to Reliable Distributed Computing,
Ph.D. Thesis (Tech. Report 260), MIT Lab. for Computer Science, Cambridge, MA, 1981.

[Natarajan et al. 2000] B. Natarajan, A. Gokhale, D. Schmidt, and S. Yajnik, “DOORS: Towards
high-performance fault-tolerant CORBA”, in Proc. of the 2nd International Symposium on
Distributed Objects and Applications, Antwerp, Belgium, September 2000.

[Nett & Mock 1995] E. Nett and M. Mock, “How to Commit Concurrent, Non-Isolated
Computations”, in Proc. of the 5th IEE Computer Society Workshop on Future Trends of Distributed
Computing Systems, Cheju Island, Korea, August 1995.

[Parrington et al. 1995] G. D. Parrington, S. K. Shrivastava, S. M. Wheater and M. C. Little, “The
Design and Implementation of Arjuna”, in USENIX Computing Systems Journal, 8, Summer, pp.255
– 308, 1995.

[Powell 1991] D. Powell (Ed.), “Delta-4: A Generic Architecture for Dependable Distributed
Computing”, Research Reports ESPRIT, Springer-Verlag, Berlin, Germany, 1991.

[Powell 1991] D. Powell (Ed.), Delta-4: a Generic Architecture for Dependable Distributed
Computing, Research Reports ESPRIT, 484p., Springer-Verlag, Berlin, Germany, 1991.

[Powell 1992] D. Powell, “Failure Mode Assumptions and Assumption Coverage”, in 22nd Int.
Symp. on Fault-Tolerant Computing (FTCS-22), (Boston, MA, USA), pp.386-95, IEEE Computer
Society Press, 1992.

[Randell 1975] B. Randell, “System Structuring for Software Fault Tolerance”, in IEEE Trans. on
Software Engineering, SE-1 (2), pp.220-32, 1975.

[Roman et al. 1999] M. Roman, F. Kon and R. H. Campbell, “Supporting Dynamic Reconfiguration
in the dynamicTAO Reflective ORB”, Technical Report UIUCDCS-R-99-2085, University of Illinois
at Urbana-Champaign, March 1999.

State of the Art Survey

82 Deliverable BC2

[Romanovsky et al. 1998] A. Romanovsky, J. Xu and B. Randell, “Exception Handling in Object-
Oriented Real-Time Distributed Systems”, in Proc. the 1st International Symposium on Object-
oriented Real-time Distributed Computing (ISORC’98), Kyoto, Japan, pp.32-42, 1998.

[Rubira 1994] C. Rubira. Structuring Fault-Tolerant Object-Oriented Systems Using Inheritance and
Delegation, PhD thesis, University of Newcastle upon Tyne, Department of Computing Science,
October 1994.

[Speirs & Barrett 1989] N. A. Speirs and P. A. Barrett, “Using Passive Replicates in Delta-4 to
Provide Dependable Computing”, in Proc. of the 19th IEEE Int. Symp. on Fault Tolerant Computing

(FTCS-19), CSPress, pp.184-90, 1989.

[Tatsubori 1999] M. Tatsubori, “An Extension Mechanism for the Java Language”, Master Thesis,
University of Tsukuba, Tsukuba, Ibaraki, Japan, 1999.

[Veríssimo & Almeida 1995] P. Veríssimo and C. Almeida, “Quasi-Synchronism: a Step Away from
the Traditional Fault-Tolerant Real-Time System Models”, Bulletin of the Technical Committee on
Operating Systems and Application Environments (TCOS), 7 (4), pp.35-9, 1995

[Wheater et al. 2000] S. M. Wheater, S. K. Shrivastava and F. Ranno, “OPENflow: A CORBA Based
Transactional Workflow System”, In Advances in Distributed Systems, S. Krakowiak, S. Shrivastava
(Eds). LNCS-1752, pp.354-74, 2000.

[Xu et al. 1995] J. Xu, B. Randell, A. Romanovsky, C. M. F. Rubira, R. J. Stroud and Z. Wu. “Fault
Tolerance in Concurrent Object-Oriented Software through Coordinated Error Recovery” in Proc.
the 25th International Symposium on Fault Tolerant Computing (FTCS-25), Pasadena, California,
pp.499 – 509, 1995.

[Xu et al.1999] J. Xu, B. Randell, A. Romanovsky, R. J. Stroud, A. . Zorzo, E. Canver and F. von
Henke. “Rigorous Development of a Safety-Critical System Based on Coordinated Atomic Actions”,
in Proc. the 29th International Symposium on Fault Tolerant Computing (FTCS-29), Madison, USA,
IEEE CS, pp.68-75, 1999.

[Zorzo et al. 1999] A. F. Zorzo, A. Romanovsky, J. Xu, B. Randell, R. J. Stroud and I. S. Welch.
“Using Coordinated Atomic Actions to Design Complex Safety-Critical Systems: The Production
Cell Case Study”, Software: Practice & Experience, 29, 7, pp.1-21, 1999.

References (Wrapping Technology)

Dependable Systems of Systems 83

Chapter 3 – Wrapping Technology

[Carreira et al. 1998] J. Carreira, H. Madeira and J. G. Silva, Xception: A Technique for the
Experimental Evaluation of Dependability in Modern Computers, IEEE Trans. on Software
Engineering, SE-24, pp.125-36, 1998.

[Cheswick & Bellovin 1994] W. R. Cheswick and S. M. Bellovin, Firewalls and Internet Security,
Addison-Wesley, 1994, 306 p.

[ConceptualModel 2000] The DSoS Conceptual Model. Deliverable BC1, European IST DSoS
project (IST-1999-11585), September 2000.

[Chiba 2000] S. Chiba, “Load-time Structural Reflection in Java”, in ECOOP 2000 - European
Conference on Object-Oriented Programming. E. Bertino (Ed.), LNCS-1850, pp.313-37, 2000.

[de Oliveira Guimarães 1998] J. de Oliveira Guimarães, “Reflection for Statically Typed
Languages”, in ECOOP’98 - Object-Oriented Programming. E. Jul (Ed.), Springer-Verlag, Berlin
Heidelberg, pp.440-61, 1998.

[Erlingsson & Schneider 1999] U. Erlingsson and F. Schneider. “SASI Enforcement of Security
Policies: A Retrospective”, New Security Paradigms Workshop, Caledon Hills, Canada, pp.87-95,
1999.

[Fabre et al. 1999] J. C. Fabre, F. Salles, M. Rodriguez-Moreno and J. Arlat, “Assessment of COTS
Microkernels by Fault Injection”, IFIP Dependable Computing for Critical Applications

(DCCA’99), San José, pp.19-38, 1999.

[Fraser et al. 1999] T. Fraser, L. Badger and M. Feldman, “Hardening COTS Software with Generic
Software Wrappers”, IEEE Symposium on Security and Privacy, Oakland, CA, pp.2-16, 1999.

[Holzle 1993] U. Holzle, “Integrating Independently-Developed Components in Object-Oriented
Languages”, in ECOOP’93 - Object-Oriented Programming, O. M. Nierstrasz (Ed.). Springer-
Verlag, Berlin Heidelberg pp.36-56, 1993.

[Hsueh et al. 1997] M. C. Hsueh, T. Tsai and R. Iyer, “Fault Injection Techniques and Tools”,
Computer, vol. 30, pp.75-82, April 1997.

[Kao et al. 1993] W. Kao, R. K. Iyer and D. Tang, “FINE: A Fault Injection and Monitoring
Environment for Tracing the UNIX System Behavior under Faults”, IEEE Trans. on Software
Engineering, SE-19, pp.1105-18, 1993.

[Keller & Holze 1998] R. Keller and U. Holzle, “Binary Component Adaptation”, in ECOOP’98 -
Object-Oriented Programming, E. Jul (Ed.) Springer-Verlag, Berlin Heidelberg, pp.307-29, 1998.

[Kiczales et al. 1991] G. Kiczales, J. des Rivieres and D. G. Bobrow, The Art of the Metaobject
Protocol. Massachusetts Institute of Technology, 1991.

State of the Art Survey

84 Deliverable BC2

[Kroop et al. 1998] N. P. Kropp, P. J. Koopman and D. P. Siewiorek, “Automated Robustness
Testing of Off-The-Shelf Software Components”, in Proc. of the 28th IEEE Symp. on Fault Tolerant
Computing, Munich, Germany, pp.230-39, 1998.

[Maes 1987] P. Maes, “Concepts and Experiments in Computational Reflection”, in Proc. of
OOPSLA’87, ACM, pp. 147-155, October 1987.

[OMG 2000] CORBA Security Services Specification, v. 1.5, Object Management Group, Inc, 2000
(http://www.omg.org/technology/documents/formal/security_service.htm).

[Powell 1992] D. Powell, “Failure Mode Assumptions and Assumption Coverage”, Proc. FTCS-22

(Boston, MA, USA), pp.386-95, 1992.

[Rodriguez et al. 2000] M. Rodriguez, J. C. Fabre and J. Arlat, “Formal Specification for Building
Robust Real-time Microkernels”, in Proc. of the IEEE Real-Time Systems Symposium (RTSS 2000),
Orlando (FL, USA), Nov. 2000, (to appear).

[Salles et al. 1999] F. Salles, M.R. Moreno, J. C. Fabre and J. Arlat, “MetaKernel and Fault
Containment Wrappers”, in Proc. of the 29th IEEE Int. Symp. on Fault-Tolerant Computing
(FTCS’29), Madison, WI, USA, pp.22-9, 1999.

[Shelton et al. 2000] C. Shelton, P. Koopman and K. Devale, “Robustness Testing of the Microsoft
WIN32 API”, in Proc. of the IEEE Conference on Dependable Systems and Networks (DSN 2000),
New-York (NJ, USA), pp.261-70, 2000.

[Szyperski 1998] C. Szyperski, Component Software - Beyond Object Oriented Programming.
Addison-Wesley, 1998.

[Voas & Miller 1997] J. Voas and K. Miller, “Interface Robustness for COTS-Based Systems”,
Digest no. 97/013, Colloquium on COTS and Safety Critical, Systems Inst. of Electrical Eng.,
Computing and Control Division, pp. 7/1-7/12, 1997.

[Voas 1998] J. Voas, “Certifying Off-The-Shelf Software Components”, Computer, 31 (6),
pp. 53-9, 1998.

[Welch & Stroud 2000] I. Welch and R. J. Stroud, “Kava - A Reflective Java Based on Bytecode
Rewriting,” in Reflection and Software Engineering, LNCS-1826, W. Cazzola, R. J. Stroud, F.
Tisato, Eds. Springer-Verlag, pp.157-69. 2000.

References (Validation Techniques)

Dependable Systems of Systems 85

Chapter 4 – Validation Techniques

[Abdulla & Jonsson 2000] P. A. Abdulla and B. Jonsson, “Invited Tutorial: Verification of Infinite-
State Systems and Parameterised Systems”, in Proc.12th International Conference on Computer
Aided Verification, 2000.

[Arlat et al. 1990] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins and
D. Powell, “Fault Injection for Dependability Validation — A Methodology and Some
Applications”, IEEE Transactions on Software Engineering, 16 (2), pp.166-82, February 1990.

[Arlat et al. 1999] J. Arlat, J. Boué and Y. Crouzet, “Validation-based Development of Dependable
Systems”, IEEE Micro, 19 (4), pp.66-79, July-August 1999.

[Arlat et al. 1993] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie and D. Powell, “Fault Injection and
Dependability Evaluation of Fault-Tolerant Systems”, IEEE Transactions on Computers, 42 (8),
pp.913-23, August 1993.

[Avizienis & Rennels 1972] A. Avizienis and D. Rennels, “Fault-Tolerance Experiments with the
JPL STAR Computer”, in Proc. 6th Annual IEEE Computer Society Conference (COMPCON’72),

(San Francisco, CA, USA), pp.321-4, IEEE Computer Society Press, 1972.

[Avresky et al. 1996] D. Avresky, J. Arlat, J.-C. Laprie and Y. Crouzet, “Fault Injection for the
Formal Testing of Fault Tolerance”, IEEE Transactions on Reliability, 45 (3), pp.443-55, 1996.

[Baier et al. 1997] C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan,
“Symbolic Model-checking for Probabilistic Processes”, in Proc. 24th ICALP, LNCS 1256, pp 430-
440, 1997.

[Behnia & Waeselynck 1999] S. Behnia, and H. Waeselynck, “Test Criteria Definition for B
Models”, in Proc. World Congress on Formal Methods in the Development of Computing Systems
(FM’99), Toulouse France, Springer Verlag, LNCS 1708, Vol I, pp.509-29, 1999.

[Beizer 1990] B. Beizer, Software Testing Techniques, 2nd edition, Van Nostrand Reinhold, 1990.

[Berezin et al. 2000] S. Berezin, E. Clarke and S. Jha, W. Marrero, “Model Checking Algorithms for
the mu-Calculus”, in Proof, Logic and Interaction: Essays in Honour of Robin Milner, C. Stirling, G.
Plotkin and M. Tofte (eds), MIT Press, 2000.

[Bernot et al. 1991] G. Bernot, M.-C. Gaudel, and B. Marre, “Software Testing Based on Formal
Specifications: a Theory and a Tool”, Software Engineering Journal, 6 (6), pp.387-405, 1991.

[Biere et al. 1999] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic Model
Checking using SAT procedures instead of BDDs”, in Proc. Design Automation Conference
(DAC’99), 1999.

[Bozga et al. 1998] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis and S. Yovine, “Kronos: A
Model-Checking Tool for Real-time Systems”, in Proc. 10th Conference on Computer Aided
Verification, 1998.

State of the Art Survey

86 Deliverable BC2

[Brinksma 1989] E. Brinksma, “A Theory for the Derivation of Tests”, in The Formal Description
Technique LOTOS: Results of the ESPRIT/SEDOS Project, Elsevier Science Publishers North
Holland, pp.235-47, 1989.

[Carreira et al. 1998] J. Carreira, H. Madeira and J. G. Silva, “Xception: A Technique for the
Experimental Evaluation of Dependability in Modern Computers”, IEEE Transactions on Software
Engineering, 24 (2), pp.125-36, February 1998.

[Carreira et al. 1999] J. V. Carreira, D. Costa and J. G. Silva, “Fault Injection Spot-checks Computer
System Dependability”, IEEE Spectrum, 36, pp.50-5, August 1999.

[Cassez & Laroussine 2000] F. Cassez and F. Laroussine, “Model-Checking for Hybrid Systems by
Quotienting and COnstraint Solving”, in Proc. 12th International Conference on Computer Aided
Verification, pp 373-389, 2000.

[Chandy & Misra 1988] K. Mani Chandy and J. Misra, Parallel Program Design: A Foundation,
Addison Wesley Publishing Company, 1988.

[Chow 1978] T. S. Chow, “Testing Software Design Modeled by Finite-State Machine”, IEEE
Transactions on Software Engineering, 4 (3), 1978.

[Clarke et al. 1999] E. Clarke, O Grumberg and D. Peled, Model-checking, MIT Press 1999.

[Creese & Roscoe 2000] S. Creese and A. W. Roscoe, “Data Independent Induction over Structured
Networks”, in Proc. International Conference on Parallel Distributed Programming Techiques and
Applications, 2000.

[Cukier et al. 1999] M. Cukier, D. Powell and J. Arlat, “Coverage Estimation for Stratified Fault-
Injection”, IEEE Transactions on Computers, 48 (7), pp.707-23, July 1999.

[DeLong et al. 1996] T. A. DeLong, B. W. Johnson and J. A. Profeta III, “A Fault Injection
Technique for VHDL Behavioral-Level Models”, IEEE Design and Test of Computers, Winter,
pp.24-33, 1996.

[De Nicola & Hennessy 1984] R. de Nicola, and M. Hennessy, “Testing Equivalences for
Processes”, Theoretical Computer Science, 34, 1984.

[Dick & Faivre 1993] J. Dick, and A. Faivre, “Automating the Generation and Sequencing of Test
Cases from Model-Based Specifications”, in Proc. 1st Int. Symp. of Formal Methods Europe (FME-
93), Springer Verlag, LNCS 670, pp.268-84, 1993.

[Doong & Frankl 1994] R. K. Doong, and P. G. Frankl, “The ASTOOT Approach to Testing Object-
Oriented Programs”, ACM Trans. on Software Engineering and Methodology, 3 (2), pp.101-30,
1994.

[Du Bousquet et al. 1999] L. du Bousquet, F. ouabdesselam, J.-L. Richier and N. Zuanon, “Lutess: a
Specification-Driven Testing Environment for Synchronous Software”, in Proc. 21st Int. Conf. on
Software Engineering (ICSE’99), Los Angeles, USA, ACM Press, pp.267-76, May 1999.

[Emerson & Sistla 2000] E. A. Emerson and A. P. Sistla (Eds.), “Computer Aided Verification”,
Proc. of the 12th International Conference CAV 2000, Springer, 2000.

References (Validation Techniques)

Dependable Systems of Systems 87

[Fabre et al. 2000] J.-C. Fabre, M. Rodríguez, F. Salles, J. Arlat and J.-M. Sizun, “Building
Dependable COTS Microkernel-based Systems using MAFALDA”, in Proc. 2000 Pacific Rim
International Symposium on Dependable Computing (PRDC-2000), (Los Angeles, CA, USA), IEEE
CS Press, 2000.

[Fabre et al. 1999] J.-C. Fabre, F. Salles, M. Rodríguez Moreno and J. Arlat, “Assessment of COTS
Microkernels by Fault Injection”, in Dependable Computing for Critical Applications (Proc. 7th
IFIP Working Conf. on Dependable Computing for Critical Applications: DCCA-7, San Jose, CA,
USA, January 1999) (C. B. Weinstock and J. Rushby, Eds.), Dependable Computing and Fault-
Tolerant Systems, 12, (A. Avizienis, H. Kopetz and J.-C. Laprie, Eds.), pp.25-44, IEEE Computer
Society Press, Los Alamitos, CA, USA, 1999.

[Fink & Bishop 1997] G. Fink and M. Bishop, “Property-Based Testing: A New Approach to Testing
for Assurance”, ACM SIGSOFT Software Engineering Notes, 22(4), pp.74-80, 1997.

[Formal System (Europe) Ltd 1996] Formal Systems (Europe) Ltd, FDR User Manual, 1996.

[Fujiwara et al. 1991] G. Fujiwara, S. von Bochmann, F. Khendek, and A. Ghedamsi, “Test Selection
Based on Finite State Models”, IEEE Transactions on Software Engineering, 17 (6), 1991.

[Gaudel & James 1998] M.-C. Gaudel, and P. R. James. “Testing algebraic data types and processes:
a unifying theory”, Formal Aspects of Computing, BCS, 10, pp.436-51, 1998.

[Gray 1986] J. Gray, “Why Do Computers Stop and What Can Be Done About It?”, in Proc. 5th
Symp. on Reliability in Distributed Software and Database Systems (SRDSDS-5), (Los Angeles, CA,
USA), pp.3-12, IEEE Computer Society Press, 1986.

[Gray 1993] J. Gray (Ed.), The Benchmark Handbook, Morgan Kaufmann Publishers, San
Francisco, CA, USA, 1993.

[Harrold 2000] M. J. Harrold, “Testing: A Roadmap”, in Proc. The Future of Software Engineering,
A. Finkelstein (Editor), ACM Press, pp.61-72, June 2000.

[Hoare 1978] C. A. R. Hoare, “Communicating Sequential Processes”, Communications of the ACM,
21, 8, pp 666-677, 1978.

[Hoare 1985] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1999.

[Hoare & He 1999] C. A. R. Hoare and J. He, Unifying Theories of Programming, Prentice-Hall,
1999.

[Holzmann 1991] G. Holzmann, Design and Validation of Computer Protocols, Prentice-Hall, 1991.

[Jackson 2000] D. Jackson, “Automating First-Order Relational Logic”, in Proc. ACM SIGSOFT
Conf. on Foundations of Software Engineering, San Diego, November 2000.

[Jagadeesan et al. 1997] “Specification-Based Testing of Reactive Software: Tools and
Experiments”, in Proc. 19th Int. Conf. on Software Engineering (ICSE’97), ACM Press, May 1997.

State of the Art Survey

88 Deliverable BC2

[Jenn et al. 1995] E. Jenn, J. Arlat, M. Rimén, J. Ohlsson and J. Karlsson, “Fault Injection into
VHDL Models: The MEFISTO Tool”, in Predictably Dependable Computing Systems (B. Randell,
J.-C. Laprie, H. Kopetz and B. Littlewood, Eds.), pp.329-46, Springer, Berlin, Germany, 1995.

[Kaâniche et al. 1998] M. Kaâniche, L. Romano, Z. Kalbarczyk, R. K. Iyer and R. Karcich, “A
Hierarchical Approach for Dependability Analysis of a Commercial Cache-Bsaed RAID Storage
Architecture”, in Proc. 28th Int. Symp. on Fault-Tolerant Computing (FTCS-28), (Munich,
Germany), pp.6-15, IEEE Computer Society Press, 1998.

[Kanawati et al. 1995] G. A. Kanawati, N. A. Kanawati and J. A. Abraham, “FERRARI: A Flexible
Software-Based Fault and Error Injection System”, IEEE Transactions on Computers, 44 (2),
pp.248-60, February 1995.

[Kao & Iyer 1995] W.-L. Kao and R. K. Iyer, “DEFINE: A Distributed Fault Injection and
Monitoring Environment”, in Fault-Tolerant Parallel and Distributed Systems (D. Pradhan and D. R.
Avresky, Eds.), pp.252-9, IEEE CS Press, Los Alamitos, CA, USA, 1995.

[Kao et al. 1993] W.-L. Kao, R. K. Iyer and D. Tang, “FINE: A Fault Injection and Monitoring
Environment for Tracing the UNIX System Behavior under Faults”, IEEE Transactions on Software
Engineering, 19 (11), pp.1105-18, November 1993.

[Karlsson et al. 1998] J. Karlsson, P. Folkesson, J. Arlat, Y. Crouzet, G. Leber and J. Reisinger,
“Application of Three Physical Fault Injection Techniques to the Experimental Assessment of the
MARS Architecture”, in Dependable Computing for Critical Applications (Proc. 5th IFIP Working
Conf. on Dependable Computing for Critical Applications: DCCA-5, Urbana-Champaign, IL, USA,
September 1995) (R. K. Iyer, M. Morganti, W. K. Fuchs and V. Gligor, Eds.), Dependable
Computing and Fault-Tolerant Systems, 10, (A. Avizienis, H. Kopetz and J.-C. Laprie, Eds.), pp.267-
87, IEEE Computer Society Press, Los Vaqueros, CA, USA, 1998.

[Koopman et al. 1997] P. J. Koopman, J. Sung, C. Dingman, D. P. Siewiorek and T. Marz,
“Comparing Operating Systems using Robustness Benchmarks”, in Proc. 16th Symp. on Reliable
Distributed Systems (SRDS-16), (Durham, NC, USA), pp.72-9, IEEE Computer Society Press, 1997.

[Kurshan & McMillan 1989] R. P. Kurshan and K. McMillan, “A Structural Induction Theorem for
Prcoesses”, in Proc. 8th Symposium on Principles of Distributed Computing, 1989.

[Kwiatkowska 1999] M. Kwiatkowska, Verification of Quality of Service Properties in Timed
Systems: Case for Support, School of Computer Science, University of Birmingham, 1999.

[Labovitz et al. 1999] C. Labovitz, A. Ahuja and F. Jahanian, “Experimental Study of Internet
Stability and Backbone Failures”, in Proc. 29th IEEE Int. Symposium on Fault-Tolerant Computing
(FTCS-29), (Madison, WI, USA), pp.278-85, IEEE Computer Society Press, 1999.

[Lazic & Nowak 2000] R. Lazic and D. Nowak, “A Unifying Approach to Data-independence”, in
Proc. 11th International Conference on Concurrency Theory (CONCUR 2000), Springer-Verlag,
2000.

[Lee & Yannakakis 1994] D. Lee, and M. Yannakis, “Testing Finite-State Machines: State
Identification and Verification”, IEEE Transactions on Computers, 43 (3), 1994.

References (Validation Techniques)

Dependable Systems of Systems 89

[Madeira et al. 2000] H. Madeira, D. Costa and M. Vieira, “On the Emulation of Software Faults by
Software Fault Injection”, in Proc. Int. Conference on Dependable Systems and Networks (DSN-
2000), (New York, NY, USA), pp.417-26, IEEE Computer Society Press, 2000.

[Marre & Arnould 2000] B. Marre, and A. Arnould, “Test Sequences Generation from LUSTRE
Descriptions: GATEL”, in Proc. 15th IEEE ACM Int. Conf. on Automated Software Engineering
(ASE’00), Grenoble, France, IEEE Comp. Soc. Press, Sept. 2000.

[Martínez et al. 1999] R. J. Martínez, P. J. Gil, G. Martín, C. Pérez and J. J. Serrano, “Experimental
Validation of High-Speed Fault-Tolerant Systems Using Physical Fault Injection”, in Dependable
Computing for Critical Applications (Proc. 7th IFIP Working Conf. on Dependable Computing for
Critical Applications: DCCA-7, San Jose, CA, USA, January 1999) (C. B. Weinstock and J. Rushby,
Eds.), Dependable Computing and Fault-Tolerant Systems, 12, (A. Avizienis, H. Kopetz and J.-C.
Laprie, Eds.), pp.249-65, IEEE Computer Society Press, San Jose, CA, USA, 1999.

[McMillan 1993] K. McMillan, Symbolic Model-checking, Kluwer, 1993.

[Mukherjee & Siewiorek 1997] A. Mukherjee and D. P. Siewiorek, “Measuring Software
Dependability by Robustness Benchmarking”, IEEE Transactions of Software Engineering,
23 (6) 1997.

[Namjoshi & Trefler 2000] K. S. Namjoshi and R. J. Trefler. “On the Completeness of
Compositional Reasoning”, in Proc. 12th International Conference on Computer Aided Verification,
pp. 139-154, 2000.

[Pan 2000] J. Pan, “A Method to Evaluate CORBA ORB Robustness”, in Suppl. Proc. Int.
Conference on Dependable Systems and Networks (DSN-2000), (New York, NY, USA), pp.A.31-
A.3, IEEE Computer Society Press, 2000.

[Pitt & Freestone 1990] D. H. Pitt, and D. Freestone, “The Derivation of Conformance Tests from
LOTOS Specifications”, IEEE Transactions on Software Engineering, 16 (12), 1990.

[Pnueli 1977] A. Pnueli, “The Temporal Logic of Programs”, in FOCS, 1977.

[Powell 1994] D. Powell, “Distributed Fault-Tolerance — Lessons from Delta-4”, IEEE Micro, 14
(1), pp.36-47, February 1994.

[Powell et al. 1995] D. Powell, E. Martins, J. Arlat and Y. Crouzet, “Estimators for Fault Tolerance
Coverage Evaluation”, IEEE Transactions on Computers, 44 (2), pp.261-74, February 1995.

[Raymond et al. 1998] P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs, “Automatic Testing
of Reactive Systems”, in Proc. 19th IEEE Real Time Systems Symp, IEEE, 1998.

[Rennels & Avizienis 1973] D. A. Rennels and A. Avizienis, “RMS: A Reliability Modeling System
for Self-Repairing Computers”, in Proc. 3rd Int. Symp. on Fault-Tolerant Computing (FTCS-3),

(Palo Alto, CA, USA), pp.131-5, IEEE Computer Society Press, 1973.

[Rodríguez et al. 1999] M. Rodríguez, F. Salles, J.-C. Fabre and J. Arlat, “MAFALDA: Microkernel
Assessment by Fault Injection and Design Aid”, in Proc. 3rd European Dependable Computing

State of the Art Survey

90 Deliverable BC2

Conf. (EDCC-3), (E. M. J. Hlavicka, A. Pataricza, Ed.), (Prague, Czech Republic), LNCS, 1667,
pp.143-60, Springer, 1999.

[Roscoe 1998] A. W. Roscoe, The Theory and Practice of Concurrency, Prentice-Hall International,
1998.

[Roscoe et al. 95] A. W. Roscoe, P. H. B. Gardiner, M. H. Goldsmith, J. R. Hulance, D. M. Jackson
and J. B. Scattergood, “Hierarchical Compression for Model-checking CSP or How to Check 10^20
Dining Philosophers for Deadlock”, in Proc. 1st TACAS, BRICS Notes Series NS-95-2, Department
of Computer Science, University of Aarhus, 1995.

[Shankar 2000] N. Shankar, “Combining Theorem Proving and Model Checking through Symbolic
Analysis”, in Proc. 11th International Conference on Concurrency Theory (CONCUR 2000),
Springer-Verlag, 2000.

[Thévenod-Fosse & Waeselynck 1993] P. Thévenod-Fosse and H. Waeselynck, “STATEMATE
Applied to Statistical Software Testing”, in Proc. Int. Symp. on Software Testing and Analysis
(ISSTA’93), Cambridge, Massachusetts, USA, ACM Press, pp.99-109, June 1993.

[Thévenod-Fosse et al. 1994] P. Thévenod-Fosse, C. Mazuet and Y. Crouzet, “On Statistical Testing
of Synchronous Data Flow Programs”, in Proc. 1st European Dependable Computing Conf. (EDCC-
1), (K. Echtle, D. Hammer and D. Powell, Eds.), (Berlin, Germany), Lecture Notes in Computer
Science, 852, pp.250-67, Springer-Verlag, 1994.

[Thévenod-Fosse et al. 1995] P. Thévenod-Fosse, H. Waeselynck and Y. Crouzet, “Software
Statistical Testing”, in Predictably Dependable Computing Systems (B. Randell, J.-C. Laprie,
H. Kopetz and B. Littlewood, Eds.), pp.253-72, Springer, Berlin, Germany, 1995.

[Tsai & Singh 2000] T. Tsai and N. Singh, “Reliability Testing of Applications on Windows NT”, in
Proc. Int. Conference on Dependable Systems and Networks (DSN-2000), (New York, NY, USA),
pp.427-36, IEEE Computer Society Press, 2000.

[Tracey et al. 1998] N. Tracey, J. Clark and K. Mander, “Automated Program Flaw Finding using
Simulated Annealing”, in Proc. Int. Symp. on Software Testing and Analysis (ISSTA’98), Clearwater
Beach, Florida, USA, ACM Press, pp.73-81, March 1998.

[Tretmans 1992] J. Tretmans, A Formal Approach to Conformance Testing, PhD thesis, University
of Twente, the Netherlands, Dec. 1992.

[Van Aertryck et al. 1997] L. Van Aertryck, M. Benveniste, and D. Le Metayer, “Casting: a
Formally Based Software Test Generation”, in Proc. IEEE Int. Conf. on Formal Engineering
Methods, pp.101-11, 1997.

[Voas & McGraw 1998] J. M. Voas and G. McGraw, Software Fault Injection, 353p., Wiley
Computer Publishing, New York, 1998.

[Waeselynck & Thévenod-Fosse 1999] H. Waeselynck and P. Thévenod-Fosse, “A Case Study in
Statistical Testing of Reusable Concurrent Objects”, in Proc. 3rd European Dependable Computing
Conference (EDCC-3), Prague, Czech Republic, Springer, LNCS 1667, pp.401-18, Sept. 1999.

References (Validation Techniques)

Dependable Systems of Systems 91

[Wolper & Boigelot 1998] P. Wolper and B. Boigelot, “Verifying Systems with Infinite but Regular
State Spaces”, in Proc. 10th International Conference on Computer Aided Verification, pp. 81-97,
1998.

[Yount & Siewiorek 1996] C. R. Yount and D. P. Siewiorek, “A Methodology for the Rapid
Injection of Transient Hardware Errors”, IEEE Transactions on Computers, 45 (8), pp.881-91,
August 1996.

[Zakiuddin 1999] I. Zakiuddin, “Current Limits for Exploiting Automated Verification”, in Proc.
International Conference on Parallel Distributed Programming Techiques and Applications, 1999.

References (Dependability Evaluation of Large Systems)

Dependable Systems of Systems 93

Chapter 5 – Dependability Evaluation of Large Systems

[Balakrishnam & Trivedi 1995] M. Balakrishnam and K. S. Trivedi, “Component-wise
Decomposition for an Efficient Reliability Computation of Systems with Repairable Components”,
in 25th International Symp. on Fault-Tolerant Computing (FTCS-25), (Pasadena, CA, USA), pp.259-
68, IEEE Computer Society Press, 1995.

[Balbo et al. 1988] G. Balbo, S. C. Bruell and S. Ghanta, “Combining Queuing Networks and GSPNs
for the Solution of Complex Models of System Behaviour”, IEEE Trans. on Computers, 37, pp.1251-
68, 1988.

[Berson et al. 1991] S. Berson, E. de Souza e Silva and R. R. Muntz, “A Methodology for the
Specification and Generation of Markov Models”, in Numerical Solutions for Markov Chains (W.
Stewart, Ed.), pp.11-36, Maecel Dekker, 1991.

[Bobbio & Trivedi 1986] A. Bobbio and K. S. Trivedi, “An Aggregation Technique for the Transient
Analysis of Stiff Markov Chains”, IEEE Trans. on Computers, C-35 (9), pp.803-14, 1986.

[Bondavalli et al. 1999] A. Bondavalli, I. Mura and K. S. Trivedi, “Dependability Modelling and
Sensitivity Analysis of Scheduled Maintenance Systems”, in 3rd European Dependable Computing
Conference (EDCC-3), (A. Pataricza, J. Hlavicka and E. Maehle, Eds.), (Prague, Czech Republic),
pp.7-23, Springer, 1999.

[Bouissou 1993] M. Bouissou, “The FIGARO Dependability Evaluation Workbench in Use: Case
Studies for Fault- Tolerant Computer Systems”, in 23rd Int. Symp. on Fault-Tolerant Computing
(FTCS-23), (Toulouse, France), pp.680-5, IEEE Computer Society Press, 1993.

[Buckley & Siewiorek 1995] M. F. Buckley and D. P. Siewiorek, “VAX/VMS Event Monitoring and
Analysis”, in 25th International Symposium on Fault-Tolerant Computing (FTCS-25), (Pasadena,
CA, USA), pp.414-23, IEEE Computer Society, 1995.

[Buckley & Siewiorek 1996] M. F. Buckley and D. P. Siewiorek, “A Comparative Analysis of Event
Typling Schemes”, in 26th International Symposium on Fault-Tolerant Computing (FTCS-26),

(Sendai, Japan), pp.294-303, IEEE Computer Society, 1996.

[Butner & Iyer 1980] S. E. Butner and R. K. Iyer, “A Statistical Study of Reliability and System
Load at SLAC”, in 10th International Symposium on Fault Tolerant Computing (FTCS-10), (Kyoto,
Japan), IEEE Computer Society, 1980.

[Carrasco & Figueras 1986] J. A. Carrasco and J. Figueras, “METFAC: Design and Implementation
of a Software Tool for Modeling and Evaluation of Complex Fault-Tolerant Computing Systems”, in
16th Int Symp. on Fault-Tolerant Computing (FTCS-16), (Vienna, Austria), pp.424-9, IEEE
Computer Society Press, 1986.

[Castillo & Siewiorek 1981] X. Castillo and D. P. Siewiorek, “Workload, Performance, and
Reliability of Digital Computing Systems”, in 11th IEEE Int. Symp. Fault-Tolerant Computing
(FTCS-11), (Portland, Maine, USA), pp.279-85, 1981.

State of the Art Survey

94 Deliverable BC2

[Chillarege et al. 1995] R. Chillarege, S. Biyani and J. Rosenthal, “Measurement of Failure Rate in
Widely Distributed Software”, in 25th IEEE International Symposium On Fault Tolerant Computing
(FTCS-25), (Pasadena, CA, USA), pp.424-33, IEEE Computer Society, 1995.

[Ciardo & Miner 1999] G. Ciardo and A. Miner, “A Data Structure for the Efficient Kroneker
Solution of GSPNs”, in 8th Int. Workshop on Petri Nets and Performance Models, (Zaragoza,
Spain), pp.22-31, IEEE Computer Society Press, 1999.

[Ciardo & Miner 1996] G. Ciardo and A. S. Miner, “SMART: Simulation and Markovian Analyzer
for Reliability and timing”, in 2nd IEEE Int. Computer Performance and Dependability Symp.
(IPDS’96), (Urbana-Champain, IL, USA), p.60, IEEE Computer Society Press, 1996.

[Ciardo & Trivedi 1993] G. Ciardo and K. S. Trivedi, “Decomposition Approach to Stochastic
Reward Net Models”, Performance Evaluation, 18 (1), pp.37-59, 1993.

[Cramp et al. 1992] R. Cramp, M. A. Vouk and W. Jones, “An Operational Availability of a Large
Software-Based Telecommunications System”, in 3rd Int. Symp. on Software Reliability
Engineering, (Research Triangle Park, NC, USA), pp.358-66, 1992.

[Fota et al. 1999a] N. Fota, M. Kâaniche and K. Kanoun, “Dependability Evaluation of an Air
Traffic Control Computing System”, Performance Evaluation, 35 (3-4), pp.553-73, 1999a.

[Fota et al. 1999b] N. Fota, M. Kâaniche and K. Kanoun, “Incremental Approach for Building
Stochastic Petri Nets for Dependability Modeling”, in Statistical and Probabilistic Models in
Reliability (D. C. Ionescu and N. Limnios, Eds.), pp.321-35, Birkhäuser, 1999b.

[Goyal et al. 1986] A. Goyal, W. C. Carter, E. de Souza e Silva and S. S. Lavenberg, “The System
Availability Estimator”, in 16th IEEE Int Symp. on Fault-Tolerant Computing (FTCS-16), (Vienna,
Austria), pp.84-9, 1986.

[Gray 1986] J. Gray, “Why Do Computers Stop and What Can be Done About it?”, in 5th Int.
Symposium on Reliability in Distributed Software and Database Systems, (Los Angeles, CA, USA),
pp.3-12, 1986.

[Gray 1990] J. Gray, “A Census of Tandem System Availability Between 1985 and 1990”, IEEE
Transactions on Reliability, R-39 (4), pp.409-18, 1990.

[Hansen & Siewiorek 1992] J. P. Hansen and D. P. Siewiorek, “Models of Time Coalescence in
Event Logs”, in 22nd International Symposium on Fault-Tolerant Computing (FTCS-22), (Boston,
MA, USA), pp.221-7, IEEE Computer Society, 1992.

[Harnedy 1998] S. Harnedy, Total SNMP: Exploring the Simple Network Management Protocol,

Prentice Hall PTR, 1998.

[Iyer & Rossetti 1985] R. K. Iyer and D. J. Rossetti, “Effect of System Workload on Operating
System Reliability: A Study on IBM 3081”, IEEE Transactions on Software Engineering, SE-11
(12), pp.1438-48, December 1985.

References (Dependability Evaluation of Large Systems)

Dependable Systems of Systems 95

[Iyer & Tang 1996] R. K. Iyer and D. Tang, “Experimental Analysis of Computer System
Dependability”, in Fault-Tolerant Computer System Design (D. K. Pradhan, Ed.), pp.282-392
(chapter 5), Prentice Hall PTR, Upper Saddle River, NJ, USA, 1996.

[Iyer & Velardi 1985] R. K. Iyer and P. Velardi, “Hardware-Related Software Errors: Measurement
and Analysis”, IEEE Transactions on Software Engineering, SE-11 (2), pp.223-31, 1985.

[Iyer et al. 1986] R. K. Iyer, L. T. Young and V. Sridhar, “Recognition of Error Symptoms in Large
Systems”, in 1986 IEEE/ACM Fall Joint Computer Conference, (Dallas, TX, USA), pp.797-806,
IEEE-ACM, 1986.

[Kaâniche et al. 1994] M. Kaâniche, K. Kanoun, M. Cukier and M. Bastos Martini, “Software
Reliability Analysis of Three Successive Generations of a Switching System”, in First European
Conference on Dependable Computing (EDCC-1), (D. H. K. Echtle, D. Powell, Ed.), (Berlin,
Germany), Lecture Notes in Computer Science, 852, pp.473-90, Springer-Verlag, 1994.

[Kaâniche et al. 1990] M. Kaâniche, K. Kanoun and S. Metge, “Failure Analysis and Validation of a
Telecommunication Equipment Software System”, Annales des Telecommunications, 45 (11-12),
pp.657-70, 1990.

[Kalyanakrishnan et al. 1999a] M. Kalyanakrishnan, R. K. Iyer and J. U. Patel, “Reliability of
Internet Hosts: a Case Study from the End User’s Perspective”, Computer Networks, 31, pp.47-57,
1999.

[Kalyanakrishnan et al. 1999b] M. Kalyanakrishnan, Z. Kalbarczyk and R. K. Iyer, “Failure data
Analysis of a LAN of Windows NT Based Computers”, in 18th IEEE Symposium on Reliable
Distributed Systems (SRDS-18), (Lausanne, Switzerland), pp.178-87, IEEE Computer Society, 1999.

[Kanoun & Borrel 1996] K. Kanoun and M. Borrel, “Dependability of Fault-tolerant Systems —
Explicit Modeling of the Interactions Between Hardware and Software Components”, in 2nd IEEE
Int. Computer Performance and Dependability Symposium (IPDS), (Urbana-Champaign, IL, USA),
pp.252-61, 1996.

[Kanoun et al. 1999] K. Kanoun, M. Borrel, T. Moreteveille and A. Peytavin, “Modeling the
Dependability of CAUTRA, a Subset of the French Air Traffic Control System”, IEEE Transactions
on Computers, 48 (5), pp.528-35, 1999.

[Kanoun et al. 1997] K. Kanoun, M. Kaâniche and J.-C. Laprie, “Qualitative and Quantitative
Reliability Assessment”, IEEE Software, 14 (2), pp.77-86, mars 1997.

[Kanoun & Laprie 1996] K. Kanoun and J.-C. Laprie, “Trend Analysis”, in Handbook of Software
Reliability Engineering (M. Lyu, Ed.), pp.401-37 (Chapter 10), McGraw Hill, 1996.

[Kanoun & Sabourin 1987] K. Kanoun and T. Sabourin, “Software Dependability of a Telephone
Switching System”, in 17th IEEE Int Symp. on Fault-Tolerant Computing (FTCS-17), (Pittsburgh,
PA, USA), pp.236-41, IEEE Computer Society Press, 1987.

[Kendall 1977] M. G. Kendall, The Advanced Theory of Statistics, Oxford University Press, 1977.

State of the Art Survey

96 Deliverable BC2

[Kenney & Vouk 1992] G. Q. Kenney and M. A. Vouk, “Measuring the Field Quality of Wide-
Distribution Commercial Software”, in 3rd IEEE Int. Symp. on Software Reliability Engineering
(ISSRE’92), (Raleigh, NC, USA), pp.351-7, IEEE Computer Society Press, 1992.

[Labovitz et al. 1999] C. Labovitz, A. Ahuja and F. Jahanian, “Experimental Study of Internet
Stability and Backbone Failures”, in 29th International Symposium on Fault Tolerant Computing
(FTCS-29), (Madison, Wisconsin, USA), pp.278-85, IEEE Computer Society, 1999.

[Lee et al. 1991] I. Lee, R. K. Iyer and D. Tang, “Error/Failure Analysis Using Event Logs from
Fault Tolerant Systems”, in 21st International Symposium on Fault Tolerant Computing (FTCS-21),

(Montreal, Canada), pp.10-7, IEEE Computer Society, 1991.

[Levendel 1990] Y. Levendel, “Reliability Analysis of Large Software Systems: Defects Data
Modeling”, IEEE Transactions on Software Engineering, SE-16 (2), pp.141-52, February 1990.

[Long et al. 1995] D. Long, A. Muir and R. Golding, “A Longitudinal Survey of Internet Host
Reliability”, in 14th Symposium on Reliable Distributed Systems (SRDS-95), (Bad Neuenahr,
Germany), pp.2-9, 1995.

[Lyu 1995] M. R. Lyu (Ed.), Handbook of Software Reliability Engineering, McGraw-Hill, 1995.

[Matthews & Cottrell 2000] W. Matthews and L. Cottrell, “The PingER Project: Active Internet
Performance Monitoring for the HENP Community”, IEEE Communications Magazine, pp.130-6,
May 2000.

[Maxion & Feather 1990] R. A. Maxion and F. E. Feather, “A Case Study of Ethernet Anomalies in a
Distributed Computing Environment”, IEEE Transactions on Reliability, 39 (4), pp.433-43, 1990.

[McConnel et al. 1979] S. R. McConnel, D. P. Siewiorek and M. M. Tsao, “The Measurement and
Analysis of Transient Errors in Digital Computer Systems”, in 9th International symposium on
Fault-Tolerant Computing, (Madison, Wisconsin,), pp.67-70, IEEE Computer Society, 1979.

[Meyer & Sanders 1993] J. F. Meyer and W. H. Sanders, “Specification and Construction of
Performability Models”, in Int. Workshop on Performability Modeling of Computer and
Communication Systems, (Mont Saint Michel, France), pp.1-32, 1993.

[Moran et al. 1990] P. Moran, P. Gaffney, J. Melody, M. Condon and M. Hayden, “System
Availability Monitoring”, IEEE Transactions on Reliability, R-39 (4), pp.480-5, 1990.

[Muppala et al. 1992] J. K. Muppala, A. Sathaye, R. Howe, C and K. S. Trivedi, “Dependability
Modeling of a Heterogeneous VAX-cluster System Using Stochastic Reward Nets”, in Hardware
and Software Fault Tolerance in Parallel Computing Systems (D. R. Avresky, Ed.), pp.33-59, 1992.

[Musa et al. 1987] J. Musa, A. Iannino and K. Okumoto, Software Reliability: Measurement,
Prediction, Application, Computer Science Series, 621p., McGraw-Hill, New-York, 1987.

[Orfali et al. 1996] R. Orfali, D. Harkey and J. Edwards, The Essential Client-Server Survival Guide
(Second Edition), John Wiley & Sons, Inc., 1996.

[Paxson et al. 1998] V. Paxson, J. Mahdavi, A. Adams and M. Mathis, “An Architecture for Large-
Scale Internet Measurement”, IEEE Communications Magazine (August), pp.48-54, 1998.

References (Dependability Evaluation of Large Systems)

Dependable Systems of Systems 97

[Pérez-Jiménez & Compos 1999] C. J. Pérez-Jiménez and J. Compos, “On State Space
Decomposition for the Numerical Analysis of Stochastic Petri Nets”, in 8th Int. Worshop on Petri
Nets and Performance Models, (Zaragoza, Spain), pp.32-41, IEEE Computer Society Press, 1999.

[Rabah & Kanoun 1999] M. Rabah and K. Kanoun, “Dependability Evaluation of a Distributed
Shared Memory Multiprocessor System”, in 3rd European Dependable Computing Conference
(EDCC-3), (A. Pataricza, J. Hlavicka and E. Maehle, Eds.), (Prague, Czech Republic), pp.42-59,
Springer, 1999.

[Reibman & Veeraraghavan 1991] A. Reibman and M. Veeraraghavan, “Reliability Modeling: An
Overview for System Designers”, IEEE Computer, April, pp.49-57, 1991.

[Rojas 1996] I. Rojas, “Compositional Construction of SWN Models”, The Computer Journal, 38
(7), pp.612-21, 1996.

[Siewiorek et al. 1978] D. P. Siewiorek, V. kini, H. Mashburn, S. R. McConnel and M. M. Tsao, “A
Case Study of C.mmp, Cm*, and C.vmp: Part I—Experience with Fault Tolerance in Multiprocessor
Systems”, Proceedings of the IEEE, 66 (10), pp.1178-99, 1978.

[Sriram 1993] K. B. Sriram, A Study of the Reliability of Hosts on the Internet, Master Thesis,
University of California Santa Cruz, 1993.

[Sullivan & Chillarege 1992] M. Sullivan and R. Chillarege, “A Comparison of Software Defects in
Database Management Systems and Operating Systems”, in 22nd IEEE Int. Symp. on Fault-Tolerant
Computing (FTCS-22), (Boston, MA, USA), pp.475-84, 1992.

[Tang et al. 1990] D. Tang, R. K. Iyer and S. Subramani, “Failure Analysis and Modeling of a
VAXcluster System”, in 20th International Symposium on Fault Tolerant Computing (FTCS-20),

(Newcastle Upon Tyne, UK), pp.244-51, IEEE Computer Society, 1990.

[Thakur & Iyer 1996] A. Thakur and R. K. Iyer, “Analyze-NOW — An Environment for Collection
& Analysis of Failures in a Network of Workstations”, IEEE Transactions on Reliability, 45 (4),
pp.561-70, 1996.

[Trivedi et al. 1994] K. S. Trivedi, B. R. Haverkort, A. Rindos and V. Mainkar, “Techniques and
Tools for Reliability and Performance Evaluation: Problems and Perspectives”, in 7th International
Conference on Modeling techniques and Tools for Computer Performance evaluation, (L. N. i. C.
Sciences, Ed.), pp.1-24, Springer, 1994.

[Tsao & Siewiorek 1983] M. Tsao and D. P. Siewiorek, “Trend Analysis on System Error Files”, in
13th International Symposium on Fault-Tolerant Computing (FTCS-13), (Milano, Italy), pp.116-9,
IEEE Computer Society, 1983.

[Wein & Sathaye 1990] A. S. Wein and A. Sathaye, “Validating Computer System Availability
Models”, IEEE Transactions on Reliability, 39 (4), pp.468-79, 1990.

[Wood 1995] A. Wood, “Predicting Client/Server Availability”, Computer (April), pp.41-8, 1995.

