

A4.D1.1 - Review of the state of the art
G. Spanoudakis, C. Kloukinas, T. Tsigritis, K. Androutsopoulos, C. Ballas and D.

Presenza

Document Number A4.D1.1

Document Title Review of the state of the art (in Security and Dependability
Monitoring and Recovery)

Version 1.0

Status Final

Work Package WP 4.1

Deliverable Type Report

Contractual Date of Delivery 31/March/2006

Actual Date of Delivery 4 April 2006

Responsible Unit CUL

Contributors CUL and ENG

Keyword List Dynamic verification of system security and dependability

Dissemination level PU

A4.D1.1 – Review of the state of the art

Change History

Version Date Status Author (Unit) Description

0.1 20 February
2006

Draft C.Kloukinas (CUL)

G.Spanoudakis (CUL)

Draft table of contents.

0.2 15 March
2006

Draft Theoharis Tsigritis,
Kelly Androutsopoulos,
Costas Ballas, George
Spanoudakis, Christos
Kloukinas (CUL)

Initial draft.

0.3 24 March
2006

Draft Domenico Presenza
(ENG)

Addition of immunisation base
monitoring approaches.

0.4 31 March
2006

Draft Theoharis Tsigritis,
Kelly Androutsopoulos,
Costas Ballas, George
Spanoudakis, Christos
Kloukinas (CUL)

Integrated draft.

1.0 4 April
2006

Final George Spanoudakis,
Christos Kloukinas,

Theoharis Tsigritis,
Kelly Androutsopoulos,
Costas Ballas (CUL)

Deliverable circulated to
consortium.

SERENITY - 027587 Version 1.0 Page 2 of 126

A4.D1.1 – Review of the state of the art

Executive Summary

This deliverable provides a review the state of the art in security and dependability monitoring and
recovery in order to identify approaches and techniques that have been developed for these tasks
and analyse their strengths and limitations.

Our review has identified the basic architecture of runtime monitoring systems, the common
features of the languages that may be used to formalise security and dependability properties that
need to be verified at runtime, and the main issues in connection with dynamic verification which
are open to further research.

The identified research issues are related to: (i) the need to provide support for transforming of
specifications of security and dependability properties that need to be monitored at runtime into the
event patterns that should be observed to verify them, (ii) the need to develop mechanisms that can
support the diagnosis of the reasons underpinning run-time violations of security and dependability
properties requirements that could inform system adaptation to ensure that violations will not re-
occur, (iii) the ability to support the specification of end-user personal and ephemeral security and
dependability properties, the automatic assessment of whether or not such properties can be
monitored at run-time, and the transformation of these properties onto monitorable patterns of run-
time events, (iv) the development of techniques that would allow the identification of scenarios of
potential security and dependability threats (i.e. potential violations of security and dependability
properties that have not occurred yet but seem to present a realistic possibility for the subsequent
operations of a system) and the translation of these scenarios into monitorable event patterns that
would allow the development of pro-active techniques for protecting security, (v) the need to
develop mechanisms that can ensure that the events used in dynamic verification have not been
altered by an attacker in order to affect the results of the verification process and consequently the
recovery actions that may be taken in response to these results, and (vi) the need to develop
monitors that could detect violations of security and dependability properties efficiently and timely
so as to allow the effective reaction to such violations.

The above issues establish a roadmap that will inform the research in Activity 4 of the SERENITY
project.

SERENITY - 027587 Version 1.0 Page 3 of 126

A4.D1.1 – Review of the state of the art

Table of Contents

1. Introduction ..6

1.1. Scope and Objectives ..6

1.2. Document Structure...8

2. Security Requirements..9

2.1. General Security Requirements...9

2.2. Requirements related to digital Requirements related to Digital Rights Management.........9

2.2.1. Distribution architectures of DRM systems...11

2.2.2. Rights Expression Languages ..12

3. Security Requirements Verification ...17

3.1. Overview ...17

3.2. Static Analysis of Cryptographic Protocols ..17

3.2.1. Cryptographic Protocols ..17

3.2.2. Symbolic vs Computational View of Cryptography..18

3.2.3. Formal Methods ...19

3.2.4. Developing security systems with formal methods ...26

3.2.5. Specification of security and other system properties for static verification...............28

3.2.6. Conclusions for static verification and formal methods ..29

4. Dynamic Verification ...31

4.1.1. Formalisation of Properties for Dynamic Verification ..34

4.1.2. Methods for Capturing Events ...40

4.1.3. Checking for Violations ...47

4.2. Monitoring in Tuplespace-based Systems...51

4.2.1. Monitoring for resource management..54

4.2.2. Monitoring for policy enforcement..54

4.3. General Purpose Dynamic Verification Tools ..56

4.3.1. The Java PathExplorer (JPaX) framework...56

4.3.2. The Java Monitoring and Controlling Framework ..59

4.3.3. The Java Monitoring-Oriented Programming Framework ..60

4.3.4. The Jassda Framework...61

4.3.5. The Temporal Rover Toolset ...63

4.3.6. The Java PathFinder (JPF) Framework..63

SERENITY - 027587 Version 1.0 Page 4 of 126

A4.D1.1 – Review of the state of the art

4.3.7. The JNuke tool ...65

4.3.8. Summary of Dynamic Verification Tools..68

4.4. Dynamic Verification Tools Focusing on Security Properties..69

4.4.1. Firewalls...69

4.4.2. Intrusion Detection Systems ..71

4.4.3. Intrusion Prevention Systems ..74

4.4.4. Access Control Models ..76

4.4.5. Conclusions..78

4.5. Next Generation Intrusion Detection Systems ..79

4.5.1. Distributed Intrusion Detection System (DIDS)..79

4.5.2. Autonomous Agents for Intrusion Detection (AAFID) System81

4.5.3. Immunology-based Security ..81

4.6. Open research issues for dynamic verification..88

5. Recovery...90

5.1. Recovery for run-time verification systems ..90

5.2. Recovery in safety-critical systems...91

5.2.1. Fault-tolerance ...94

5.3. Recovery for intrusion-tolerant systems..98

5.4. Recovery in survivable distributed systems ..99

5.5. Information warfare defence ...102

6. Conclusion ..105

SERENITY - 027587 Version 1.0 Page 5 of 126

A4.D1.1 – Review of the state of the art

1. Introduction

1.1. Scope and Objectives
The objective of this deliverable is to provide a review the state of the art in security and
dependability monitoring and recovery in order to identify approaches and techniques that have
been developed for these tasks and analyse their strengths and limitations. To this end, it aims to
establish a basic roadmap for the research in Activity 4 of the SERENITY project which is
concerned with the development of a framework to support: (a) the dynamic (i.e., runtime)
monitoring and verification of security and dependability requirements and solutions for
interoperable ambient intelligence ecosystems, (b) the diagnosis of violations of and threats to these
requirements and solutions, and (c) the timely recovery from such violations and reaction to threats
when they occur.

Avizienis et al. [21] have defined dependability as "the ability of a (computer) system to avoid
failures that are more frequent or more severe, and outage durations that are longer, than is
acceptable to the user(s)" and "deliver service that can be justifiably trusted". The notion of service
in this definition corresponds to the system behaviour as viewed by the user, who may be a human
interacting with the system or another system. A service delivery is acceptable if it implements the
required system behaviour and satisfies certain quality constraints while failures relate to events that
make the service deviate from what is perceived to be a correct delivery.

An important element in the above definition of dependability is the notion of "justifiable trust"
which requires the ability to objectively verify that the delivered system service does not deviate
from the required system behaviour and associated quality constraints. The development of system
verification capabilities (i.e., the ability to verify that a system satisfies certain properties) has been
the focus of significant research over the last few decades and has resulted in the development of a
wide spectrum of, typically tool-supported, methods that offer such capabilities. These methods are
distinguished into static and dynamic.

Static verification methods aim to show that the desired properties of a system will always hold
based solely on the specification of the system without considering its actual run-time behaviour.
Dynamic verification methods, on the other hand, aim to show that desired properties hold based on
observation of the run-time behaviour of a system and its interactions with its operational
environment.

Whilst static verification is not the main area of interest of this survey, we provide a brief overview
of methods that fall in this category in order to demonstrate their main similarities and differences
from dynamic verification methods, and demonstrate weaknesses that make it necessary to deploy
dynamic verification. Our overview of static verification methods focuses on the use of formal
methods for developing and analysing security systems and their properties. We also focus on the
formal verification of cryptographic protocols as a significant amount of research has been devoted
to this area with significant accomplishments. The main issues that we have considered in
connection with the analysis of cryptographic systems include: the modelling (if any) of intruders
that aim to compromise system security and dependability, the specification of security properties
including the degree of its formality, and the extent to which verification is automated.

Dynamic system verification has emerged more recently and has been investigated in the context of
different areas including requirements engineering, program verification, safety critical systems and
service centric systems.

SERENITY - 027587 Version 1.0 Page 6 of 126

A4.D1.1 – Review of the state of the art

In requirements engineering, dynamic verification has focused on system requirements and
investigated: (i) ways of specifying requirements for monitoring and transforming them into events
that can be monitored at run-time; (ii) the development of event-monitoring mechanisms; (iii) the
development of mechanisms for generating system events that can be used in monitoring (e.g.
instrumentation [204], use of reflection [53] ; and (iv) the development of mechanisms for adapting
systems in order to deal with deviations from requirements at run-time as, for example, in [238].

In dynamic program verification, existing work has focused on the development of programming
platforms with generic program monitoring capabilities including support for generating program
events at run-time (e.g. jMonitor [134], embedding specifications of monitorable properties into
programs and producing code that can verify these properties during the execution of the programs
(e.g. monitoring-oriented programming [59]). A significant body of this research has been
published in the proceedings of the series of Workshops on Runtime Verification1 that started in
2001.

In safety critical systems, dynamic verification methods emerged in order to provide more formal
system verification than testing [12]. Early work in this area focused on run-time monitoring of
embedded and safety-critical real-time systems in order to detect timing failures and guarantee
system responsiveness [129, 183, 234]. Later run-time monitoring techniques were applied to
autonomous safety critical systems such as NASA’s autonomous Deep Space Remote Agent [193],
as the testing of such systems was difficult and very resource consuming due to their high
complexity systems. Moreover, runtime monitoring was seen as a mechanism enhancing the
autonomy of such systems.

In service-centric systems − i.e. systems which "are implemented from autonomous web services
coordinated by some composition process" [166] − the interest in dynamic verification has emerged
due to the need to be able to specify and monitor service level agreements between the providers
and consumers of web-services which are deployed in service centric systems. As a result of
recognizing the importance of this form of verification, work in this area has focused on the
development of standards and languages for specifying monitorable service level agreements (e.g.
WS-Agreement [15], WSLA [164]) and methods for monitoring them [26, 166] .

Research on dynamic verification has also focused on system security. Work in this area has mainly
been concerned with the development of Intrusion Detection Systems (IDS) which use dynamic
verification techniques for detecting security threats. Our review covers this area along with classic
approaches for monitoring and supporting security, such as firewalls.

An increasingly important requirement for system security and dependability is the ability to
recover from attacks or system faults identified at run-time, and possibly adapt to handle these
attacks and faults. Effective recovery requires the provision of diagnostic information of the nature
and cause of the attack or fault, and the development of flexible system architectures and system
deployment environments that can undertake recovery actions at run-time. Despite the recognition
of its importance, there is little work that focuses on recovery. Our review of the literature has
identified that most of the work on recovery arises from the areas of safety-critical systems
(focusing mainly on fault-tolerance) and databases. Consequently, our survey focuses on these areas
and discusses recovery for safety-critical systems (aimed mainly at preserving dependability),

1 http://react.cs.uni-sb.de/rv2005/

SERENITY - 027587 Version 1.0 Page 7 of 126

A4.D1.1 – Review of the state of the art

mission-critical distributed systems (aimed mainly at preserving survivability) and trusted recovery
as part of information warfare defence.

Run-time monitoring is particularly well suited to detecting known hazardous conditions while
detecting unknown or unexpected hazards is lot more challenging [165].

1.2. Document Structure
The rest of this document is structured as follows:

Section 2 provides an overview of the main types of security requirements that have been identified
in the literature and a special type of such requirements of an increasingly emerging importance
which are related to digital rights management.

Section 3 reviews the state-of-the-art in the static verification of security properties for achieving
dependability.

Section 4 reviews the state-of-the-art in the dynamic verification of security properties for achieving
dependability.

Section 5 reviews research related to system recovery following breaches of dependability and other
system properties. Our review has focused mainly on recovery methods used in the areas of safety-
critical systems, mission-critical distributed systems and trusted recovery of information warfare
defences, as pure security oriented recovery is an emerging area with relatively less research
devoted to it.

Finally in Section 6, we present the main open research issues regarding dynamic verification and
recovery that were identified by our survey and conclude this survey.

SERENITY - 027587 Version 1.0 Page 8 of 126

A4.D1.1 – Review of the state of the art

2. Security Requirements

2.1. General Security Requirements
Security requirements cover issues related to [228]:

⎯ Confidentiality − Confidentiality is the ability to maintain the secrecy of stored system data
and the messages exchanged by a system and its collaborating actors over networks.

⎯ Integrity − Integrity is the ability to ensure the accuracy and completeness of the data stored
and the messages exchanged by a system. Maintaining integrity involves allowing only
authorised users to change or create data and messages and applying controls to ensure the
correctness of these messages and data.

⎯ Availability − Availability is concerned with ensuring that access to a system is possible
when required.

⎯ Non-repudiation − Non- repudiation is concerned with making it impossible for an entity
that has participated in some communication with a system to deny this participation. In
message exchange, for instance, non- repudiation guarantees that the sender and the receiver
of a message cannot deny the dispatch and receipt of the message, respectively.

⎯ Authentication − Authentication is the ability to determine whether an actor interacting with
the system has the identity that it claims to have.

⎯ Authorization − Authorization is concerned with the assignment of the right permissions to
an already authenticated entity.

⎯ Privacy − Privacy is the ability of a system to prevent personal information from becoming
known to entities other than those which own the information or the information is about.

2.2. Requirements related to digital Requirements related to Digital
Rights Management

Another important family of security requirements and properties is the one dealing with what is
known as Digital Rights Management (DRM) requirements, which will allow us to obtain a
different perspective on the usual security properties and solutions. The goal of Digital Rights
Management (DRM) is to protect the rights of owners of digital content, by specifying which kinds
of uses are acceptable and which are not. At a high level DRM deals with the control of the rights to
the digital content (e.g. how it can be used, how often, etc). DRM is applicable to a variety of types
of content (e.g. music, books, video). Different definitions for DRM have been proposed but the
European Standards Committee has proposed the following one [56]:

“Digital Rights Management(DRM) is the management of rights to digital goods and content,
including its confinement to authorized use and users and the management of any consequences of
that use throughout the entire life cycle of the content.”

Rosenblatt et al. [208] have also provided two definitions for DRM. With their first definition they
refers to the technology that protects the digital content via encryption and access control
mechanisms (“DRM is a persistent protection of digital data”), while with the second one they refer

SERENITY - 027587 Version 1.0 Page 9 of 126

A4.D1.1 – Review of the state of the art

to technology that must be used in order to manage and track digital content on the Internet (“DRM
is everything that can be done to define, manage, and track rights to digital contents”).

The broader use of the term DRM includes the description, identification, trading, protection,
monitoring and tracking of all forms of rights usages over tangible and intangible assets including
management of the rights holders relationships.

Kurth [151] has pointed some of the advantages of a wide spread use of a DRM framework, such as
the protection of the rights of the owners of digital works but also the fact that DRM can enable
micropayment schemes, where users only pay for what they consume or are billed on a “per use”
basis. Also micropayments in conjunction with digital distribution can lower or even essentially
eliminate transaction costs. Since the cost of digital distribution is zero content creators can
distribute their work immediately after production. This can reduce prices for consumers while
content creators can market their creations without having to work with a publishing company.

Matheus [171] identified the following functions in order to guarantee a working DRM system:

⎯ Authentication is the process of determining whether someone or something is, in fact, who
or what it is declared to be. In private and public computer networks (including the Internet),
authentication is commonly done through the use of something secret (e.g. password, PIN),
something you have in possession (e.g. smart card) or something that you are (e.g. finger
print, iris scan). In a DRM system authentication specifies the means for proving identities
of the provider of digital content, the licensor, the licensee as well as proofing the
authenticity of a digital content and other entities like services and systems.

⎯ Access control is the ability to permit or deny the use of an object (a passive entity, such as a
system or file) by a subject (an active entity, such as an individual or process). In a DRM
system the decision is based on a concrete request and a set of formalized rights. This set of
rights contains not only access rights but important for the DRM system rights about
copying, distribution and loan.

⎯ Digital Signatures and Encryption defines the means for establishing confidentiality,
integrity and authenticity of the digital content and its communication. In particular
encryption can be used for the enforcement of licensed use for a digital content. Digital
Signatures can provide the means for proofing authenticity of digital content, legal entities
like users as well as services or systems. Also watermarking and fingerprinting can be used,
under certain circumstances, for proofing the authenticity of digital content and the
legitimate owner of digital content. In any case, these techniques can provide the means to
ensure that the content can only be used by the legitimate owner under certain rules.

⎯ Delegation of Rights or Licensing is distinctively difference than access control. With
access control, the access rights are typically enforced on the object side, where an access
control decision is taken based on a concrete request and a set of formalized access rights.
With licensing, rights like copying, total number of playback, etc. are also meaningful.
These rights must be enforced on the user’s system to support offline use. Therefore, a
license contains a set of permissions, which express the rights of the subject, identifying the
licensor and licensee.

SERENITY - 027587 Version 1.0 Page 10 of 126

A4.D1.1 – Review of the state of the art

2.2.1. Distribution architectures of DRM systems
Park et al. [199] distinguished different possible distribution architectures that could be
implemented for DRM enabled data distribution, based on the following three factors: the presence
of a virtual machine (VM), the type of control sets and the distribution style.

⎯ Virtual Machine: The Virtual Machine (VM) is described by Park et al. [199] as “software
that runs on top of vulnerable computing environment and employs control functions to
provide the means to protect and manage access and usage of digital information”. A VM
can be in the form of a plug-in that controls access to DRM enabled data or embedded in the
application itself. Systems that do not have a VM cannot manage and control the access and
usage of DRM enabled data.

⎯ Type of Control Sets: Control sets are the rules governing the use of DRM enabled data,
using Right Expression Languages (REL) which allow the description and specification of
the control sets. Control sets are distinguished into three types: fixed control sets, embedded
control sets and external control sets. In fixed control sets, the virtual machine comes with a
predefined control set which is enforced for all DRM enabled data. In an embedded control
set, the DRM enabled data comes with the control set embedded into the work. This can be
done by encapsulating the control set and the data in a security envelope. Finally, in an
external control set, the DRM enabled data and the control sets are being distributed
separately. The obvious advantage of this type of control set is that a single control set can
be used to define rights for multiple works of the same type. A fixed control set can be
combined with either an embedded or an external control set.

⎯ Distribution process: The final distinction is in the distribution process. Park et al. [199]
proposed two types of distribution: message push and external repository. In a message push
system, the data is transferred from the owner to the buyer through a direct communication
channel such as e-mail. In the case of an external repository, the buyer fetches the data from
a central repository and there is no need to store them locally (e.g., a RealAudio feed of a
radio station programme). Both systems have their uses in DRM systems and the choice of
distribution system does not necessarily impact on the security of the data. Message push
systems are useful in enterprises where the data is only meant to be available to specific
employees. Message push also has a greater flexibility in managing individual right
permissions. External repositories are useful for a wider range of deployment, where the
prospective user is unknown. They can also be used in systems where the user cannot store
the data permanently onto their own systems. This type of DRM allows the right holder a
high degree of control in how the user accesses and uses the data.

Based on these factors Park et al. [199] identified eight different architectures for a DRM system.
Figure 1.1 illustrates these architectures.

SERENITY - 027587 Version 1.0 Page 11 of 126

A4.D1.1 – Review of the state of the art

Figure 1.1 – Distribution architectures of DRM systems – (Park et al. 2000)

2.2.2. Rights Expression Languages
Rights expression languages (RELs) are used to define the rights and conditions for DRM enabled
data that the rights holder gives to the user. RELs are usually modelled on access control languages,
and usually take the form of: <USER> has the <RIGHT> to do an <ACTION> on the DRM
enabled data. This can be enhanced by including parameters that restrict the right.

The two most common RELs are the eXtended Rights Markup Language (XrML) and the Open
Digital Rights Language (ODRL). The XrML [251] was developed originally at Xerox Parc labs
and is now developed jointly by Microsoft and Xerox. XrML is an XML based REL, and its syntax
is specified in XML. The XrML 2.0 specifications are split into three parts: a core schema, a
standard extension schema to handle definitions that are broadly applicable but not a core feature,
and a content specific extension schema to handle concepts specific to the type of digital content.

SERENITY - 027587 Version 1.0 Page 12 of 126

A4.D1.1 – Review of the state of the art

The XrML data model consists of four entities and the relationships between these entities. The
basic relationship is defined by the XrML assertion “grant”. Structurally, an XrML grant consists of
the following:

⎯ The principal to whom the grant is issued

⎯ The right that the grant specifies

⎯ The resource for which the right is granted

⎯ The condition that must be met for the right to be exercised

So, in an XrML license, the issuer grants a set of principals with a set of rights under certain
conditions for a set of resources. While the resources are usually digital files, XrML also provides
mechanisms to include non digital objects such as “a computer terminal”, as well as, services and
transactions.

In the following example we can see the four entities of the XrML data model and the relationships
between them. The following license consists of:

⎯ keyHolder who is the principal designated with an RSA key.

⎯ print which is the right being granted.

⎯ digitalWork which is the resource specified as URI.

⎯ validityInterval which is a condition permitting usage until Christmas 2001.
<license>

 <grant>

<keyHolder>

<info>

<dsig:KeyValue>

<dsig:RSAKeyValue>

<dsig:Modulus>Fa7wo6NYfmvGqy4ACSWcNmuQfbe
jSZx7aCibIgkYswUeTCrmS0h27GJrA15SS7T
YZzSfaS0xR9lZdUEF0ThO4w==

</dsig:Modulus>

<dsig:Exponent>AQABAA==</dsig:Exponent>

</dsig:RSAKeyValue>

</dsig:KeyValue>

</info>

</keyHolder>

<cx:print/>

<cx:digitalWork>

<cx:locator>

SERENITY - 027587 Version 1.0 Page 13 of 126

A4.D1.1 – Review of the state of the art

<nonSecureIndirect

URI="http://www.sellbooks.com/sampleBook.
spd"/>

</cx:locator>

</cx:digitalWork>

<validityInterval>

<notAfter>2006-12-24T23:59:59</notAfter>

</validityInterval>

</cx:print>

</grant>

</license>

The ODRL [127] initiative is an international effort of supporters (Nokia, AegisDRM, etc) aimed at
developing an open standard for a DRM expression language. ODRL is also a language based
XML. The ODRL model consists of the following core entities:

⎯ Assets include any digital content that can be uniquely identified.

⎯ Rights include information consisting of the following:

• Permissions

• Constrains

• Requirements

• Conditions

⎯ Parties include end users, roles and rights holders who can assert some form of ownership
over the Asset and/or its Permissions.

With these three core entities, the foundation model can then express Offers and Agreements.

⎯ Offers are proposals from rights holders for specific rights over their Assets (usually to end
users).

⎯ Agreements refer to contracts between Parties on the basis of specific Offers.

The following example illustrates that Mary Smith is purchasing a book and that she is given the
rights to display and print it (there are two separate permissions specified in the example).
<?xml version=”1.0” encoding=”UTF-8”?>

<o-ex:rights xmlns:o-ex=”http://odrl.net/1.1/ODRL-EX”

xmlns:o-dd=”http://odrl.net/1.1/ODRL-DD”>

 <o-ex:agreement>

<o-ex:context>

<o-
dd:uid>urn:ebook.world/999999/license/1234567890-
ABCDEF</o-dd:uid>

SERENITY - 027587 Version 1.0 Page 14 of 126

A4.D1.1 – Review of the state of the art

<o-dd:pLocation>Sydney, Australia</o-dd:pLocation>

<o-dd:remark>Transacted by Example.Com</o-
dd:remark>

</o-ex:context>

<o-ex:asset>

<o-ex:context>

<o-dd:uid>urn:ebook.world/999999/ebook/rossi-
000001</o-dd:uid>

</o-ex:context>

</o-ex:asset>

<o-ex:permission>

<o-dd:display>

<o-ex:constraint>

<o-dd:cpu>

<o-ex:context>

<o-dd:uid>Adobe-WebBuy:CPD-
ID:ER-393939-DSS-787878</o-dd:uid>

</o-ex:context>

</o-dd:cpu>

</o-ex:constraint>

</o-dd:display>

<o-dd:print>

<o-ex:constraint>

<o-dd:count>2</o-dd:count>

</o-ex:constraint>

</o-dd:print>

<o-ex:requirement>

<o-dd:prepay>

<o-dd:payment>

<o-dd:amount

 o-dd:currency=”AUD”>20.00</o-
dd:amount>

<o-dd:taxpercent

 o-dd:code=”GST”>10.00</o-
dd:taxpercent>

</o-dd:payment>

SERENITY - 027587 Version 1.0 Page 15 of 126

A4.D1.1 – Review of the state of the art

</o-dd:prepay>

</o-ex:requirement>

</o-ex:permission>

<o-ex:party>

<o-ex:context>

<o-dd:uid>urn:ebook.world/999999/users/msmth-
000111</o-dd:uid>

<o-dd:name>Mary Smith</o-dd:name>

</o-ex:context>

 </o-ex:party>

</o-ex:agreement>

</o-ex:rights>

SERENITY - 027587 Version 1.0 Page 16 of 126

A4.D1.1 – Review of the state of the art

3. Security Requirements Verification

3.1. Overview
As we have discussed, system verification methods are broadly distinguished into static and
dynamic verification methods.

Static verification methods aim to verify the satisfiability of specific properties by applying static
analysis techniques to a program or a system specification without having to execute it. Static
analysis techniques range from formal static verification to measuring the complexity or efficiency
of algorithms.

In this section, we review techniques for performing static verification. More specifically we focus
on formal methods that have analysed cryptographic protocols in order to detect security flaws.
Also, we discuss some formal methods that have been used in the development of security systems.

3.2. Static Analysis of Cryptographic Protocols
A cryptographic protocol is a set of rules that describe how two or more agents can securely
communicate over insecure open networks or distributed systems. Many different cryptographic
protocols have been identified, and security systems usually adopt one or more of these. Static
analysis is applied to cryptographic protocols in order to detect and remove security flaws and
several different formal methods have been developed for this purpose.

In this Section, we first describe what a cryptographic protocol is. Then we identify two views of
cryptography and briefly denote how they relate to one another. Moreover, we review the state-of-
the-art of work in which cryptography is viewed symbolically. Finally, we describe some formal
methods that have been used for developing security systems.

3.2.1. Cryptographic Protocols
A protocol is a series of steps, involving and taken by two or more active entities/roles, which is
designed to accomplish a goal/task that is predefined by the involved entities/roles. Every step in a
protocol must be executed in turn, and no step can be taken before the previous step is finished.
Although each of the entities which are involved in protocol can alone perform a series of steps to
accomplish a task the actions of one entity in isolation do not form a protocol. Furthermore,

⎯ Every entity that is involved in a protocol must know it in advance.

⎯ Every entity that is involved in a protocol must agree to follow it.

⎯ The protocol must be unambiguous; each step must be well defined and there must be no
chance of a misunderstanding.

⎯ The protocol must be complete; there must be a specified action for every possible situation.

The execution of the protocol proceeds linearly through the steps, unless there are instructions to
branch to another step. Each step involves at least one of two things: computations by one or more
of the parties, or messages sent among the parties.

SERENITY - 027587 Version 1.0 Page 17 of 126

A4.D1.1 – Review of the state of the art

A cryptographic protocol is a protocol that uses cryptography. The parties can trust each other
implicitly or they can be adversaries and not trust one another. One or more cryptographic
algorithms can be involved during a cryptographic protocol, but generally the goal of the protocol is
something beyond simple secrecy. The parties participating in the protocol might want to share
parts of their secrets to compute a value, jointly generate a random sequence, convince one another
of their identity, or simultaneously sign a contract. Cryptography is needed during the execution of
a protocol in order to prevent or detect eavesdropping and cheating.

Depending on the roles of the entities which participate in it, a cryptographic protocol may be
categorised in different categories. The first category is the arbitrated protocols. An arbitrator is a
disinterested trusted third party whose participation is necessary in order to complete a protocol.
The arbitrator has no vested interest in the protocol and no particular allegiance to any of the parties
involved. The rest of the involved entities in the protocol accept the arbitrator’s claims as true, its
actions as correct, and that it will complete its part of the protocol. Arbitrators can help complete
protocols between two mutually distrustful entities. An example of an arbitrated protocol is the time
stamping protocol. In this case a party, P, wants to timestamp a digital document in order to certify
that the specific document existed on a certain date. Using one-way hash functions and digital
signatures we can provide a solution:

1. P produces a one-way hash of the document.

2. Then P transmits the hash to an arbitrator who is providing time stamping services.

3. The arbitrator appends the date and time it received the hash onto the hash and then digitally
signs the result.

4. The arbitrator sends the signed hash with the timestamp back.

Because of the high cost of hiring arbitrators, arbitrated protocols can be subdivided into two lower-
level sub-protocols. One is a non-arbitrated sub-protocol, executed every time parties want to
complete the protocol. The other is an arbitrated sub-protocol, executed only in exceptional
circumstances—when there is a dispute. This special type of arbitrator protocol is called an
adjudicator protocol. An adjudicator is also a disinterested and trusted third party. Unlike an
arbitrator, it is not directly involved in every protocol. The adjudicator is called in only to determine
whether a protocol was performed fairly. For example, Alice and Bob might draw up a contract
agreeable to both of them and sign it. Both keep a copy but later, if there is a dispute, both can
present their evidence before an adjudicator.

Finally the last type of cryptographic protocol is the self-enforcing protocol. A self-enforcing
protocol is the best type of protocol because the protocol itself guarantees fairness. Neither an
adjudicator nor an arbitrator is required to resolve disputes or to complete the protocol. The protocol
is constructed so that there cannot be any disputes. If one of the parties tries to cheat, the other party
immediately detects the cheating and the protocol stops. Whatever the cheating party hoped would
happen by cheating, doesn’t happen. This is the most desirable type of protocol, but also more
difficult to achieve, and such protocols are not known for all problems.

3.2.2. Symbolic vs Computational View of Cryptography
There are two different views of cryptography [2]: the symbolic and the computational view.

The symbolic (or formal) view of cryptography treats cryptographic operations as “purely formal”,
i.e. described using a formal notation or logic. For example, for an encryption protocol the

SERENITY - 027587 Version 1.0 Page 18 of 126

A4.D1.1 – Review of the state of the art

encrypted message, the key and the plaintext are all expressed as formal expressions. Operations are
then considered as computations on expressions, usually generating other expressions. The security
properties of encryption are built into the model that describes the system’s behaviour. The
symbolic view of cryptography includes a variety of techniques and approaches from the fields of
rewriting, modal logic, process algebra, formal methods, and others. Initial work in this area
includes work by Dolev and Yao [87], Kemmerer [136], Burrows et al. [48] and Meadows [174].

The computational view of cryptography is based on the framework of computational complexity
theory. In an encryption protocol, for example, the encrypted message, the key and the plaintext are
all strings of bits. And operations as, for example, the encryption function are simply algorithms.
Abadi and Rogaway [2] indicate that the adversary is treated a Turing machine. The aim of
approaches and techniques that adopt the computational view of cryptography is to measure how
good a protocol is in terms of probabilities and computational cost. A protocol is good if the
adversary does not do "something bad" too often or too efficiently. Work in this area was initiated
by Yao [254], Blum and Micali [38] and Goldwasser and Micali [103].

Abadi and Roagaway [2] show that there are connections between the symbolic and the
computational view whose investigation should benefit both. These connections can, for example,
help clarify any implicit assumptions or gaps in the formal methods. Methods for high level
reasoning that are used to analyse complex systems seem necessary for computational cryptology.

In this deliverable, we focus on the symbolic view of cryptography and in particular with formal
methods that help us to detect security flaws.

3.2.3. Formal Methods
Formal methods describe a group of mathematically based approaches for specifying, designing,
analysing and verifying systems. In the 70s and early 80s, the National Security Agency in the
United States was a major source of funding for formal methods research and development, which
resulted in the development of formal models of security systems and tools for analysing system
security properties and proving that system are secure.

In the following sections, we review the various methods for formally analysing cryptographic
protocols as classified by Meadows [289]:

⎯ General purpose verification methods and tools: These consist of specification languages
and verification tools that were not specifically developed for statically analysing
cryptographic protocols, but they have been used to do so. These include model checkers
and theorem provers, and methods that combine both.

⎯ Expert systems: A protocol designer may use expert systems to explore different scenarios.

⎯ Modal logic based approaches: These approaches use modal logics based on knowledge
and belief for modelling and verifying protocols.

⎯ Algebraic based approaches: These develop a formal model based on the algebraic term-
rewriting properties of cryptographic systems.

Moreover, we present formal methods that have been used for developing and analysing security
systems, which can include cryptographic protocols, but not necessarily, and their security
properties.

SERENITY - 027587 Version 1.0 Page 19 of 126

A4.D1.1 – Review of the state of the art

3.2.3.1 General purpose verification methods and tools

General purpose static verification methods treat cryptographic protocols as distributed systems and
try to prove their correctness. Firstly, the protocol and its desired properties (in this case security
properties) are specified in the specification language of the method, such as finite state machines,
Communication Sequential Process (CSP), Petri Nets. Subsequently, tools are used for verifying the
properties, such as model checkers, theorem provers or even a combination of both.

Model checkers analyse cryptographic protocols by exhaustively exploring the state space of a
model in order to verify its desired properties. The properties are usually specified using temporal
logic (usually Linear Temporal Logic or Computation Tree Logic or a variation of these). If a
property is found to be false, a counter-example is produced outlining the steps that lead to the
contradiction. Model checkers, however, suffer from the state space explosion problem, which can
make model checking of large systems infeasible. To deal with this problem, researchers have
developed symbolic algorithms, partial order reduction techniques, on the fly model checking and
abstraction techniques [62].

The CSP/FDR framework for the analysis of security protocols was initiated mainly by Gardiner,
Goldsmith, Jackson, Lowe and Roscoe [206, 207]. The process algebra CSP is ideal for modelling
security systems because it can describe systems that are composed of parallel processors
communicating with one another by synchronisation of some common events. Roscoe and
Goldsmith [290] describe how a cryptographic protocol attacker can be modelled by the CSP
inference system. Once modelled in CSP, a security protocol can be verified using the FDR2 tool.
FDR2 uses a lazy exploration strategy to examine subset of intruder states which are reachable by
the protocol rules. Thus, FDR2 examines the behaviour of the intruder together with that of the
protocol’s. An advantage of this approach is that it is able to reason about the absence of denial-of-
service attacks (liveness properties). Usually the CSP code is derived by hand which can be time-
consuming and error-prone. A program called Casper [163] was developed to convert a high level
description of a protocol (written in a simple language for describing protocols) into CSP code.

Murφ [291] is a general-purpose state enumeration tool that was used by Mitchel et al. [292] to
analyse security protocols. The approach of Murφ is similar to that used in CSP model checking.
The protocols are described using the Murφ language which is a simple high-level language for
describing non-deterministic finite-state machines. The properties are specified by invariants, i.e.
Boolean conditions that have to be true in every reachable state (hence, no temporal operators).
Murφ uses breath-first or depth-first full state enumeration for verifying that all reachable states of
the system satisfy the desired properties. The main method adopted for analysing protocols consists
of formulating the protocol in the Murφ language, adding an adversary to the system (the adversary
is allowed to overhear, intercept and generate messages), stating the desired correctness condition
(this has not proved to be difficult in the protocols they described, but for others protocols it could
be), running the protocol with some specific size parameters, experimenting with alternative
formulations, and repeating the steps. Known flaws of the Needham-Schroeder Public-Key [192],
TMN [293] and Kerberos [294] protocols have been identified using this approach. The difficulties
encountered with Murφ include modelling the adversary and formalising its "knowledge", and
selecting a finite set of possible adversary actions at any point in the run of the protocol using the
adversary's knowledge at that point. An advantage of Murφ is that it is possible to change a system
description to reflect a situation where one or more items of secret information have been
compromised.

SERENITY - 027587 Version 1.0 Page 20 of 126

A4.D1.1 – Review of the state of the art

ASTRAL [295] is a formal specification language for specifying real-time systems. ASTRAL
consists of global and process specifications. Global specifications consist of declarations of
process instances, global constants and non-primitive types that may be shared by process types,
and system level critical requirements (properties that will be verified). ASTRAL specifications
also include environmental assumptions that formalise the assumptions that must always hold on
the behaviour of the environment to guarantee some desired system properties. The system
properties are verified by the ASTRAL model checker. Since ASTRAL is undecidable, certain
restrictions occur in order to be able to model check specifications in it. For instance, ASTRAL
specifications are based on infinite state machines with unlimited time bounds and for model
checking to be feasible, a finite time bound needs to be set by the user. ASTRAL was applied to the
Needham-Schroeder public-key authentication protocol and the TMN protocol [296]. One of the
flaws of the TMN protocol was missed by the ASTRAL model checker because it required excess
time bound for the specific ASTRAL modelling of the protocol. This same flaw was detected by
both FDR and Murφ. However, these results were preliminary. More recently, Dang and Kemmerer
[297] analysed a more complex time-dependent protocol, called Mobile IP, that can be considered
as a real-time protocol unlike Needham-Schroeder and TMN. For example, a timing property would
require that a mobile node needs a time reference in order to decide whether its current registration
is going to expire, and a timestamp mechanism to protect against potential replay attacks. The
ASTRAL model checker detected specification errors and once these were corrected, no flaws in
the protocol were discovered.

As mentioned above, model checking suffers from the state space explosion problem. In order to
address this problem, Bolignano [39] introduced an approach for generating human-readable proofs
that can be used as part of a vulnerability analysis or formal code inspection. Specific properties of
the problem are used to formalise the requirements and simplify the proofs. The conciseness of the
verification process is comparable to that of the modal logic and this is because of the use of
powerful invariants and the axiomatisation of the intruder knowledge. The Coq proof assistant [31]
can be used to automate this process within a framework of typed logics.

Schneider [216] describes an approach for the analysis and verification of authentication properties
in CSP. The CSP syntax can describe authentication protocols precisely in terms of the messages
accepted and transmitted by each participant in the protocol. Schneider’s aim was to build a
separate theory for analysing authentication protocols on top of the general CSP framework. This
theory has been successfully used to model and verify the Zhou and Gollman fair non-repudiation
protocol [257].

Kemmerer [136, 137] introduced an approach based on an extension of first order predicate
calculus, that uses the Ina Jo specification language. Ina Jo is a tool that was designed to support the
development of software that includes correctness proofs. The security system is expressed as an
Ina Jo specification and so are the security properties that must hold in all states. Verification occurs
with the generation of theorems that are used to prove the properties. This approach detected a
security flaw in the system. However, Buttyan [49] points out that since the designer needs to know
the potential attacks in advance, the benefits of this approach are limited.

Nieh and Tavares [195] use coloured Petri nets for modelling and analysing cryptographic
protocols. A general intruder model is also included in the overall model in order to represent
intruder attacks and generate test cases. The security properties are analysed by performing an
exhaustive penetration test that searches for scenarios that violate certain specified criteria. These
criteria are defined in terms of requirements on Petri net states. This approach suffers from the lack
of available tools for automating the exhaustive search. A solution to this problem would be to

SERENITY - 027587 Version 1.0 Page 21 of 126

A4.D1.1 – Review of the state of the art

translate the coloured Petri nets to ordinary Petri nets and use the available tools. However, like
model checkers, these tools suffer from the state explosion problem.

More recently, Dai et al. [298] use the Software Architecture Model (SAM), a general formal
framework that is based on Petri nets and temporal logic, to specify and analyse authentication
protocols. In particular, they use Predicate Transition nets [100] and first order linear temporal logic
[167] to model the registry protocol [109]. Each involved participant, including trusted principles
and intruders, is explicitly modelled along with its behaviour and interactions. The SPIN model
checker [124] is used for verification. Dai et al [298] describe a process that can be automated, i.e.
they provide a systematic method for translating a SAM model into a SPIN specification. The main
advantage of using this approach is that the graphical representation (Petri nets) enhances
understanding and its well-defined semantics facilitates analysis. This approach identified similar
security flaws as those identified by the LOTOS [155] when applied to the same case study.

Other recent work in the area of Petri nets includes: Al-Azzoni et al. [7] who propose a technique
for modelling and verifying cryptographic protocols using coloured Petri nets and Design/CPN and
illustrate it on the TMN protocol; Aly and Mustafa [11] who analyse and verify the STS protocol
[84] using coloured Petri nets; and Crazzolara and Winskel [74] who show how Petri nets can be
used to prove security systems (these researchers present a process language together with
semantics for security protocols).

3.2.3.2 Expert Systems

The Interrogator [179, 180] is a software tool written in Prolog that explores the state space of a
model exhaustively in order to identify any security flaws. Interrogator is one of the first systems
that uses the Dolev-Yao approach. The abstract model includes the usual state variable for the
intruder’s set of known items. However, this known set is not explicitly mentioned in the state
representation used by the recursive search algorithms. The Interrogator models the protocol’s
participants as communicating state machines whose messages are intercepted by an intruder. The
intruder can destroy messages, alter them, or let them pass through unaltered. Assuming a final state
where the intruder knows some word that should be kept secret, the Interrogator explores all the
possible paths through which it can reach that final state. If a path is found, then a security flaw is
identified. However, if no path is found there is no guarantee that no attacks can exist in the system
model. The Interrogator has identified only previously known attacks on the protocols analysed.

The NRL Protocol Analyzer [137, 174, 175] is comparable to the Interrogator as it attempts to
construct a path from an insecure state, given by the designer, to the initial state. The main
difference between the NRL and the Interrogator is that NRL not only tries to find paths to the
insecure states, but also proves that these states are unreachable. The proofs show that certain paths
that lead backwards from the insecure states end up in infinite loops, and hence never reach the
initial state. These paths can be eliminated, thus reducing the search space that is explored
exhaustively. However, the proofs require user guidance making the search less automated than
that of the Interrogator. Another difference with the Interrogator is that the NRL Analyzer can
construct a single path using an arbitrary number of protocol rounds, thus working in an infinite
state space. Therefore, the NRL Analyzer can detect attacks based on a combination of protocol
runs. The NRL Protocol Analyzer was successful in identifying a number of unknown flaws in
several protocols [220, 47] as well as identifying known flaws.

Longley and Rigby [162] have developed a rule based system that decomposes goals into subgoals,
and then subgoals are decomposed further and so on to build a tree. The root node of the tree

SERENITY - 027587 Version 1.0 Page 22 of 126

A4.D1.1 – Review of the state of the art

represents the data item required by the intruder for an attack and the leaf nodes represent the data
that must be known in order to know the root item. The user can interact with the system to
determine whether or not a data item can be found by the intruder, even if the system has classified
that data item as being inaccessible to the intruder. If a data item is found to be accessible to the
intruder, it is added to the system and a tree is generated for it. The search tool developer [162]
identified a subtle flaw of the hierarchical key management scheme. Its approach is similar to that
of the Interrogator; however it relies on user interaction.

Expert systems developed specifically for the analysis of cryptographic protocols can be more
successful than general purpose tools in detecting unknown flaws. However, they suffer from the
state space explosion problem, which can lead to systems never halting and inconclusive results. To
handle this problem, user interaction is required, which means that the search is not completely
automated. The strength of expert systems lies in the fact that if they detect a flaw, then the attack
scenario is directly available, which is not the case for modal logic based approaches.

3.2.3.3 Modal logic based approaches

A modal logic approach consists of a language that is used to describe the cryptographic protocol as
logic statements expressing what the participants know and believe, and some inference rules for
deriving new statements. The purpose of analysis is then to derive a statement that represents the
correctness condition of the protocol. This derivation may often reveal flaws in the protocol.

BAN logic [48] is the most widely used formal logic for analysing authentication protocols. It
belongs to the class of KD45 modal logics, which means that any fact is only a belief and does not
need to be universal in space and time. Ban logic analyses protocols by firstly, expressing the
assumptions and goals as statements in a symbolic notation in order for the logic to proceed from a
known state to one in which if can check whether the goals can be reached. Subsequently, the
protocol steps are also formalised into the symbolic notation. Finally, postulates, which are a set of
deduction rules, are applied and these should lead from the assumptions to the authentication goals,
via intermediate formulas.

The use of Ban logic has revealed flaws in several protocols, including Needham-Schroeder [192]
and CIT X.509 [55]. It has also uncovered redundancies in Needham-Schroeder, Kerberos [181],
Otway-Rees [196], and CCIT X.509. In spite of its success, however, BAN logic has been criticised
by various researchers. This criticism relates, for example, to the difficulty of BAN logic in proving
completeness properties [159], its limitation of providing only partial correctness proofs [223] and
its inability to discover flaws which violate basic security requirements of authentication [194]. The
most crucial weaknesses of BAN logic, which have been discussed in the literature, are that there is
no complete semantics for the logic and when modelling freshness, it is not possible to distinguish
between freshness of creation and freshness of receipt. The lack of complete semantics can lead to
problems when formulating the BAN specification of an informal protocol description (this process
is called "idealisation") due to vagueness and ambiguity.

Abadi and Tuttle [3] overcome the problem with idealisation by reformulating the original BAN
logic and providing new semantics for it. The changes made include removing unnecessary mixing
of semantic and implementation details in the definitions and inference rules, defining concepts
such as seeing, believing, etc. independently rather than jointly with other concepts, and
reformulating the set of inference rules as an axiomatisation with modus ponens and necessitation
being the only rules. The result is a much simpler logic which was claimed to be sound with respect

SERENITY - 027587 Version 1.0 Page 23 of 126

A4.D1.1 – Review of the state of the art

to the new semantics although Syverson and van Oorschot [230] later identified an axiom of the
logic that was not sound.

Many extensions of BAN logic have been developed as researchers aim to improve on its
limitations. One of these successful extensions is the GNY logic [104] which extends the scope of
BAN logic but is more complicated. GNY logic analyses a protocol step-by-step, expresses any
assumption required explicitly and draws conclusions about the final position that it has arrived at.
GNY logic improves on the BAN logic in the following ways:

⎯ It separates the content and the meaning of messages, therefore increasing consistency in the
analysis and it is possible to reason in more than one level.

⎯ Message data can include principles even if they don’t believe in them.

⎯ The ability of a recipient to identify the expected message can be expressed and one is
allowed to determine that some messages are not replays of the recipient’s earlier messages
given in a session.

The main drawbacks of GNY logic are that it addresses only authentication and many of its rules
have to be considered at each stage, thus making it more complicated than other methods [13].

BGNY [41] is an extended version of GNY logic that has been formalised with a Higher Order
Logic (HOL) [105] theory. As with GNY logic, BGNY focuses only on authentication. The
authentication properties of cryptographic properties are proved automatically with HOL software.
BGNY differs from GNY as it is able to specify properties at intermediate stages and it is able to
specify protocols that use multiple encryptions and hash operations, message authentication codes,
and has codes as keys and key-exchange algorithms.

Other extensions of BAN logics include:

⎯ An extension by Mao and Boyd [169] whose work does not cover protocols using public-
key algorithms nor does it include theoretic proof soundness of the proposed idealisation
rules;

⎯ An extension by Gaarder and Snekkenes [99] which can reason about time;

⎯ An extension of BAN and GNY [241] which handles key agreement protocols such as
Deffie-Hellman; and

⎯ An extension by Campbell et al. [52] which supports probabilistic reasoning for calculating
a measure of trust rather than complete trust.

The above list is not a complete account of work in this area and several other extensions have also
been proposed. These extensions, however, are beyond the scope of this survey which focuses on
dynamic verification.

SvO is another logic [230] that encompasses the features and reasoning of four logics, namely
BAN, BNY, Abadi-Tuttle logic and vO [241], in a unified framework. Syverson and van Oorschot
define model-theoretic semantics for SvO with respect to which the logic is sound. SvO is
considered to be easier to use and more expressive than the four logics it was derived from.

Other logics for static verification which are not extensions of BAN logic include:

⎯ Rangan’s logic [203], that can be used to reason about the effect of trust in the composition
of secure communication channels and provides a formal basis for the evolution of belief
from trust.

SERENITY - 027587 Version 1.0 Page 24 of 126

A4.D1.1 – Review of the state of the art

⎯ Moser’s logic [185] that is a non-monotonic logic used to reason about beliefs of protocol
participants and how these beliefs change (e.g. in cases when a key used in a secure
communication is compromised).

⎯ Bierber’s CKT5 [37] that is used to reason about the evolution of knowledge about words
used in a cryptographic protocol and makes a distinction about seeing a message and
understanding its importance.

⎯ Syverson’s KPL [229] that is used in the same way as CKT5.

⎯ The Yahalom et al. system [252] that is used to derive information about the nature of the
trust that protocol participants must have in each other in order for a protocol to operate
correctly.

⎯ Kailar’s logic [132] that is used for the analysis of communication protocols that require
accountability, for example, for secure electronic transactions. This logic is based on the
AUTLOG semantics [139].

⎯ Wedel and Kessler logic [247] that is used for the analysis of authentication protocols and
provides formal semantics for proving its soundness. A wide variety of cryptographic
mechanisms can be described in this logic using the most concise notation.

3.2.3.4 Algebraic approaches

Algebraic approaches model a protocol as an algebraic system and use the algebra to formalise the
state of each participant’s (including the intruder) knowledge about the protocol. Research in this
area is not as active as research in developing the other formal approaches. Nevertheless, algebraic
models have shown to be successful when representing subtle kinds of knowledge in cryptographic
protocols.

Dolev and Yao [87] were the first to model a cryptographic protocol as an algebraic system. In their
model, the intruder has control of the network and can read all the traffic, modify and destroy
messages, and perform any operation, such as encryption, as an authorised user would. Initially the
intruder does not know any of the secret information, such as the authorised user’s keys.
Furthermore, Dolev and Yao treat every message sent by an authorised user as if it was sent to the
intruder and every message received by the authorised user as if the intruder sent it. This is because
of the intruder’s control over the network. Therefore, the system becomes a machine used by the
intruder to generate words which obey certain re-write rules, for example a rule would be that
encryption and decryption with the same key cancel each other out. If the intruder’s aim is to
discover a word that is secret, the problem of proving a protocol secure is the same as the problem
of proving that a word cannot be generated in the term rewriting system. This observation is used to
develop algorithms to analyse the security of certain classes of public key protocols, namely
cascade protocols and name-stamp protocols.

The Dolev and Yao approach is limited and cannot be useful for analysing a wide range of
protocols for the following reasons. Firstly, it can only detect failures with respect to secrecy, and
participants do not remember state information from one state to the next. Some research aims to
overcome these problems and find ways to analyse other classes of protocols. These include, Merrit
[177] who generalises the Dolev and Yao approach to model diverse cryptographic systems and
formally proves other properties besides secrecy, and Toussaint [236] who describes a technique,
which is based on Merrit’s [177] algebraic model, and can derive the complete knowledge of each
participant in the protocol.

SERENITY - 027587 Version 1.0 Page 25 of 126

A4.D1.1 – Review of the state of the art

Recently, Abadi and Gordon [1] use the pi calculus to describe protocols at an abstract level.
Properties of cryptographic protocols are modelled using pi calculus primitives for channels, in
particular scoping rules. Pi calculus is further extended to what is known as spi calculus for
analysing the protocols at a lower level of abstraction. The security properties of the protocol are
expressed in spi calculus as equivalences between spi calculus processes. For example, the protocol
keeps secret a piece of data X if the protocol containing X is equivalent to the protocol containing
X’ for every X’. The intruder is not explicitly modelled, but is represented as an arbitrary spi
process. This is an advantage as modelling the intruder can be difficult and error prone.

3.2.4. Developing security systems with formal methods
The Software Cost Reduction (SCR) method [299] is a set of techniques used for developing
systematically formal specifications from a set of requirements. SCR was developed from a
collaboration between David Parnas and Constance Heitmeyer, and other researchers from the U.S.
Naval Research Laboratory (NRL) in the late 1970’s and consists of a tabular notation that is based
on state machines. SCR specification properties are written as logical formulae and divided into
static (no temporal operators) and transition properties (with temporal operators). SCR is supported
by tools that have been developed for creating and validating SCR specifications, and analysing
properties such as syntax and type correctness, case coverage, determinism and lack of circularity.
The SCR toolset includes the model checker SPIN [124], the verifier TAME (i.e. a user-friendly
interface for the PVS theorem prover [300]), a property checker based on decision procedures
called Salsa [301], and an invariant generator. These tools can assist the verification of critical
safety and security properties.

SCR has been applied to a Communications Device (CD) that provides cryptographic processing
for a U.S. Navy radio receiver and to a biometrics standard (BioAPI) [302]. As it has been reported,
it took about one-person month to produce the SCR specification of CD (which was moderately
complex) and to verify seven security properties. Developing a formal specification in SCR from
the requirements document (expressed in prose) was very difficult as it was structured differently.
This brought about some questions concerning the requirements and the use of tools such as the
simulator and invariant generator, further errors and missing cases in the specification were
identified. Tame was used to verify the security properties, which required supporting invariant
lemmas that were obtained from the set of invariants produced by the invariant generator. There
were problems verifying an eighth property in Spin because of the state space explosion problem.

It took about two weeks to specify the BioAPI standard in SCR and to check that there were no
missing cases and ambiguities, and to verify one critical authentication property. In fact, as reported
in [302], the correct formulation of this particular security property was very difficult and it took a
lot more time that it took to verify it.

An open problem, discussed in [302], was how to validate the source code that implements a secure
system. Even though the security properties are verified at the specification level, it is still
necessary to demonstrate that the source code operates securely. Heitmeyer [302] suggests an
approach where one can derive a set of test cases from the specification and use these in order to
test that the source code satisfies the specification. Some initial work on this is presented in [303].

The B-method is a formal method developed by Abrial [5] and is supported by two tool suites that
have been used to develop industrial applications: the B-toolkit [35] and the Atelier B toolkit [20].
B specifications are expressed using the Abstract Machine Notation (AMN) that is based on first

SERENITY - 027587 Version 1.0 Page 26 of 126

A4.D1.1 – Review of the state of the art

order predicate logic and set theory. Temporal properties cannot be proven easily in B. To
overcome this problem, Abrial and Mussat [304] introduced new clauses in the B notation to
express temporal properties of event-driven systems. However, the manner in which these
properties are expressed is complex and does not resemble their logical form. The overall
development process that is based in this approach takes place through stepwise refinement. In this
process, proofs have to be produced in each refinement to ensure consistency.

A specific refinement technique was developed by Abrial for verifying security protocols. The basic
idea is to describe the objective of the protocol in a single instantaneous operation along with a
number of void (skip) operations that will be refined one by one in the following refinement steps,
until the entire protocol is specified. By verifying each refinement and because of the transitivity of
refinement, the entire development of a protocol is eventually verified. Compared to CSP, the B-
method is more state-based and therefore, it makes coding easier. However, it is not well-suited to
dealing with concurrency.

Recently, the B method has been used to model protocols for Java smart cards. The problems in this
area are that Java cards have small memory and weak CPU, which consequently means that any
security run-time checks must be minimised. Girard and Lanet [308] use the B method to model
several parts of the Java card as well as the virtual machine. The main objectives for using B
method for the design of the virtual machine are to:

⎯ Express the virtual machine formally;

⎯ Extract the static checks;

⎯ Show formally that the interpreter satisfies the static constraints; and

⎯ Provide an implementation of both the verifier and the interpreter.

By applying this approach Girard and Lanet [308] were able to reduce the amount of run-time
checks required. Also, they proved mathematically that the implementations of the interpreter,
firewalls and backup mechanism (Operating System functionality) are correct, hence guaranteeing a
secure platform. Other work with respect to developing smart cards includes [305, 306, 307, 308,
310].

Hall and Chapman [311] describe how they developed from requirements to code a commercial
secure system, in particular a Certification Authority (CA) system, that had to meet stringent
security requirements as well as normal commercial requirements (throughput, usability, cost). Hall
and Chapman used a requirements-engineering method called Reveal [113], to define the CA's
environment and business objectives, and map them into system requirements. The user
requirements were written in English with context diagrams, class diagrams and structured
operational definitions. Also, each requirement was labelled in order to be able to trace it back to its
source. Security requirements would be traced back to the corresponding threats. Although the
ITSEC (www.cesg.gov.uk) require Formal Security Policy Models, the requirements included an
informal security policy that identified threats, assets and countermeasures. Hall and Chapman
reported that they managed to formalise only 23 items of the 28 technical items.

In their case study, Hall and Chapman also used Z [225] to specify the modules that manage the
cryptographic keys and their verification on system start-up. What they found was that Z was not a
good language for expressing information separation, and that CSP was a better language for this.
They did not carry out any proofs of correctness at this stage, only used a typechecker. They
modelled the process structure in CSP, by mapping sets of Z operations to CSP actions. Checks
were carried out to ensure the system was deadlock free and that there was no concurrent processing

SERENITY - 027587 Version 1.0 Page 27 of 126

A4.D1.1 – Review of the state of the art

of security functions. Translation rules were devised for mapping the CSP model to code (Ada95
and Spark which is a subset of Ada95). Static analysis was carried out on the Spark code, which has
additional annotations for performing data- and information flow analysis, and to prove properties
of code, such as partial correctness and freedom from exceptions. A Spark program is checked to be
free of any dataflow errors (such as the use of an initialised variable) that can lead to subtle security
flaws. Thus, proof of correctness of Spark programs with respect to its formal specification can be
achieved.

3.2.5. Specification of security and other system properties for static verification
Table 3.1 gives a summary of various formal notations which have been used by different static
verification methods to express the properties to be verified and other functional and non functional
characteristics of the systems and identifies languages and notations that have been specifically
developed for expressing and verifying security properties.

The security properties are usually expressed in some formal notation, chosen according to its
expressivity and which verification approach is going to be used. For static verification of
cryptographic protocols, BAN logic is most commonly used for formalising security properties.
System descriptions (specifications) are also expressed using a formal notation, such as finite
statemachines, Buchi automata or even CSP. Specifications can be defined at different levels of
abstraction. For example, KAOS defines specification at a very high level of abstraction, i.e. in the
requirements capturing phase. The B-method [5] allows one to express the specification initially at
a high level of abstraction and then with a series of refinement steps, refines the specification to a
low level of abstraction, where code can be generated automatically.

SERENITY - 027587 Version 1.0 Page 28 of 126

A4.D1.1 – Review of the state of the art

Languages for static verification of
cryptographic protocols

Languages for static verification of
security systems

BAN logics [48]; or various extensions of BAN
logics

SCR tabular notation & properties expressed
as logic formulae [299]

HOL [105] B-method [5]: Abstract Machine Notation –
based on first order logic and set theory

SvO [230] Z [225]

Coq [31]

CSP/FDR [206]

Petri Nets [195]

Astral Model Checker [295]

Murφ langauge (based on finite-state machines) &
properties are Boolean conditions that have to be
true in every reachable state [291].

Table 3.1 – Summary of formal languages used for static verification

3.2.6. Conclusions for static verification and formal methods

Although the use of formal methods and static verification have made significant contribution in the
verification of security properties and the development of security solutions, the survey of the
literature in this area has identified that these approaches have certain limitations. These limitations
can be summarised as follows:

⎯ As pointed out in [250], systems do not run in isolation but operate in typically complex
environments. Thus, the formal specification of a system must always contain the
environmental assumptions and a proof of correctness is valid only if these assumptions
hold. It is, however, impractical to state every environmental assumption explicitly and
some will inevitably be missed. Also, attackers can take advantage of the explicit modelling
of such assumptions and find out how to violate them. Furthermore, even if one had
thoroughly expressed each assumption, it is still possible that a system may eventually be
deployed in a different environment in which the original environmental assumptions may
not hold.

⎯ Certain security properties are difficult to model and this reduces the applicability of use
formal methods in large scale validation.

⎯ The formal specification of security properties of complex systems, other behavioural
properties of these systems which interact with the security properties and the interaction of

SERENITY - 027587 Version 1.0 Page 29 of 126

A4.D1.1 – Review of the state of the art

the systems with other systems in their environment may grow to a size that makes formal
verification intractable due to the state explosion problem. This problem has been identified
in almost all the reviewed static verification techniques which tend to focus on the
verification of single security properties or small sets of such properties.

⎯ Security is a combination of properties, which may be satisfied at varying degrees in
different environments, rather than being completely satisfied or dissatisfied. Also, certain
properties are more important than others and some might even be in conflict with each
other. For example, in electronic payment systems, client anonymity and accountability of
could both be desired albeit conflicting properties. Formal methods and static verification
are not very well-suited to support analysis for graded satisfiability of properties of varying
importance and possibly conflicting.

⎯ Even if static verification can prove that the specification of a system satisfies certain
security properties, there is no guarantee that the implementation of the system will be
compliant with the specification and, therefore, the proved properties will also hold during
the operation of the system.

Finally, Meadows [176] has pointed out that certain open ended issues emerge from the formal
analysis of cryptographic protocols. These issues include: how to model open-ended protocols with
no fixed number of participants and unbounded length of messages, identifying new threats and
modelling new types of applications, identifying security flaws at lower levels of abstraction and
how can systems that use a composition of cryptographic protocols be verified.

SERENITY - 027587 Version 1.0 Page 30 of 126

A4.D1.1 – Review of the state of the art

4. Dynamic Verification
Dynamic verification enables a software system to improve its dependability (and therefore
security) [21], by checking whether its behaviour satisfies specific dependability and security
properties while it is running. This can be accomplished by a software module, which monitors the
execution of the system and checks its conformity with the specification of the relevant properties.
This module can be either an external or an internal module of the monitored system.

Software systems are increasingly becoming ubiquitous and heterogeneous and rely on technologies
such as mobile code and components off the shelf (COTS). Static verification and testing of
dynamically adapted entities cannot provide adequate results, each one for different reasons. Static
verification is a formal method and can prove that a system (or to be more accurate its model) is
correct but is very time consuming and demands substantial education and experience from
practitioners. Testing [156] on the other hand is an informal method which cannot prove a system
correct since it can never offer a complete coverage of all its possible executions but can be easily
applied even from inexperienced practitioners.

Being situated somewhere between static verification and testing, dynamic verification techniques
aim to achieve the benefits of both approaches, by merging testing and formal specification. Thus,
dynamic verification is considered to be a formal method applied to the implementation of the
system that avoids the pitfalls of ad hoc testing and the complexity of full blown static verification
techniques (model checking, theorem proving).

According to the literature on dynamic verification [32, 78, 119], the basic stages of dynamic
verification are: (i) the development of a formal specification of a system including various types of
properties, like safety and security properties, (ii) the application of methods for capturing events of
interest and (iii) checking for violations by a monitor which can verify whether the observed
behaviour of a system satisfies the required properties.

It should be noted that there are cases such as Aspect Oriented Programming [140] and Monitoring
Oriented Programming [59] in which a monitor is generated automatically and inserted into the
code that has to be monitored. Thus, in such cases, the second stage includes the monitor generation
as well. On the other hand, in all the other cases, monitors are considered to be software modules,
which have to be implemented [19, 119] separately from the monitored system. The monitor inputs
are the formal specification of the system (product of first stage) and the flow of events generated
during the execution of the system. The monitor then reasons about the conformance of the captured
runtime behaviour of the system (events flow) against the indented system behaviour (formal
specification).

SERENITY - 027587 Version 1.0 Page 31 of 126

A4.D1.1 – Review of the state of the art

Figure 4.1 – Conceptual Model for Dynamic Verification

Figure 4.1 shows the conceptual model we have constructed to indicate the entities involved in
dynamic verification. According to this model, the subject of dynamic verification that is signified
by the class MonitorableEntity can be either a System or a System’s Environment. Dynamic
verification is carried out by a Monitor which observes the Runtime Behaviour of a system or its
environment. The RuntimeBehaviour is a set of events generated during the operation of the
monitorable entities. These events are generated by one or more Event Generator according to
different Event Emission Specifications. An event emission specification describes the particular
Event Emission Method to be used and one or more Event Emission Descriptions, which describe
the exact types of events which should be generated. The observation of the events in a Runtime
Behaviour by the Monitor is carried out according to a specific Monitoring Policy which specifies
the Monitoring Properties that should be verified at runtime and the set of Monitoring Actions the
Monitor should perform to enable the system control and/or recover from violations of the
monitoring properties.

Figure 4.2 presents taxonomy of monitor and event generation features. This taxonomy has three
layers which differentiate monitoring and event generation capabilities according to (a) the

SERENITY - 027587 Version 1.0 Page 32 of 126

A4.D1.1 – Review of the state of the art

controlling capabilities of a monitor, (b) the time of the event emission with respect to the
occurrence of the action described by the event, and (c) the communication type between the
monitor and the system.

Figure 4.2 – Taxonomy of Monitor and Event Generation Features

More specifically at the first layer a distinction is made based on whether the monitor has
observation only, observation and control or control only capabilities. These capabilities can be
summarised as follows:

⎯ Observation (O): The monitor observes the runtime behaviour of the system by receiving the
generated events and it checks whether the monitoring properties hold at runtime.

⎯ Observation and Control (OC): The monitor observes the runtime behaviour of the system
by receiving the generated events, it checks whether the monitoring properties hold at
runtime and forces the system to execute specific actions. These actions can be either
preventive or perform recovery. This class is also known as closed-loop control.

⎯ Control (C): The monitor forces the system to execute actions without needing to observe
the actual state of the system. This class is also known as open-loop control.

SERENITY - 027587 Version 1.0 Page 33 of 126

A4.D1.1 – Review of the state of the art

The second layer of the taxonomy presents a distinction according to the time of the event emission
with respect to the occurrence of the action described by the event. According to the criterion, we
can distinguish between two cases:

⎯ Emission preceding the action (pre): The event precedes the action which it describes. For
example, the event generator sends an event to the monitor informing it that the system
wishes to lock some resource before the system locks it.

⎯ Emission posterior to the action (post): The event follows the action which it describes. For
example, the event generator sends an event to the monitor informing it that the system has
completed some transaction.

Finally, the third layer of the taxonomy refers to the type of the communication between the
monitored system and the monitor. According to this criterion, we distinguish between the
following two types of communication:

⎯ Synchronous communication (S): The event generator uses a blocking send primitive to
communicate with the monitor, waiting for a reply from it. This is only used when the
monitor can exert control over the system.

⎯ Asynchronous communication (A): The event generator uses a non-blocking send primitive
to communicate with the monitor. It is mainly used when the monitor cannot exert any
control over the system or when the control actions can be applied asynchronously. For
example, the monitored system may notify the monitor that it will attempt to perform some
action and start performing it without waiting for a permission to do so, as in optimistic
transactions. If the monitor subsequently decides that this action is undesirable it can send a
signal to the system to abort the action.

4.1.1. Formalisation of Properties for Dynamic Verification
4.1.1.1 General Purpose Systems

In most of cases, the formal specification of the requirements that are to be dynamically verified is
based on Linear Temporal Logic (LTL) [200] and variations of it including past and future time
LTL (ptLTL and ftLTL respectively). Past and future time Linear Temporal Logics are modal
logics for specifying properties of concurrent reactive systems and are used for analysing traces of
execution of such systems. ptLTL provides temporal operators that refer to the past states of an
execution trace, while ftLTL provides temporal operators that refer to the future/remaining part of
an execution trace. In particular, the Temporal Rover (TR) tool [88] supports a future and past time
Metric Temporal Logic (MTL). MTL [57] extends LTL with relative time and real time constraints.
All four LTL future time operators can be constrained by relative time and real time constraints
specifying the duration of the temporal operator. MTL constraints can specify lower bounds, upper
bounds, and ranges for relative time and real time constraints.

In the context of monitoring oriented programming (MoP), any monitoring formalism can be added
to the system. ptLTL, ftLTL and extended regular expressions (ERE), which can express patterns in
strings in a compact way [218], have been used to formalise properties to be monitored [59]. The
proposed algorithms use binary transition tree finite state machines (BTT-FSMs) to monitor ftLTL
properties [59], as well as, formulas written in a logic based on EREs [218].

SERENITY - 027587 Version 1.0 Page 34 of 126

A4.D1.1 – Review of the state of the art

Havelund et al. [116, 117, 118] have developed several algorithms, which are relative to temporal
logic generation and monitoring. For instance, they propose algorithms for past time logic
generation by using dynamic programming [118]. Also they have used the MAUDE rewriting
engine [63], for monitoring future time logic [116, 117] and have proposed algorithms that generate
Büchi automata adapted to finite trace LTL [101].

Other logics/languages used for formalising properties are EAGLE [32] and HAWK [78]. EAGLE
is a ruled-based language, which essentially extends the µ-calculus with data parameterization and
past time logic. HAWK can be viewed as a specialization of EAGLE for JAVA, as it supports data
binding and object reasoning. HAWK further extends EAGLE with event expressions, where events
are restricted to method calls and returns. The integration of programming and logic as well as the
notation and semantics of event expressions are similar to those used in modal logics like the π-
calculus. HAWK also supports extended regular expressions.

According to the concept of Design by Contract (DBC) technique, introduced by Meyer [178] as a
built-in feature of the Eiffel programming language, specifications of pre-conditions and post-
conditions can be associated with a class in the form of assertions and invariants and subsequently
be compiled into runtime checks. Jass [184] and jContractor [4] are two Java-based DBC systems.
Jass is a pre-compiler, which turns the assertion comments into Java code. The JASS sub-language
for specifying trace-assertions is similar to CSP [123], and its syntax is more like a programming
language. jContractor is implemented as a Java library which allows programmers to associate
contracts, consisting of pre/post-conditions and invariants, with any Java class or interface.

The Monitoring and Checking (MaC) framework [157] is based on a logic that combines a form of
past time LTL and models real-time via explicit clock variables. JAVA MAC [142], a prototype
implementation of the MaC framework for monitoring and controlling applications written in Java,
defines an event-based language to describe monitors. Note that, in the context of the Java MaC
framework, events refer to information that holds instantly during the system runtime, while
conditions are defined to illustrate information that holds for a time period. The Java MaC
framework is composed of two specification event-based languages: the Primitive Event Definition
Language (PEDL) and the Meta Event Definition Language (MEDL). PEDL is used for writing
low-level specifications and is tightly related to the programming language. As such it deals with
primitive events and conditions that might occur during the program execution, which are defined
using program entities such as variables and methods. The operations on events and conditions can
be used to construct more complex events and conditions from the primitive ones. A MEDL
specification then makes use of these primitive events and conditions in order to state high-level
requirements. Using MEDL, a user can specify the correctness requirements declaratively, without
worrying about operational issues related to the monitor. The MaC framework also supports the
declaration of variables of primitive types which can be updated by user-defined assignment
statements upon arrival of new events. These variables can be referred to in formulas.

Recently, Mahbub and Spanoudakis [166] have developed a framework for monitoring the
behaviour of service centric systems which expresses the requirements to be verified against this
behaviour in event calculus [219]. In this framework, event calculus is used to specify formulas
describing behavioural and quality properties of service centric systems, which are either extracted
automatically from the coordination process of such systems (this process is expressed in WS-
BPEL) or are provided by the user.

In the area of component based programming Barnett and Schulte [30] have proposed a framework
which uses executable interface specifications and a monitor to check for behavioural equivalence
between a component and its interface specification. In this framework, there is no need for

SERENITY - 027587 Version 1.0 Page 35 of 126

A4.D1.1 – Review of the state of the art

recompiling, re-linking, or any sort of invasive instrumentation at all, due to the fact that a proxy
module is used for event emission. The component’s interface specifications are written in the
Abstract State Machine Language (AsmL) [111], which is based on Abstract State Machines (ASM)
[110]. This language is executable and supports non-deterministic specifications. Having native
COM connectivity, one can not only specify and simulate components in AsmL but also substitute
low-level implementations by high-level specifications. Specifications written in AsmL are
operational specifications of the behaviour expected of any implementation. They provide a
minimal model by constraining implementations as little as possible.

Robinson [204] has proposed a framework for requirements monitoring based on code
instrumentation in which the high-level requirements to be monitored are expressed in KAOS.
KAOS [79] is a framework for goal oriented requirements specification which is based on temporal
logic. The KAOS modelling language can support all the phases of requirements acquisition and
modelling, starting from initial functional and non-functional goals, formalising the meaning of
such goals using temporal logic formulas and assigning the responsibility for the achievement of
these goals to potential agents which may signify the system in question, systems that interoperate
with it, and human actors interacting with the system. KAOS has also been used by Feather et al
[96] in a framework that they have developed to monitor system requirements at runtime and which
incorporates some capabilities regarding the reconciliation of requirements with the runtime system
behaviour.

4.1.1.2 Security Oriented Systems

Some of the logics and languages reviewed in the previous section have also been used either as
they were initially proposed or with some semantic modifications and extensions for the
formalisation of security properties. Naldurg et al [187], for instance, have proposed a framework
for intrusion detection which takes advantage of the capabilities of the EAGLE language for
specifying the attack-safe behaviour of a system. EAGLE is suitable for expressing temporal
patterns that involve reasoning about the data values observed in individual events and thus it
allows the description of attacks whose signatures appear to have statistical properties, e.g.,
password guessing or denial of service attacks. For such attacks there is no clear distinction between
an intrusion and a normal behaviour and the detection of intrusions involves collecting statistics
during runtime and using them to evaluate the probability of the occurrence of an attack.

In the area of intrusion detection, Ko et al [148] have proposed a specification-based approach,
which uses dynamic verification techniques to detect exploitations of vulnerabilities in security-
critical programs. According to this framework, one has to specify a trace policy which describes
the intended behaviour of programs with regards to security properties. A trace policy determines
security-valid operation sequences of the execution of one or more programs. For specifying such
trace policies, Ko et al. [148] have developed a grammar, called "parallel environment grammar
(PE-grammar)" whose alphabet consists of system operations. A PE-grammar can express various
classes of security trace policies, including behaviour related to access to system objects,
synchronization, and operation sequencing and race conditions in concurrent or distributed
programs.

Schneider [215] has developed a system called Execution Monitoring (EM) which can monitor
violations of security policies by monitoring the execution steps of a system. This system is based
on the security automata of Alpern and Schneider [8], which are a special type of Büchi automata.
EM also incorporates mechanisms that can terminate the system execution if it is about to violate its
security policy. Following the same automata-based formalism, Ligatti et al [160] extended the

SERENITY - 027587 Version 1.0 Page 36 of 126

A4.D1.1 – Review of the state of the art

control capabilities of security automata by proposing edit automata, which can remove and add
letters (i.e., system actions) to the words (i.e. execution traces) they recognise.

Having proposed a security-policy enforcing model which follows the general dynamic verification
approach, Bandara et al. [25] have specified a language based on Event Calculus to model the
system behaviour and write security policy specifications. The form of EC, which is used in this
work was presented in [209] and consists of: (i) a set of time points (that can be mapped to the non-
negative integers), (ii) a set of properties that can vary over the lifetime of the system (fluents), and
(iii) a set of event types. System operations and domain-independent rules for policy enforcement
were specified in this approach using these constructs. According to Bandara et al. [25], one can use
EC to express system-models containing a combination of authorisation, obligation and refrain
policies.

Janicke et al [131] have proposed a security model that allows expressing dynamic access control
policies, which can be either time or event-driven. A system’s overall security policy can then be
composed out of smaller policies which capture specific requirements and which can be verified
individually. The advantage of the access control model used in this work is that it allows
expressing both parallel and sequential composition. Janicke et al. [131] based their security model
on Interval Temporal Logic (ITL), a flexible notation for both propositional and first order
reasoning about intervals of time. ITL allows to express properties for safety, liveness and
timeliness. The policy model of Janicke et al. [131] provides a wide range of operators, for example
to allow the dynamic addition/deletion of rules or to select different sub-policies based on to the
occurrence of an event or a time-out. An important reason of choosing ITL was the availability of
an executable subset of the logic, known as Tempura [186]. The use of ITL, together with its subset
of Tempura, offers the benefits of traditional proof methods with the speed and convenience of
computer-based testing through execution and simulation.

Brisset [44] has worked on establishing and ensuring the correct operation of a Java platform
security mechanism for runtime authorization of un trusted applications in remote hosts. The
resulting Java security mechanism, which is called SecurityManager and belongs to the JAVA
runtime library, essentially embodies the security policy of the virtual machine. The verification
technique used a CTL-based language, which extends CTL with JVM-specific atomic propositions.
Thus, JVM-specific atomic formulas can be used for runtime authorization of untrusted
applications. In order to verify an application against these formulas its byte-code is translated into
pre/post-condition generators for CTL formulas on-the-fly.

Sekar et al. [217] presented an approach called model-carrying code (MCC) for mobile code
security. The main components of MCC are: (a) a policy language for specifying security policies
and a compiler for this language, (b) a language for specifying program behaviour models and
techniques for extracting them, and (c) a policy refinement component which is based on model-
checking techniques. Their language for policies and behaviour models is called Behavior
Monitoring Specification Language (BMSL) and it is compiled into extended finite state automata
(EFSA). EFSA are standard finite state automata (FSA) augmented with the ability to store values
in a fixed number of state variables. These state variables are capable of storing values over both
finite and infinite domains. The state of the EFSA is then characterized by its control state (which
has the same meaning as the notion of state in the case of FSA), plus the values of these state
variables. Each transition in the EFSA is associated with an event, an enabling condition involving
the event arguments and state variables, and a set of assignments to state variables. For a transition
to be taken, the associated event must occur and the enabling condition must hold. The assignments
associated with the transition are performed when the transition is taken. In usual behavioural

SERENITY - 027587 Version 1.0 Page 37 of 126

A4.D1.1 – Review of the state of the art

models the event alphabet of the EFSA consists of system-call names. On the other hand, security
policies need to refer to particular uses of such system calls and be able to examine their respective
arguments. These uses, for instance “read(sensitive_file)”, augment the alphabet of EFSA with
parameters to the initial system call names event alphabet. The resulting language is therefore able
to distinguish the difference between the opening of a temporary file and the opening of a password
file. Moreover, EFSA can also represent properties that refer to the arguments to system calls in the
past, e.g. a program opens a file, whose name was given as an argument in the command line in the
past.

For thoroughness we shall also mention certain higher-level languages and frameworks, which have
been proposed for security requirements and policies. The KAOS framework, which we have
already examined in the previous section on general-purpose formalisms, has been extended for
modelling, specifying and analysing security requirements [153] by including the classical security
concepts:

⎯ Adversaries/attackers which are the malicious agents in the environment,

⎯ Threats which are obstacles (anti-goals) intentionally set up by adversaries, and

⎯ Assets, which must be protected against threats, are illustrated as passive or active objects.

The Confidentiality, Integrity, Availability, Privacy, Authentication and Non-repudiation
requirements are sub-classes of the meta-class SecurityGoal in KAOS. Finally, the formal first-
order, real-time, linear temporal logic of KAOS has been augmented with epistemic operators
(Knows, Belief), which are needed in security-related properties (e.g. Authorized, UnderControl,
Integrity or Using predicates).

Damianou et al. [77] have defined a declarative, object-oriented language, called Ponder, to specify
security policies which can be monitored and applied at runtime. Ponder can be used to specify
security policies regarding role-based access control to system resources, and general-purpose
system management policies. Security policies are distinguished by Damianou et al. [77] in
authorisation, obligation, refrain and delegation policies. Authorisation policies specify whether a
subject is permitted to perform a particular action on a target; obligation policies specify
management operations that must be performed when a particular event occurs and some
supplementary guarding conditions are true; refrain policies allow system administrators to specify
conditions under which certain operations should not be performed; and delegation policies specify
which actions subjects are allowed to delegate to others. Ponder has been designed with the
intention to be an extensible security policy specification language that would be able to cater for
future types of policies and, rather than assuming a particular implementation platform, it could
map to, and co-exist with, different underlying platforms.

In Service Oriented Computing, Baresi and Guinea [26] have proposed a framework for runtime
monitoring of WS-BPEL processes. Monitoring rules are weaved at runtime into the process they
must monitor and a proxy module supports their dynamic selection and execution [28]. Finally, they
proposed a user-oriented language to integrate data acquisition and analysis into monitoring rules.
Their monitoring rules define runtime constraints on WS-BPEL process executions and are
expressed using the WSCoL language (Web Service Constraint Language). This development of
this language has been inspired by the Java Modelling Language (JML) of Leavens, Baker and
Ruby [154]. WS-CoL is a domain-independent policy assertion language for specifying user
requirements (constraints) on the execution of Web services, which can be used within the
framework of WS-Policy [214] and WS-Security [133]. WS-CoL is an assertion language
augmented with features for allowing one to retrieve information that originates outside the process.

SERENITY - 027587 Version 1.0 Page 38 of 126

A4.D1.1 – Review of the state of the art

It distinguishes between data collection and data analysis to differentiate the phase in which
information is collected (data collectionO, from the phase in which this data is analysed (data
analysis). Data can be collected from the process directly (e.g., values of internal variable) but they
can also come from external sources (e.g., exchanged SOAP messages). An example of a
monitoring rule in this language could specify that all exchanged messages must be encrypted using
the 3DES encryption algorithm.

4.1.1.3 Summary of specification languages for security and other system properties for dynamic
verification

Table 4.1 gives a summary of various formal notations which have been used by different dynamic
verification methods to express the properties to be verified and other functional and non functional
characteristics of the systems and identifies languages and notations that have been specifically
developed for expressing and verifying security properties.

As shown in the table most of the approaches deploy languages which are based on some form of
temporal logic as these languages provide the necessary operators for expressing conditions about
the temporal ordering and boundaries of occurrence of events which is required for the expression
of most of the properties that need to be verified at runtime. The most popular formal notation for
expressing security properties is Linear Temporal Logic (LTL) or extensions of it and languages
with similar expressive power such as Event Calculus.

Languages for expressing security properties
for dynamic verification

Languages for expressing all types of
properties for dynamic verification

Behaviour Monitoring Specification Language
(BMSL) and Extended finite state automata (EFSA) EAGLE and HAWK

EAGLE CSP-like specification

PE Grammar LTL and its extensions

ITL PEDL and MEDL

CTL (extended) AsmL

Security automata Event Calculus

Ponder Ponder

KAOS KAOS

Table 4.1 – Summary of formal languages used for dynamic verification

Some dynamic verification techniques reason about systems at both low and high level of
abstraction, such as Primitive Event Definition Language (PEDL) and Meta Event Definition
Language (MEDL) in Java Monitoring and Checking (JavaMaC) framework [157]. PEDL is used

SERENITY - 027587 Version 1.0 Page 39 of 126

A4.D1.1 – Review of the state of the art

for writing low-level specifications and is tightly related to the programming language, while
MEDL specification makes use of primitive events and conditions in order to state high-level
requirements.

4.1.2. Methods for Capturing Events
In the second stage of the general runtime verification process, the goal is to apply techniques so as
to capture the real behaviour of the system during its execution.

As shown in Figure 4.3, existing event emission methods can be divided into code modifying and
non code modifying ones. Code modifying event emission methods require direct access to the
source or binary code of a system in order to insert code statements that will generate the events of
interest. Code instrumentation is an example of a code modifying event emission method in which
event generation statements are inserted manually into the code of a system. Aspect Oriented
Programming (AOP) has also been used to generate events (through the weaving of aspects into
binary or source system code). AOP is a code modifying event emission method, which can be
considered as a subcategory of code instrumentation. Monitoring Oriented Programming [59] and
Design by Contract [178] are also code modifying event emission methods which can be regarded
as subcategories of Aspect Oriented Programming [140].

Non code modifying event emission methods generate events without altering the code of a system.
Such methods access, modify and/or take advantage of capabilities of the general computational
environment in which a system is executed, in order to generate the events flow. Reflective
middleware approaches [53, 54, 170], proxy-based architectures [30] and the use of application
programming interfaces (APIs) [166, 19, 46] constitute examples of event emission methods which
belong to this category.

SERENITY - 027587 Version 1.0 Page 40 of 126

A4.D1.1 – Review of the state of the art

Figure 4.3 – Taxonomy of Event Emission Methods

4.1.2.1 Code-Modifying Event Capture Methods

4.1.2.1.1 Code Instrumentation
The technique of code instrumentation can be described [204] as the insertion of statements into the
system’s code (source or binary code) for monitoring purposes. Instrumentation can be done
manually or automatically e.g. by using Jtrek-JSpy [102] or Joie [65] which automatically
instrument Java byte code. During the execution of the instrumented code, an event stream is
generated. The generated events can then be passed directly to external monitors or pre-processed
before they reach the verification stage.

A tool using code instrumentation for capturing events in Java-based systems is RMon [204]. In
Rmon, requirements are initially expressed in the KAOS framework [79], which provides a goal-
oriented formal specification language based on temporal logic. Requirements are thus specified as
high level goals which must be achieved by the system. These goals must then be mapped onto low-
level events which can be monitored at runtime. The system’s code is then instrumented in order to
capture these low level events, using the Joie framework [65].

In the initial phase of the Java MaC architecture [142], low-level specifications (written in PEDL)
are inserted into the byte code of the monitored program through an automatic instrumentation

SERENITY - 027587 Version 1.0 Page 41 of 126

A4.D1.1 – Review of the state of the art

procedure. Furthermore, in the MONID tool [187] system-level events are generated by
appropriately instrumented source code.

4.1.2.1.2 Aspect Oriented Programming
Aspect Oriented Programming (AOP) [140], also called Aspect Oriented Software Development
(AOSD), was proposed to support the advanced identification, illustration and separation of non-
functional concerns, which crosscut the system’s main functionality. Complex programs include
various crosscutting concerns (properties of interest such as QoS, energy consumption, fault
tolerance, and security). While object-oriented programming abstracts out commonalities among
classes in an inheritance tree, crosscutting concerns are scattered among different classes,
complicating the development and maintenance of applications. As depicted in Figure 4.4, AOP
enables the separation of crosscutting concerns during the development of the software.
Specifically, the code implementing crosscutting concerns of the system, called aspects, is
developed separately from other parts of the system. In AOP, locations in the program where aspect
code can be woven, called pointcuts, are typically identified during development. Later, for
example during compilation, an aspect weaver can be used to weave different aspects of the
program together so as to form a program with new behaviour. AOP proponents argue that
disentangling crosscutting concerns leads to simpler development, maintenance, and evolution of
software [140]. Examples of AOP approaches include AspectJ [141] and Hyper/J [232].

Figure 4.4 – Conceptual Representation of Aspect Weaving [140]

SERENITY - 027587 Version 1.0 Page 42 of 126

A4.D1.1 – Review of the state of the art

AOP supports dynamic re-composition in three major ways. First, most adaptations are relative to
some crosscutting concern, such as quality-of-service or fault tolerance. AOP enables the code
associated with these aspects to be written and managed independently of the application code as
well as other parts of the system, such as traditional middleware platforms. Such a separation is
needed in order to dynamically replace one instantiation of a particular solution for a concern with
another. Second, although compile-time aspect weaving produces a tangled executable that cannot
easily be reconfigured, delaying the weaving process until runtime provides a systematic way to
realize dynamic re-composition [246, 122]. Finally, if adaptability itself is considered as a “generic”
aspect [80, 253], then runtime weaving can be used to enhance the program with adaptive
behaviour, not necessarily anticipated during the original development (e.g. to tolerate newly
discovered faults or to detect and respond to new security attacks). This kind of upgrading is
especially important in situations where the application is required to run continuously and cannot
be easily halted for upgrade. However, the need of a formal aspect specification written in a
domain-specific knowledge language or using logic, rather than the host programming language
itself, is expressed in [59]. The mapping from specification to implementation, with the support of
automatic code generation can then be formally verified.

In particular, AspectJ [141] provides an approach to implementing cross-cutting features in Java.
AspectJ provides a pattern mechanism, called pointcuts, for capturing groups of events, called
joinpoints, that may occur during a program’s operation (such as method calls/receptions,
constructor calls, field accesses, and exception events). The pattern matching mechanism includes
regular expression matching, with wild-carding over fragments of method names, argument names,
types etc. Extra code, called advices, can be associated with pointcuts, and is inserted by the
AspectJ compiler into the join-points. Advices can inspect and modify data that are available at
joinpoint events (e.g. method-call arguments and return values), and can create new data
dynamically that is only shared with other advice.

For instance, Dingwall-Smith and Finkelstein [85] have developed an aspect oriented approach, in
which system providers specify instrumentation code in separate classes, and define composition
rules which determine how this code is to be merged with the application code, by using Hyper/J
[232]. Also, Baresi and Guinea [27] have proposed a framework for runtime monitoring of WS-
BPEL processes, in which monitoring rules are specified and weaved dynamically into the process
they belong to. Furthermore, the instrumentation module of the JpaX framework performs a script-
driven automated instrumentation of the program to be verified. The automated AOP environment
package, which is used in JPaX [116, 119], is JSpy [102].

4.1.2.1.3 Design by Contract
Design by Contract (DBC), as proposed by Meyer [178] for the object-oriented language Eiffel, is a
practical approach to runtime checking in applications. DBC is a lightweight formal technique,
which allows one to add semantic information to a program by specifying assertions regarding the
program's runtime state. Then, checks for specification violations are carried out at runtime. Such a
technique stresses the importance of explicitly specifying the constraints that hold before (pre-
conditions) and after a program is executed (post-conditions). The technique’s name refers to a
contract, which is made between the client and the supplier of a system module and defines
conditions before and after the execution of the module. Thus, for monitoring reasons the entry and
exit points of the module become the events that we want to observe.

SERENITY - 027587 Version 1.0 Page 43 of 126

A4.D1.1 – Review of the state of the art

In the context of the Eiffel object-oriented language, specifications of pre/post-conditions can be
associated with a class in the form of assertions and invariants. Subsequently, inserted
specifications can be compiled into monitoring code. In the Java language, there are two approaches
which are based on DBC. Jass [33] is a pre-compiler which turns the assertion comments into Java
code. Properties in Jass are called trace assertions and they specify permissible sequences of method
calls in a CSP-like notation. Thus, processes, parallelism, conditionals and data exchange among
processes can also be expressed. However, the trace assertions are interpreted loosely; no formal
semantics is provided. The Jass pre-compiler translates the trace assertions into runtime checks.

4.1.2.1.4 Monitoring Oriented Programming
Monitoring Oriented Programming (MoP) is a paradigm which combines a formal specification
with an implementation in order to form a system. In particular, it provides a light-weight formal
method for runtime specification checks against the behaviour of the implementation. By using
MoP, logical statements can be inserted anywhere in the program. These statements are simply
Boolean expressions which can refer to past and future states of the program. A MoP user can insert
such statements for different reasons e.g. to guide the system’s execution, terminate the program or
throw exceptions. Thus, MoP can increase the dependability of a system by monitoring its
requirements at runtime and controlling it at the same time.

In particular, the statements, which can be inserted as annotations into the code, can be divided into
three parts. The first part consists of a keyword defining the logic in which the rest of the inserted
statements are expressed in. The second part comprises the definitions of the predicates and the
formula to be monitored. Finally, user defined code which will be executed in case the monitored
formula is violated is included in the third part, called a violation handler.

The general MoP paradigm is language and specification formalism independent. According to
Chen and Rosu [59], a MoP environment should provide the capability of adding any logic
framework on top of any target programming language via logic plug-ins, which can be publicly
accessed. A logic plug-in consists of two modules, namely the logic engine and the target language
shell. Logic engines translate formulae into monitors, encoded in an abstract representation
(pseudocode). Then the language shell transforms the monitor pseudocode into the target language
code. Thus, the logic plug-in can be considered as the code generator of the monitor.

Moreover, a MoP environment allows users to specify whether the monitoring code will be
executed using the resources of the monitored program (internal monitor) or within a different
process (external monitor). In the first case, the inserted logic statements contain the monitor’s
specifications which are replaced by the generated monitoring code in the end. Note that internal
monitors, in general, cannot check for program deadlocks and unexpected terminations. In case that
a monitor is executed as a different process, the inserted statements are replaced by instrumentation
code which operates as an event generator. The user can specify whether the monitor should be
executed synchronously or asynchronously with the monitored system and whether it should be
executed on the same machine with the system or a different one.

4.1.2.2 Non Code Modifying Event Capture Methods

4.1.2.2.1 Reflective Middleware

SERENITY - 027587 Version 1.0 Page 44 of 126

A4.D1.1 – Review of the state of the art

Middleware technologies [94] have been designed to support the development of distributed
systems. Their success has been mainly due to their ability of making distribution transparent to
both users and software engineers, so that systems appear as single integrated computing facilities.
However, hiding the implementation details from the application completely is very difficult in a
mobile setting and not even always desirable, since mobile systems need to quickly detect and adapt
to changes in their environment. A new form of awareness is needed to allow application designers
to inspect the execution context and adapt the behaviour of the middleware accordingly.

Reflection and metadata can be successfully exploited to develop middleware targeted to mobile
settings. By using metadata, we separate the middleware in two parts: what the middleware does
and how the middleware does it. Reflection allows applications to inspect and adapt their metadata.
In this way, applications can influence the way their middleware behaves, according to their current
context of execution.

Capra, Emmerich and Mascolo [54] proposed a framework designed to ease the adaptation of
applications to changing execution conditions. The model considers different layers (operating
system, middleware, application, and user), each of which is described using metadata in order to
ease their interaction. When the application invokes a service, the middleware uses both the
application metadata and the metadata reflecting the current execution conditions to decide how to
offer the requested service. Applications can also ask the middleware to be notified when specific
execution conditions occur. This system allows for a fine adaptation of applications, but it requires
that service calls be coded explicitly in the applications. However, a complete transparency is not
possible if adaptation (which requires awareness) is desired.

XMIDDLE [170] is a middleware for mobile computing that focuses on the synchronization of
replicated XML documents. In order to enable application-driven conflict detection and resolution,
XMIDDLE supports the specification of conflict resolution policies through meta-data definitions
using an XML schema.

CARISMA [54] is a context-awareness based reflective middleware. It includes a reflective API,
which allows applications to dynamically inspect their current configuration and alter it to best suit
the current environment. CARISMA maintains a representation of the execution context by
interacting with the underlying network operating system. Based upon this representation, the
application may behave in different ways. For example, an application attempting to send messages
in low bandwidth availability may compress messages before emitting them, whereas it would send
them uncompressed when bandwidth availability is high. The behaviour of the middleware with
respect to the application is referred to as an application profile. There are two main aspects of an
application profile, services and policies. Services describe the services offered to the application
and which the middleware can customize. Policies describe the different variations in which the
services can be delivered. In the prior example, the service the application is using is sending
messages, and the different policies to deliver the service are sending either compressed or
uncompressed messages based upon the context environment (high or low bandwidth). In
CARISMA, each time a service is invoked, the middleware examines the application profile. Based
upon the context of the application, the middleware determines which policy is best suited for the
current context. This relieves the application of the burden of determining how to optimise its own
behaviour.

4.1.2.2.2 Proxy Architecture

SERENITY - 027587 Version 1.0 Page 45 of 126

A4.D1.1 – Review of the state of the art

A proxy module acts as an intermediate between the monitored system and its environment,
capturing their interaction and emitting the corresponding events. Thus, there is no need for code
recompiling, re-linking or any other sort of invasive instrumentation at all.

Figure 4.5 – A client-server architecture [30]

For component based programming, Barnett and Schulte [30] have proposed a framework which
uses executable interface specifications and a monitor to check for behavioural equivalence between
a component and its interface specification. Let us assume that a client–server architecture is used,
like the one illustrated in Figure 4.5.

Figure 4.6 – Proxy Architecture [30]

A component, P, which essentially operates as a proxy, is inserted between the client C and the
server S as shown in Figure 4.6. Using a proxy allows the interaction of the client C and the server
S to be observed without having to modify either component. P can be created automatically from
the definition of the interfaces, which C and S use in order to interact. The proxy forks all of the
calls made from C to S so that they are delivered to both S and the (AsmL specification based)
model, M, managing the concurrent execution of M and S. Then P compares the results from
components M and S. P checks at each interface whether the results agree in terms of their
success/failure codes as well as any return values. As long as, the results are the same, they are sent
to C. In any other case, S and M are deemed not to be behaviourally equivalent.

SERENITY - 027587 Version 1.0 Page 46 of 126

A4.D1.1 – Review of the state of the art

4.1.2.2.3 API-Based Event Capturing
In the last non code modifying event emission subcategory, one finds approaches which make use
of specific APIs for capturing and emitting events.

For instance, the Jnuke tool takes advantage of its virtual machine’s (VM) specific API in order to
observe the runtime behaviour of the monitored system. In particular, the event-based runtime
verification API of JNuke’s VM serves as a platform for various runtime algorithms. This API
provides access to events occurring during program execution. Event listeners can then query the
VM for detailed data about its internal state and thus implement any runtime verification algorithm,
including detection of high-level data races [18] or stale-value errors [17] - see 4.3.7 for more
details.

In the same family of event capturing methods is the prototype implementation of the specification
based intrusion detection system, proposed by Ko et al. [148], which takes advantage of audit trails
provided by the operating system. The prototype runs under the Solaris 2.4 operating system and
uses the auditing services of the Sun BSM audit subsystem. The BSM audit subsystem provides a
log of the activities that occur in the system. A BSM audit record contains information such as the
process ID and the user ID of the process involved, as well as, the path name and the permission
mode of the files being accessed. However, it does not contain information about the program the
process is running. Therefore, an audit record pre-processor is used to associate the program
identification with each audit record. The audit record pre-processor actually filters audit records
that are irrelevant to the monitoring system and translates the BSM audit records into the format
required by the monitoring system.

4.1.3. Checking for Violations
The third stage of dynamic verification is concerned with the checks that a monitor carries out to
identify whether the runtime behaviour of a system conforms to certain properties. According to the
taxonomy of Figure 4.2, the monitors with the most advanced capabilities are the "OC−pre−S"
monitors. This category describes monitors, which verify the system’s correct behaviour based on
events describing the system’s state before the execution of some action. The check is carried out
while the system is halted, waiting for the monitor’s reply. Once the monitor assures that the
monitored properties hold, it allows the system to continue with its normal execution. If however a
violation is reported, the monitor can force the system to execute some other action so as to remedy
the current violation.

4.1.3.1 Checks for Admission

A widely used type of runtime checks is the check for admission. In this check a monitor checks an
incoming request/application for admission, before actually honouring/executing it. In the following
we shall examine some of the solutions for performing admission checks.

4.1.3.1.1 Proof Carrying Code

SERENITY - 027587 Version 1.0 Page 47 of 126

A4.D1.1 – Review of the state of the art

Proof Carrying Code (PCC) [191] can be used to increase security in systems executing untrusted,
mobile code. With PCC, a program is supplied along with a proof of its correctness and this proof is
in a form which can be easily verified mechanically before the program’s execution. Therefore, it is
now the code producer’s responsibility to formally prove that the program will assure the safety
properties specified by the code consumer, honouring the security policy of the underlying
platform/system. Then, both the code and its proof are sent to the code consumer, where the safety
properties are verified. A safety predicate is also generated directly from the native code to ensure
that the accompanying proof does in fact correspond to the code sent. Once verified, the code can
execute without any further checking. Any attempts to tamper with either the code or the safety
proof result in a verification error.

The PCC binary life-cycle includes three stages:

⎯ Certification: During this stage, the code producer compiles and generates a proof for the
code, proving that the source program adheres to the safety policy of the code consumer.
The proof can be produced by theorem proving.

⎯ Verification: This stage is performed in the code consumer side. The code consumer verifies
the proof part of the PCC binary code. The verification is performed by a simple algorithm,
which is trusted by the consumer.

⎯ Execution: The code consumer can execute the code without any further run-time checks.

For expressing safety policies Necula [191] has used first-order predicate logic, extended with
predicates for type-safety and memory-safety. The untrusted code is in the form of machine code.
For relating machine code to specifications they used a form of Floyd's verification-condition
generator. Such a generator extracts the safety properties of a machine code program as a predicate
in first-order logic. This predicate must then be proved by the code producer using axioms and
inference rules supplied by the code consumer as part of the safety policy. For generating the safety
proof, a theorem prover can be used, in the code producer’s side.

Proof encoding can adequately be expressed using the Edinburgh Logical Framework (LF). LF is
general and can easily encode a wide variety of logics, including higher-order logics. Another
compact representation of proofs is a form of oracles, which guide a simple non-deterministic
theorem prover in verifying the existence of the proof. For validating proofs encoded in LF, an LF
type checker can be used. A non-deterministic logic interpreter can be used in the case that a proof
is encoded as an oracle.

Initial research has demonstrated the applicability of PCC for fine-grained memory safety and
shown the potential of it for other types of safety policies, such as controlling resource use.

PCC is based on principles from logic, type theory, and formal verification. There are, however,
some potentially difficult problems to be solved before the approach is considered practical. These
include a standard formalism for describing security policies, automated assistance for the
generation of proofs and techniques for limiting the potentially large size of proofs that in theory
can arise. In addition, the technique is tied to the hardware and operating environment of the code
consumer, which may limit its applicability.

Comparing PCC to signed code, PCC is a prevention technique, while code signing is an
authentication and identification technique used to deter the execution of unsafe code. Furthermore,
the proof is structured in such a way that simplifies its verification, since it must be carried out
efficiently without using any external assistance.

SERENITY - 027587 Version 1.0 Page 48 of 126

A4.D1.1 – Review of the state of the art

4.1.3.1.2 Signature Verification of Signed Code
Another technique for protecting a system, which is allowed to host mobile code, is by signing code
with a digital signature. Using digital signatures, one can confirm the authenticity of the code, its
origin, and its integrity. Typically the code signer is either the code producer or a trusted entity that
has reviewed the code. Especially in mobile agents systems, where an agent can operate on behalf
of an end-user or organization [231], the signature of an agent is used as an indication of the
authority under which the agent operates.

Code signing is tightly bound with public key cryptography, which relies on a pair of keys (private
and public) associated with an entity. One key is kept private by the entity and the other is made
publicly available. Digital signatures benefit greatly from the existence of a public key
infrastructure (PKI), since certificates containing the identity of an entity and its public key (i.e., a
public key certificate) can be readily located and verified. The code signer applies an irreversible
hash function to the code. The result of this function is a unique message digest of the code, which
the code producer encrypts with his private key, thus forming a digital signature of the code.
Because the message digest is unique, and thus bound to the code, the resulting signature also
serves as an integrity protection against any malicious code modifications. The produced signature
and the public key certificate can then be sent along with the code to the code consumer. The code
consumer can easily verify the source and authenticity of the code by using the same hash function
and the appropriate decrypting mechanism, which the code producer used to sign the code. If the
signature verification succeeds, the code consumer can execute the code.

Note that the meaning of a signature may be different depending on the policy associated with the
signature scheme and the party who signs. For example, the code producer, either an individual or
an organization, may use a digital signature to indicate who produced the code, but not to guarantee
that the code will be executed without faults.

Microsoft's Authenticode [106], enables Java applets or Active X controls to be signed, ensuring
consumers that the software has not been tampered with and that the identity of the code producer is
verified. Moreover, JDK 1.1 introduced the capability to digitally sign Java byte code (at least byte
code files placed in a Java archive, called a JAR file), which expanded more with Java 2 [172].
From a certificate authority perspective, VeriSign provided a solution which addressed signed code
issues for specific Netscape objects [243].

4.1.3.1.3 Model Carrying Code
Model Carrying Code (MCC) is an approach for supporting the safe execution of untrusted mobile
code [217]. The central idea of MCC is that the code producer sends the code along with a high-
level model, which describes the code’s security-relevant behaviour. It should be noted that the
generated model has to be usable by all code consumers. The automated model generation is based
on model extraction via machine learning from execution traces. In the consumer’s side, the model
is checked for compliance with the consumer’s security policy. If the security policy is satisfied, the
code can be executed. In case there are conflicts, the consumer’s policy can be refined, taking into
consideration the code’s functionality. When the code is executed, runtime verification methods are
used to guarantee that the consumer’s (refined) policy is not violated by the code (Figure 4.7).

By these means, the model bridges the semantic gap between the low-level binary code and the
high-level security policies of the consumer. Moreover, the code producer does not have to know
the consumer’s security policies (as in PCC). Assuming that a model can be much less complex

SERENITY - 027587 Version 1.0 Page 49 of 126

A4.D1.1 – Review of the state of the art

than the corresponding program, it is feasible for a consumer to automatically determine whether a
model conforms to his security policies.

Figure 4.7 – The Model-Carrying Code framework [217]

4.1.3.1.4 Java Virtual Machine Byte-Code Verifier
The basic Java Virtual Machine (JVM) security model provides the capability of carrying out
checks for admission for untrusted code, via a byte-code verifier [161]. In general the basic JVM
security model comprises three related parts, namely the byte-code verifier, the class loader and the
security manager. The JVM verifies all byte-code before execution.

The byte-code verifier reconstructs type information by inspecting the byte-code [255]. The types of
all parameters of all byte-code instructions must be checked. The JVM specification lists what must
be checked and what exceptions may result from a failed check. However, the JVM specification
does not define when and how type verification should be done. Thus, while the process of
verification in Java is defined to allow different implementations of the JVM, most Java
implementations take a similar approach to verification. The most common verification process
consists of byte-code checks on the class file itself and runtime checks, which confirm whether the
referenced classes, fields and methods are existing and compatible to their attempted use.

The byte-code checks establish a basic level of security guarantees. In particular, the class file
format is checked whether it is correct. This check is carried out with the class loader’s cooperation.
The code is also verified for the correct hierarchical structure of its classes. Thus, every class must
have a super-class, final classes cannot have subclasses, final methods cannot be overridden and all
field and method references in the constant pool (a heterogeneous array composed of five primitive
types) must have legal names and classes. Moreover, the byte-code is verified by using data-flow

SERENITY - 027587 Version 1.0 Page 50 of 126

A4.D1.1 – Review of the state of the art

analysis. By this means, it can be ensured that the operand stack can not be overflowed or
underflowed, variables are properly initialised, register access is checked for using the proper value
type, that method calls are done with the appropriate number and type of arguments, fields are
updated with the appropriate type and all opcodes have the proper type of arguments on the stack
and in the registers.

During the class execution runtime checks can occur, since some aspects of Java's type system
cannot be statically checked, like dynamic linking. Java loads each class only when it is actually
needed at runtime (dynamic linking). Thus, whenever an instruction calls a method, or modifies a
field, the runtime checks ensure that the method or field exists, type-checks the call and checks that
the executing method has the appropriate access privileges.

4.1.3.2 Post-Mortem Checks

Monitors which can only observe the runtime behaviour of a system (“O, pre, A” and “O, post, A”)
perform post-mortem checks. Post-mortem checks deal with properties which might not be of high
importance. Proposed monitoring architectures for this category of monitors, like AMOS [64] and
FLEA [95] maintain event logs and offer proprietary event pattern specification languages, or store
events in relational databases and deploy standard SQL querying for detecting requirement
violations [205].

4.2. Monitoring in Tuplespace-based Systems
Coordination models and languages aims to keep separate the description of the internal behaviour
of the entities in a system from the description of their interaction.

In tuple-based (data-driven) coordination models client processes communicate and coordinate their
activities by exchanging tuples of data via shared spaces (tuplespaces) [321].

The two key features of the tuple-based communication model are:

⎯ time uncoupling: entities don’t need to synchronize in order to communicate: once a tuple is
written into the space it can be read at any later time (the lifetime of sender and receiver
don’t have to overlap).

⎯ space uncoupling: entities don’t need to know each other identity/address: tuple-based
communication does not require sharing of naming conventions (independence from a
shared addressing space) (tuples are independent of their producer). In tuple-based
communication is associative in the sense that shared information is accessed by its
attributes rather than names or address. Moreover a reader process needs to provide only a
partial description (template) of the tuple to be retrieved.

The above features make the tuple-based coordination model appealing for Open Computing
Environments, like the Internet and ad-hoc networks, where communicating entities can leave and
join the network at will and more in general, where not all cooperating entities are known at design
time.

Indeed in the context of Tuplespace-based Systems run-time monitoring has been proposed mainly
as a strategy for:

⎯ resource management;

SERENITY - 027587 Version 1.0 Page 51 of 126

A4.D1.1 – Review of the state of the art

⎯ policy enforcement.

Before proceeding with the review of the approaches to run-time monitoring in the context of
Tuplespace-based Systems the next paragraph introduce the key security issues for the e-based
communication model and some of the solutions proposed in the literature. These approaches make
extensive use of cryptographic techniques. The subsequent two paragraphs present the use of run-
time monitoring for resource management and policy enforcement respectively.

Security issues in the tuple-based communication model

The key features that make tuplespaces an appealing coordination model become main security
concerns in the context of Open Computing Environments. Since any entity is allowed to perform
insertion, read and removal of tuples, a malicious or buggy entity can corrupt the integrity of data
structures shared via a tuple space [262]:

⎯ an entity can add an unbounded number of tuples (potential Denial of Service attack);

⎯ an entity can remove all tuples matching a given template (potential corruption of data
attack);

⎯ it not possible to authenticate neither the producer nor the receiver of a tuple (potential
disclosure of confidential information);

In recent years different proposal have been made to add security mechanisms to the original tuple-
based communication model [263].

One of the first approaches proposed to enforce secure share of tuplespaces has been to join the use
of multiple tuplespace (federated tuplespaces) with access control mechanisms such as password
control. Following this approach multiple tuplespaces exist into the system each devoted to support
communication between a groups of components (domain). In this kind of systems the security
mechanisms in place have the granularity of the tuplespaces: in order to access the content of a
tuplespace the client process must first get the access rights; once a client process gain access to a
tuplespace it has full access on the content of the tuplespace.

The main limitation of password-controlled domains is that it assumes that tuples can be partitioned
in domains. For some applications tuples must be visible in different domains, i.e. domain can
overlap.

Moreover for some kind of applications its is required that some processes are able to access a tuple
without accessing the value of the fields of the tuple: as an example a garbage collector process
must remove garbage tuples without accessing the content of the filed since a buggy or malicious
garbage collector could disclose confidential information.

Due to the limitations of the coarse-grain access control mechanism at the level of tuplespace more
sophisticated access has been proposed in the literature.

In order to overcome the limitations of solutions dealing with the granularity of tuplespaces more
recent works propose a data-driven approach to access control: the access to a tuple or one of its
fields, is granted if the client process is able to proof it has knowledge of some data stored in the
tuple.

In the SecSpaces model [262] the granularity of the access control is the tuple. Each tuple is
annotated with a couple of control fields for each input operation (in and rd): partition key and
asymmetric key.

SERENITY - 027587 Version 1.0 Page 52 of 126

A4.D1.1 – Review of the state of the art

SecSpaces extends the standard matching rule. The new matching rule uses the control fields for
controlling the access to the tuples. In order to access a tuple a client process must provide, along
with the template, a partition key and an asymmetric key. A tuple is returned if two additional
matches occur with respect to the access operation:

⎯ the partition key of the template matches the partition key of the tuple;

⎯ the asymmetric key of the template corresponds to the co-key of the asymmetric key of the
tuple.

The paper shows how the models can be used to support distributed session sharing and message
brokering.

In SecOS [264] the granularity for the access control mechanisms is the fields: a client process can
access a field if and only if it possesses the access key for that field. The SecOS model define two
kind of keys:

⎯ symmetric keys: that both lock and unlock fields;

⎯ asymmetric keys: that belong to an asymmetric key pair (fields are locked with one key and
unlocked with the other).

Indeed the SecOS model is quite different with respect to the standard tuplescapce model. First it
the tuple model: tuple are unordered sequences of locked fields having the form (label:value). The
pourpose of this redefinition is twofold. First labels are used to filter tuples during matching.
Second labels are used as key to provide security in field access. redefines the standard matching
rule for tuplespaces. According to the SecOS a tuple matches a template if each field of the template
matches one field of the tuple. More specifically two fields match:

⎯ If they have been locked with compatible keys. Symmetric keys are compatible if they are
equals; asymmetric keys matches if they belong to the same key pair;

⎯ If their values are equal or the template’s value is the wildcard matching any value.

It has to be noted that the SecOS matching rule entails a concept of subsuption that is not present in
the original tuplespace model.

The KLAVA system [261] is a middleware with cryptographic primitives to enable encryption and
decryption of tuple fields. The work is inspired by SecOS but has different main concerns leading to
some key difference:

⎯ Conformance to original tuplespace model: hence KLAVA does not support subsumption as
SecOS does;

⎯ Code mobility: hence KLAVA imposes additional restriction on the coordination model.

In particular the code mobility explicit encryption and decryption and two stage pattern matching.

[263] propose a reference architecture for secure coordination of tuplespace client processes. The
main components of the architecture are:

⎯ a reference monitor: is a component intercepting all access to the tuples and verifying that
each access is allowed by the security policy;

⎯ security policy: is a set of rules specifying how information has to be accessed;

The paper focus on authentication and authorization requirements for tuple-based systems:

User of a tuple-space must authenticate to a protocol authentication process (PAP)

SERENITY - 027587 Version 1.0 Page 53 of 126

A4.D1.1 – Review of the state of the art

Other approaches propose to follow a strategy based on run-time monitoring.

4.2.1. Monitoring for resource management
4.2.1.1 LIGIA

The LIGIA system [284] uses run-time monitoring to manage garbage collection of tuplespaces.
The LIGIA system allows client processes to create at run time new tuplespaces. In order to decide
whether a given tuplespace is still required or not the system uses the concepts of process
registration and tuple monitoring.

Process registration enables the LIGIA kernel to establish which process is executing a given
instruction.

By means of tuple monitoring the system analyses the contents of the tuples being passed between
registered processes. The analysis let the LIGIA kernel to keep up to date an internal graph structure
representing the acquaintance relationship between processes and tuplespaces. The garbage
collection of tuple spaces is driven by such a graph structure.

4.2.1.2 JavaSpaces Leases

The JavaSpace leasing mechanism give to JavaSpace compliant servers [280] a means to decide
when discards tuples (named Entries in the context of the JavaSpace specifications).

When a client process writes a tuple into a space it must specify the amount of time for which the
server should guarantee the tuple will reside into the tuplespace. The actual amount of leased time is
established by the server according to available resources and returned to the client process as
return parameter of a write operation.

JavaSpace compliant servers monitor their space in order to establish when discard tuples residing
into the space.

A client process that wrote a tuple may renew or cancel the corresponding lease before lease
expires.

4.2.2. Monitoring for policy enforcement
4.2.2.1 Law-Governed Interaction

The Moses toolkit [320] is a toolkit for developing tuplespace based systems. The toolkit has been
applied to T-Space system and BinProlog implementation of the Linda coordination model.

The main objective of Moses is to enable enforcement of security policies by exploiting the concept
of Law-Governed Interaction (LGI).

Within the Moses toolkit there is a controller monitoring the messages exchanged between
components in the system. There are controllers both for client processes and tuplespace servers.
Controller are placed between each components and the communication media. Each controller has
the goal to enforce locally the laws of the coordination policy valid for the system.

A coordination policy is described by a four-tuple having the following components:

5. A set M of messages;

SERENITY - 027587 Version 1.0 Page 54 of 126

A4.D1.1 – Review of the state of the art

6. An group G of heterogeneous agents that can change their membership;

7. A mutable set of Control Sets (one for each agent in the group G); a control set is a
collection of properties;

8. A law L; where L is a collection of rules having the form event->[op1,…,opn] where opk are
primitive operations on control states and messages;

Each time a message is sent or received by the agent monitored by a controller, an event is raised
within the controller itself and the controller evaluates the matching rules. The controllers evalute
the rules sequentially in chronological order: the rules matching a new event are evaluated only
when all rules matching the previous one have been evaluated.

4.2.2.2 JavaSpace Distributed Events

The JavaSpace Distributed Events enable JavaSpace clients to monitor at run time the content of a
JavaSpace.

The JavaSpace technology incorporates the Jini Distributed Event model that makes possible to
pass events across different Java Virtual Machines.

The JavaSpace Distributed Events model let a JavaSpace client process to register in a JavaSpace
server its interest in the arrival of entries matching a specific template. When a new entry arrives the
server notifies the event to all interested processes by remotely invoking a notify method of the
registered process. It has to be noted that the invocation of the notify method is synchronous and
hence during its execution neither other server activities nor the notify method of other clients are in
execution.

4.2.2.3 LIME

The LIME [324] system extends the traditional tuplespace model to support the development of
mobile applications. The LIME model aims to support both host mobility and code mobility.

The LIME coordination model introduces the concept of transiently shared tuple space. A
transiently shared tuple space result form the aggregation of different tuplespaces. More in detail in
the LIME model each client process has access to a permanently associated tuplespace (Interface
Tuple Space) that is transferred along with the process across different hosts. The process access the
content of the Tuple Space by means of the standard tuplespace operations (out, in and rd).

An Interface Tuple Space (ITS) makes visible to its process the content of all other ITSs located in
the same host: each time a process move to a new host the content of its ITS is re-computed and the
tuples residing on the ITS of the other co-located processes are made visible to the process. When a
process move to a new host the content of all ITSs hosted in the same node is recomputed as well.

The ITS make visible also the content of the ITSs accessible across the network: each time a new
host becomes visible in the network the ITS are synchronized. It is important to note here that in
order to minimize data transfer the LIME model extends the standard tuplespace model with the
notion of location: each time a process performs an out operation it specifies the intended location
(i.e. ITS) for the produced tuple. The LIME kernel continuously monitors the network to detect if
the intended ITS is in the reach: as soon as it becomes visible the tuple is transferred to the target
ITS.

SERENITY - 027587 Version 1.0 Page 55 of 126

A4.D1.1 – Review of the state of the art

A part internal monitoring to support transiently tuple space the LIME system also has monitoring
mechanisms to support reactive programming: client processes can register its interest in executing
a non-reactive statement (reaction) as soon a tuple matching a given pattern is made visible through
its ITS.

Each time a new tuple appears in the ITS where the reaction is registered the LIME kernel selects
non-deterministically a matching reaction to execute. Once the execution of the reaction has
completed the kernel goes on selecting and executing another matching reaction until no other
matching reaction exists.

In order to avoid the need of a distributed transaction for each tuple space operation the LIME
model offer also the possibility to register asynchronous reactions. An asynchronous reaction is not
executed when a matching tuple is produced but in a later moment. The model guarantees that
eventually the reaction will be executed.

4.2.2.4 Reactive Tuple Spaces

System relying on the concept of Reactive Tuple Spaces [265] aims to overcome the luck of
flexibility of built-in associative mechanisms.

Although tuplespace coordination model offers advantages in term of both time and space
uncoupling, the associative mechanism for tuple retrieval is fixed into the tuplespace server.

The drawback is that the coordination policies not directly supported by the tuplespace must be
coded into the client process leading to break the separation of the description of the internal
behaviour and coordination aspect.

In reactive tuple spaces models a tuple space is not just a repository of messages but indeed it is
extended with the capacity to react to operations on the tuplespace: the tuple spaces can be
programmed with the action to be undertaken in reaction of operations.

During their activity the tuplespace servers monitor the requests coming from client processes and
apply the programmed reaction.

Systems relying on Reactive Tuple Spaces differs mainly on the data model and programming
paradigm for the specification of reactions: in the MARS system [265] tuples are objects and
reactions are programmed using an imperative language; in TuCSoN [287] tuples are standard
tuples and reactions are programmed by means of a language based on first order logic.

4.3. General Purpose Dynamic Verification Tools

4.3.1. The Java PathExplorer (JPaX) framework
The Java PathExplorer (JPaX) is a tool for monitoring systems at their runtime [116, 119]. By using
JPaX one can automatically instrument code and observe the system’s runtime behavior. It can be
used during development to provide more robust verification. It can also be used in an operational
setting, to help optimize & maintain systems as they mature. Figure 4.8 illustrates an overview of
JPaX architecture.

SERENITY - 027587 Version 1.0 Page 56 of 126

A4.D1.1 – Review of the state of the art

Figure 4.8 – The JPaX architecture [119]

JPaX consists of three modules:

1. Instrumentation module: It performs a script-driven automated instrumentation of the
program to be verified, through which the byte-code is automatically instrumented.

2. Interconnection module: Its responsibility is to receive events about potential errors and
transmit them to the observer module.

3. Observer module: It performs two kinds of verification:

• Checks events against a user-provided requirement specification written in Maude, a
formal, modularized specification and verification language. JPaX supports linear
temporal logic (LTL), for both future and past time. Future time LTL uses execution
traces as an underlying model making it convenient for program monitoring. Past time is
useful for verification of safety properties.

• Carries out error pattern analysis by exploring an execution trace and detecting potential
problems such as error-prone programming techniques, e.g. locking practices that may
lead to data races and/or deadlocks. The important and appealing capability of the error
pattern analysis algorithms is that they can find potential errors, even in the case where
errors do not explicitly occur in the examined execution trace. However, error pattern
analysis may sometimes find errors which cannot exist. Two algorithms focusing on
concurrency errors are implemented for JPaX:

SERENITY - 027587 Version 1.0 Page 57 of 126

A4.D1.1 – Review of the state of the art

i. The “Eraser” data race analysis algorithm. A data race occurs when two or
more concurrent threads access a shared variable simultaneously without any
locking mechanism and at least one thread intends to write in the variable.
The “Eraser” keeps track of thread locks and variables to find data race
conditions.

ii. Deadlock analysis algorithm. Deadlocks occur when multiple threads take
locks in different order. For example, a deadlock condition occurs when:

! Thread A acquires Lock 1 while Thread B acquires Lock 2

! Thread A retains Lock 1 and asks for Lock 2 while Thread B retains Lock 2
and asks for Lock 1

JPaX monitors locks during program execution to find potential deadlocks.

Using JPaX, a Java program byte-code is automatically instrumented using instructions from a user-
provided script. This script defines what kind of error pattern detection algorithms should be
activated and what kind of logic-based monitoring should be performed. The automated
instrumentation tool, which is used in JPaX, is JSpy [102]. JSpy can be seen as an Aspect Oriented
Programming tool in the sense that it is guided by rules, or aspects, which specify how a program
should be transformed to achieve additional functionality. However, the main purpose of these
aspects is to extract information from a running program. JSpy itself is built on top of the low-level
JTrek instrumentation package [66].

As aforementioned, JPaX makes use of the Maude system [63]. Maude is a specification and
verification system which supports rewriting logic. Rewriting logic is appropriate for expressing
concurrent changes, which can naturally deal with state and with concurrent computations.
Therefore, rewriting logic can be used like a universal logic, due to the fact that the syntax and
operational semantics of other logics (such as temporal logics) can be expressed in rewriting logic.

The Maude rewriting engine can be used as:

⎯ A monitoring engine during program execution. In JPaX, execution events are submitted to
the Maude program that evaluates them against the requirements specification.

⎯ Translation engine before execution. In JPaX, the specification is translated into a data
structure optimised for program monitoring. This data structure is then used within the Java
program to check the events at runtime.

JPaX produces either no output (when no errors are found) or a set of warnings. The warnings deal
not only with runtime violations of high-level requirements written in temporal logic formulae but
also with low-level error-detection procedures like concurrency related problems such as deadlock
and data race algorithms.

The JPaX Java instrumentation module can be replaced with a C++ module to monitor C++ code.
Experiments were conducted by the NASA Ames Robotic group on C++ code to check for
deadlocks. JPaX located a potential deadlock that had not been previously detected during other
testing [42].

To conclude, JPaX can also find potential errors, even in the case where errors do not explicitly
occur in the examined execution trace. However, its logic-based monitoring adds an overhead to the
normal execution of programs. Moreover, its error pattern runtime analysis can detect problems that
do not really exist (called false positives).

SERENITY - 027587 Version 1.0 Page 58 of 126

A4.D1.1 – Review of the state of the art

4.3.2. The Java Monitoring and Controlling Framework
The Java Monitoring and Controlling (Java-MaC) framework uses formally specified properties to
monitor Java programs at runtime [142]. Its architecture is shown in Figure 4.9. It can be divided in
two main parts: the static phase (before a monitored entity runs) and the runtime phase (while the
monitored entity is executing). During the static phase, the runtime modules, namely a filter (event
generator), an event recognizer (event processing module), and a run-time checker (external
monitor), are automatically generated from a formal requirements specification. During the runtime
phase, events from the execution of the monitored program are collected and checked against the
given requirements specifications.

The static phase of the Java-MaC architecture starts with a formal requirements specification, which
is written in both high-level and low-level specifications. Java-MaC makes use of two event-based
formal languages, the Primitive and the Meta Event Definition Languages (PEDL and MEDL),
which are used for writing low and high level specifications respectively. PEDL is tightly related to
the programming language. Specifications written in PEDL contain the definitions of primitive
events and conditions expressed using these events. Such definitions are given in terms of program
entities such as program variables and program methods and their purpose is to assign meanings to
the program entities. MEDL specifications consist of required safety properties. Primitive events
and conditions are used to express these safety properties. Intuitively, a condition is a state predicate
and an event is an instantaneous state change. The reporting capabilities of the runtime checker are
described in the MEDL specifications, as well. MEDL uses alarms to express a violation of a
property. An alarm is an event that should not occur during an execution. If an alarm fires during an
execution, then a user notification is issued.

Once the specifications are written, the next step is the generation of the runtime modules. Low-
level specifications generate a filter that is inserted into the byte-code of the monitored program
using an automatic instrumentation procedure. An event recognizer is also generated automatically
by translating the PEDL specification. Similarly, a runtime checker is generated automatically from
the higher-level MEDL specification.

SERENITY - 027587 Version 1.0 Page 59 of 126

A4.D1.1 – Review of the state of the art

Figure 4.9 – The Java-MaC architecture [142]

During the runtime phase, the instrumented program is been monitored and checked against the
requirements specification. Filter keep track of changes of monitored objects and send relevant
information about the execution trace to the event recogniser. The event recognizer detects events
from the state information received by the filter. An event can be either a primitive event (such as a
method call) or a change in the state of a condition. Recognized events are sent to the run-time
checker, which determines whether or not the current execution trace satisfies the requirements
specification and raises an alarm if a violation is detected.

4.3.3. The Java Monitoring-Oriented Programming Framework
Chen and Rosu [60] proposed a development and analysis framework for Java, the Java
Monitoring-Oriented Programming (Java-MoP). Java-MoP follows the MOP paradigm and thus
monitoring is one of its fundamental principles. It also provides the capability of recovering from
errors (specification violations) at runtime.

According to its proposed distributed architecture, annotations formally describing requirements on
past, current and future states, have first to be inserted into the monitored Java source code, in the
client side. Java annotation processors send these annotations to the appropriate logic plug-ins,
which reside at the server side. Essentially, each of the logic plug-ins implements an algorithm for
synthesising monitoring code for a specific formalism. Logic plug-ins, which have already been
implemented, support past and future time variants of temporal logics, as well as, extended regular
expressions. Furthermore, Jass [184] and JML [154] annotations can be used. These specific
annotations do not require a special logic plug-in, only a Java shell to transform them into Java
executable code.

SERENITY - 027587 Version 1.0 Page 60 of 126

A4.D1.1 – Review of the state of the art

Once the annotations have been transformed into Java executable code at the server side, they are
sent to the client side. Java assertion processors integrate the received code in the system, according
to the configuration attributes of the monitor. In addition, the client side modules are also
responsible for the system’s code instrumentation for emitting events, in case of an external
monitor. In this Java-MoP implementation, AspectJ [141] is used as the instrumentation
mechanism.

The checks, which can be carried out by using Java-MoP, depend on the monitoring properties.
Thus, a monitor implemented in Java-MoP can check for class invariants at every change of class
state or for method pre/post-conditions. Also, a monitor can be configured to halt the program’s
execution while it carries out specific checks which deal with critical properties (synchronised
keyword). In case that a non-critical property must be checked, a monitor’s reply may not be
important, so the system keeps running during the check (asynchronised keyword).

MOP allows one to control the execution of a monitored program. By allowing users to specify
handlers for the violation or validation of monitored properties, Java-MoP can support the runtime
control and recovery of a monitored Java program. These handlers can either simply report errors
and throw exceptions or take more complicated actions, like resetting states and performing
alternative, error-correcting computations.

4.3.4. The Jassda Framework
An alternative to the Jass [33] approach, called Jassda [45], checks assertions on traces by
observing the events generated for debuggers through the Java Debug Interface (JDI). An obvious
shortcoming of this alternative is that the monitored program must be running in the debugging
mode.

The Jassda tool allows the dynamic verification of a system written in Java against a CSP-like
specification. The events from the monitored system are obtained through a general event extraction
and dispatching facility, the Jassda framework [45]. This framework can also be used for other
purposes, e.g., to log events or to stimulate a program for testing purposes.

SERENITY - 027587 Version 1.0 Page 61 of 126

A4.D1.1 – Review of the state of the art

Figure 4.10 – The of Jassda architecture [45]

The architecture of the Jassda framework is shown in Figure 4.10. At the lowest level JVMs execute
the monitored system’s code (debuggees). These debuggees are connected to the Broker, which is
the central component of the Jassda framework. The “Registry” database, an optional graphical user
interface and the Broker build the Jassda core. Other Jassda modules connect to this core requesting
and consuming events. The connection between the debuggees and the Jassda core transports the
events that we want to observe. This connection is established by using the Java Platform Debugger
Architecture (JPDA). The Jassda tool development aimed to achieve a method for monitoring Java
programs which would be as less code intrusive as possible. The Java Debug Interface (JDI) [228]
was used for this purpose.

During runtime the debuggees can be configured to generate events for several situations, e.g. a
method has started or terminated, an exception has occurred, a breakpoint is reached, a class is
loaded/unloaded, read/write access to a variable, a thread was started/stopped. After having emitted
an event, the debugging VM can be configured to suspend execution and thus allow a deep view
into the VM. For example, for each currently running thread its stack trace can be analyzed or for
each class its inner structure (like super-classes and implemented interfaces) can be read. Even the
byte-code of every method can be accessed for further analysis.

The Logger module logs the execution of a Java system by writing its sequence of events into a file.
The amount of information that can be derived from an event as well as the alphabet of events can
be configured by an XML-based configuration file. The most important event listening module is
the Jassda Trace–Checker. The Trace–Checker reads one or more trace specifications written in
CSPJassda and builds an internal process representation for the set of legal traces. With every
received event the Trace–Checker will ensure that this actual sequence of events is a legal trace of
the specification’s process representation or stop the program and inform the user of the
specification violation.

SERENITY - 027587 Version 1.0 Page 62 of 126

A4.D1.1 – Review of the state of the art

4.3.5. The Temporal Rover Toolset
The Temporal Rover [88] is a commercial toolset, which performs dynamic verification of temporal
properties over programs written in Java, C, C++, VHDL, Verilog, and ADA. This is achieved by
adding extra LTL/MTL assertions to the program source code. These assertions are embedded as
comments into the source code. The Temporal Rover parser converts program files into new files,
which are identical to the original files except for the assertions that are now implemented in source
code.

The Temporal Rover adopts a coarse-grained view of the state model. A state constitutes the values
of variables within the scope of a given method. Method execution is viewed as an event that causes
transition between states, and properties are evaluated only at the completion of a method
execution. Clearly, it misses invalid states that may occur during the execution of a method.
Properties are written inside methods and predicates map to the variables within the scope of the
method. Consequently, each property has a unique perspective of the environment that it is
validating and properties may not be composed. For example, even though one would imagine that
two contradicting properties could be composed and reduced to “false”, this is not the case under
the Temporal Rover’s state model. A property’s notion of time refers to the next execution of the
method containing it. Two properties may therefore carry different semantics for the next-state
operator. Another limitation of Temporal Rover is that under its state model one can not reason
about control intensive properties such as method x must never execute after method y. The
DBRover is a distributed-monitor version of the Temporal Rover where assertions are monitored on
a remote machine, using HTTP, sockets or serial communication with the underlying target
application.

4.3.6. The Java PathFinder (JPF) Framework
Java PathFinder (JPF) [245] is a model checker for Java byte code. More specifically, it is a
specialized Java Virtual Machine (JVMJPF), which runs on top of the underlying host JVM. In
contrast to the standard JVM, JVMJPF executes the program in all possible ways. The state space of
a program is thus the resulting computational tree, whose branches are determined by the threads’
instructions and possible values of input data. JPF supports depth-first, breadth-first as well as
heuristic search strategies to guide the model checker’s search in cases where the state explosion
problem is too severe [108]. JPF contains no mechanism of its own to specify user-defined
properties, but rather integrates with the Bandera toolset [69] and accepts the Bandera Specification
Language (BSL) [68]. Even though JPF carries an elaborate state model (being able to capture
every state of the JVM), temporal property specification is limited to the capabilities of BSL. Figure
4.11 depicts the JPF architecture.

Like other model checkers for concurrent programs, JPF supports the partial order reduction (POR)
[62]. The purpose of this technique is to lower the state space size via including in the state space
only one interleaving of instructions that are both independent and executed by different threads.
The consequence is that JPF actually traverses a reduced state space where each state is associated
with one of the following events (“points”) in the byte code execution:

(a) Scheduling point: The current instruction is thread scheduling relevant (e.g. it accesses a shared
variable, starts/stops a thread, blocks a thread, etc.)

(b) Value point: A value selection takes place.

SERENITY - 027587 Version 1.0 Page 63 of 126

A4.D1.1 – Review of the state of the art

(Dotted lines indicate iterative analysis)

Figure 4.11 – The JPF Architecture [245]

In order to check a code unit (e.g. a method) for different values of input data, JPF contains a static
class Verify which provides methods for a systematic selection of values of virtually any type. The
methods of Verify are to be called in the checked code. For example, if the checked code unit
executes Verify.random(3), an integer value from the range 0..3 is selected. However, after reaching
an end state, JPF backtracks up to the Verify.random(3) call and selects another value from 0..3;
this is repeated until all the values from this interval have been used for execution. By employing
methods of Verify the state space size increases since each selected value creates a different branch
in the state space.

By default, JPF searches the state space of the checked program for “low-level” properties like
deadlocks, unhandled exceptions and failed assertions. However it is extensible via the
publisher/listener pattern and as such it allows for observing more general properties. Since Java
code assertions must always hold, temporal properties specified outside of BSL can be checked as
well. This way, listeners can check for specific state-based properties.

Each state of a checked program in JPF consists of the heap, static area and stacks of all threads.
When traversing the state space, JPF checks whether the current state has already been visited. If
this is so, it backtracks to the nearest scheduling/value point, for which there exists an unexplored
branch and continues along that. This backtracking is based on keeping a stack representing the
currently explored path in the state space (an item in the stack determines the list of yet unvisited
branches).

The Bandera toolset [114] is a collection of program analysis, transformation, and visualization
components designed to allow experimentation with model-checking of Java programs. Bandera
takes as input a Java source code and a program specification written in Bandera’s temporal

SERENITY - 027587 Version 1.0 Page 64 of 126

A4.D1.1 – Review of the state of the art

Specification Language (BSL), and produces a program model and a specification as input to
model-checking applications, like Spin [124] and Java PathFinder [245]. Then, Bandera uses the
corresponding model-checker to prove whether the model satisfies the required specification (i.e.
whether the Java program satisfies the BSL specification). If the specification is not satisfied, then a
counter example trace is returned. Bandera uses this to show the problematic execution path directly
in the original Java code. Bandera deals with the state explosion problem and the fact that the
program state models must be finite by providing data abstraction and program slicing methods
when customizing the model. These features help produce a much smaller finite state model of the
Java program.

In particular, Bandera consists of five major components:

⎯ Property specification is supported in Bandera through the use of global properties (e.g.,
deadlock) and application specific properties (e.g., assertions and temporal logic formulas).
Users define observations of the execution state of a Java program, as predicates over
program locations and data values in the program. Assertions and temporal formulas are
then defined in terms of those observations.

⎯ Program slicer: Automates the elimination of program components that are irrelevant for the
property under analysis. Slicing criteria are automatically extracted from the observable
predicates that are referenced in the property. Bandera’s Java slicer treats multi-threaded
programs [115] and is based on calculation of the program’s data dependence graph.

⎯ Program abstraction which can be summarized as: (i) definition of an abstraction mapping,
which is appropriate for the property being verified, (ii) use of the abstraction mapping to
transform the temporal property into an abstract property, (iii) use of the abstraction
mapping to transform the concrete program into an abstract program, (iv) checking whether
the abstract program satisfies the abstract property, (v) reasoning about the satisfaction of
the concrete property by the concrete program.

⎯ Verification code generator: Transforms the sliced, abstracted program into the input format
of a selected model checker. This component is also responsible for establishing the
correspondence between the states of the produced model and the states of the original
program.

⎯ Counter-example interpreter: Involves the mapping of low-level, verifier-specific counter-
examples back to the Java source code. Facilities for navigating through the counter-
example and displaying the values of both stack and heap allocated data are provided
through a debugger-like interface.

4.3.7. The JNuke tool
JNuke is a framework for static and dynamic analysis of Java programs [16, 19]. It was originally
designed for dynamic analysis, including explicit-state software model checking and runtime
verification.

JNuke’s virtual machine (VM) is the core element of the framework. For generic runtime
verification, the engine executes only the program once according to a given scheduling algorithm.
The VM API allows for event-based runtime verification through various runtime algorithms. This
API provides access to events occurring during the program execution. Event listeners can, then,

SERENITY - 027587 Version 1.0 Page 65 of 126

A4.D1.1 – Review of the state of the art

query the VM for detailed data about its internal state and thus implement any runtime verification
algorithm, including detection of high-level data races [18] and stale-value errors [17].

Before the execution of the monitored program, the class loader transforms the Java byte code into
a simplified form containing only 27 instructions, which is then transformed into a register-based
version [16]. Execution of the program generates an event trace. During execution, the runtime
verification API allows event listeners to capture this event trace. These listeners are used to
implement scheduling policies and runtime verification algorithms, like Eraser [213] and detection
of high-level data races [18]. The verification algorithm is responsible to copy data it needs for later
investigation, as the VM is not directly affected by the listeners and thus may choose to free data
not used anymore. Figure 4.12 presents an overview of the JNuke VM and how a runtime
verification algorithm can be executed by using callback functions in the VM.

Figure 4.12 – Runtime verification in JNuke [16]

JNuke was expanded with static analysis capabilities at a later stage. Static analysis is usually faster
than dynamic analysis but less precise, approximating the set of possible program states. In static
analysis, iterations over these approximated states are carried out until a fix point of them is
computed [72]. Properties checked with static analysis require summary information of dependent
methods or modules. Figure 4.13 illustrates the separate classical approaches to dynamic and static
analysis.

On the other hand, dynamic analysis examines properties against an event trace originating from a
program execution. By using a free data flow analysis graph [182] static analysis can work similarly
to the dynamic execution. Analysis algorithms based on such a graph can allow for non-
deterministic control-flow and use sets of states rather than single states in its abstract interpretation
[16]. Moreover, in such a graph data locality is improved because an entire path of computation is
followed as long as valid new successor states are discovered. Thus, all Java methods can be
executed, allowing for a generic analysis algorithm to be executed under both static and dynamic
analyses. The chosen analysis algorithm runs until an abortion criterion is met or the full abstract
state space is exhausted.

SERENITY - 027587 Version 1.0 Page 66 of 126

A4.D1.1 – Review of the state of the art

Figure 4.13 – : Classical approach to dynamic & static analysis [16]

Figure 4.14 – Generic analysis for both a static & dynamic environment [16]

A generic analysis represents a single program state or a set of program states at a single program
location. It also includes a number of event handlers, which model the semantics of byte code
operations. Both static analysis and runtime analysis trigger an intermediate layer, which evaluates
the events. The environment hides its actual nature (static or dynamic) from the generic algorithm
and maintains a representation of the program state that is suitably detailed.

Figure 4.14 shows the generic analysis principle. Run-time verification is driven by a trace, a series
of events e emitted by the runtime verification API. An event represents a method entry or exit, or
execution of an instruction at location l. Runtime analysis examines these events directly. The
dynamic environment, on one hand, uses the event information to maintain a context c of algorithm-
specific data before relaying the event to the generic analysis. This context is used to maintain state
information s that cannot be updated uniformly for the static and dynamic case. It is updated
similarly by the static environment, which also receives events e, determining the successor states at
location l which are to be computed. The key difference for the static environment is that it updates

SERENITY - 027587 Version 1.0 Page 67 of 126

A4.D1.1 – Review of the state of the art

c with sets of states S. Sets of states are also stored in components used by the generic algorithm.
Operations on states (such as comparisons) are performed through delegation to component
members. Therefore the “true nature” of state components, whether they embody single concrete
states or sets of abstract states, is transparent to the generic analysis algorithm, which can thus be
used either statically or dynamically.

The abstract domain for the static analysis is chosen based on the features required by the generic
analysis algorithm to evaluate given properties. Both the domain and the properties are
implemented as an observer algorithm in JNuke. Future algorithms may include an interpreter for
logics such as LTL. Interpretation of events with respect to temporal properties would then be
encoded in the generic analysis while the event generation would be implemented by the static and
dynamic environment, respectively.

4.3.8. Summary of Dynamic Verification Tools
The following table summarizes the surveyed verification tools in terms of the general dynamic
verification approach steps of Figure 4.2.

Tool

Language for
Properties

Formalization
Methods for Events

Emission Monitor Category

JPaX

Temporal logic
in Maude
rewriting tool

Automated
Instrumentation using
JSpy (modified JVM) Observer O, pre/post, A

Java-MaC

Past-time
interval
temporal logic

Automated
Instrumentation
(Instrumentor) Runtime Checker O, pre/post, A

JMoP
ptLTL, ftLTL,
EREs

Automated
instrumentation by
using AspectJ

Embedded in code
or parallel process
to the system on the
same or different
machine OC, pre/post, S/A

Jassda CSPJassda

API based (from JVMs
by using the Java
Debug Interface) Trace checker OC, pre/post, A

Temporal
Rover

LTL/MTL
assertions Intrumentation

Embedded (using
alternating finite
automata) OC, pre/post, S

SERENITY - 027587 Version 1.0 Page 68 of 126

A4.D1.1 – Review of the state of the art

JPF

User defined
assertions, LTL
(by using
BANDERA)

By using BANDERA’s
abstraction capability JVMJPF OC, A

JNuke -
API based (JNuke VM
with RV API)

Runtime
verification
algorithm O, post, A

Table 4.2 – Summary of Dynamic Verification Tools

4.4. Dynamic Verification Tools Focusing on Security Properties

4.4.1. Firewalls
A firewall [107] is a device or group of devices that controls access between networks. A firewall
generally consists of filters and gateway(s), varying from firewall to firewall. It is a security
gateway that controls access between the public Internet and an intranet and is a secure computer
system placed between a trusted network and the generally not trusted Internet. A firewall is an
agent, which monitors network traffic in some way, blocking traffic it believes to be inappropriate
or dangerous. It is well known that Internet access provides benefits to individual users, government
agencies and most organisations. But this access often creates a threat as a security flaw. The
protective device that has been widely accepted is the firewall. When inserted between the private
intranet and the public Internet it establishes a controlled link and erects an outer security wall or
perimeter. The aim of this wall is to protect the intranet from Internet-based attacks and to provide a
choke point where security can be imposed.

The main purpose of a firewall is to impose restrictions on packets entering or leaving the private
network. All traffic from inside to outside, and vice versa, must pass through the firewall, but only
authorised traffic will be allowed to pass. Packets are not allowed through unless they conform to a
filtering specification.

Firewalls, as mentioned above, create choke points between an internal private network and the not
trusted Internet. Once the choke points have been clearly established, the device can monitor, filter
and verify all inbound and outbound traffic on the basis of IP source and destination addresses and
TCP port number.

The firewall also enforces logging, and provides alarm capacities as well. By placing logging
services at firewalls, security administrators can monitor all access to and from the Internet. Good
logging strategies are one of the most effective tools for proper network security.

A firewall can limit network exposure by hiding the internal network systems and information from
the public Internet.

The firewall certainly has some negative aspects: it cannot protect against internal threats such as a
trusted entity which cooperates with an external attacker; it is also unable to protect against the
transfer of virus-infected programs or files because it is impossible for it to scan all incoming files,
e-mail and messages for viruses. However, since a firewall acts as a protocol endpoint, it may use
an implementation methodology designed to minimise the likelihood of bugs.

SERENITY - 027587 Version 1.0 Page 69 of 126

A4.D1.1 – Review of the state of the art

Firewalls can be classified into three main categories: packet filters, circuit-level gateways and
application-level gateways.

4.4.1.1 Packet Filters

Packet filters are one of several different types of firewalls that process network traffic on a packet-
by-packet basis. A packet filter’s main function is to filter traffic from a remote IP host, so a router
is needed to connect the internal network to the Internet. Packet filters typically set up a list of rules
that are sequentially read line by line. Filtering rules can be applied based on source and destination
IP addresses or network addresses, and TCP or UDP ports. Packet filters are read and then treated
on a rule-by-rule basis. A packet filter will provide two actions, forward or discard. If the action is
in the forward process, the action takes place to route the packet as normal if all conditions within
the rule are met. The discard action will block all packets if the conditions in the rule are not met.
For example, if TELNET services were forbidden in a network protected by a packet filter, then the
rule in the packet filter would discard any packet from the Internet with destination IP within the
intranet and port 23. Thus, a packet filter is a device that inspects each packet for predefined
content. Although it does not provide an error-correcting ability, it is almost always the first line of
defence.

Since a packet filter can restrict all inbound traffic to a specific host, this restriction may prevent a
hacker from being able to contact any other host within the internal network.

However, the significant weakness with packet filters is that they cannot discriminate between good
and bad packets. Even if a packet passes all the rules and is routed to the destination, packet filters
cannot tell whether the routed packet contains good or malicious data. Another weakness of packet
filters is their susceptibility to spoofing where the attacker sends packets with an incorrect source
address.

4.4.1.2 Circuit-level gateway

The circuit-level gateway represents a proxy server that statically defines what traffic will be
forwarded. Circuit proxies always forward packets containing a given port number if that port
number is permitted by the rule set. This gateway acts as an IP address translator between the
Internet and the internal system. The main advantage of a proxy server is its ability to provide
Network Address Translation (NAT). NAT hides the internal IP address from the Internet. NAT is
the primary advantage of circuit-level gateways and provides security administrators with great
flexibility when developing an address scheme internally.

Circuit-level gateways are based on the same principles as packet filter firewalls. When the internal
system sends out a series of packets, these packets appear at the circuit-level gateway where they
are checked against the predetermined rules set. If the packets do not violate any rules, the gateway
sends out the same packets on behalf of the internal system.

The packets that appear on the Internet originate from the IP address of the gateway’s external port,
which is also the address that receives any replies. This process efficiently shields all internal
information from the Internet.

SERENITY - 027587 Version 1.0 Page 70 of 126

A4.D1.1 – Review of the state of the art

4.4.1.3 Application-Level Gateways

The application-level gateway represents a proxy server, performing at the TCP/IP application
level, that is set up and torn down in response to a client request, rather than existing on a static
basis. Application proxies forward packets only when a connection has been established using some
known protocol. When the connection closes, a firewall using application proxies rejects individual
packets, even if the packets contain port numbers allowed by a rule set.

The application gateway analyses the entire message instead of individual packets when sending or
receiving data. When an inside host initiates a TCP/IP connection, the application gateway receives
the request and checks it against a set of rules or filters. The application gateway (or proxy server)
will then initiate a TCP/IP connection with the remote server. The server will generate TCP/IP
responses based on the request from the proxy server. The responses will be sent to the proxy server
(application gateway) where the responses are again checked against the proxy server’s filters. If
the remote server’s response is permitted, the proxy server will then forward the response to the
inside host.

Application level gateway technology using proxy services has several advantages. Proxy services
enforce high-level protocols such as HTTP and FTP. Information about the communications
passing through the firewall server is maintained by the proxy service. Proxy services can permit
access to certain network services, while denying access to others. Packet data can be processed and
manipulated by proxy services. Internal IP addresses are shielded from the external world because
proxy services do not allow direct communications between external server and internal computers.
Administrators are able to monitor attempts to violate the firewall’s security policies using the audit
records that proxy services can generate.

Although application level gateways provide increased security over a packet filter there are some
disadvantages to using an application level gateway. Application level gateways are slower since
inbound data is processed by the application and by its proxy. A new proxy usually must be written
for each protocol that is to pass through the firewall. This can cause the number of available
network services and their scalability to be limited. Proxy services are vulnerable to operating
system and application level bugs.

4.4.2. Intrusion Detection Systems
An Intrusion Detection System (IDS) is software designed to detect unauthorised access to a
computer system or network. This may take the form of attacks by adversaries using automated
tools, the attack tools, which are designed for violating the security policy of a system. An IDS is
required to detect different types of malicious network traffic and computer utilization. This
includes network attacks against vulnerable services, data driven attacks on applications, host based
attacks such as unauthorised logins and access to sensitive files, and malware (viruses, trojan
horses, and worms).

The primary goals of IDS are:

⎯ Intrusion detection for known and unknown attacks. (In the latter case, a learning
mechanism, for new types of attacks or for changes observed in system user activities,
should be implemented in an IDS).

SERENITY - 027587 Version 1.0 Page 71 of 126

A4.D1.1 – Review of the state of the art

⎯ Intrusion detection in admissible time limits.

⎯ Precise results generation. (IDS results must be precise).

Other desirable characteristics of IDS are:

⎯ To run continually

⎯ To be fault tolerant

⎯ To be configurable

⎯ To be adaptable

⎯ To be scalable

⎯ To allow dynamic reconfiguration

A general model for IDS was proposed by Denning [81]. The main assumption of this model is that
the exploitation of system vulnerabilities requires irregular usage of accepted commands, so that the
security breaches can be monitored. The proposed model consists of three detection types that can
lead us to intrusion detection in a system: anomaly detection, misuse detection and specification–
based detection.

4.4.2.1 Anomaly detection models

According to anomaly detection model, unexpected behaviours illustrate/give indication for
intrusions. Evidently, there must be a measure that defines the expected user or process behaviour.
The anomaly detection model, especially, analyses a group of system features and compares the
behaviour of these features with a set of expected values for these features.

The concept of anomaly detection pertains directly to the concept of value deviation detection. This
value deviation can deal with values (for system features) that don’t agree or are out of the limits of
a predefined set of reasonable values for the system. The value deviations are taken as anomalies.
Labelling a value as anomaly implies that there is a method for labelling values as normal (accepted
for the system under examination). This method is based on statistical models. Denning [81]
described five different statistical models: Operational Model, Mean and Standard Deviation
Model, Multivariate Model, Markov Process Model, Time Series Model.

4.4.2.2 Misuse detection models

In the area of the intrusion detection systems, the concept of the misuse refers to detection based on
rules. Misuse detection, specifically, determines if a system command sequence violates the system
security policy. In such case, a possible intrusion is described.

Misuse detection requires knowledge of all the vulnerabilities that occur in a system. This
knowledge is concentrated in a rule set that constitutes a core and critical component of a misuse
detection system. A misuse detection system applies these rules on data that have been provided to
(or gathered by) the system, in order to decide if these sequences of data agree with rules of the set.
If there is such an agreement, it is deduced that a possible attack is in progress. This category of
intrusion detection systems is usually based on expert systems. Such a system can not detect attacks

SERENITY - 027587 Version 1.0 Page 72 of 126

A4.D1.1 – Review of the state of the art

that are not known to rule sets designers. Recent detection systems use adaptative methods, like
neural networks and Petri nets, to ameliorate the detection capabilities.

4.4.2.3 Specification – based detection

The specification – based detection method searches the space of a system states. When the system
enters a state that is known to be unwelcome, a possible intrusion is reported. Specification – based
detection defines if a command/process sequence violates or not the normal execution of a program
or of a whole system.

For security reasons, only the programs that can change, in any way, the protection state of the
system, should be allocated and checked. Specification-based detection is based on either traces, or
event sequences [148] and is on its initial steps. Between its positive and innovative features, one
can stand on the formalization of the events that could happen. By this means, the unknown attacks
could be detected. However, this method requires great effort for the detection and the analysis of
the programs that could raise security issues.

Ko et al. [148], developed a specification – based detection model for UNIX. They identified
aspects of program behavior that are relevant to security: access of system objects, process
sequencing, program synchronization and race condition (a special problem in program
synchronization). Their model is based on traces and a formal notion of monitored subjects. They
developed a prototype of a specification-based intrusion detection system that detects attacks
exploiting the vulnerabilities of privileged programs in UNIX. An important aspect of their research
is that they developed a language framework, parallel environment grammars, for specifying trace
policies (capture the intended behavior of a program). The systematic methodology for developing
trace policies for programs may also be useful in future research on developing overall security
policies for computer systems and networks.

4.4.2.4 Intrusion Response

Once an intrusion has been detected, the next major research issue was how a system should
response in this case. The main goal is: the attack to be faced with the minimum possible impact on
system, as it has predefined by the security policy of the system. IDS generate alerts notifying
administrators of this fact. The next (response) step is undertaken either by the administrators of the
system or the IDS itself, by taking advantage of additional countermeasures (specific block
functions to terminate sessions, backup systems, routing connections to a system trap etc.) –
following the system security policy.

Ragsdale et al. [202] have made a research and a list of all existing intrusion detection and response
systems. Most of intrusion detection and response systems are notification systems - systems that
generate reports and alarms only. Some systems provide the additional capability for the system
administrator to initiate a manual response from a limited pre-programmed set of responses. While
this capability is more useful than notification only, there is still a time gap between when the
intrusion is detected and when a response is initiated. Automatic response systems immediately
respond to an intrusion through pre-programmed responses. With some exceptions, all of these
automatic response systems use a simple decision table where a particular response is associated
with a particular attack. If an attack occurs, a pre-programmed response executes. These pre-
programmed responses consist predominantly of the execution of a single command or action
instead of the invocation of a series of actions in order to limit the effectiveness of the adversary.

SERENITY - 027587 Version 1.0 Page 73 of 126

A4.D1.1 – Review of the state of the art

One of the exceptions of the automatic response systems is Event Monitoring Enabling Responses
to Anomalous Live Disturbances (EMERALD) [201]. EMERALD resolver – an expert system - is
the component that has the responsibility to receive reports for resource objects under attack from
activities analysis EMERALD components and to revoke the various response handlers that have
been defined for the object that reports refer to. Different responses are associated with different
suspicion levels and the system adapts its responses based on the degree of suspicion.

4.4.3. Intrusion Prevention Systems
Firewalls, as mentioned above, can prevent attempts to access the internal network by blocking
specific addresses while Intrusion Detection Systems can identify and alert the user for a possible
attack as it occurs. Both technologies are critical for the defence mechanism of a system, but they
both have limitations. A firewall cannot scan and evaluate the contents of every package in an
efficient way in order to block suspicious packages. An IDS, in contrast, can scan and evaluate
traffic that passes through but cannot do anything to stop it. Intrusion Prevention Systems (IPS)
come in this point as proactive defence mechanisms that are able to detect malicious packages,
through a comprehensive scan, and stop an intrusion before it harms the system. They basically
combine the blocking capabilities of a firewall with the traffic inspection of an IDS.

Some use the IPS term to describe the next-generation of IDS systems that will be able to block
certain kinds of attacks. Others use the same term more broadly and include firewalls, for instance,
in the intrusion-prevention category, since firewalls can block certain attacks. IPSs are designed to
sit in-line on the network and monitor the network traffic, just like IDSs, but when an event occurs
can take an action and based on predefined rules.

There are two main categories of Intrusion Prevention Systems: Network-based IPS (NIPS) and
Host-based IPS (HIPS):

Network-based IPS (NIPS)
A NIPS is an in-line device, between the Internet and the internal network, that can make decisions
on whether or not to allow packages from the Internet to pass into the internal network based on
attack detection. It actually combines features of a standard IDS (attack detection) and a firewall
(blocking capabilities).

As an in-line device, a NIPS has at least two network interfaces, one for the internal network and
one for the Internet. Packets reaching each interface are being examined whether or not they may
pose a possible threat. The threat detection is based on methods of signature detection and anomaly
detection. The content of each packet is examined for known signatures of threats or for unusual
content. If a possible threat is detected, the NIPS in addition to alerting the user for the threat, it will
automatically block the packet and mark the specific flow of packets as a threat. Thus, all the
remaining packets from this flow will also be blocked. Packets that don’t pose a threat will be
passed to the other network interface.

In order to prevent and stop unknown threats before their deployment an anomaly detection method
is used. This method is based on the previous knowledge of the specific protocol or the usual
behaviour of the specific application. Any packet that does not act according to this knowledge is
treated as a threat. This system has the drawback of only being able to protect certain protocols and
applications that are in wide use.

SERENITY - 027587 Version 1.0 Page 74 of 126

A4.D1.1 – Review of the state of the art

Host-based IPS (HIPS)
Host-based IPSs reside on servers and workstations. They are monitoring the hosts’ application
actions and calls to the system in order to detect a prohibited or unusual action. The methods they
use are based on the signature detection of known viruses or malicious programs and anomalous or
irregular behaviour of the system. In order for a HIPS to specify an abnormal behaviour, a policy
that specifies the normal behaviour of the supporting operating system or application is provided.
Any behaviour that doesn’t align with this policy is treated as an irregular behaviour.

The attacks that host-based IPSs protect against include viruses, spam, spyware, worms, Trojan
horse programs, key loggers, bots, buffer overflows and denial of service attacks.

Host-based IPS can also provide protection from internal attacks such as the installation or
execution of a malicious program from a legitimate user.

Desai [82] introduced another classification, distinguishing among five types of IPSs:

⎯ In-line NIDS: this type of IPS works exactly like the NIPS described above. It’s an in-line
device that monitors all the traffic between the internal and external network. It uses
signature or anomaly detection methods in order to pick out possible threats while it works
in a transparent way for both the legitimate users and intruders.

⎯ Application-based firewalls/IDS: the combination of application firewalls and IDSs is
usually marketed as an intrusion prevention solution. Both application firewall and IDS
must be loaded on each server that is to be protected. This kind of IPS is customizable to
each server and application that needs to be protected because there must be a
profiling/training phase before the protection phase. During the profiling phase, the IPS can
watch the user’s interaction with the application and the application’s interaction with the
operating system to determine what legitimate interaction looks like. After the IPS has
created a profile, a policy is constructed and it can be set to enforce it. This type of IPS
offers one of the greatest amounts of protection for custom written applications because one
can customize each policy so that it offers the greatest amount of protection since each
application firewall/IDS is loaded on each physical server you.

⎯ Layer seven switches: Layer seven switches are devices that work as the usual network
switches but in their case they work in the application layer. They are usually used to
balance the load of an application across multiple servers by inspecting the protocol of every
packet and forwarding the packets to specific servers according to predefined rules. The
intrusion prevention capabilities they offer are limited in denial of service attacks detection
and prevention. They work using a signature detection method for stopping these attacks and
without affecting the network performance, thus guaranteeing speed and uptime.

⎯ Hybrid Switches: This type of IPS is a combination of the host-based application
firewall/IDS and the layer seven switches. These systems are implemented in hardware,
located in front of the servers, like the layer seven switches, but instead of using a set of
predefined rules, they use a policy similar to the application firewall/IDS. They inspect
packets for malicious content defined by the policy.

Deceptive Applications: This type of IPS first observes all the network traffic and figures out what
legitimate traffic looks like, similar to the profiling phase of the application firewall/IDS. Then,

SERENITY - 027587 Version 1.0 Page 75 of 126

A4.D1.1 – Review of the state of the art

when it sees attempts to connect to services that do not exist, it sends back a marked response to the
attacker with some bogus data so that when the attacker tries to exploit the server the IPS will see
the marked data and stop all traffic coming from the attacker.

4.4.4. Access Control Models
Access control models provide high-level, domain-independent, and implementation independent
reference models for the architecture and design of access mechanisms.

Historically, access control models are classified in two broad categories: mandatory [189] and
discretionary [189, 190]. Later on the need for a more flexible access control model, which it would
be suitable for big organisations, has lead to the role based access control model and the context
based access control model. We will describe each model in the next section and highlight their
characteristics.

4.4.4.1 Mandatory Access Control

Mandatory access control governs the access of objects by subjects by using a classification
hierarchy of labels. Every subject and object is assigned a label. All access is based on comparisons
of these labels and, in general, is statically enforced. We say that access control is mandatory
because the system centrally enforces all decisions to permit a subject’s activities based on labels
alone. Entities have no say in the matter.

Mandatory access control centralizes the knowledge base used to make decisions, although subjects
and objects can negotiate access based on local information. Entities are allowed to read objects
with lower classifications and can write to objects only with the same classification level.

4.4.4.2 Discretionary Access Control

Discretionary access model organizes the security of a system into a two-dimensional matrix of
authorizations in which each subject-object pair corresponds to a set of allowed access modes. The
access modes in the matrix can be modified through commands.

Discretionary access control governs the access of objects by subjects based on ownership or
delegation credentials provided by the subject. These models are implicitly dynamic in that they
allow users to grant and revoke privileges to other users or entities.

Once access is granted, it can be transitively passed onto other entities either with or without the
knowledge of the owner or originator of the permissions. Discretionary access control models
enable subjects to transfer access rights for the objects they own or inherit, or for which they have
received “grantor” privileges.

Discretionary access control is flexible, but the propagation of rights through the system can be
complex to track and can create paradoxes.

4.4.4.3 Role Based Access Control

Role based access control (RBAC) has its roots in historical practices that predate its formal model,
except that RBAC’s features stem primarily from the commercial world. Also like multilevel

SERENITY - 027587 Version 1.0 Page 76 of 126

A4.D1.1 – Review of the state of the art

security, RBAC is conceptually simple: Access to computer system objects is based on a user’s role
in an organization. Roles with different privileges and responsibilities have long been recognized in
business organizations, and commercial computer applications. From the late 1980s until now
several access control models [43, 86, 188, 235] have been introduced based on the conception of
the role. The two major proposals from [97, 211] prompted NIST to initiate an effort to establish an
international consensus standard for RBAC which it was finally published in the ACM RBAC
workshop in 2000 [212].

The proposed standard is divided in two sections: the reference model and the functional
specifications. The reference model section defines the sets of the basic RBAC elements (i.e., users,
roles, permissions, operations, and objects), the relations between them and the functions that are
included in this standard. Additionally it provides a separation between all the available features of
RBAC defining four packages. The Core RBAC package with the basic RBAC features, the
Hierarchical RBAC package for supporting role hierarchies, the Static Separation of Duty package
for avoiding conflict of interests by enforcing constrains on the assignments of the roles and the
Dynamic Separation of Duty Package which can avoid conflicts of interest by imposing constraints
on the roles that can be activated within or across a user’s session. The functional specifications
section defines the functional requirements for every package of the RBAC model (i.e. functional
requirements for administrative operations and queries for the creation, maintenance, and review of
RBAC sets and relations)

The pervasiveness of RBAC’s application within modern day IT infrastructures is significant.
Today, RBAC features are included at all levels of enterprise computing, including operating
system, database management system, network, and enterprise management levels. RBAC is being
incorporated and integrated within infrastructure technologies such as public key infrastructure
(PKI), directory and Web services.

4.4.4.4 Context Based Access Control

Context based access control (CBAC) models leverages and extends the power of traditional role
based access control models by taking access control decisions based on the combination of the
required credentials of users and the context and state of the system. RBAC systems required only
user credentials in order to assign a role to the user and then permit or deny the access to an object.
CBAC requires, additionally to those credentials, dynamic information such as the physical location
of the user, date and time of the access control request, the state in which the desired object is, etc.
Those variables consists the context information, which the decision system requires to take in
account before it delivers a decision.

Several proposes and implementations have been introduced the last years based in the conception
of the context based access control, but none of them have been recognised as a standard yet.
Covington, Moyer and Ahamad [73] are from the first who tried to expand the RBAC model by
introducing roles for subjects, objects and the environment of the system. These three types of roles
consists the context information needed for the access control decisions. Also Kumar, Kamik and
Chafle [150] later expanded the RBAC model by introducing the notions of role context and context
filters. Context filters are Boolean expressions based on the context information of the user
attempting to get authorized, as well as the context information of the object upon which this
authorization is attempted.

 Srinivasan et al. [226] proposal was focused on context-aware applications and how they can take
access control decisions in a ubiquitous computing environment while Corradi, Montanari, Tibaldi

SERENITY - 027587 Version 1.0 Page 77 of 126

A4.D1.1 – Review of the state of the art

[70] presented a context-centric access control middleware, called UbiCOSM, that is suitable for
implementation of services in such an environment.

Another approach from [125] presented a way to use context information (location specific) to
provide anonymous access to services without limiting the ability of the service provider to impose
various security levels. They provided a list of methods that can verify the user’s claimed
authenticity in various ways and degrees.

Other proposals for using CBAC in specific environments delivered by Wilikens et al. [249] who
described the requirements for authorization and access control within a healthcare environment
based on an extended model of RBAC which incorporates contextual information and can be
integrated in a wider trust infrastructure including the use of Smart Cards and Cholewka, Botha and
Eloff [61] who proposed and implement a context-sensitive access control mechanism within a
workflow environment.

4.4.5. Conclusions
We presented the current approaches of security and cryptographic mechanisms used by the
majority of the information systems. All those mechanisms provide ways to protect and maintain
the three basic principles of security, confidentiality, integrity and availability. However, in many
cases these mechanisms are not enough to guarantee those principles.

Many security protocols, using cryptographic techniques, have been proposed in the literature to
achieve several goals, e.g., authentication and secrecy. They are supposed to succeed even in the
presence of malicious entities that can interfere with their correct execution. Unfortunately, many of
them may fail when an intruder intercepts some messages and exploits the information they contain.
The failure of such protocols sometimes lies in the implementation environment of the protocol that
is not verified for full correctness.

Firewalls have also many weaknesses. Packet filtering firewalls suffer from a number of
weaknesses, as described by Chapman [58]. Among them is the complexity in the specification and
verification of the rules; the shortage of the audit capabilities; and the possibility to get around the
filtering policy (e.g. a site system's telnet server that normally listens at port 23 could be told to
listen at port 9876 instead; users on the Internet could then telnet to this server even if the packet
filter blocks destination port 23).

Weak points can also appear in Application level gateways. The main problem is their slow speed.
According to their design, every packet has to pass through them and the contents of every
completed connection are examined in detail. Such process adds, of course, more time to complete.
Moreover, they cannot protect against internal threats and they are also unable to protect against the
transfer of unknown malicious programs, which they do not look harmful during their admission
but they actually contain hostile code within.

Intrusion detection systems (for example, those surveyed [22, 29, 224] suffer from at least two of
the following problems: First, the information used by the intrusion detection system is obtained
from audit trails or from packets on a network. Audit data has to traverse a longer path from its
origin in order to reach the intrusion detection system and be analysed. During this process, it can
potentially be destroyed or modified by an attacker. Thus, the intrusion detection system, which has
to infer of the behaviour of the system from the data collected, can conclude to real time system’s
behaviour misinterpretations.

SERENITY - 027587 Version 1.0 Page 78 of 126

A4.D1.1 – Review of the state of the art

Second, due to the satisfaction of the desired intrusion detection system property, i.e. to run
continuously, an IDS has to utilize system resources all the time even when there are no intrusions
occurring.

Third, because the components of the intrusion detection system are implemented as separate
programs, they are susceptible to tampering. An intruder can potentially disable or modify the
programs running on a system, rendering the intrusion detection system useless or unreliable.

Finally, although access control mechanisms seems to be useful for checking static information,
their evolution has shown that more dynamic properties of the entity which requests authentication
are needed to make sure access control decisions.

4.5. Next Generation Intrusion Detection Systems

4.5.1. Distributed Intrusion Detection System (DIDS)
DIDS [222] combines the capabilities of an intrusion detection system designed for a network with
a monitoring capability for intrusion in distributed systems. A network intrusion system has been
introduced in [120] under the name of Network Security Monitor (NSM).

The NSM system has been developed to run in LANs. In the beginning, it creates a profile of the
network regarding the expected network utilization and then, in the operation, it compares the
network utilization with the one of the profile. In addition, the NSM allows a set of valid signatures
to be predefined, in order to detect suspicious network utilization that may lead to attacks. The
NSM can be configured to monitor a user, a group of users or a service activity and to record
potential anomaly.

The NSM monitors the source of network utilization, the destination and the provided service. It
defines a unique connection ID for every connection. Sources, destinations and provided services
constitute the base of a three dimensional table. Each element of this table illustrates the number
and the overall payload of packets that were sent through this connection during a predefined time
period. In addition, the NSM estimates the expected overall payload of this connection. Table data
and the NSM estimations are compared and any table element that is out of the estimated value
range is interpreted as an anomaly.

NSM developers discovered that a great amount of data was produced during a network analysis.
For reducing the respective cost, they established a hierarchy for the table data and respectively for
the estimated expected values. If there is an anomaly in any data set of the hierarchy, the security
administrator of the system can configure the NSM to analyze the set (in which there is an anomaly)
in lower levels. A hierarchical data set, for instance, could be constituted by transferred data
through two systems connection for every service, e.g. {(A, B, SMTP), (A, B, FTP)…} where A, B
are the connected systems. In the higher level, the NSM would analyze the source data. If an
anomaly occurred, the NSM could investigate and define in which exact source – destination pair
the anomaly occurred.

Based on the NSM data table, a simple signature – based scheme for misuse pattern identification
was developed. For instance, repeated telnet connections which last as long as the standard access
time could give an indication for failing login attempts. A definite rule could search for the above
incident among the table elements. Heberlein et al. [120] developed a number of rules for network
utilization. Among those were rules for dealing with monitoring for excessive amount of login
attempts and for the connections of one system with fifteen or more other systems.

SERENITY - 027587 Version 1.0 Page 79 of 126

A4.D1.1 – Review of the state of the art

The NSM is important for two reasons. A lot of posterior IDSs were based on it. In addition,
network intrusion detection is feasible in a practical level, as it was illustrated the NSM
implementation. While network traffic is distinguished by encrypted messages exchange/flow to
such a degree that analysing capability of packet content fades, NSM analyses the traffic itself and
not the packet content.

With the evolution of possible attacks on systems, it was concluded that monitoring of network
utilization alone and, on the other hand, the monitoring of a single host alone were insufficient. An
intruder who tries to connect to a system through a login account that does not require password, is
not detected as malicious by an IDS dedicated to network monitoring (e.g. NSM). Once the
adversary has access to the system, he might exhibit behaviour that would have alerted most of the
existing single host IDSs (e.g., changing passwords and failed events). Similarly, if an intruder tries
a few common account and password combinations on each of a number of LAN computers, the
IDS on each host may not flag the attack. On the other hand, an IDS dedicated to network
utilization monitoring could detect the repeated failed logins.

The DIDS architecture, combines distributed monitoring and data reduction with centralized data
analysis. The DIDS components are the DIDS director, a single host monitor per host and a single
LAN monitor for each broadcast LAN segment in the monitored network.

The DIDS director consists of a communication manager (responsible for data transfer between the
director and the monitors), a rule - based expert system (that evaluates and reports the security state
of the monitored system by making inferences based on the events that monitors send) and a system
security officer (that pertains the critical management component).

The host monitor consists of a host event generator and a host agent. In the DIDS prototype that has
been implemented on Sun SPARCstations running SunOS 4.0.x, host monitors take advantage of
the C2 security package functionality (through this package, the OS produces audit records for
virtually every transaction on the system). Based on these audit records, host event generators create
events that are sent to the expert system for processing. The format of an event is: significant data
provided by the audit record, plus action (e.g. session_start or end, read, write, etc.), plus object
(e.g. authentication, network, sys_info, etc.).

The LAN monitor’s responsibility is to observe all of the traffic on its segment. In order to monitor
host-to-host connections, utilised services and volume of traffic can be especially helpful. The LAN
monitor reports, which are sent to the DIDS director, have to do with network activity (e.g. rlogin
connections), security-related services utilization and deviation from network traffic patterns.

Snapp et al. [222], gave a solution to one of the more interesting issues for intrusion detection in a
networked environment; the tracking of users and objects (e.g. files). They have addressed the
multiple user identities problem by creating a network-user identification the first time a user enters
the monitored environment.

Another point that is of significant importance is the utilization of a rule based expert system with
learning capability in the DIDS prototype. The expert system applies the rules to the evidence
provided by monitors. Each rule has a rule value that can be changed after configuration. This value
illustrates the confidence that the rule is useful in detecting intrusions. If a report for an intrusion
made by the expert system was faulty, the expert system lowers the rule values of the associated
rules that were used to draw that conclusion.

SERENITY - 027587 Version 1.0 Page 80 of 126

A4.D1.1 – Review of the state of the art

4.5.2. Autonomous Agents for Intrusion Detection (AAFID) System
By investigating intrusion detection approaches from fault tolerance perspective, Crosbie and
Spafford [75] drew the conclusion that the monolithic IDS approach represents a single point of
failure. By attacking successfully the IDS, protected system security is greatly reduced. Thus, they
proposed that it would be useful to distribute the IDS functionality across multiple independent (and
simple) components, autonomous agents, in a networked environment.

According author’s approach, the internal design of the agents is based on the genetic programming
paradigm (that is a powerful machine learning paradigm and allows both feedback learning and
discovery to agents).Each one of the autonomous agents that are used is responsible for monitoring
one small aspect of overall system. When an agent detects any misuse, anomaly or specification
deviation, it reports the evidence to the other agents. All of the agents that operate on the system
and cooperate together, then, can define if the reported evidences were enough to indicate a possible
intrusion.

The most important aspect of this architecture is the cooperation of the independent agents. Thus,
there is not, any longer, a single point of failure. If an agent stops running, the rest of them can carry
on. Moreover, if an adversary takes an agent under control, no critical information about the other
agents is revealed to the adversary.

AAFID system [23] implements the above approach. Each host of a network can contain any
number of agents that monitor for interesting events occurring in the host. All the agents in a host
report their findings to a single transceiver. Transceivers are per-host entities that supervise the
operation of all the agents running in their host. The transceivers report their results to one or more
monitors. Each monitor oversees the operation of several transceivers. Monitors have access to
network-wide data, therefore they are able to perform higher-level correlation and detect intrusions
that involve several hosts. Monitors can be organized in a hierarchical fashion such that a monitor
may in turn report to a higher-level monitor. Also, a transceiver may report to more than one
monitor to provide redundancy and resistance to the failure of one of the monitors. Ultimately, a
monitor is responsible for providing information and getting control commands from a user
interface.

The main advantage of AAFID architecture is that can be easily extended configured and modified.
On the other hand, it faces many problems that always occur in the area of distributed systems, such
as performance (especially from a host perspective) and security (referring to means for securing
the communication among the independent components of the distributed IDS).

4.5.3. Immunology-based Security
The Artificial Immune Systems (AIS) are one of the biologically inspired computing paradigms like
Neural Networks and Genetic Algorithms. The aim of biologically inspired computing is to design
systems to solve complex problems taking inspiration from mechanisms (problem solving
techniques) evolved over thousands of years by biological systems to cope with the complexity of
natural world.

An overview of basic theory of Artificial Immune Systems and application based on this paradigm
can be found in [269].

SERENITY - 027587 Version 1.0 Page 81 of 126

A4.D1.1 – Review of the state of the art

There are various features that make natural immune system an appealing source of inspiration for
designing computer security systems [275]:

⎯ Multilayered protection: a breaches or attack occurring at one level can be detected by the
next layer;

⎯ Distributed detection: the detection and memory system is highly distributed and without a
centralized control;

⎯ Unique copies of detection systems (diversity): each individual has a unique set of
characteristic; there is always the chance that some individual in the population is able to
resist to an attack due its specific characteristic;

⎯ Detection of previously unseen foreign material: the natural immune system is able to
recognize new forms of infections;

⎯ Imperfect detection: the natural immune system is able to detect foreign entity even if it
doesn’t posses a detector perfectly matching that entity;

In the context of Computer Security the AIS paradigm has been investigated in three main area of
application:

⎯ anomaly detection;

⎯ virus detection and elimination;

⎯ network intrusion detection. (Protection from network-based intrusions)

In the following section we review the most relevant works in each area.

4.5.3.1 Virus detection and elimination

One of the key design principle adopted in Artificial Immune Systems is the principle of the
Self/Non-Self discrimination. According to this principle the Immune System is interpreted as a
system able to distinguish internal components (self) from external entities (non-self) and, therefore,
the problem of protecting computer systems can be reformulated as the problem of learning to
distinguish self (legitimate users, authorized actions original source code etc.) from other (intruders,
computer viruses, Trojan horses, etc.).

One the first application area of application of the principle of Self/Non-Self discrimination has
been the computer virus detection and elimination [271, 281].

The main goal of the work described in [281] was to create a system able to automatically create
and promptly distribute anti-virus data to networked hosts. The main motivation was the need to
contrast the increasing speed of diffusion of computer viruses enabled by open networking
environments by removing humans from the response loop to computer virus infections.

The system was designed after the two main components of Biological Immune Systems:

⎯ Innate immune system: a first line defence having knowledge of both the self and of some
broad classes of harmful entities. This component provide a generic defence to ongoing
attacks;

⎯ Adaptive immune system: a learning system able to produce a strong response very specific
to the ongoing attack; this component is activate by the activation of the Innate Immune
System.

SERENITY - 027587 Version 1.0 Page 82 of 126

A4.D1.1 – Review of the state of the art

The proposed approach consists of the following steps:

4. Discovering of previously unknown virus on a infected hosts;

5. Capturing a sample of the virus and sending it to a central computer;

6. Analysing the virus automatically to derive a prescription for detecting and removing it from
the infected hosts;

7. Delivering the prescription to the monitored hosts and running the local copy of the anti-
virus to detect and remove all occurrences of the virus;

8. Disseminating the prescription to all other computer on the network.

In the above procedure steps 1 and 2 pattern the innate immune system whilst 3,4 and 5 the adaptive
immune system.

In step 1 the new unknown viruses are discovered exploiting two alternative approaches: Generic
Disinfections heuristic and a classification system.

The Generic Disinfections heuristic is an implementation of Self/Non-Self discrimination principle:

1. When a new program is installed a fingerprint is computed and stored in a database. This
fingerprint represent a compact description of the “self”.

2. During the monitoring the fingerprint of the program is recomputed and compared with the
one (the “self”) stored in the database. If a mismatch arise a contamination is detected i.e. a
“non-self” is in the system.

The Biological Immune System is a source of inspiration also in step 3. The derivation of a
prescription is done using decoy programs. The virus discovered in step 1 is executed in a
controlled environment in order to make it infect a diverse suite of “decoy” programs. The infected
“decoy” programs are the basis to extract the virus signature by means of pattern matching.
Digestion and exposition of its foreign proteins (antigens) is indeed one of the core strategies of the
Adaptive Immune System.

Indeed one of the first relevant works to suggest the use of the Self/Non-Self discrimination
principle to computer security is [271]. The work introduces a change detection algorithm inspired
by Immune System and applies it to the problem of detecting computer viruses.

The proposed algorithm (negative-selection algorithm) runs in the following stages:

1. define self S as a collection of binary strings of length l over a finite alphabet representing D
the data to protect;

2. generate a set R of detectors each of which fails to match any string in self;

3. monitor self for changes by continually matching the detectors R against S. If some string in
R matches S then S has been corrupted.

The key point in the above algorithm is that in the monitoring step (3) the matching is done against
a description of the non-self (derived in step 2) hence the name of the algorithm. The step 2 is
inspired by the censoring activity taking place in the thymus where, to prevent autoimmunity, T
cells reacting with the normal occurring patterns in the body are destroyed.

Another key point is that the matching is a partial matching:

Although counterintuitive the important mathematical result is that even with a small number of
detectors a random change in S has a very high probability to be detected. Moreover the size of R

SERENITY - 027587 Version 1.0 Page 83 of 126

A4.D1.1 – Review of the state of the art

can remain small as the size of S grows. In recent years a formal framework has been proposed to
analyse the tradeoffs between positive and negative detection schemes [270].

The claimed advantages for the negative-selection algorithm are:

⎯ The checking activity can be distributed;

⎯ The quality of checking: the probability of a change detection can be traded off against the
cost of checking;

⎯ Protection is symmetric S and R protect each other: S can be used to monitor changes in R;

⎯ Due to the computational complexity of generating detectors it is hard to alter detectors to
hide change in S;

4.5.3.2 Anomaly detection

In a later paper [272] propose to use a similar approach based on positive selection to address the
problem of anomaly detection in Unix systems.

In order to apply the immune-system inspired approach the first issue to be addressed is how to
define a suitable “self” in a computer system. The solution is complex since:

⎯ System configuration changes;

⎯ Users change their personal work habits;

⎯ New users and new machines are added to computer networks.

The paper adopts the normal behaviour of a Unix process as “self”: short sequences of system calls
represent a stable signature for normal behaviour. The experiments conducted by the authors show
that such signatures:

⎯ Have low variance over a wide range of normal operating conditions;

⎯ Are specific to each different kind of processes;

⎯ Have high probability to be perturbed when attack or attacks attempts occur.

The proposed algorithm runs in to phases:

1. Training phase: for each process a database of normal patterns are created by scanning traces
of normal runs; [288] compares alternative schemes for representing normal patterns: stide,
t-stide, RIPPER, HMM.

2. Monitoring phase: traces are scanned looking for sequences that are not present in the
normal database.

The expected advantage from the approach is that having a simple definition of normal behaviour
(self) enables on-line monitoring that runs in real-time (the operating system could perform the
check at each system call without affecting performances). Moreover since the normal behaviour is
created by tracing normal runs of the program the approach doesn’t require determining a
behavioural specification from the program code. The preliminary work consider only privileged
processes (sendmail, lpr) since:

⎯ they are likely more dangerous than other programs (they can access more parts of the
computer system);

⎯ they have a limited range of behaviours;

SERENITY - 027587 Version 1.0 Page 84 of 126

A4.D1.1 – Review of the state of the art

⎯ they behaviour is stable over time.

The recognized disadvantages of the approach are:

⎯ It ignores the parameters of system calls;

⎯ It ignores timing information (unable to detect attacks relying on race conditions);

⎯ It ignores instruction sequences between system calls.

4.5.3.2.1 Beyond Self/Non-self discrimination
The work of [277] proposes a real-valued negative selection (RNS) algorithm to overcome some of
the drawbacks in the original binary version [276]:

⎯ Scalability: a large number of detectors has to be generated as grows the required detection
accuracy;

⎯ It is difficult to map detectors to domain space: hence it is difficult to explain where is the
problem once it has been detected;

⎯ There is a sharp distinction between self and non-self;

⎯ Binary representation of self makes difficult to integrate the negative selection algorithm
with other algorithms.

The main distinctive features of the RNS algorithm are:

⎯ The detectors are a couple defined by a n-dimensional real vector and real value hence
detectors are hyperspheres in Rn;

⎯ The matching rule is defined by a fuzzy membership function depending on the Euclidean
distance from the detector and the radius of the detector.

The RNS algorithm is used in [277] as basis to define an hybrid approach to immunology-based
anomaly detection: the RNS algorithm is used to generate abnormal samples from normal samples;
both normal and abnormal samples are then used to create a classifier by means of a supervised
algorithm.

By adopting a fuzzy membership function the RNS algorithm represent one of the first tentative to
depart form the Self/Non-Self principle in the context of the Artificial Immune System. This
departure indeed reflects also the evolutions in the Immunology area. These evolutions are
motivated by the fact that the Self/Non-Self model is not able to explain the observed behaviour of
the Biological Immune System when the biological “self” changes [323].

Indeed it can be said that the RNS algorithm could be seen as the digital counterpart of the
Infectious-Nonself principle. The Infectious-Nonself principle postulates the existence of different
classes of Non-Self and that the Immune System activates an immunitary response only against
some of these classes (Infectious-Nonself).

One of the most controversial evolutions in the interpretation of the Immune System is the Danger
Theory. According to this theory an immunitary response only when detection of non-self co-occur
with the detection of danger signals produced by cells under stress conditions (as an injury).

In recent years the Danger Theory has been proposed to overcome some of the limitations of the
Self/Non-Self model widely adopted in the Artificial Immune System [259].

SERENITY - 027587 Version 1.0 Page 85 of 126

A4.D1.1 – Review of the state of the art

The Danger Theory is a source of inspiration in [282] to design a system able to extend a policy for
the systrace system call policy checker. In the system the danger signals controlling the activation
of an appropriate response are:

⎯ Security policy violation;

⎯ Highly fluctuating process cpu or memory usage;

⎯ System load average.

4.5.3.3 Network intrusion detection

The Artificial Immune System paradigm has received attention also for the development of
Intrusion Detection Systems [259].

The LISYS system described in [278] address the problem of detecting anomalous network traffic
in a broadcast Local Area Network (LAN). LISYS is an implementation of the conceptual
framework ARTIS inspired by Immune Systems and described in the same paper. The main
components of the ARTIS framework are:

⎯ Detectors: to represent a subset of the non-self;

⎯ Anomaly detection to detect non-self string that have not been encountered previously;

⎯ Sensitivity levels to increase the ability to detect divers non-self strings;

⎯ Memory detectors: to improve detection of previously encountered non-self;

⎯ Activation thresholds: to reduce false positive;

⎯ Co stimulation to reduce false positives by eliminating auto-reactive detectors (detectors
matching elements belonging to self);

⎯ Tolerization: to reduce false positives;

⎯ Multiple representation to improve detection rates when the relevant non-self strings are
similar to self strings;

⎯ Finite lifetimes: to ensure that gaps in detection coverage are not static and predictable;

Within LISYS the self of the network is represented by a collection of “normally occurring”
connection triples (“datapath”) having the form (sender IP address, receiver IP address, receiver
TCP port) obtained monitoring TCP SYN packets. Normal occurrence of a connection triple is
defined by observing the network traffic over a certain amount of time.

The architecture of the system is distributed each node in the network runs a detection node. Since
the network is a broadcast network each detection node sees every packet.

Each detection node contains a different set of detectors each consisting of a binary string (binary
representation of a datapath). Each detector can assume one of three states: immature, naïve or
memory.

Detection of anomalous packet is performed trying to match packets against a set of detectors of a
detection node. Packets are matched against detectors using r-contiguous bits matching rule: a
detector matches a packet if they have r contiguous bits in common. Each time a packet is matched
against a detector the state of the detector changes according to the transitions of a Finite State

SERENITY - 027587 Version 1.0 Page 86 of 126

A4.D1.1 – Review of the state of the art

Machine. Matching that move the matched detector to the activated state indicate that the packet
belong to non-self (negative selection).

The system runs in two phases:

1. Training phase: during this phase an initial set of detectors is created at each node by
exposing the system to events generated by normal traffic (the system is not under attack).
During this phase all detectors matching any packet are discarded (negative selection) and
replaced by a new one randomly created. At the end of this phase each detection node
receives a set of naïve detectors;

2. Monitoring phase: during this phase each detection node performs the following operations:

a. Tries to match received packets against its set of detectors. If the packet doesn’t
match any detector the packet is considered to belong to the self and hence it is
ignored. If one or more matches occur the state of the matching detectors is
changed according to the lifecycle defined in ARTIS. If one or more matching
detectors reach the activated state a human operator is asked to decide if the
packet belongs to non-self (i.e. if it is an anomaly resulting from an attack) or it
represent a false positive. Detectors that generated false positive are discarded.

b. Discards naïve detectors did not exceeded activation threshold during lifetime.

c. Generates new randomly created detectors and tries to match against the self.

One of the major criticisms to the negative-selection algorithm is the high computational
complexity required to generate the set of detectors [322]. Indeed one of the most active research
areas for the negative-selection algorithm is the quest of scalable algorithms to generate detectors.
However it is worth noting that the scalability problem reported in [322] strongly depends on the
choices made for the alphabet (10 letters) and the r parameter of the matching rule [260].

The AIS paradigm is used in [283] to detect node misbehaviour in ad-hoc network running the
Dynamic Source Routing protocol (DSR). The work proposes a mapping between the components
of AIS and the elements of an ad-hoc network. The proposed system monitors sequences of
protocol events collected over limited period of time and having a maximum length. In order to
avoid performance issues the sequences of events are encoded using a scheme counting the
occurrences of predefined regular patterns within the sequence.

When a non-self sequence of event is detected the node is classified as “detected”. Eventually a
node becomes “misbehaving” if in average the number of time the node is classified as “detected” is
more of a given threshold.

In the area of Network Intrusion Detection the Danger Theory has been proposed [282] to design a
system for automated Worm Detection and Responses. The key requirement for the described
system is to keep low the number of false positive to avoid that unnecessary automated counter
measures compromise the functioning of the system. More in general the requirement is to keep the
response adequate to the attack severity and certainty.

4.5.3.4 The Immune System as a Multi-Agent System.

The natural immune system is also been taken as a model to organize Multi-Agent System for
intrusion detection and response. The main reason residing on the similarities that can be drawn
between the two models:

SERENITY - 027587 Version 1.0 Page 87 of 126

A4.D1.1 – Review of the state of the art

⎯ They are distributed systems with decentralized control;

⎯ Their components are (semi) autonomous entities;

⎯ They have capabilities to learn from their experience;

⎯ Their components coordinate and communicate;

⎯ They are able to adapt to changes in the environment;

The SANTA system (Security Agents for Networks Traffic Analysis) [267] is a Multi-Agent
System that organize the society of agents according to concepts burrowed from the Immune
System:

⎯ Monitoring agents: these agents monitor computational nodes looking for specific anomalies
(e.g. unusual user behaviour patterns, unusual usage of computational resources, invalid
processes and priority violations;

⎯ Communicator agents: they carry messages to other agents in the system;

⎯ Decision/Action agents: they take decisions and perform task in order to enforce security
policy. Tasks may activate one of the following type of response agents:

• Helper agents: they report the status of the environment to the end user;

• Killer agents: they are in charge to perform action like node shut down, kill processes,
discard streams of or disconnect user sessions;

• Suppressor agents: they role is mainly to suppress the action of other response agents in
order to prevent actions due to false positive detections.

The MMDS system (Multi-level Monitoring and Detection System, [268]) follow a similar
organization targeted for anomaly detection in ad-hoc networks. In MMDS Decision agents take
their decision using fuzzy rules and the rule are evolved using genetic algorithms.

The CDIS system [326] is another MAS model of adopting an organization inspired by the Immune
System. The main distinctive features of CDIS are:

⎯ The distinctive features that define the self are 28 instead of the 3 of LISYS;

⎯ All TCP, UDP and ICMP packets are monitored.

The AISIMAM system [325] uses the Jerne’s model of immune network to organize a society of
agents. Self-agents and Non-self agents share a common environment where they operate.

4.6. Open research issues for dynamic verification
Based on our survey, the open research issues related to dynamic verification relate to:

⎯ The need to provide support for transforming of specifications of security and dependability
properties that need to be monitored at runtime into the event patterns that should be
observed to verify them.

⎯ The need to develop mechanisms that can support the diagnosis of the reasons underpinning
run-time violations of security and dependability properties requirements that could inform
system adaptation to ensure that violations will not re-occur.

SERENITY - 027587 Version 1.0 Page 88 of 126

A4.D1.1 – Review of the state of the art

⎯ The ability to support the specification of end-user personal and ephemeral security and
dependability properties, the automatic assessment of whether or not such properties can be
monitored at run-time, and the transformation of these properties onto monitorable patterns
of run-time events.

⎯ The development of techniques that would allow the identification of scenarios of potential
security and dependability threats (i.e. potential violations of security and dependability
properties that have not occurred yet but seem to present a realistic possibility for the
subsequent operations of a system) and the translation of these scenarios into monitorable
event patterns that would allow the development of pro-active techniques for protecting
security.

⎯ The need to develop mechanisms that can ensure that the events used in dynamic
verification have not been altered by an attacker in order to affect the results of the
verification process and consequently the recovery actions that may be taken in response to
these results.

An additional, but by no means less important, open issue in dynamic verification is the need to
develop monitors that could detect violations of security and dependability properties efficiently
and in time that will allow the effective reaction to such violations.

SERENITY - 027587 Version 1.0 Page 89 of 126

A4.D1.1 – Review of the state of the art

5. Recovery
Research in security and dependability has been primarily concerned with the prevention and
detection of threats and system faults rather than recovery from them when they occur. The ability,
however, to recover from security attacks or system faults identified at run-time and possibly adapt
in order to handle these attacks or faults is also increasingly recognised as an important requirement
related to the security and dependability of systems. Recovery capabilities are required to ensure
that the scale of an attack is minimised, the system's critical functionality is preserved and a system
is guarded from further attacks. Such capabilities have been studied extensively in the areas of
safety-critical systems (fault-tolerance) [14] and databases [36].

In this section, we provide an overview of recovery approaches and mechanisms that have been
adopted and developed as part of run-time verification systems, safety-critical systems (concerned
mainly with preserving dependability properties) and mission-critical distributed systems
(concerned mainly with preserving survivability properties), and trusted recovery approaches
developed as part of information warfare defence.

5.1. Recovery for run-time verification systems
Recovery mechanisms for modern programming languages are almost non-existent [168]. Usually,
this task is left to the programmer that must implement them manually. Moreover, it is generally
accepted that programmers are very bad at planning for fault recovery [248]. With this in mind,
Manson et al. [168] have proposed a new programming language based approach, called RESCUE,
for determining and recovering from faults, for applications developed using Aspect Oriented
Programming (AOP). It is an extension of ApectJ [141] and aims to expose underlying features of
the virtual machine in order to express faults in a variety of run-time constraints. RESCUE provides
an asynchronous construct (the mutex qualifier) that can be combined with the code at runtime to
handle exceptional conditions. The mutex qualifier is used on a plan to prevent that plan from
executing concurrently with its parameter. A plan is a specification of fault conditions as a predicate
over meters. Meters provide an interface to monitoring events.

Moreover, Manson et al. [168] present two ways of assisting the programmer with recovery:

⎯ Checkpointing: This mechanism copies the program state periodically. They show a way of
checkpointing relevant data selectively with aspects, in the customisable virtual machine.
However, this approach is not accessible as it requires in depth knowledge of how the virtual
machine works.

⎯ Transactions: The aim of RESCUE is to support transactions in the following way. If a write
transaction occurs, the original value of the heap location is written to a log. Thus, when a
fault occurs, the original values can be restored from the log. Therefore, program flow is
resumed from the beginning of the transaction or continued as if the fault never happened.
RESCUE uses transactions in conjunction with programming language support for plans and
meters.

d'Amorim and Havelund [78] have suggested that the integration of a system like Eagle and AspectJ
could support temporal cutpoints where temporal Eagle formulae can function as triggers for

SERENITY - 027587 Version 1.0 Page 90 of 126

A4.D1.1 – Review of the state of the art

actions to be executed. This would then be useful for developing fault tolerant programs that can
change their behaviour when the temporal properties have been violated.

Kazman et al. [135] present an architecture model that allows a system to reason about its behaviour
at runtime, by being self-reflective, and taking action in cases where it is required to change its
behaviour, accordingly. This architectural model uses both runtime monitoring and abstraction, as
well as codified knowledge of architectural styles, to develop a dynamic view of its architecture as
it runs. DiscoTech is a system that is built to recover the architecture of systems, i.e. interpret the
run-time behaviour in terms of architecturally meaningful events. Any analysis and repair of the
run-time system is performed on the architectural model and not directly on the running system. No
explanation of how this recovery is performed is given.

Feather et al. [97] present an architecture and a development process for monitoring system
requirements (expressed as goals in KAOS) at run-time in order to reconcile the requirements with
the system’s run-time behaviour. The recovery phase is closely related to how requirement
violations are managed and two such approaches are discussed [238, 240]:

1. At specification time, the developer anticipates as many obstacles to requirements as
possible. Once these have been identified, the more robust specifications are defined
taking into consideration the obstacles.

2. At run-time, violations of requirements are detected and resolved by making on-the-fly,
acceptable changes to the requirements. By acceptable, they mean that the changes must
satisfy the high-level goals underpinning the requirements that were violated.

Feather et al. [97] focus on the dynamic approach. The recovery step is the last step that happens at
run-time and consists of analysing the violation file and applying the reconciliation tactic that was
defined in the development level (statically). The reconciliation tactics are choices that have to be
made for each breakable assertion between enforcing it and finding an alternative. Assertions may
be constraints (an implementable goal), or assumptions (a fact taken for granted about agents in the
environment of the system).

5.2. Recovery in safety-critical systems
Dependability of a computer system is defined by Avizienis et al. [21] as “the ability to deliver
service that can justifiably be trusted”. The service that is delivered is the system behaviour as
viewed by its users. A user is another system or human that interacts with the system via the service
interface. A correct service is one that implements the system function. A system failure is an event
that happens once the service deviates from correct service. Hence, a failure causes a transition
from correct service to incorrect service. An outage is the delivery of an incorrect system. Another
definition of dependability that they give in terms of failure is: “the ability of a system to avoid
failures that are more frequent or more severe, and outage durations that are longer, than is
acceptable to the user(s)”.

Dependability is achieved by addressing the following concepts: attributes, means and threats [21],
as given in Table 5.1.

SERENITY - 027587 Version 1.0 Page 91 of 126

A4.D1.1 – Review of the state of the art

Attributes Means Threats

Availability Fault prevention Faults

Reliability Fault Tolerance Errors

Safety Fault Removal Failures

Confidentiality Fault Forecasting

Integrity

Maintainability

Table 5.1 – Dependability concepts [21]

Avizienis et al. [21] have also suggested that failures can be characterised further according to their
domain, perception by system users and consequences on the environment of the system. These are
given in Table 5.2.

Domain Perception by two or more users Consequences on environment

Value failures Consistent failures Minor failures

Timing failures Inconsistent failures Varying degree of failures …

 Catastrophic failures

Table 5.2 – The failure modes [21]

Faults can be classified according to six different criteria as given in Table 5.3. Malicious faults that
compromise security fall under the intent category. These can be further divided into the following
classes: malicious logics and intrusions. Malicious logics [312] include the developmental faults
such as Trojan horse, timing bombs and trapdoors, as well as operational faults such as viruses or
worms.

SERENITY - 027587 Version 1.0 Page 92 of 126

A4.D1.1 – Review of the state of the art

Phase of
creation or
occurrence

System
boundaries

Domain Phenomenological
cause

Intent Persistence

Development
faults

Internal faults Hardware
faults

Natural faults Non-
malicious
(accidental)
deliberate
faults

Permanent
faults

Operational
faults

External
faults

Software
faults

Human-made faults Deliberate
malicious
faults

Transient
faults

Table 5.3 – Categories of faults [21]

Techniques that have been used to combat faults and achieve dependability of a system under
construction can be grouped as follows [128]:

⎯ Fault avoidance: During requirements analysis, specification and design and later during
maintenance (such as bug fixing, performance improvement), the methodologies used for
system development should aim to produce a system that works as expected without the
inclusion of errors (only a minimum of errors exist) [313]. Examples of such techniques
include structured programming, information hiding, modularisation, etc. Also, firewalls and
similar defences can be used for preventing malicious faults.

⎯ Fault elimination (detection and removal): During requirements analysis, specification
and design, and also during maintenance, faults in the system must be detected and removed
by using techniques extensively, such as verification and validation techniques.

⎯ Fault tolerance: Fault tolerance may be used during system execution in order to cope with
run-time failures. In order for fault tolerance to be used, it has to be build into the system in
the proceeding phases. A system is called fault tolerant with respect to a set of faults if it is
able to deliver the expected service when the faults of that set occur. Fault tolerance is
implemented mainly by error detection and system recovery.

⎯ Fault evasion: During system execution, it is sometimes possible to monitor the system
behaviour and detect some abnormal behaviour that suggests that some component is likely
to fail or is under some strain. Fault evasion is the use of some compensating action is used
to avoid some fault or its consequences.

Avizienis et al. [21] present similar techniques for achieving dependability: fault prevention that can
be compared to fault avoidance; fault tolerance; fault elimination that can be compared to fault
removal; and fault forecasting that is similar to fault evasion but refers to the way to estimate the
current number of faults, any future incidence and the likely consequences of faults. Fault

SERENITY - 027587 Version 1.0 Page 93 of 126

A4.D1.1 – Review of the state of the art

forecasting is conducted by performing an evaluation of the system’s behaviour with respect to fault
occurrence or activation.

Safety analysis is only concerned with faults that compromise safety and also it considers what
happens if the system environment changes somehow in an extreme way and some parts of the
system do not behave as planned. Security analysis is similar to safety analysis but focuses on
malicious attacks or faults that compromise security. The traditional definition of security is given
as a composite notion, namely the combination of confidentiality, integrity and availability, where
all these three concepts are attributes of dependability. Safety is also an attribute of dependability
and denotes the absence of catastrophic consequences on the user or environment.

It should also be appreciated that the desired system reaction to a fault may be different depending
on whether the system is safety-critical. While normally in safety-critical systems reactions to
detected faults tend to bring the system to a halt (if a fault occurs in a nuclear plant, for example, the
shutdown of the system is normally recommended), in non safety-critical systems it is not always
desirable to halt the system, as this could be the intent of a malicious attacker (e.g., an attack that is
aimed at causing denial of service).

Fault tolerance and evasion are the dependability and security addressing techniques which relate to
the deployment and operational life of a system and hence relevant to our survey. In Section 6, we
have discussed techniques for monitoring the operation of a system that can broadly address fault
evasion. Thus, in the rest of this section we focus on fault tolerance and discuss it further.

5.2.1. Fault-tolerance
Fault tolerance aims to ensure that a correct system service is delivered, even when active faults
exist. Fault tolerance is implemented by error detection and recovery [21].

Error detection identifies error signals or messages in the system. A latent error is an error that is
present but not detected. Two classes of error detection techniques exist [21]:

⎯ Concurrent error detection, which happens during service delivery,

⎯ Pre-emptive error detection that occurs which the service is suspended. It checks for latent
errors and dormant faults.

Error recovery aims to convert a system state that contains one or more errors or faults, into a state
that does not contain any detected errors or faults that can be re-activated. The main activities of
recovery are error and fault handling.

Error handling removes errors from the system state and can be realised by the following means
[21]:

⎯ Rollback − Rollback is an error handling approach which returns a system back to a state
saved before an error was detected. This state is referred to as a checkpoint. This approach is
also known as backward recovery (see section 5.5). Checkpointing is a popular technique
for reducing the recovery time from a fault and much research has been devoted to analysing
checkpoint schemes and determining optimal checkpoint placement strategies [314]. The
existence of optimal checkpoint placement strategies is significant as the frequency of and
the intervals between checkpoints affect the system's execution time. Also, there is a trade-
off between the re-processing time (i.e, the time taken for processing after a fault has
occurred) and the overhead of checkpointing that must be considered [315].

SERENITY - 027587 Version 1.0 Page 94 of 126

A4.D1.1 – Review of the state of the art

⎯ Rollforward − Rollforward is an error handling approach which attempts to construct a new
system state without the detected errors. This approach is known as "forward recovery" (see
section 5.5). Fail-safe behaviour may be seen as a rollforward technique. A fail-safe system
is "a system whose failures are, to an acceptable extent, all minor ones" [128].

⎯ Fault masking − This is a form of recovery that uses sufficient redundancy to allow for
recovery without explicit error detection [21]. Fault masking techniques hide the effects of
failures through the means that redundant information outweighs the incorrect information.
An example of fault masking is majority voting, where the idea is to take a majority vote on
a calculation replicated N times.

Fault handling prevents detected faults from being re-activated and, according to [21], consists of:

⎯ fault diagnosis which identifies and records the causes of errors in terms of both location
and type;

⎯ fault isolation which excludes, physically or logically, the faulty component of a system
from further involvement in service delivery and thus makes the fault dormant (a fault is
dormant when it cannot produce an error) [21];

⎯ system reconfiguration which switches the responsibility for system functions from faulty
components to spare components or reassigns functions between non-failed components;
and

⎯ system reinitialisation which checks, updates and records the new configuration of a
system and updates its tables and records.

Fault handling is usually followed by corrective maintenance in which faults that have been
identified and isolated by fault handling are removed. The main difference between maintenance
and fault tolerance is that the former requires an external agent to be involved in the process.

SERENITY - 027587 Version 1.0 Page 95 of 126

A4.D1.1 – Review of the state of the art

Error
Detection

Rollback

Error
Detection

Error
Detection

Fault masking

Fault masking Rollforward

Error
Detection

Fault
handling Fault

handling

Fault
handling

Fault
handling

Maintenance
call

Service
continuation

Solid fault

Intermittent
fault

Service
continuation

Intermittent
fault

Solid
fault

Maintenance
Call

Detection & Recovery

Forward Recovery
Full forward recovery

Maintenance
Call

Solid
fault

Intermittent
fault

Service
continuation

Partial forward recovery

Maintenance
Call

Solid
fault

Intermittent
fault

Service
continuation

Masking & Recovery

Backward Recovery

Figure 5.1 – Some strategies for implementing fault tolerance [316]

Figure 5.1 illustrates four typical schematic examples of strategies for implementing fault tolerance
which have been suggested by Avizienis et al. [316]. Some points that Avizienis et al. [316]
suggest are noteworthy:

⎯ Rollback and rollforward are not mutually exclusive. Rollback can be undertaken first and
subsequently, if the error still persists, rollforward can also be performed.

⎯ Intermittent faults are faults that occur periodically. They can be identified by error handling
(if an error re-occurs then it is not intermittent) or via fault diagnosis when rollforward is
used. Isolation and reconfiguration are not required.

⎯ After error detection error handling can be skipped and fault handling may directly follow.

The choice of error detection, fault handling and error handling techniques depends on the
underlying assumptions about faults. The types of faults that can actually be tolerated depend on the
fault assumptions made. For example, a system might choose different fault-tolerance mechanisms
for dealing with deliberate malicious faults than the mechanisms used for dealing with natural
faults.

Fault tolerance techniques have also been distinguished depending on whether they apply to single
or multiple versions of software systems. More specifically, Torres-Pomales [317] distinguishes

SERENITY - 027587 Version 1.0 Page 96 of 126

A4.D1.1 – Review of the state of the art

between single version and multi-version fault tolerance techniques. In the former of these types
redundancy is introduced to a single version of a piece of software in order to detect and recover
from faults. In the latter type, more than one version of a piece of software are executed in parallel
or in sequence to avoid and recover from faults.

According to Torres-Pomales [317] single version fault tolerance techniques include:

⎯ Software structure and actions: These techniques are concerned with the software
architecture. For example, decomposition techniques can be used to break up a system into
components which are used to achieve fault tolerance. Partitioning techniques aimed at
providing isolation between functionally independent modules which may also be applied to
achieve fault tolerance are classified into this category.

⎯ Error detection: Error detection techniques are concerned with the introduction of
capabilities for detecting external errors (from information passed to it from other system
components) and internal errors into a system.

⎯ Exception handling: These techniques support the interruption of normal system operation
to deal with abnormal responses.

⎯ Checkpointing and restart: This is a recovery mechanism (there are only a few in single
version software). A restart can be of two types: static and dynamic. Static corresponds to
forward recovery and dynamic corresponds to backward recovery. Checkpoints can be
created at fixed intervals or at particular points during execution determined by some
optimising rule. The advantage of these checkpoints is that they are based on states that are
created during execution, and thus can be used to allow forward progress of execution
without having to lose all the work produced up to the when the error was detected.

⎯ Process pairs: The recovery mechanism used here is checkpoint and restart. A process pair
uses two identical versions of the software that run on separate processors, which are
labelled primary and secondary. Firstly, the primary processor actively processes the input
and creates the output while generating checkpoint information that is sent to the secondary
process (backup). When an error is detected, the secondary processor loads the last
checkpoint as its initial state and takes over the role of the primary processor. The faulty
processor goes offline and performs some diagnostic checks. After the primary processor is
repaired, it takes on the role of the secondary processor and receives checkpoints from the
primary. The advantage of this technique is that the service is delivered continuously even
with the detection of a failure in the system.

⎯ Data diversity: This technique aims to increase the effectiveness of checkpoint and restart
by using different input re-expressions (input is changed) on each entry. The objective of
each entry is to generate output results that are either exactly the same or semantically
equivalent. Three data diversity models are presented: input data re-expression, input re-
expression with post-execution adjustment, re-expression via decomposition and
recombination. Data diversity can be used together with Process Pairs and also with the
multi version fault tolerance techniques.

According to Torres-Pomales [317], multi version fault tolerance techniques include:

⎯ Recovery blocks: This technique combines the checkpoint and restart approach and applies
them to multiple versions of a software component. Checkpoints are created before a version
of a component is executed and are used to recover from an error when this version of the

SERENITY - 027587 Version 1.0 Page 97 of 126

A4.D1.1 – Review of the state of the art

component fails. The essence of the technique is that a different version of the component
will be tried when an error is detected.

⎯ N-version programming: In this technique, multiple versions of a component are designed
to satisfy the same basic requirements and the decision of output correctness is based on the
comparison of all the outputs of these components. The difference between this and the
recovery blocks approach is that the former uses a generic decision algorithm (usually a
voter) to select the correct outputs. N-version programming requires more effort for
developing the system but it is not more complex than building a single version.

⎯ N self-checking programming: This technique combines multiple software versions with
structural variations of Recovery Blocks and N-Version Programming. In this case, the
versions and the acceptance tests are developed independently from common requirements.
Also, separate acceptance tests are used for each version.

⎯ Consensus recovery blocks: This technique combines N-Version Programming and
Recovery Blocks to enhance reliability. It uses a decision algorithm similar to N-version
programming as a first layer of decision. If a failure is detected in this layer, then a second
layer using acceptance tests is invoked. This is a more complex model and because of its
complexity it could result in a less reliable system due to the introduction of errors.

⎯ t/(n-1) – variant programming: This technique uses an architecture that consists of n
variants and uses the t/(n-1) diagnosibility measures to isolate faulty units to a subset of size
at most (n-1) assuming there are at most t faulty units. Therefore, at least one non-faulty unit
exists such that its output is correct and can be used as the result of the computation module.
It can potentially tolerate multiple dependent faults among the versions.

5.3. Recovery for intrusion-tolerant systems
Intrusion tolerance has emerged in the past decade and gained momentum recently [152]. It is the
notion of dealing with a wide set of faults, including intended and malicious faults, which may lead
to system failure if nothing is done to counteract their effect on the system [244]. In other words,
it’s a tolerance paradigm in security that:

⎯ Assumes that attacks on the system can happen, and hence malicious or other faults occur;

⎯ Faults generate errors which compromise component-level security;

⎯ Error processing mechanisms are used to prevent security failure.

A complete approach combines tolerance with prevention, removal, forecasting and all the typical
dependability actions. Some researchers present intrusion-tolerant systems as being the "new era of
survivability" [152, 197]. They are considered as being the third generation of security systems that
shift the security paradigm from simply warding off intruders at all costs, to a more cost-effective
and affordable approach of combining prevention, detection and tolerance.

Verissimo et al. [244] discuss two error processing mechanisms in order to recover from intrusions:

⎯ Processing the errors deriving from intrusions. The typical error processing mechanisms
used in fault tolerance for the IT view are: error detection, error recovery and error masking.
We have already described these briefly in Section5.2.1.

SERENITY - 027587 Version 1.0 Page 98 of 126

A4.D1.1 – Review of the state of the art

⎯ Intrusion detection mechanism. Classic intrusion detection systems can be divided into
two types: (a) behaviour based (or anomaly) detection systems, and (b) knowledge based (or
misuse) detection system. Behaviour based detection systems are characterised by the fact
that they need no knowledge about specific tasks. Systems of this type are only provided
with knowledge of the normal behaviour of the monitored system and do not require any
additional knowledge of attack signatures to guide monitoring. Knowledge based detection
systems, on the other hand, rely on such knowledge. In such systems, when an activity
matches an attack signature in the knowledge base, an alarm containing diagnostic
information about the cause is generated. The main drawbacks of behaviour based intrusion
detection systems are that they may generate false alarms if the usage of the system is not
predictable with time and they cannot provide diagnostic information is with the alarm.
Their main disadvantage of knowledge based intrusion detection systems is that they cannot
detect attacks which are not store in their knowledge base, i.e. unknown or new attacks.

Combinations of intrusion detection and automated recovery mechanisms have recently been under
investigation in the context of specific architectures, such as in the Willow architecture [145], the
MAFTIA project [6]. Cukier et al. [76] and Connelly and Chien [67].

5.4. Recovery in survivable distributed systems
Survivability is a new property of dependability and since it is also a new research area, a precise
definition of it is still under debate. According to the most popular definition in the literature,
survivability is defined as "the ability of a system to fulfil its mission, in a timely manner, in the
presence of attacks, failures and accident" [91, 92, 93, 121, 51, 146]. In this definition, the term
"system" is used in a broad sense, including networks as well as large scale systems and the term
"mission" signifies a set of abstract requirements or goals. Survivability is a property implying that
a system can deliver essential services and maintain essential properties such as performance,
security, reliability, availability and modifiability despite the presence of intrusions and − compared
to traditional security measures that require central control or administration − survivability aims to
address unbounded network environments.

In his survey of IT systems survivability, Tarvainen [233], has summarised the different definitions
of survivability that have been given in the literature and points out that the definition of
survivability depends on the domain. Despite some similarities between them, survivability is
different from fault tolerance [233]: fault tolerance is a mechanism for achieving certain
dependability properties while survivability is a dependability property. Moreover, describing a
system as fault tolerant is a comment about how the system was designed.

 Definition Domain Reference

1 “Survivability is the degree to which essential
functions are still available even though some
part of the system is down.”

IT systems in
general

[83]

SERENITY - 027587 Version 1.0 Page 99 of 126

A4.D1.1 – Review of the state of the art

2 “Survivability is a property of a system,
subsystem, equipment, process or procedure that
provides a defined degree of assurance that the
names entity will continue to function during and
after a natural or man-made disturbance. Note:
Survivability must be qualified by specifying the
range of conditions over which the entity will
survive the minimal acceptable level or post-
disturbance functionality and the maximum
acceptable outage duration.”

Telecommunication
Systems

[237]

3 “Survivability is the ability of a network
computing system to provide essential services in
the presence of attacks and failures and recover
full services in a timely manner.”

Network
Computing Systems

[91]

4 “Survivability is the capability of a system to
fulfil its mission, in a timely manner, in the
presence of attacks, failures or accidents.”

Critical and defence
systems

[92, 50, 93, 121, 51,
146, 143]

5 “Survivability is the ability [of a system] to
continue to provide service, possibly degraded or
different, in a given operating environment when
various events cause major damage to the system
or its operating environment.”

Critical and defence
systems

[144, 147]

Table 5.4 – Definitions of Survivability [233]

Survivability is also sometimes viewed as being the same as security. A survivable system must be
able to survive from a malicious attack, hence survivability involves security. For example, a
system that consists of some security mechanisms, such as passwords and encryptions, may still be
vulnerable as it might fail if the server or network link dies. Two aspects of survivability are
identified by Tarvainen [233]: survival by protection and survival by adaptation. Survival by
protection involves the use of security mechanisms, such as access control and encryption, for
protecting applications from harmful, accidental and malicious changes in the environment.
Survival by adaptation consists of monitoring and changing the Quality of Service available to
applications.

A number of survivability architectures, such as ITDOS [210] and SABER [138], have been defined
for designing systems specifically to deal with certain faults. However, these architectures are not
mature enough for practical use. Moreover, in this section we are primarily interested in recovery
models for survivable distributed systems. Park and Chandramohan [198] present three Recovery
Models: Static, Dynamic and Hybrid Recovery Models. Detailed schemas for the static and the
dynamic models are also described [198].

⎯ Static Recovery Model: This recovery model is based on redundant servers that are
prepared before execution, to provide critical services continuously in a distributed client-
server environment. The dynamic reconfiguration approach is associated with this model

SERENITY - 027587 Version 1.0 Page 100 of 126

A4.D1.1 – Review of the state of the art

even though it uses the term “dynamic” because the components are generated before
execution. Redundancy in different machines or domains enhances survivability because
the replaced server can be running in an unaffected area. For example, if the redundant
servers are distributed in different network places, then in the event of network failures, the
servers can be recovered in different environments. In the case where a failure occurs within
a server, it is not effective to replace the server with an identical copy because identical
components in the same environment will still be vulnerable.

⎯ Dynamic Recovery Model: This recovery model replaces components, which cause
failures, contained failures, or are under attack, dynamically by generating components on
the fly. These components are deployed at runtime as and when they are required. Moreover,
this model can replace infected components by immunised components, thus providing more
robust services than that of the static model. Immunised components are components that
are not vulnerable to the same type of failure or attack as the infected component.

⎯ Hybrid Model: This recovery model combines features of both the static and the dynamic
models in order to improve on the disadvantages of both. As shown in Table 5.5, the
disadvantage of the dynamic model is with regards to service downtime. This could range
from seconds to a few minutes, which suggests that there will be no service available for
clients during the recovery period. Alternatively, the disadvantage of the static model
concerns resource efficiency, adaptation and robustness. The main weakness of the hybrid
model is its more complex to implement than the other two models.

Park and Chandramohan’s [198] have compared the above survivability models. A summary of this
comparison is shown in Table 5.5.

 Static Recovery
Model

Dynamic Recovery
Model

Hybrid Model

Simplicity Higher Medium Lower

Resource
Efficiency

Lower Higher Medium

Adaptation Pre-fixed Dynamic Pre-fixed &
Dynamic

Service
Downtime

Shorter Longer Shorter

Immunization Environments Environments &
Components

Environments &
Components

Robustness Lower Medium Higher

Table 5.5 – Comparison of the three survivability models [198]

SERENITY - 027587 Version 1.0 Page 101 of 126

A4.D1.1 – Review of the state of the art

5.5. Information warfare defence
Certain organisations, such as defence and civil, depend heavily on their information systems and
networks, to the extent that a malicious attack could have devastating effects. Much attention has
been given to the prevention and detection of attacks. However, hacker attacks have proved that
protective mechanisms are not infallible. If a successful attack is made on a system, the system must
be able to identify the attack and respond in a way that maintains system availability of critical
functions and allows recovery of capabilities to proceed. Also, any damage that is incurred must be
contained. For example, if a cryptographic key for one file is recovered, an attacker should not be
allowed to read all of the files on hard disc [318]. Another example given by Schneier [318]
concerns smart cards. If an attacker performs reverse-engineering on a smart card to obtain its
secrets, s/he should not be able to obtain information that would allow him/her to break other smart
cards in a system.

The defender aims to anticipate and block possible attacks, to detect and respond in a way that
limits the damage and ensure that critical activities are functioning, while simultaneously the system
is in the process of recovery. Jajodia et al. [130] identify the defender’s cycle of activities:

⎯ Prevention: Protective measures are put into place by the defender.

⎯ Attack detection: The defender observes symptoms of a problem that determines that an
attack is going to happen or has happened. The defender collects information in order to
diagnose whether symptoms are due to a legitimate activity or not.

⎯ Damage assessment and containment: The defender determines the extent of damage to
the system by examining it. Also, it takes immediate action to ensure the attacker is
excluded from the system and to contain the problem.

⎯ Recovery: The defender may reconfigure the system to allow it to operate in a degraded
mode while recovery proceeds. For example, it might need to cut back on some non-critical
functions in order to deal with the critical functions. The defender then recovers any
corrupted or lost data, and reinstalls any missing functions in order to restore normal
operation.

⎯ Fault treatment: Weaknesses in the systems that the attacks uncovered are examined and
steps are taken to ensure this attack is not repeated. This phase in the cycle relates to both
prevention and reaction.

In the field of fault-tolerance, two types of errors are identified: anticipated errors and those that are
unanticipated [14]. For anticipated errors, the prediction or assessment of damage can be made.
This is not true of unanticipated errors. To recover from these errors the following two methods
have been defined and discussed by Jajodia et al. [130]. These are the same as rollforward and
rollback, but we describe them again in the context of information defence.

⎯ Forward Recovery: These methods are usually used to recover from anticipated errors.
Since these errors can be predicted, contingency update instructions can be defined or a
means of deriving a correct value. If the recovery method is supported by the semantics,
compensating transitions can anticipate error scenarios [319]. For some items that are
replaced regularly through normal processing, the errors can be corrected simply by waiting
for the replacement transactions to occur. There are two limitations with regards to forward
recovery methods. Firstly, these methods are system specific. Secondly, the success of these
methods depends on how accurate the capability of predicting or assessing the damage from
faults is.

SERENITY - 027587 Version 1.0 Page 102 of 126

A4.D1.1 – Review of the state of the art

⎯ Backward Recovery: These methods are used to recover from unanticipated errors. They
require that the entire state be replaced by a consistent prior state. This method is not
optimal as it requires that the system be halted temporarily. For denial of service attacks, it
may be the attacker’s intention to halt the system and this could be harmful if the system is
halted at a critical moment. Database management systems (DBMS) provide a rich set of
recovery methods that mainly depend on backward recovery methods for restoring the
database to a consistent state. There are some limitations with backward recovery methods
used in DBMS and specification with regards to security attacks. Firstly, suppose that a
transaction is aborted, the transaction isolation property supports recovery in the sense that
the transaction can be withdrawn without completion, without affecting other transactions.
In the case of a malicious attack, the isolation property does not help because the transaction
placed by the attacker seems normal to the DBMS and is completed (but creates bad data).
Undo/redo logs assist in recovery when the system fails with a number of uncompleted
transactions, however not in this case. In the meantime, other transactions might use the bad
data created to perform some computations, and store the results in other items (hence
creating further bad data). The only general mechanism that is available is backward
recovery that will roll the database back to an approved checkpoint. However, the problem
with this mechanism is that all other computations undertaken after this checkpoint are also
lost.

Three recovery models are presented by Jajodia et al. [130] that can be used to formalise recovery
methods:

⎯ HotStart: This can be seen as being a mostly forward recovery method. It is appropriate for
attacks in which the system must respond transparently to the user. Let’s assume that an
attacker introduces a corrupted executable at a particular site and use it to initiate an
availability, integrity or trust attack. This attack can be dealt by a HotStart model if it
satisfies the following two conditions. Firstly, the attack must have been detected early
enough so that the damage is limited to the executable. Secondly, an uncorrupted standby
(known as hot standby) must be available to take over. Also, the path by which the attacker
introduced the corrupt binary must be disabled and the proper binary from the backup store
must be restored.

⎯ WarmStart: This model should be used when it is difficult to hide all aspects of response to
the user. The users are aware of the attack as the system operation is degraded. However,
damage must be contained and the main system services must be available, trustworthy and
reliable. The level of service depends on the extent of the attack. Some of the functionality
might be missing, could be untrustworthy or the information held could be incorrect.
Usually, checkpoints are used for quick recovery and audit trails for intercepting the
attacker. If an availability attack occurs, a WarmStart would respond in a nontransparent but
automatic way to recover the system from confined damage. If a trust attack occurs, a
WarmStart response would mean that only certain operations could be trusted while the
response to the attack occurs. If an integrity attacks occurs, a WarmStart response means
that only certain system functionality is enabled.

⎯ ColdStart: This can be seen as being mostly a backward recovery method and is appropriate
for most serious attacks. For example, when the attacker manages to halt the delivery of
system services. The aim of the ColdStart is to get the system running as soon as possible in
a usable, trustworthy and consistent state. Effective CodStarts must be supported by policies

SERENITY - 027587 Version 1.0 Page 103 of 126

A4.D1.1 – Review of the state of the art

and algorithms. Also, compensation for unrecoverable components, such as leaked
information that the intruder now knows , is vital.

Jajodia et al. [130] present several additional methods (i.e. not only forward and backward
recovery) that could be used to deal with recovery and these are discussed in relation to the
recovery models.

⎯ Redundancy: This is a key technique for recovery and it means that either a data item is
stored redundantly somewhere in the system and retrieved when lost or damaged, or it can
be derived from some other elements in the system. Such redundancy take the form of
alternative algorithms, backups at geographically distant locations, compensation methods
for unrecoverable components, and audit trails for tracking the system usage and access.
Redundancy is useful in all three recovery models. For example in the HotStart model, if an
attack that has damaged an executable, then a hot standby executable at a different
geographic location can take over. For WarmStart recovery, derived data could be of use as
these could be labelled with attribute evaluation rules explain how to derive them from other
attributes that could be found outside the system. Coldstart models make use of recovery
logs.

⎯ Static partitioning of information elements: This method pertains to the design of the
database and its applications in such a way that transactions only affect data in a single
region. Hence, damage caused by an attack can be contained and applications that use other
partitions of the database can proceed normally. This design could be impractical for many
databases. An alternative solution could be to define borders of regions, identify triggers or
generate updates that cross the borders, and limit the conditions under which the data may
flow across [130].

⎯ Versioning: This concept is borrowed from concurrent engineering. Trees consisting of
versions, where each version is a checkpoint between transactions, are maintained to enable
a more elegant restoration of a consistent state. If the current database state was found to be
corrupted, then a different branch could be adopted. Therefore, this type of versioning is
closely linked to states of the database applications.

⎯ Dynamic partitioning of information elements: The objective of this method is to use
recovery methods to identify data items that can be removed from use, repaired and added
back for use dynamically. This is a crucial technique for the HotStart recovery model.

⎯ Countermeasure transactions: These are special type of transactions that are designed to
repair or detect damage. An attack can be detected by a variety of means. These can be
grouped into two categories. Those that are internal to the database, for example, an integrity
constraint violation detection via the firing of an action rule in an active database. Those that
are external to the database, for example, an alert officer that notices a abnormally high
number of aircrafts are scheduled for refuelling at a specific tanker. Also, damage can be
repaired using drastic measure such as resetting the database to a prior consistent state or by
defining transaction that will eventually overwrite the bad data with good data. The
advantage of using countermeasure transactions for recovery is that the power of the
transaction model can be used to implement fault tolerance across the entire system.

SERENITY - 027587 Version 1.0 Page 104 of 126

A4.D1.1 – Review of the state of the art

6. Conclusion
In this deliverable we provided a review of the state of the art in the dynamic verification (aka
monitoring) of security and dependability properties, and methods developed to support recovery
from violations of such properties when they occur. Our review has also covered static verification
techniques and discussed limitations of these techniques that demonstrate the reasons that make
dynamic verification a necessary verification instrument for complex and highly interoperable and
dynamic systems2. We have also provided an overview of different languages and notations that
have been used to specify the behaviour of systems and the dependability and security properties
that need to be verified against this behaviour statically or dynamically.

As part of our survey, we have also identified a number of open research issues related to dynamic
system verification that will inform further research in Activity 4 of the project.

2 Our survey has covered static verification techniques to a lesser extent than dynamic verification as the former techniques are

outside the scope of A4 and are covered by the state of the art reviews that have been conducted by other problem activities in
SERENITY

SERENITY - 027587 Version 1.0 Page 105 of 126

A4.D1.1 – Review of the state of the art

References

[1] Abadi, M. and Gordon, A. D, (1997). “A calculus for cryptographic protocols: The spi calculus”. In
Proceedings of the Fourth ACM Conference on Computer and Communications Security, pages 36-47.

[2] Abadi, M. and Rogaway, P, (2001). “Reconciling Two Views of Cryptography (The computational
soundness of formal encryption)”. Journal of cryptology.

[3] Abadi, M. and Tuttle, M. R, (1991). “A Semantics for a Logic of Authentication”. Proceedings of the
Tenth Annual ACM Symposium on Principles of Distributed Computing, Montreal, Canada, August
1991, pp. 201-216

[4] Abercrombie, P. and Karaorman, M. (2002). “jContractor: Bytecode instrumentation techniques for
implementing design by contract in java”. In Electronic Notes in Theoretical Computer Science,
volume 70. Elsevier Science Publishers.

[5] Abrial, J. R, (1996). “The B-book: Assigning Programs to Meanings”. Cambridge University Press.

[6] Adelsbach, A., Alessandri, D., Cachin, C., Creese, S., Deswarte, Y., Kursawe, K., Laprie, J.C., Powell,
D., Randell, B., Riordan, J., Ryan, P., Simmonds, W., Stroud, R., Verissimo, P., Waidner, M. and
Wespi, A. (2002). “Conceptual Model and Architecture of MAFTIA”. Project MAFTIA deliverable
D21.

[7] Al-Azzoni, I., Down, D. J. and Khedri, R, (2005). “Modeling and Verification of Cryptographic
Protocols Using Coloured Petri Nets and Design/CPN,”MOMPES Workshop.

[8] Albern, B. and Schneider, F. B, (1987). “Recognizing safety and liveness”. Distrib. Comput. 2, 117–
126.

[9] Alexander, I, (2003). “Misuse Case Help to Elicit Nonfunctional Requirements”. IEE CCEJ.

[10] Alpern, B. and Schneider, F. B, (1985) “Defining liveness”. Information Processing Letters, vol. 21,
pp. 181-185.

[11] Aly, S. and Mustafa, K, (2003). “Protocol Verification And Analysis Using Colored Petri Nets”.
Technical Report, DePaul University, TR04-003.

[12] Amir, J, (2004). “A Survey of Runtime Verification”. Conference on Automated Verification,
University of Toronto, January, 2004

[13] Anderson, R, (1992). “UEPS: A Second Generation Electronic Wallet”. Computer Security ESORICS
'92, Springer-Verlag, pp. 411-418.

[14] Anderson, T. and Lee, P. A, (1990). “Fault Tolerance: Principles and Practice”. Springer-Verlag, Wien
- New York

[15] Andrieux, A. et al. (2004). “Web Services Agreement Specification”, Global Grid Forum, available
from: http://www.gridforum.org/Meetings/GGF11/Documents/draft-ggf-graap-agreement.pdf

SERENITY - 027587 Version 1.0 Page 106 of 126

A4.D1.1 – Review of the state of the art

[16] Artho, C. and Biere, A, (2005). “Combined Static and Dynamic Analysis”. in Proc. AIOOL '05, Paris,

France.

[17] Artho, C., Biere, A. and Havelund, K, (2004). “Using block-local atomicity to detect stale value
concurrency errors”. In Farn Wang, editor, Proc. ATVA ’04. Springer.

[18] Artho, C., Havelund, K. and Biere, A, (2003). “High-level data races”. Journal on Software Testing,
Verification & Reliability (STVR), 13(4).

[19] Artho, C., Schuppan, V., Biere, A., Eugster, P., Baur, M. and Zweimüller, B, (2004). “JNuke: Efficient
Dynamic Analysis for Java”. In Proc. 16th Intl. Conf. On Computer Aided Verification (CAV 2004),
volume 3114 of LNCS, pp. 462–465, Boston, USA. Springer.

[20] Atelier B., v 3.6 http://www.atelierb.societe.com/index_uk.html.

[21] Avizienis, A., Larpie, J. C. and Randell, B, (2000). “Fundamental Concepts of Dependability”. In
Information Survivability Workshop.

[22] Axelsson, S. (2000). “Intrusion Detection Systems: A Survey and Taxonomy”. Technical Report 99-
15, Depart. of Computer Engineering, Chalmers University.

[23] Balasubramaniyan, J., Garcia-Fernandez, J.O., Isaco, D., Spaord, E.H. and Zamboni, D, (1998). “An
architecture for intrusion detection using autonomous agents”. Technical Report Coast TR 98-05, The
COAST Project, Dept. of Comp. Sciences, Purdue Univ.,West Lafayette, IN, 47907, USA.

[24] Baldwin, R. W, (1990), “Naming and Grouping Privileges to Simplify Security Management in Large
Database”, In Proceedings IEEE Computer Society Symposium on Research in Security and Privacy,
pp. 184–194.

[25] Bandara, A. K., Lupu, E. C. and Russo, A, (2003). “Using event calculus to formalise policy
specification and analysis”. Policies for Distributed Systems and Networks Proceedings, POLICY
2003, pp. 26- 39.

[26] Baresi, L. and Guinea, S. (2005). “Dynamo: Dynamic Monitoring of WS-BPEL Processes”, ICSOC
05, 3rd International Conference On Service Oriented Computing, Amsterdam, The Netherlands.

[27] Baresi, L. and Guinea, S. (2005). “Towards Dynamic Monitoring of WS-BPEL Processes”. ICSOC
05, 3rd International Conference On Service Oriented Computing, Amsterdam, The Netherlands.

[28] Baresi, L., Guinea, S. and Plembani, P, (2005). “Using WS-Policy in Service Monitoring”. TES 05,
6th VLDB Workshop on Technologies for E-Services,Trondheim, Norway.

[29] Barnett B. and Vu, D. N, (1997). “Vulnerability assessment and intrusion detection with dynamic
software agents”. In Proceedings of the Software Technology Conference.

[30] Barnett, M. and Schulte, W, (2001). “Spying on Components: A Runtime Verification Technique”. In
Proceedings of OOPSLA 2001 Workshop on Specification and Verification of Component Based
Systems, Tampa, FL, USA.

[31] Barras, B., Boutin, S., Cornes, C., Courant, J., Filliatre, J. C., Gimenez, E., Herbelin, H., Huet, G.,
Munoz, C., Murthy, C., Parent, C., Paulin-Mohring, C., Saibi, A. and Werner, B, (1998). “The Coq
Proof Assistant Reference Manual - Version 6.2”. INRIA, Rocquencourt.

SERENITY - 027587 Version 1.0 Page 107 of 126

A4.D1.1 – Review of the state of the art

[32] Barringer, H., Goldberg, A., Havelund, K. and Sen, K, (2004). “Rule-Based Runtime Verification”.

5th International Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI’04), LNCS 2937, Springer, pages 44-57.

[33] Bartetzko, D., Fischer, C., Moller, M., and Wehrheim, H, (2001). “Jass – Java with assertions”, In
Workshop on Runtime Verification held in conjunction with the 13th Conference on Computer Aided
Verification, CAV'01. Published in Electronic Notes in Theoretical Computer Science, K. Havelund
and G. Rosu (eds.), 55(2).

[34] Bauer, L., Ligatti, J. and Walker, D, (2002). “More enforceable security policies”, In Foundations of
Computer Security, Copenhagen, Denmark.

[35] B-Core (UK) Ltd, http://www.b-core.com/.

[36] Bernstein, P.A., Hadzilacos, V., and Goodman, N, (1987). “Concurrency control and recovery in
database systems”. Addison-Wesley Publishing Company

[37] Bieber, P. (1990). “A logic of communication in hostile environment”. In Proceedings of the IEEE
Computer Security Foundations Workshop.

[38] Blum, M. and Micali, S. (1984). “How to generate cryptographically strong sequences of pseudo-
random bits”. SIAM Journal of Computing, 13(4):850--864

[39] Bolignano, D, (1996). “An approach to the formal verification of cryptographic protocols”. In 3rd
ACM Conference on Computer and Communications Security, pages 106—118.

[40] Boreale, M., De Nicola, R., and Pugliese. R. (2000). “Process Algebraic Analysis of Cryptographic
Protocols”. Proc. of 13th FORTE / 20th PSV, Kluiver.

[41] Brackin, S. H. (1996). “A HOL Extension of GNY for Automatically Analyzing Cryptographic
Protocols”. Proc. of Computer Security Foundations Workshop. IEEE Press.

[42] Brat, G., Drusinsky, D., Giannakopoulou, D., Goldberg, A., Havelund, K., Lowry, M., Pasareanu, C.,
Visser, W. and Washington, R, (2004). “Experimental Evaluation of Verification and Validation Tools
on Martian Rover Software”. Formal Methods in System Design, 25(2).

[43] Brewer, D. F. C. and Nash, M. J, (1989). “The Chinese Wall Security Policy”. Proceedings IEEE
Computer Society Symposium on Research in Security and Privacy, pp. 215–228.

[44] Brisset, P. (2000). “A Case Study in Java Software Verification”. Appeared in Workshop on Security,
Middleware, and Languages, Stockholm.

[45] Brörkens, M. and Möller, M, (2002). “Dynamic event generation for runtime checking using the JDI”,
In Havelund, K. and Rosu, G., editors, Proceedings of the Federated Logic Conference Satellite
Workshops, Runtime Verification, Copenhagen, Denmark. Electronic Notes in Theoretical Computer
Science 70(4).

[46] Brörkens, M. and Möller, M, (2002). “Jassda trace assertions, runtime checking the dynamic of java
programs”. In Schieferdecker, I., König, H., and Wolisz, A., editors, Trends in Testing
Communicating Systems, International Conference on Testing of Communicating Systems, Berlin,
Germany, pages 39-48.

SERENITY - 027587 Version 1.0 Page 108 of 126

A4.D1.1 – Review of the state of the art

[47] Burns J. and Mitchell C, (1990). “A Security Scheme for Resource Sharing over a Network”.

Computers and Security, Vol. 19, 67-76.

[48] Burrows, M., Abadi, M., and Needham, R. M, (1990). “A Logic of Authentication”. ACM
Transactions on Computer Systems, Vol. 8, No. 1, pp. 18-36.

[49] Buttyan, L. (1999). “Formal Methods in the Design of Cryptographic Protocols (state of the Art)”.
Technical Report, Swiss Federal Institute of Technology, Lausanne, Switzerland.

[50] Byon, I, (2000). “Survivability of the U.S. Electric Power Industry”, Master’s Thesis, Carnegie Mellon
University, Information Networking Institute.

[51] Caldera, J, (2000). “Survivability Requirements for the U.S. Health Care Industry”, Master’s Thesis,
Carnegie Mellon University, Information Networking Institute.

[52] Campbell, E. A., Safavi-Naini, R. and Pleasants, P. A, (1992). “Partial Belief and Probabilistic
Reasoning in the Analysis of Secure Protocols”. In Proceedings 5th IEEE Computer Security
Foundations Workshop, pages 84-91. IEEE Computer Society Press.

[53] Capra, L., Emmerich, W. and Mascolo, C, (2001). “Reflective middleware solutions for context-aware
applications”. In Yonezawa, A., Matsuoka, S., eds.: Proceedings of Reflection 2001, The Third
International Conference on Metalevel Architectures and Separation of Crosscutting Concerns, Kyoto,
Japan. LNCS 2192, AITO, Springer-Verlag, pp.126–133.

[54] Capra, L., Emmerich, W. and Mascolo, C, (2003) “CARISMA: Context-Aware Reflective mIddleware
System for Mobile Applications”. In IEEE Transactions on Software Engineering, 29(10), pp.929-945.

[55] CCITT (1998), The directory authentication framework. CCITT Recommendation X.509.

[56] CEN/ISSS (2003), Digital Rights Management Report.

[57] Chang, E., Pnueli, A., Manna, Z. (1994). “Compositional Verification of Real-Time Systems”. Proc.
9'th IEEE Symp. On Logic In Computer Science, 1994, pp. 458-465.

[58] Chapman, D. B. (1992). “Network (In)Security Through IP Packet Filtering”. In USENIX Security
Symposium III Proceedings, pages 63-76. USENIX Association.

[59] Chen, F. and Rosu, G, (2003). “Towards Monitoring-Oriented Programming: A Paradigm Combining
Specification and Implementation”. In Electronic Notes in Theoretical Computer Science 89 No. 2,
Published by Elsevier Science B.V.

[60] Chen, F. and Rosu, G, (2005). “Java-MOP: A Monitoring Oriented Programming Environment for
Java”. Proceedings of the Eleventh International Conference on Tools and Algorithms for the
construction and analysis of systems (TACAS'05).

[61] Cholewka, D. G., Botha, R. A., Eloff, J. P, (2000). “A context-sensitive access control model and
prototype implementation”, In Information Security for Global Information Infrastructures: IFIP TC
11 Sixteenth Annual Working Conference on Information Security. Beijing, China. pp. 341-350.

[62] Clarke, E.M., Grumberg, O., and Peled, D. (1999) “Model Checking”. MIT Press

[63] Clavel, M., Durán, F. J., Eker, S., Lincoln, Martí-Oliet, N., Meseguer, J. and Quesada, J. F. (1999),
“The Maude System”. In Proceedings of the 10th International Conference on Rewriting Techniques

SERENITY - 027587 Version 1.0 Page 109 of 126

A4.D1.1 – Review of the state of the art

and Applications (RTA-99), Vol. 1631 of LNCS. Trento, Italy, pp. 240–243, Springer-Verlag. System
description.

[64] Cohen, D., Feather, M., Narayanswamy K. and Fickas, S, (1997). “Automatic Monitoring of Software
Requirements”. In Proc. of the 19th Int. Conf. on Software Engineering.

[65] Cohen, G., Chase, J. and Kaminsky, D, (1998). “Automatic Program Transformation with JOIE”. In
Proceedings of the 1998 USENIX Annual Technical Symposium.

[66] Cohen, S. (1999). “Jtrek, Developed by Compaq”. http://www.compaq.com/java/download/jtrek.

[67] Connelly, K., and Chien, A. A. (2002). “Breaking the Barriers: High Performance Security for High
Performance Computing”. In Proc. Of New Security Paradigms Workshop.

[68] Corbett, J., Dwyer, M., Hatcliff, J. and Robby (2001). “Expressing Checkable Properties of Dynamic
Systems: The Bandera Specification Language”. KSU CIS Technical Report 2001-04.

[69] Corbett, J., Dwyer, M., Hatcliff, J., Pasareanu, C., Robby, Laubach, S. and Zheng, H. (2000).
“Bandera: Extracting Finite-state Models from Java Source Code”, in Proceedings of the 22nd
International Conference on Software Engineering, June.

[70] Corradi, A., Montanari, R. and Tibaldi, D. (2004). “Context-Based Access Control Management in
Ubiquitous Environments”, Network Computing and Applications, Third IEEE International
Symposium on (NCA'04), pp. 253-260.

[71] Cotroneo, D., Graziano, A., and Russo, S, (2004). “Security requirements in service oriented
architectures for ubiquitous computing”. In Proceedings of the 2nd Workshop on Middleware For
Pervasive and Ad-Hoc Computing. ACM Press, New York, NY, 172-177.

[72] Cousot, P. and Cousot, R. (1977). “Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints”. In Proc. Symp. Principles of Programming
Languages. ACM Press.

[73] Covington, M. J., Moyer, M. J. and Ahamad, M. (2000). “Generalized role-based access control for
securing future applications”. In 23rd National Information Systems Security Conference, Baltimore,
MD.

[74] Crazzolara, F. and Winskel, G. (2001). “Petri Nets in Cryptographic Protocols”. IEEE-IPDPS-01, pg.
149.

[75] Crosbie, M. and Spafford, E. H. (1995). “Defending a Computer System Using Autonomous Agents”
Technical Report CSD-TR-95-022.

[76] Cukier, M., Lyons, J., Pandey, P., Ramasamy, H. V., Sanders, W. H., Pal, P., Webber, F., Schantz, R.,
Loyall, J., Watro, R., Atighetchi, M. and Gossett, J. (2001). “Intrusion Tolerance Approaches in
ITUA”. FastAbstract in Supplement of the 2001 International Conference on Dependable Systems and
Networks, July 1-4, Göteborg, Sweden.

[77] Damianou, N., Dulay, N., Lupu, E. C. and Sloman, M. S. (2001), “The Ponder Policy Specification
Language”, presented at Policy 2001: Workshop on Policies for Distributed Systems and Networks,
Bristol, UK.

SERENITY - 027587 Version 1.0 Page 110 of 126

A4.D1.1 – Review of the state of the art

[78] d'Amorim, M. and Havelund, K. (2005). “Event-based runtime verification of java programs”, In

Proceedings of the Third international Workshop on Dynamic Analysis (St. Louis, Missouri, May 17 -
17, 2005). WODA '05. ACM Press, New York, NY, 1-7.

[79] Dardenne, A., van Lamsweerde, A., and Fickas, S. (1993). “Goal-Directed Requirements Acquisition”
Science of Computer Programming, 20, pp. 3-50.

[80] David, P. C., Ledoux, T. and Bouraqadi-Saadani, N. M. N. (2001). “Two-step weaving with reflection
using AspectJ”. in OOPSLA 2001 Workshop on Advanced Separation of Concerns in Object-Oriented
Systems.

[81] Denning, D. (1987). “An Intrusion-Detection Model”, IEEE Transactions on Software Engineering,
Vol. SE-13, No. 2, pp. 222-232.

[82] Desai, N, (2003). “Intrusion Prevention Systems: the Next Step in the Evolution of IDS”,
SecurityFocus, http://www.securityfocus.com/infocus/1670.

[83] Deutsch, M. S. and Willis, R. R. (1988). “Software Quality Engineering: A Total Technical and
Management Approach” Englewood Cliffs, NJ: Prentice Hall.

[84] Diffie, W., van Oorschot, P., and Wiener, M. (1992) “Authentication and Authenticated Key
Exchange”, Designs, Codes and Cryptography, 2, 1992, pp.107-125.

[85] Dingwall-Smith, A. and Finkelstein A. (2002), “From Requirements to Monitors by Way of Aspects”,
Proc. of 1st Int. Conf. on Aspect-Oriented Software Development.

[86] Dobson, J. E. and McDermid, J. A. (1989), “Security Models and Enterprise Models”, pp. 1–39.

[87] Dolev, D. and Yao A. (1983). “On the security of public-key protocols”. IEEE Transaction on
Information Theory 29, 198-208.

[88] Drusinsky, D, (2000). “The Temporal Rover and the ATG Rover”, In K. Havelund, J. Penix, and W.
Visser, editors, SPIN Model Checking and Software Verification, volume 1885 of LNCS, pages 323–
330. Springer.

[89] Eiffel Software. Eiffel language. http://www.eiffel.com/.

[90] Eilenberg, S. (1974). “Automata, Languages, and Machines”. Volume A. Academic Press, Inc., New
York, NY.

[91] Ellison, R. J., Fischer, D. A., Linger, R. C., Lipson, H. F., Longstaff, T. and Mead, N. R. (1997).
“Survivable Network Systems: An Engineering Discipline”, Technical Report CMU/SEI-97-TR-013,
Carnegie Mellon University.

[92] Ellison, R. J., Fischer, D. A., Linger, R. C., Lipson, H. F., Longstaff, T. and Mead, N.R. (1999).
“Survivability: Protecting your Critical Systems”. IEEE Internet Computing, CERT Coordination
Centre Software Engineering Institute, pg 55-63.

[93] Ellison, R. J., Fischer, D. A., Linger, R. C., Lipson, H. F., Longstaff, T. and Mead, N. R. (1999). “An
Approach to Survivable Systems”. Technical Report, CERT Coordination Centre, Carnegie Mellon
University.

SERENITY - 027587 Version 1.0 Page 111 of 126

http://www.securityfocus.com/infocus/1670
http://www.eiffel.com/

A4.D1.1 – Review of the state of the art

[94] Emmerich, W, (2000). “Software Engineering and Middleware: A Roadmap”. In The Future of

Software Engineering - 22nd Int. Conf. on Software Engineering (ICSE2000), pages 117–129, ACM
Press.

[95] Feather, M. and Fickas, S, (1995). “Requirements Monitoring in Dynamic Environments”. In Proc. of
Int. Conf. on Requirements Engineering.

[96] Feather, M. S., Fickas, S., van Lamsweerde, A. and Ponsard, C, (1998). “Reconciling System
Requirements and Runtime Behaviour”. Proc. of 9th Int. Work. on Software Specification & Design.

[97] Ferraiolo, D. and Kuhn, D. R, (1992). “Role-Based Access Control”, Proceedings of the NIST-NSA
National (USA) Computer Security Conference, pp. 554–563.

[98] Firesmith, D. G, (2003). “Analyzing and Specifying Reusable Security Requirements”. Eleventh
International IEEE Conference on Requirements Engineering (RE’2003) Requirements for High-
Availability Systems (RHAS’03) Workshop, Monterey, California.

[99] Gaardner, K. and Snekkenes, E, (1991). “Applying a Formal Analysis Technique to the CCITT X.509
Strong Two-Way Authentication Protocol”. Journal of Cryptology, 3(2):81—98.

[100] Genrich, H.-J. (1987). “Predicate/Transition Nets”. LNCS 254, Springer Verlag.

[101] Giannakopoulou, D. and Havelund, K. (2001). “Automata-Based Verification of Temporal Properties
on Running Programs”, In Proceedings of International Conference on Automated Software
Engineering (ASE’01), pages 412–416. ENTCS. Coronado Island, California.

[102] Goldberg, A. and Havelund, K. (2003). “Instrumentation of Java Bytecode for Runtime Analysis”, In
Proc. Formal Techniques for Java-like Programs, volume 408 of Technical Reports from ETH Zurich,
Switzerland. ETH Zurich.

[103] Goldwasser, S. and Micali, S. (1984). “Probabilistic Encryption”. Journal of Computer and System
Sciences 28, 270—299

[104] Gong, L., Needham, R. and Yahalom, R, (1990). “Reasoning about Belief in Cryptographic
Protocols”. Proc. 1990 IEEE Symp. on Security and Privacy (Oakland, California), pp. 234-248.

[105] Gordon, M. and Melhams, T. F. (1993). “Introduction to HOL: A Theorem Proving Environment for
Higher Order Logic”. Cambridge University Press.

[106] Grimes, R. (2004). “Authenticode”, Microsoft Corporation TechNet, Microsoft Authenticode
Reference Guide.

[107] Gritzalis, S., Katsikas, S. and Gritzalis, D. (2003). “Computer Network Security”, Papasotiriou
Publishers.

[108] Groce, A. and Visser, W. (2002). “Model checking Java programs using structural heuristics”, In Proc.
of the 2002 Int. Symp. On Software Testing and Analysis, pages 12–21.

[109] Guimaraes, J., Boucqueau, J. M. and Macq, M. (1996), “OKAPI: a Kernel for Access Control to
Multimedia Services Based on Trusted Third Parties”. Proc. ECMAST 96, Louvain-laNeuve,
Belgium, 783—798.

SERENITY - 027587 Version 1.0 Page 112 of 126

http://www.microsoft.com/technet/archive/security/topics/secaps/authcode.mspx?mfr=true
http://www.microsoft.com/technet/archive/security/topics/secaps/authcode.mspx?mfr=true

A4.D1.1 – Review of the state of the art

[110] Gurevich, Y. (1993). “Evolving algebras: An attempt to discover semantics”. In G. Rozenberg and A.

Saloma, editors, Current Trends in Theoretical Computer Science, pages 266--292. World Scientific.

[111] Gurevich, Y., Schulte, W., Campbell, C. and Grieskamp, W. (2001). “The Abstract State Machine
Language”. The Abstract State Machine Language, Microsoft Corporation.

[112] Haley, C. B., Laney, R. C., and Nuseibeh, B. (2004). “Deriving security requirements from
crosscutting threat descriptions”. In Proceedings of the 3rd international Conference on Aspect-
Oriented Software Development, AOSD '04. ACM Press, New York, NY, 112-121.

[113] Hammond J., Rawlings R., Hall A. (2001). “Will It Work”. Proceedings 5th IEEE International
Symposium on Requirements Engineering

[114] Hatcliff, J. and Dwyer, M, (2001). “Using the Bandera tool set to model-check properties of
concurrent Java software”. In CONCUR 2001, LNCS 2154, pages 39–58.

[115] Hatcliff, J., Corbett, J. C., Dwyer, M. B., Sokolowski, S. and Zheng, H. (1999). “A formal study of
slicing for multi-threaded programs with JVM concurrency primitives”. In Proceedings of the 6th
International Static Analysis Symposium (SAS’99).

[116] Havelund, K. and Rosu, G. (2001). “Monitoring Java Programs with Java PathExplorer”. In
Proceedings of the 1st International Workshop on Runtime Verification (RV’01) [1], pages 97–114.

[117] Havelund, K. and Rosu, G. (2001). “Monitoring Programs using Rewriting”. In Proceedings of
International Conference on Automated Software Engineering (ASE’01), pages 135–143. Institute of
Electrical and Electronics Engineers. Coronado Island, California.

[118] Havelund, K. and Rosu, G. (2002). “Synthesizing Monitors for Safety Properties”. In Tools and
Algorithms for Construction and Analysis of Systems (TACAS’02), volume 2280 of LNCS, pages
342–356. Springer. Extended version to appear in the journal: Software Tools for Technology
Transfer, Springer, 2004.

[119] Havelund, K. and Roşu, G. (2004). “An Overview of the Runtime Verification Tool Java
PathExplorer”, Form. Methods Syst. Des. 24, pp.189-215.

[120] Heberlein, T., Dias, G., Levitt, K., Mukherjee, B., Wood, J. and Wobler, D. (1990). “A Network
Security Monitor”, Proceedings IEEE Symposium on Research in Computer Security and Privacy.

[121] Hiltunen, M. A., Schlichting, R. D., Ugarte, C. A. and Wong, G. T. (2000). “Survivability through
Customization and Adaptability: The Cactus Approach”, DARPA Information Survivability
Conference and Exposition, pages 294-307.

[122] Hirschfeld, R. and Kawamura, K. (2004). “Dynamic service adaptation”, in Proceedings of the Fourth
IEEE International Workshop on Distributed Auto-adaptive and Reconfigurable Systems (with
ICDCS’04), Tokyo, Japan.

[123] Hoare, C. (1985-2004). “Communicating Sequential Processes”, electronic version of Communicating
Sequential Processes, first published in 1985 by Prentice Hall International,
http://www.usingcsp.com/cspbook.pdf.

[124] Holzmann, G. J. and Smith, M. H. (1997). “The model checker SPIN”. IEEE trans. SE, 23(5), pp.
279–295.

SERENITY - 027587 Version 1.0 Page 113 of 126

http://www.usingcsp.com/cspbook.pdf

A4.D1.1 – Review of the state of the art

[125] Hulsebosch, R. J., Salden, A. H., Bargh, M. S., Ebben, P. W. and Reitsma, J. (2005). “Context

sensitive access control”. In Proceedings of the Tenth ACM Symposium on Access Control Models
and Technologies, SACMAT '05, ACM Press, New York, NY, 111-119.

[126] Hyper/J, http://www.alphaworks.ibm.com/tech/hyperj.

[127] Iannella, R. (editor) (2002), “Open Digital Rights Language (ODRL)”, Version: 1.1 ,
http://odrl.net/1.1/ODRL-11.pdf

[128] Isaksen, U., Bowen, J. P. and Nissanke, N. (1996). “System and Software Safety in Critical Systems”.
The University of Reading, Whiteknights, United Kingdom, Technical Report RUCS/97/TR/062/A.

[129] Jahanian, J., Rajkumar, R., and Raju, S. (1994). “Runtime monitoring of timing constraints in
distributed real-time systems”. Technical Report CSE-TR 212-94, University of Michigan, April 1994.

[130] Jajodia, S., McCollum C. D. and Ammann P. (1999). “Trusted recovery”. Communications of the
ACM, Vol. 42, No. 7, pages 71-75.

[131] Janicke, H., Siewe, K., Jones, F., Cau, A. and Zedan, H. (2005). “Analysis and Run-time Verification
of Dynamic Security Policies”. AAMAS 05 workshop on Defence Applications of Multi-Agent
Systems, Utrecht.

[132] Kailar, R. (1995). “Reasoning About Accountability in Protocols for Electronic Commerce”. In
Proceedings of the 14th IEEE Symposium on Security and Privacy, pages 236-250. IEEE Computer
Society Press.

[133] Kaler, C. and Nadalin, A. (editors) (2005), “Web Services Security Policy Language (WS-
SecurityPolicy)”, http://www-128.ibm.com/developerworks/library/specification/ws-secpol/.

[134] Karaorman, M. and Freeman J. (2004). “jMonitor: Java runtime event specification and monitoring
library”, Proceedings of 4th Workshop on Run-time Verification, 2004, available from:
http://ase.arc.nasa.gov/rv2004/papers/paper11.pdf

[135] Kazman, R., Yan, H., Garlan, D., Schmerl, B. and Aldrich, J. (2004). “The Recovery of Runtime
Architectures”. The Architect, news@sei, Carnegie Mellon University.

[136] Kemmerer, R. A. (1989). “Analyzing Encryption Protocols Using Formal Verification Techniques”.
IEEE J. Selected Areas in Comm, 7(4), 448-457.

[137] Kemmerer, R., Meadows, C. and Millen, J. (1994). “Three systems for cryptographic protocol
analysis”. Journal of Cryptology, 7(2):79—130.

[138] Keromytis, A. D., Parekh, J., Gross, P. N., Kaiser, G., Misra, V., Nieh, J., Rubestein, D., and Stolfo, S.
(2003). “A Holistic Approach to Service Survivability”. Technical Report CUCS-021-03, Department
of Computer Science, Columbia University.

[139] Kessler, V. and Wedel, G. (1994). “AUTOLOG -- An Advanced Logic of Authentication”. In
Proceedings of the Computer Security Foundations Workshop VII, pages 90--99. IEEE Computer
Society Press.

[140] Kiczales, G. and Lamping, J. (1997). “Aspect-oriented programming”. In Mehmet Aksit and Satoshi
Matsuoka, editors, Proceedings European Conference on Object-Oriented Programming, volume
1241, pages 220{242. Springer-Verlag, Berlin, Heidelberg, and New York.

SERENITY - 027587 Version 1.0 Page 114 of 126

http://www-128.ibm.com/developerworks/library/specification/ws-secpol/

A4.D1.1 – Review of the state of the art

[141] Kiczales, G., Hilsdale,E., Hugunin,J., Kersten, M., Palm, J. and Griswold, W. G. (2001). “An

Overview of AspectJ”. In Proceedings of the 15th European Conference on Object-Oriented
Programming, pages 327–353. Springer-Verlag.

[142] Kim, M., Kannan, S., Lee, I., Sokolsky, O. and Viswanathan, M. (2001). “Java-mac: a run-time
assurance tool for java programs”. In Electronic Notes in Theoretical Computer Science, volume 55.
Elsevier Science Publishers.

[143] Knight, J. C. and Strunk E. A. (2004). “Achieving Critical System Survivability through Software
Architectures Architecting Dependable Systems”. (R. de Lemos, C. Gacek, and A. Romanovsky Eds)
Springer Verlag.

[144] Knight, J. C., and Sullivan, K. J. (2000). “On the Definition of Survivability”. Technical Report CS-
TR-33-00, University of Virginia.

[145] Knight, J. C., Heimbigner, D., Wolf, A., Carzaniga, J. H. and Devanbu, P. (2001). “The Willow
Survivability Architecture”. Proc. of the Fourth Information Survivability Workshop.

[146] Knight, J. C., Strunk, E. A. and Sullivan, K. J. (2003). “Towards a Rigorous Definition of Information
System Survivability”. DISCEX 2003, Washington DC.

[147] Knight, J. C., Sullivan, K.J., Elder, M.C. and Wang, C. (2000). “Survivability Architectures: Issues
and Approaches”. DARPA Information Survivability Conference and Exposition (DISCEX 2000),
Hilton Head SC.

[148] Ko, C., Ruschitzka, M. & Levitt, K. (1997). “Execution monitoring of security-critical programs in
distributed systems: A specication-based approach”. In Proceedings of the 1997 IEEE Symposium on
Security and Privacy, pages 175-187, Oakland, CA, USA.

[149] Kowalski, R. A. and Sergot, M. J. (1986). “A logic-based calculus of events”. New Generation
Computing, vol. 4, pp. 67-95.

[150] Kumar, A., Kamik, N. and Chafle, G. (2002). “Context Sensitivity in Role-based Access Control”.
ACM SIGOPS Operating Systems Review, pp. 53-66.

[151] Kurth, T. A. (2002). “Digital Rights Management: An Overview of the Public Policy Solutions to
Protecting Creative Works in a Digital Age”. WISE 2002 Intern, Kansas State University.

[152] Lala, J. H. (2000). “Intrusion Tolerant Systems”. Pacific Rim International Symposium on Dependable
Computing (PRDC 2000), 18-20, Los Angeles, CA, USA. IEEE Computer Society.

[153] Lamsweerde, A. (2004). “Elaborating Security Requirements by Construction of Intentional Anti-
Models”. In Proceedings of ICSE’04, 26th International Conference on Software Engineering,
Edinburgh, May. 2004, ACM-IEEE, pp. 148-157.

[154] Leavens, G., Baker, A. and Ruby, C. (2003). “Preliminary Design of JML: A Behavioural Interface
Specification Language for Java”. Technical Report 9806u, Iowa State University, Department of
Computer Science, http://www.jmlspecs.org/.

[155] Leduc, G. and Germeau, F. (2000). “Verification of Security Protocols Using LOTOS - Method and
Application”. Computer Communications, 23(12), 1089-1103.

SERENITY - 027587 Version 1.0 Page 115 of 126

http://www.jmlspecs.org/

A4.D1.1 – Review of the state of the art

[156] Lee, D. and Yannakakis, M. (1996). “Principles and Methods of Testing Finite State Machines – A

Survey”. Proceedings of the IEEE, vol. 84, n. 8, August, p. 1090-1123.

[157] Lee, I., Kannan, S., Kim, M., Sokolsky, O. and Viswanathan. M. (1999). “Runtime Assurance Based
on Formal Specifications”. In Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications.

[158] Lee, P., and Necula, G. (1997). “Research on Proof-Carrying Code on Mobile-Code Security”. In
Proceedings of the Workshop on Foundations of Mobile Code Security, Monterey.

[159] Liebl, A. (1993). “Authentication in distributed systems: A bibliography”. ACM Operating Systems
Review, 27(4):31—41.

[160] Ligatti, J., Bauer, L. and Walker, D. (2005). “Edit Automata: Enforcement Mechanisms for Run-time
Security Policies”. International Journal of Information Security, 4(1–2).

[161] Lindholm, T. and Yellin, F. (1996). “The Java Virtual Machine specification”. Web document at URL
http://www.javasoft.com/docs/books/vmspec/html/VMSpecTOC.doc.html, Sun Microsystems.

[162] Longley, D. and Rigby, S. (1992). “An automatic search for security flaws in key management
schemes”. Computers and Security, 11(1):75—90.

[163] Lowe, G. (1997). “Casper: A compiler for the analysis of security protocols”, Proceedings of The 10th
Computer Security Foundations Workshop,IEEE Computer Society Press.

[164] Ludwig, H., Keller, A., Dan, A. King, R.P. and Franck, R. (2003). “Web Service Level Agreement
(WSLA) Language Specification”. Version 1.0, IBM Corporation (January 2003),
http://www.research.ibm.com/wsla

[165] Lutz, R. (2000). “Software Engineering for Safety: A Roadmap”. Proceedings of the 22nd
International Conference on Software Engineering (ICSE 2000), Limerick, Ireland, June 4--11, ACM.

[166] Mahbub, K. and Spanoudakis, G. (2004). “A Framework for Requirements Monitoring of Service
Based Systems”. In Proceedings of the 2nd International Conference on Service Oriented Computing,
NY, USA.

[167] Manna, Z., and Pnueli, A. (1992). “The Temporal Logic of Reactive and Concurrent Systems –
Specification”. Springer-Verlag.

[168] Manson, J., Vitek, J. and Jagannathan, S. (2005). “Dynamic Aspects for Runtime Fault Determination
and Recovery”. Dynamics Aspects Workshop, Chicago, USA.

[169] Mao, W. and Boyd, C. (1993). “Towards formal analysis of security protocols”. Proceedings of the
Computer Security Foundation Workshop VI, pages 147-158.

[170] Mascolo, C., Capra, L., Zachariadis, S. and Emmerich, W. (2002). “XMIDDLE: A Data-Sharing
Middleware for Mobile Computing”. In International Journal on Wireless Personal Communications,
21(1), pp.77-103. Kluwer Academic Publisher.

[171] Matheus, A. (2005). “Authorization for digital rights management in the geospatial domain”. In
Proceedings of the 5th ACM Workshop on Digital Rights Management (Alexandria, VA, USA,
November 07 - 07, 2005). DRM '05. ACM Press, New York, NY, 55-64.

SERENITY - 027587 Version 1.0 Page 116 of 126

http://www.javasoft.com/docs/books/vmspec/html/VMSpecTOC.doc.html
http://www.research.ibm.com/wsla

A4.D1.1 – Review of the state of the art

[172] McGraw, G. and Felten, E. (1999). “Securing JAVA. Getting Down to Business with Mobile Code”,

Chapter 3, published by John Wiley & Sons, Inc., Securing Java: Getting Down to Business with
Mobile Code.

[173] McLean, J. (1994). “A general theory of composition for trace sets closed under selective interleaving
functions”. In Proceedings of the IEEE Symposium on Research in Security and Privacy, Oakland,
CA.

[174] Meadows, C. (1991). “A System for the Specification and Verification of Key Management
Protocols”. IEEE Symposium on Security and Privacy pages 182-197.

[175] Meadows, C. (1992). “Applying Formal Methods to the Analysis of a Key Management Protocol”.
Journal of Computer Security 1(1): 5-36.

[176] Meadows, C. (2003). “Formal methods for cryptographic protocol analysis: emerging issues and
trends”. IEEE Journal on Selected Areas in Communications, 21(1):44--54.

[177] Merritt, M. (1983). “Cryptographic Protocols”. PhD thesis, Georgia Inst. of Tech.

[178] Meyer, B. (2000). “Object-Oriented Software Construction”, 2nd edition. Prentice Hall, Upper Saddle
River, New Jersey.

[179] Millen, J. (1995). “The Interrogator model”. In Proc. 16th IEEE Symposium on Security & Privacy,
pages 251—260.

[180] Millen, J. K., Clark, S. C. and Freedman, S. B. (1987). “The Interrogator: Protocol security analysis”.
IEEE Transactions on Software Engineering, SE-13(2):274-288.

[181] Miller, S. P., Neuman, C., Schiller, J. I. and Saltzer, J. H. (1988). “Kerberos Authentication and
Authorization System”. Project Athena Technical Plan, Section E.2.1, Massachusetts Institute of
Technology.

[182] Mohnen, M. (2002). “A graph-free approach to data-flow analysis”. In Proc. 11th CC, pages 46–61,
Grenoble, France. Springer.

[183] Mok, A.K. and Liu, G. (1997). “Efficient run-time monitoring of timing constraints”. In Real-Time
Technology and Applications Symposium, June 1997.

[184] Moller, M., Bartetzko,D., Fischer, C. and Wehrheim, H. (2001), “Jass - java with assertions”, In
Electronic Notes in Theoretical Computer Science, volume 55. Elsevier Science Publishers.

[185] Moser, L. (1989). “A Logic of Knowledge and Belief for Reasoning about Computer Security”. In
Proceedings of the Computer Security Foundations Workshop II, pages 57--63. IEEE Computer
Society Press.

[186] Moszkowski, B. (1996). “The programming language Tempura”. Journal of Symbolic Computation,
22(5/6):730—733.

[187] Naldurg, P., Sen, K. and Thati, P. (2004). “A Temporal Logic Based Framework to Intrusion
Detection”. In Proceedings of the International Conference on Formal Techniques for Networked and
Distributed Systems (FORTE 2004).

SERENITY - 027587 Version 1.0 Page 117 of 126

http://www.securingjava.com/
http://www.securingjava.com/

A4.D1.1 – Review of the state of the art

[188] Nash, M. and K. Poland (1990). “Some Conundrums Concerning Separation of Duty”. IEEE

Symposium on Security and Privacy, Oakland, CA.

[189] National Computer Security Center (1985) Department of Defense Trusted Computer System
Evaluation Criteria, DoD 5200.28STD.

[190] National Computer Security Center (1987), “A Guide to Understanding Discretionary Access Control
(DAC) in Trusted Systems”, NCSC-TG-003, Version-1.

[191] Necula, G. (1997). “Proof-Carrying Code”, In Proceedings of the 24th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages(POPL ’97), Paris, France.

[192] Needham, R., and Schroeder, M. (1978). “Using encryption for authentication in large networks of
computers”. Communications of the ACM, 21(21):993-999.

[193] Nelson, S. and Pecheur, C. (2002) “V&V for advanced systems at NASA”, TASK NO: 10 TA-5.3.3
(WBS 1.4.4.5.3), prepared for Northrop Grumman Corp

[194] Nessett, D. M. (1990), “A critique of the Burrows, Abadi and Needham logic”. Operating Systems
Review 24 (1990), 35-38.

[195] Nieh, B. B. and Tavares, S. E. (1993). “Modelling and Analyzing Cryptographic Protocols Using Petri
Nets”. In: Lecture Notes in Computer Science, Vol. 718: Advances in Cryptology, AUSCRYPT'92.
Springer-Verlag.

[196] Otway, D. and Rees, O. (1987). “Efficient and timely mutual authentication”. SIGOPS Oper. Syst.
Rev.

[197] Pal, P., Webber, P. F., Schantz, R. E. and Loyall J. P. (2000). “Intrusion tolerant systems”. In
Proceedings of the IEEE Information Survivability Workshop (ISW-2000), pages 24-26, Boston, MA.

[198] Park, J. and Chandramohan, P. (2004). “Static vs. Dynamic Recovery Models for Survivable
Distributed Systems”. HICSS '04: Proceedings of the Proceedings of the 37th Annual Hawaii
International Conference on System Sciences (HICSS'04) - Track 2, IEEE Computer Society.

[199] Park, J., Sandhu, R. and Schifalacqua, J. (2000). “Security architectures for controlled digital
information dissemination”. Acsac, p. 224, 16th Annual Computer Security Applications Conference
(ACSAC'00).

[200] Pnueli, A. (1977). “The Temporal Logic of Programs”. In Proceedings of the 18th IEEE Symposium
on Foundations of Computer Science, pages 46–77.

[201] Porras, P. A. and Neumann, P. G. (1997). “EMERALD: Event monitoring enabling responses to
anomalous live disturbances”, In Proc. 20th NISTNCSC National Information Systems Security
Conference, pages 353—365.

[202] Ragsdale, D., Carver, C.A., Humphries, J. and Pooch, U. (2000), “Adaptation techniques for intrusion
detection and intrusion response system”. Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics at Nashville, Tennessee,pages 2344—2349.

[203] Rangan, P. V. (1998). “An axiomatic basis of trust in distributed systems”. In Symposium on Security
and Privacy.

SERENITY - 027587 Version 1.0 Page 118 of 126

A4.D1.1 – Review of the state of the art

[204] Robinson, W. (2002). “Monitoring Software Requirements using Instrumented Code”. In proceedings

of the Hawaii Int. Conf. on Systems Sciences.

[205] Robinson, W. N. (2003). “Monitoring Web Service Requirements”. In Proc. of 12th Int. Conf. on
Requirements Engineering.

[206] Roscoe, A. W. (1995) “Modelling and verifying key-exchange protocols using CSP and FDR”. In
Proceedings of the the Eighth IEEE Computer Security Foundations Workshop (CSFW '95) (March 13
- 15, 1995). CSFW. IEEE Computer Society, Washington, DC, 98.

[207] Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M., Hulance, J.H., Jackson, D.M, and Scattergood, J.B.
(1995) “Hierarchical Compression for Model-Checking CSP or How to Check 1020 Dining
Philosophers for Deadlock”. TACAS 1995: 133-152

[208] Rosenblatt, B. and Dykstra, G. (2003), “Integrating content management with digital rights
management - imperatives and opportunities for digital content lifecycles”, White paper, Giantsteps
Media Technology Strategies.

[209] Russo, A., Miller, A., Nuseibeh, B. and Kramer, J. (2002). “An Abductive Approach for Analysing
Event-Based Requirements Specifications”. Presented at 18th Int. Conf. on Logic Programming
(ICLP), Copenhagen, Denmark.

[210] Same, D., Matt, B, Niebuhr, B., Tally, G., Whitmore, B. and Bakken, D. (2002). “Developing a
Heterogeneous Intrusion Tolerant CORBA System”. International Conference on Dependable Systems
and Networks (DSN’02).

[211] Sandhu, R. S., Coyne, E. J., Feinstein, H. L. and Youman, C. E. (1996). “Role-Based Access Control
Models”. IEEE Computer vol. 29, no. 2, pp. 38-47.

[212] Sandhu, R., Ferraiolo, D. and Kuhn, R. (2000). “The NIST Model for Role-Based Access Control:
Towards a Unified Standard”. Proc. 5th ACM Workshop on Role-Based Access Control.

[213] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P. and Anderson, T. (1997). “Eraser: A dynamic
data race detector for multithreaded programs”. ACM Trans. on Computer Systems, 15(4).

[214] Schlimmer, J. (editor) (2006). “Web Services Policy Framework (WS-Policy Framework)”,
http://www.ibm.com/developerworks/library/specification/ws-polfram/.

[215] Schneider, F. B. (1998), “Enforceable Security Policies”, Cornell University Technical Report TR98-
1664.

[216] Schneider, S. (1997), “Verifying authentication protocols with CSP”. In Computer Security
Foundations Workshop [14], pages 3--17.

[217] Sekar, R., Venkatakrishnan, V.N., Basu, S., Bhatkar, S. and DuVarney, D. (2003). “Model -Carrying
Code: A Practical Approach for Safe Execution of Untrusted Applications”. ACM Symposium on
Operating Systems Principles. (SOSP'03; Bolton Landing, New York).

[218] Sen, K. and Rosu, G. (2003). “Generating Optimal Monitors for Extended Regular Expressions”. In
Proceedings of the 3rd International Workshop on Runtime Verification (RV’03) [1], pages 162–181.

[219] Shanahan, M. (1999). “The event calculus explained”. In Artificial Intelligence Today, pp.409-430,
Springer.

SERENITY - 027587 Version 1.0 Page 119 of 126

http://www.ibm.com/developerworks/library/specification/ws-polfram/

A4.D1.1 – Review of the state of the art

[220] Simmons, G., and Gustavus J. (1985). “How to (Selectively) Broadcast a Secret”. Proceedings of the

1985 IEEE Symposium on Security and Privacy, pp. 108-113.

[221] Sindre, G. and Opdahl, A.L. (2001) “Templates for Misuse Case Description”, Proceedings of the 7
International Workshop on Requirements Engineering, Foundation for Software Quality
(REFSQ'2001), Switzerland, 4-5 June 2001.

[222] Snapp, S.R., Brentano, J., Dias, G.V., Goan, T.L., Heberlein, L.T. Heberlein, Ho, C., Levitt, K.N.,
Mukherjee, B., Smaha, S.E., Grance, T., Teal, D.M. and Mansur, D. (1991). “DIDS (Distributed
Intrusion Detection System)- Motivation, Architecture, and An Early Prototype”. In Proceedings of
the 14th National Computer Security Conference.

[223] Snekkenes, E. (1991). “Exploring the BAN Approach to Protocol Analysis”. IEEE Symposium on
Security and Privacy 1991: 171-181.

[224] Spafford, E. H. and Zamboni, D. (2000). “Intrusion detection using autonomous agents”. Computer
Networks, 34(4):547–570.

[225] Spivey, J.M. (1992) “The Z Notation: A Reference Manual”. 2nd ed., Prentice-Hall, 1992

[226] Srinivasan, S., Dey, A., Ahamad, M. Covington, M. J., Long, W. and Abowd, G. (2001). “Securing
context-aware applications using environment roles”.

[227] Sun Microsystems (1999). “Java Platform Debugger Architecture Documentation”,
http://java.sun.com/products/jpda/doc/.

[228] Sun Microsystems (2003), “Securing Web Services - Concepts, Standards, and Requirements”, White
Paper.

[229] Syverson, P. (1990), “Formal Semantics for Logics of Cryptographic Protocols”. In Proceedings of the
Computer Security Foundations Workshop III, pages 32--41. IEEE Computer Society Press.

[230] Syverson, P. F. and van Oorschot, P. C. (1994). “On unifying some cryptographic protocols logics”. In
Proc. of the 13th IEEE Symp. on Security and Privacy. IEEE Comp. Society Press.

[231] Tardo, J. and Valente, L. (1996). “Mobile Agent Security and Telescript”. In Proceedings of IEEE
COMPCON '96, Santa Clara, California, pp. 58-63, February 1996, IEEE Computer Society Press.

[232] Tarr, P. L., Ossher, H., Harrison, W. H. and S. M. S. Jr. (1999). “N degrees of separation: Multi-
dimensional separation of concerns”. In International Conference on Software Engineering, pages
107–119.

[233] Tarvainen, P. (2004). “Survey of the Survivability of IT Systems”. The 9th Nordic Workshop on
secure IT systems, 4-5 November, Helsinki, Finland.

[234] Thane, H. (2000). “Design for deterministic monitoring of distributed real-time systems”. Technical
report, Malardalen Real-Time Research Centre.

[235] Thomsen, D. J. (1991). “Role-Based Application Design and Enforcement”. Database Security, IV:
Status and Prospects, S. Jajodia and C. E. Landwehr (eds.), North Holland, pp. 151–168.

[236] Toussaint, T. J. (1992), “Deriving the Complete Knowledge of Participants in Cryptographic
Protocols”. In Advances in Cryptology --- CRYPTO '91 Proceedings, pages 24--43. Springer-Verlag.

SERENITY - 027587 Version 1.0 Page 120 of 126

http://java.sun.com/products/jpda/doc/

A4.D1.1 – Review of the state of the art

[237] U.S. Department of Commerce (1996), Federal Standard 1037, National Telecommunications and

Information Administration, Institute for Telecommunications Services.

[238] van Lamsweerde, A. (1996) “Divergent Views in Goal-Driven Requirements Engineering”, In proc.
Viewpoints ’96 – ACM SIGSOFT Workshop of Viewpoints in Software Development, October

[239] van Lamsweerde, A., Brohez, S.n, De Landtsheer, R.d and Janssens, D. (2003). “From System Goals
to Intruder Anti-Goals: Attack Generation and Resolution for Security Requirements Engineering”.
Proceedings of the RE’03 Workshop on Requirements for High Assurance Systems (RHAS’03),
Monterey (CA), pp. 49-56.

[240] van Lansweerde, A., Letier, E., Ponsard, C. (1997) “Leaving inconsistency”. In proc. ICSEC’97
workshop on “Living with Inconsistency”, May 17

[241] van Oorschot, P. (1993). “Extending cryptographic logics of belief to key agreement protocols”. Proc.
1 st ACM Conference on Communications and Computer Security (Fairfax, Virginia, Nov. 3-5).

[242] Ventuneac, M., Coffey, T. and Salomie, I. (2003). “A policy-based security framework for Web-
enabled applications”. In Proceedings of the 1st international Symposium on information and
Communication Technologies, ACM International Conference Proceeding Series, vol. 49. Trinity
College Dublin, 487-492.

[243] VeriSign (2005). “VeriSign Code Signing for Netscape Object Signing, in Business Guide”, Chapters
2,3, VeriSign, http://www.verisign.com/static/030997.pdf.

[244] Verissimo, P. E., Neves, N. F. and Correia, M. P. (2003). “Intrusion-tolerant architectures: Concepts
and design”. In R. Lemos, C. Gacek, and A. Romanovsky, editors, Architecting Dependable Systems,
volume 2677 of Lecture Notes in Computer Science, pages 3--36. Springer-Verlag.

[245] Visser, W., Havelund, K., Brat, G. and Park, S. J. (2000). “Model Checking Programs”. In
Proceedings of ASE-2000: The 15th IEEE Conference on Automated Software Engineering. IEEE CS
Press. Grenoble, France.

[246] Wagelaar, D. (2004). “Towards a context-driven development framework for ambient intelligence”. In
Proceedings of the Fourth IEEE International Workshop on Distributed Auto-adaptive and
Reconfigurable Systems (withICDCS’04), Tokyo, Japan.

[247] Wedel, G. and Kessler, V. (1996). “Formal Semantics for Authentication Logics”. In: E. Bertino, H.
Kurth, G. Martello, and E. Montolivo (eds.): Proc. ESORICS'96. pp. 219--241, LNCS 1146.

[248] Weimer, W, and Necula, G.C. (2004). “Finding and preventing run-time error handling mistakes”. In
19th Anual ACM Conference on Object-Oriented programming, Systems, Languages, and
Applications (OOPSLA ‘04), pages 419-431

[249] Wilikens, M., Feriti,S., Sanna, A. and Masera, M. (2002). “A context-related authorization and access
control method based on RBAC: A case study from the health care domain”. In Proceedings of the
ACM Symposium on Access Control Models and Technologies (SACMAT).

[250] Wing, J. (1998). “A Symbiotic Relationship Between Formal Methods and Security”. Technical
Report, CMU-CS-98-188.

[251] XrML 2.0 Technical Overview (2002), Version 1.0

SERENITY - 027587 Version 1.0 Page 121 of 126

http://www.verisign.com/static/030997.pdf

A4.D1.1 – Review of the state of the art

[252] Yahalom, R., Klein, B. and Beth, T. (1993). “Trust relationships in secure systems - A distributed

authentication perspective”. In Proceedings of the 1993 IEEE Symposium on Research in Security and
Privacy, pages 150—164.

[253] Yang, Z., Cheng, B. H., Stirewalt, R. E., Sowell, J., Sadjadi, S. M. and McKinley P. K. (2002). “An
aspect-oriented approach to dynamic adaptation”. In Proceedings of the ACM SIGSOFT Workshop
On Self-healing Software (WOSS’02).

[254] Yao, A.C. (1982). “Theory and application of trapdoor functions”. In Proc. of the 23th Annual IEEE
Symposium on Foundations of Computer Science, pp. 80—91.

[255] Yellin, F. (1996). “Low-level security in Java”. Web document at URL
http://www.javasoft.com/sfaq/verifier.html, Sun Microsystems.

[256] Zakinthinos, A. and Lee, E. S. (1997). “A general theory of security properties”.. In Proceedings of the
1997 IEEE Symposium on Security and Privacy SP. IEEE Computer Society, Washington, DC, 94.

[257] Zhou, J. and Gollmann, D. (1996). “A fair non-repudiation protocol”. In Proceedings of the IEEE
Symposium on Research in Security and Privacy [IEE96], pages 55-61.

[258] Aickelin U., Cayzer S., (2002). “The Danger Theory and Its Application to Artificial Immune
Systems”. In Proc. First Int. Conf. On Artificial Immune Systems, Canterbury

[259] Aickelin U., Greensmith J., Twycross J., (2004). “Immune System Approaches to Intrusion Detection
– A Review”, in Proc. Third Int. Conf. On Artificial Immune Systems (ICARIS),

[260] Balthrop, J. Forrest, S. and Glickman, M., (2002). “Revisiting LISYS: Parameters and Normal
Behavior.”. Proceedings of the 2002 Congress on Evolutionary Computation.

[261] Bettini, L. and De Nicola, R., (2002) “A Middleware for Secure Distributed Tuple Spaces”

[262] Bravetti, M., Busi, N, Gorrieri, R, Lucchi, R., and Zavattaro, G., (2004) “Security Issues in the Tuple-
Space Coordination Model”, In Proc. of the second International Workshop on Formal Aspects in
Security and Trust (FAST'04) Kluwer Academic Press

[263] Bryce, C. and Cremonini, M., (2001). “Coordination and Security on the Internet”, in Coordination of
Internet Agents, A.Omicini, F.Zambonelli, M.Klusch, R.Tolksdorf (Eds.), Springer

[264] Bryce, C., Oriol, M., and Vitek, J., (1999) “A Coordination Model for Agents based on Secure
Spaces”.

[265] Cabri, G., Leonardi, L., and Zambonelli, F., (1998). “Reactive Tuple Spaces for Mobile Agent
Coordination”, Lecture Notes in Computer Scinece,

[266] Conham R.O., Tyrrell A.M., (2002) “A Multilayered Immune System for Hardware Fault Tolerance
within an Embryonic Array”, In Proc. First Int. Conf. On Artificial Immune Systems, Canterbury

[267] Dasgupta, D. and Brian, H., (2001). “Mobile Security Agents for Network Traffic Analysis”.
Published by the IEEE Computer Society Press in the proceedings of DARPA Information
Survivability Conference and Exposition II (DISCEX-II), Volume: 2, Page(s): 332-340, Anaheim,
California, June 12-14

SERENITY - 027587 Version 1.0 Page 122 of 126

http://www.javasoft.com/sfaq/verifier.html

A4.D1.1 – Review of the state of the art

[268] Dasgupta, D., Gonzalez, F., Yallapu, K. and Kaniganti, M., (2003). “Multilevel Monitoring and

Detection Systems (MMDS)”. in the proceedings of the 15th Annual Computer Security Incident
Handling Conference (FIRST), Ottawa, Canada June 22-27

[269] de Castro, L.N. and Timmis, J., (2002) “Artificial Immune Systems: A New Compuatational
Intelligence Approach”. Springer

[270] Esponda F., Forrest S., and Helman P., (2004). “A Formal Framework for Positive and Negative
Detection Schemes”, IEEE Transaction on Systems, Man, and Cybernetics, Vol.34, No.1

[271] Forrest, S., Perelson, A.S., Allen, L., and Cherukuri, (1994) "Self-Nonself Discrimination in a
Computer." In Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy, Los
Alamitos, CA: IEEE Computer Society Press

[272] Forrest, S., Hofmeyr, S.A., Somayaji, A., and Longstaff, T.A., (1996). "A Sense of Self for Unix
Processes.", In Proceedings of 1996 IEEE Symposium on Computer Security and Privacy.

[273] 'haeseleer, P. D. Forrest, S. and Helman, P. (1997) “A Distributed Approach to Anomaly Detection."

[274] Forrest, S., Somayaji, A., and Ackley, D., (1997). "Building Diverse Computer Systems." In
Proceedings of the Sixth Workshop on Hot Topics in Operating Systems (1997).

[275] Forrest, S., Hofmeyr, S.A., Somayaji, S, (1997) “Computer Immunology”, Communication of ACM,
Vol.40 No.10, October 1997.

[276] Gonzalez, F.A., and Dasgupta D., (2003). “Anomaly detection Using Real-Valued Negative
Selection”, In Special Issue of the Journal of Genetic Programming and Evolvable Machines, Vol.4
No.4

[277] Gonzalez, F.A., Dasgupta D., and Kozma R., (2002). “Combining Negative Selection and
Classification Techniques for Anomaly Detection”, in Journal IEEE Transactions on Evolutionary
Computation Vol.1

[278] Hofmeyr, S. and Forrest, S., (2000). "Architecture for an Artificial Immune System." Evolutionary
Computation 7(1), Morgan-Kaufmann, San Francisco, CA, pp. 1289-1296 (2000).

[279] Hofmeyr, S., Forrest, S., and Somayaji, A. (1998). "Intrusion Detection Using Sequences of System
Calls." Journal of Computer Security Vol. 6, pp. 151-180

[280] JavaSpaces, “JavaSpaces Service Specification”, (2005) (available at
http://www.jini.org/nonav/standards/porter/doc/specs/html/js-spec.html)

[281] Kephart, J.O., Sorkin G.B., Swimmer M., White S.R., (1997). “Blueprint for a Computer Immune
System”, Virus Bullettin International Conference, San Francisco

[282] Kim J., Wilson W.O., Aickelin U., McLeod J., (2005) “Cooperative Automated worm Response and
Detection ImmuNe Algorithm (CARDINAL) inspired by T-cell Immunity and Tolerance”, in Proc. of
the fourth Int. Conf. On Immune Systems (ICARIS)

[283] Le Boudec J.Y., Sarafijanovic S., (2003) “An Artificial Immune System Approach to Misbehaviour
Detection in Mobile Ad-Hoc Networks”, Tech.Rep. IC/2003/59

SERENITY - 027587 Version 1.0 Page 123 of 126

A4.D1.1 – Review of the state of the art

[284] Menezes, R., and Wood, A., (1999). “Garbage collection in Linda Using Tuple Monitoring and

Process Registration”

[285] Nunes de Castro, L., and Von Zuben, F.J., (1999). “Artificial Immune Systems: Basic Theory and
Applications”, Technical Report TR-DCA 01/99

[286] Nunes de Castro, L., and Von Zuben, F.J., (2000). “Artificial Immune Systems: Survey of
Applications”, Technical Report DCA-RT 02/00

[287] Omicidi, A., and Zambonelli, F., (1998). “Tuple Centre for the Coordination of Internet Agents”,
ACM

[288] Warrender, C., Forrest, S., Pearlmutter., B. (1999). “Detecting intrusions using system calls:
Alternative data models” 1999 IEEE Symposium on security and Privacy.

[289] Meadows, C., (1994). “Formal Verification of Cryptographic Protocols: A Survey”. Proc. 4th
International Conference on the Theory and Applications of Cryptology: Advances in Cryptology,
135-150.

[290] Roscoe, A.W., and Goldsmith, M.H., (1997). “The perfect spy for model-checking crypto-protocols”.
Proceedings of DIMACS workshop on the design and formal verification of crypto-protocols.

[291] Dill, D.L., Drexler, A.J. Hu, A.J. and Yang, C.H., (1992). "Protocol Verification as a Hardware
Design Aid". IEEE International Conference on Computer Design: VLSI in Computers and
Processors, IEEE Computer Society, pp. 522-525.

[292] Mitchell, J.C., Mitchell, M. and Stern, U., (1997). "Automated analysis of cryptographic protocols
using Murphi," IEEE Symposium on Security and Privacy.

[293] Tatebayashi, M., Matsuzaki, N., and Neuman, D.B. Jr., (1989). “Key Distribution Protocol for Digital
Mobile Communication Systems”. In G. Brassard, editor, Proceedings of Advances in Cryptography |
CRYPTO'89, volume 435 of Lecture Notes in Computer Science, pages 324-334. Springer-Verlag.

[294] Kohl, J and Neuman. B.C., (1993). “The Kerberos Network Authentication Service (Version 5)”.
Internet Request for Comments RFC-1510. September.

[295] Ghezzi, C., and Kemmerer, R. (1991). “ASTRAL: An assertion language for specifying real-time
systems”. Proceedings of the 3rd European Software Engineering Conference, pp.122-146.

[296] Dang, Z., and Kemmerer, R.A. (1997) “Using the ASTRAL model checker for cryptographic protocol
analysis”. In Proc. DIMACS Workshop on Design and Formal Verification of Security Protocols,
September.

[297] Dang, Z. and Kemmerer, R.A., (1999). "Using the ASTRAL model checker to analyze Mobile IP,"
Proc. of ICSE'99, pp. 132-141.

[298] Dai, Z., He, X., Ding, J., and Gao, S., (2004). “Modeling And Analyzing Security Protocols In Sam: A
Case Study”. Proc. of the 8th IASTED International Conference on Software Engineering and
Applications, Cambridge, MA, USA, November 9-11.

[299] Heitmeyer, C., Kirby, J., Labaw, B., and Bharadwaj, R., (1998). “SCR*: A toolset for specifying and
analyzing software requirements”. In Proc. Computer-Aided Verification, 10th Annual Conf.
(CAV’98), Vanvouver Canada, 1998

SERENITY - 027587 Version 1.0 Page 124 of 126

http://sprout.stanford.edu/dill/PAPERS/verification/MMS97.ps
http://sprout.stanford.edu/dill/PAPERS/verification/MMS97.ps

A4.D1.1 – Review of the state of the art

[300] Archer, M., Heitmeyer, C., and Riccobene, E. (2000). “Using TAME to prove invariants of automata

models”. Case studies. In Proc. 2000 ACM SIGSOFT Workshop on Formal Methods in Software
Practise (FMSP’00), August

[301] Bharadwaj, R., and Sims, S. (2000). “Salsa: Combining constraints solvers with BDDs for automatic
invariant checking”. In Proc. Tools and Algorithms for the construction and Analysis of Systems
(TACAS’ 2000), Berlin, March.

[302] Heitmeyer, C.L. (2001). “Applying Practical Formal Methods to the Specification and Analysis of
Security Properties”. MMM-ACNS 2001: 84-89

[303] Gargantini, A., and Heitmeyer, C.L., (1999). “Using Model Checking to Generate Tests from
Requirements Specifications”. ESEC / SIGSOFT FSE 1999: 146-162

[304] Abrial J-R and Mussat L, (1998). “Introducing Dynamic Constraints in B”. D.Bert (Editor):
Proceedings of the Second International B Conference B'98: Recent Advances in the Development and
Use of the B Method, Springer.

[305] Lanet, J.P (1998). “Using the B Method to Model Protocols”. In Proc. AFADL 98, pages 79-90

[306] Motre, S., and Teri, C. (2000). “Using B Method to Formalize the Java Card Runtime Security Policy
for a Common Criteria Evaluation”. In Proc. of 23rd National Information Systems Security
Conference (NISSC 2000), Baltimore, USA, October 16-19.

[307] Ahrendt, W., Baar, T., Beckert, B., Giese, M., Habermalz, E., Hhnle, R., Menzel, W., and Schmitt,
P.H. (2000). “The Key approach: integrating design and formal verication of Java Card programs”. In
Proceedings of the Java Card Workshop, co-located with the Java Card Forum, Cannes, France.

[308] Girard, P. and Lanet, J.-L. (1999). “New Security Issues raised by Open Cards”. In Information
Security Technical Report, Vol4, N2, pp.: 19-27

[309] Guilley, S., and Pacalet, R. (2004). “SoC Security: a War against Side-Channels”. Annals of the
Telecommunications, July/August 2004.

[310] Witteman, M. (2002). “Advances in smart card security”. Information Security Bulletin, pg 11-22

[311] Hall, A., and Chapman, R., (2002). “Correctness by Construction: Developing a Commercial Secure
System”. IEEE Software 19(1): 18-25.

[312] Landwehr, C., Bull, A., McDermott, J., and Choi, W. (1994). “A taxonomy of computer program
security flaws, with examples”. ACM Computing Surveys, 26(3):211--255, 1994.

[313] Bicarragui, J., Dick, J., and Woods, E. (1996). “Quantitative analysis of an application of formal
methods”. In FME ’96: Industrial Benefit and Advances in Formal Methods, volume 1051 of Lecture
Notes in Computer Science, pages 60-73, Springer-Verlag

[314] Nicola and van Spanje (1990). “Comparative analysis of different models of checkpointing and
recovery”. IEEE Transactions on Software Engineering, 16:807-821, August 1990

[315] Ziv, A., and Bruck, J. (1997). “An On-Line Algorithm for Checkpoint Placement”. IEEE Transactions
on Computers, vol. 46(9), pp. 976--985, Sept.

SERENITY - 027587 Version 1.0 Page 125 of 126

A4.D1.1 – Review of the state of the art

[316] Avizienis, A., Laprie, J.C., Randell, B. and Landwehr C. (2004). “Basic Concepts and Taxonomy of

Dependable and Secure Computing”, IEEE Transaction on dependable and secure computing, Vol.1,
No.1, January-March 2004

[317] W. Torres-Pomales, (2000) “Software Fault Tolerance: A Tutorial”. Technical Report TM-2000-
210616, NASA, October

[318] Schneier, B. (1998). “Security Pitfalls in Cryptography”. Essay, http://www.schneier.com/essay-
028.html

[319] Ammann, P., Jajodia, S. and I. Ray, (1997). “Applying Formal Methods to Semantic-Based
Decomposition of Transactions”. ACM TODS, Vol. 22, No. 2, June 1997.

[320] Minsky, N. H., Minsky, Y. M., Ugurenau, V. (2000). “Making Tuple Spaces Safe for Heterogeneous
Distributed Systems”. Proc. SAC’2000, Como, Italy.

[321] Gelernter, D. (1985). “Generative communication in Linda”. ACM Transactions on
Programming, 2(1):80—112.

[322] Kim, J. and Bentley, P. J. (2001). “Evaluating Negative Selection in an Artificial Immune System for
Network Intrusion Detection”. Genetic and Evolutionary Computation Conference 2001 (GECCO-
2001), San Francisco, pp.1330 - 1337, July 7-11.

[323] Matzinger, P. “The Real Function Of The Immune System”, available from
http://cmmg.biosci.wayne.edu/asg/polly.html.

[324] Picco, G. P., Murphy, A. L. and Roman, G.-C. (1999). “Lime: Linda Meets Mobility”. In D. Garlan,
editor, Proceedings of the 21 st International Conference on Software Engineering.

[325] Sathyanath, S. and Sahin, F. (2002). AISIMAM - An AIS based Intelligent Multi Agent Model and Its
Application to Mine Detection Problem, Proceedings of the ICARIS 2002 1st International
Conference on Artificial Immune Systems, Canterbury, UK, September 9 – 11.

[326] Williams, P. D., Anchor, K. P., Bebo, J. L., Gunsch, G. H., Lamont, G. B. (2001). “CDIS: Towards a
Computer Immune System for Detecting Network Intrusions”. Recent Advances in Intrusion
Detection 2001: 117-133.

SERENITY - 027587 Version 1.0 Page 126 of 126

http://www.schneier.com/essay-028.html
http://www.schneier.com/essay-028.html
http://cmmg.biosci.wayne.edu/asg/polly.html

	Introduction
	Scope and Objectives
	Document Structure

	Security Requirements
	General Security Requirements
	Requirements related to digital Requirements related to Digi
	Distribution architectures of DRM systems
	Rights Expression Languages

	Security Requirements Verification
	Overview
	Static Analysis of Cryptographic Protocols
	Cryptographic Protocols
	Symbolic vs Computational View of Cryptography
	Formal Methods
	Developing security systems with formal methods
	Specification of security and other system properties for st
	Conclusions for static verification and formal methods

	Dynamic Verification
	Formalisation of Properties for Dynamic Verification
	Methods for Capturing Events
	Code Instrumentation
	Aspect Oriented Programming
	Design by Contract
	Monitoring Oriented Programming
	Reflective Middleware
	Proxy Architecture
	API-Based Event Capturing

	Checking for Violations
	Proof Carrying Code
	Signature Verification of Signed Code
	Model Carrying Code
	Java Virtual Machine Byte-Code Verifier

	Monitoring in Tuplespace-based Systems
	Monitoring for resource management
	Monitoring for policy enforcement

	General Purpose Dynamic Verification Tools
	The Java PathExplorer (JPaX) framework
	The Java Monitoring and Controlling Framework
	The Java Monitoring-Oriented Programming Framework
	The Jassda Framework
	The Temporal Rover Toolset
	The Java PathFinder (JPF) Framework
	The JNuke tool
	Summary of Dynamic Verification Tools

	Dynamic Verification Tools Focusing on Security Properties
	Firewalls
	Intrusion Detection Systems
	Intrusion Prevention Systems
	Access Control Models
	Conclusions

	Next Generation Intrusion Detection Systems
	Distributed Intrusion Detection System (DIDS)
	Autonomous Agents for Intrusion Detection (AAFID) System
	Immunology-based Security
	Beyond Self/Non-self discrimination

	Open research issues for dynamic verification

	Recovery
	Recovery for run-time verification systems
	Recovery in safety-critical systems
	Fault-tolerance

	Recovery for intrusion-tolerant systems
	Recovery in survivable distributed systems
	Information warfare defence

	Conclusion

