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Executive Summary 

This deliverable provides a review the state of the art in security and dependability monitoring and 
recovery in order to identify approaches and techniques that have been developed for these tasks 
and analyse their strengths and limitations.  

Our review has identified the basic architecture of runtime monitoring systems, the common 
features of the languages that may be used to formalise security and dependability properties that 
need to be verified at runtime, and the main issues in connection with dynamic verification which 
are open to further research. 

The identified research issues are related to: (i) the need to provide support for transforming of 
specifications of security and dependability properties that need to be monitored at runtime into the 
event patterns that should be observed to verify them, (ii) the need to develop mechanisms that can 
support the diagnosis of the reasons underpinning run-time violations of security and dependability 
properties requirements that could inform system adaptation to ensure that violations will not re-
occur, (iii) the ability to support the specification of end-user personal and ephemeral security and 
dependability properties, the automatic assessment of whether or not such properties can be 
monitored at run-time, and the transformation of these properties onto monitorable patterns of run-
time events, (iv) the development of techniques that would allow the identification of scenarios of 
potential security and dependability threats (i.e. potential violations of security and dependability 
properties that have not occurred yet but seem to present a realistic possibility for the subsequent 
operations of a system) and the translation of these scenarios into monitorable event patterns that 
would allow the development of pro-active techniques for protecting security, (v) the need to 
develop mechanisms that can ensure that the events used in dynamic verification have not been 
altered by an attacker in order to affect the results of the verification process and consequently the 
recovery actions that may be taken in response to these results, and (vi) the need to develop 
monitors that could detect violations of security and dependability properties efficiently and timely 
so as to allow the effective reaction to such violations.  

The above issues establish a roadmap that will inform the research in Activity 4 of the SERENITY 
project. 
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1. Introduction 

1.1. Scope and Objectives 
The objective of this deliverable is to provide a review the state of the art in security and 
dependability monitoring and recovery in order to identify approaches and techniques that have 
been developed for these tasks and analyse their strengths and limitations. To this end, it aims to 
establish a basic roadmap for the research in Activity 4 of the SERENITY project which is 
concerned with the development of a framework to support: (a) the dynamic (i.e., runtime) 
monitoring and verification of security and dependability requirements and solutions for 
interoperable ambient intelligence ecosystems, (b) the diagnosis of violations of and threats to these 
requirements and solutions, and (c) the timely recovery from such violations and reaction to threats 
when they occur. 

Avizienis et al. [21] have defined dependability as "the ability of a (computer) system to avoid 
failures that are more frequent or more severe, and outage durations that are longer, than is 
acceptable to the user(s)" and "deliver service that can be justifiably trusted". The notion of service 
in this definition corresponds to the system behaviour as viewed by the user, who may be a human 
interacting with the system or another system. A service delivery is acceptable if it implements the 
required system behaviour and satisfies certain quality constraints while failures relate to events that 
make the service deviate from what is perceived to be a correct delivery. 

An important element in the above definition of dependability is the notion of "justifiable trust" 
which requires the ability to objectively verify that the delivered system service does not deviate 
from the required system behaviour and associated quality constraints. The development of system 
verification capabilities (i.e., the ability to verify that a system satisfies certain properties) has been 
the focus of significant research over the last few decades and has resulted in the development of a 
wide spectrum of, typically tool-supported, methods that offer such capabilities. These methods are 
distinguished into static and dynamic.   

Static verification methods aim to show that the desired properties of a system will always hold 
based solely on the specification of the system without considering its actual run-time behaviour. 
Dynamic verification methods, on the other hand, aim to show that desired properties hold based on 
observation of the run-time behaviour of a system and its interactions with its operational 
environment.  

Whilst static verification is not the main area of interest of this survey, we provide a brief overview 
of methods that fall in this category in order to demonstrate their main similarities and differences 
from dynamic verification methods, and demonstrate weaknesses that make it necessary to deploy 
dynamic verification. Our overview of static verification methods focuses on the use of formal 
methods for developing and analysing security systems and their properties. We also focus on the 
formal verification of cryptographic protocols as a significant amount of research has been devoted 
to this area with significant accomplishments. The main issues that we have considered in 
connection with the analysis of cryptographic systems include: the modelling (if any) of intruders 
that aim to compromise system security and dependability, the specification of security properties 
including the degree of its formality, and the extent to which verification is automated.  

Dynamic system verification has emerged more recently and has been investigated in the context of 
different areas including requirements engineering, program verification, safety critical systems and 
service centric systems.  
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In requirements engineering, dynamic verification has focused on system requirements and 
investigated:  (i) ways of specifying requirements for monitoring and transforming them into events 
that can be monitored at run-time; (ii) the development of event-monitoring mechanisms; (iii) the 
development of mechanisms for generating system events that can be used in monitoring (e.g. 
instrumentation [204], use of reflection [53] ; and (iv) the development of mechanisms for adapting 
systems in order to deal with deviations from requirements at run-time as, for example, in [238]. 

In dynamic program verification, existing work has focused on the development of programming 
platforms with generic program monitoring capabilities including support for generating program 
events at run-time (e.g. jMonitor [134], embedding specifications of monitorable properties into 
programs and producing code that can verify these properties during the execution of the programs 
(e.g. monitoring-oriented programming [59]). A significant body of this research has been 
published in the proceedings of the series of Workshops on Runtime Verification1 that started in 
2001. 

In safety critical systems, dynamic verification methods emerged in order to provide more formal 
system verification than testing [12]. Early work in this area focused on run-time monitoring of 
embedded and safety-critical real-time systems in order to detect timing failures and guarantee 
system responsiveness [129, 183, 234]. Later run-time monitoring techniques were applied to 
autonomous safety critical systems such as NASA’s autonomous Deep Space Remote Agent [193], 
as the testing of such systems was difficult and very resource consuming due to their high 
complexity systems. Moreover, runtime monitoring was seen as a mechanism enhancing the 
autonomy of such systems.     

In service-centric systems − i.e. systems which "are implemented from autonomous web services 
coordinated by some composition process" [166] − the interest in dynamic verification has emerged 
due to the need to be able to specify and monitor service level agreements between the providers 
and consumers of web-services which are deployed in service centric systems. As a result of 
recognizing the importance of this form of verification, work in this area has focused on the 
development of standards and languages for specifying monitorable service level agreements (e.g. 
WS-Agreement [15], WSLA [164]) and methods for monitoring them [26, 166] . 

Research on dynamic verification has also focused on system security. Work in this area has mainly 
been concerned with the development of Intrusion Detection Systems (IDS) which use dynamic 
verification techniques for detecting security threats. Our review covers this area along with classic 
approaches for monitoring and supporting security, such as firewalls.  

An increasingly important requirement for system security and dependability is the ability to 
recover from attacks or system faults identified at run-time, and possibly adapt to handle these 
attacks and faults. Effective recovery requires the provision of diagnostic information of the nature 
and cause of the attack or fault, and the development of flexible system architectures and system 
deployment environments that can undertake recovery actions at run-time. Despite the recognition 
of its importance, there is little work that focuses on recovery. Our review of the literature has 
identified that most of the work on recovery arises from the areas of safety-critical systems 
(focusing mainly on fault-tolerance) and databases. Consequently, our survey focuses on these areas 
and discusses recovery for safety-critical systems (aimed mainly at preserving dependability), 

                                                 

1 http://react.cs.uni-sb.de/rv2005/ 
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mission-critical distributed systems (aimed mainly at preserving survivability) and trusted recovery 
as part of information warfare defence. 

Run-time monitoring is particularly well suited to detecting known hazardous conditions while 
detecting unknown or unexpected hazards is lot more challenging [165]. 

 

1.2. Document Structure 
The rest of this document is structured as follows: 

Section 2 provides an overview of the main types of security requirements that have been identified 
in the literature and a special type of such requirements of an increasingly emerging importance 
which are related to digital rights management. 

Section 3 reviews the state-of-the-art in the static verification of security properties for achieving 
dependability.  

Section 4 reviews the state-of-the-art in the dynamic verification of security properties for achieving 
dependability.   

Section 5 reviews research related to system recovery following breaches of dependability and other 
system properties. Our review has focused mainly on recovery methods used in the areas of safety-
critical systems, mission-critical distributed systems and trusted recovery of information warfare 
defences, as pure security oriented recovery is an emerging area with relatively less research 
devoted to it. 

Finally in Section 6, we present the main open research issues regarding dynamic verification and 
recovery that were identified by our survey and conclude this survey. 
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2. Security Requirements 

2.1. General Security Requirements 
Security requirements cover issues related to [228]: 

⎯ Confidentiality − Confidentiality is the ability to maintain the secrecy of stored system data 
and the messages exchanged by a system and its collaborating actors over networks. 

⎯ Integrity  − Integrity is the ability to ensure the accuracy and completeness of the data stored 
and the messages exchanged by a system. Maintaining integrity involves allowing only 
authorised users to change or create data and messages and applying controls to ensure the 
correctness of these messages and data. 

⎯ Availability − Availability is concerned with ensuring that access to a system is possible 
when required. 

⎯ Non-repudiation − Non- repudiation is concerned with making it impossible for an entity 
that has participated in some communication with a system to deny this participation. In 
message exchange, for instance, non- repudiation guarantees that the sender and the receiver 
of a message cannot deny the dispatch and receipt of the message, respectively. 

⎯ Authentication −  Authentication is the ability to determine whether an actor interacting with 
the system has the identity that it claims to have. 

⎯ Authorization − Authorization is concerned with the assignment of the right permissions to 
an already authenticated entity.  

⎯ Privacy  −  Privacy is the ability of a system to prevent personal information from becoming 
known to entities other than those which own the information or the information is about. 

 

2.2. Requirements related to digital Requirements related to Digital 
Rights Management 

Another important family of security requirements and properties is the one dealing with what is 
known as Digital Rights Management (DRM) requirements, which will allow us to obtain a 
different perspective on the usual security properties and solutions. The goal of Digital Rights 
Management (DRM) is to protect the rights of owners of digital content, by specifying which kinds 
of uses are acceptable and which are not. At a high level DRM deals with the control of the rights to 
the digital content (e.g. how it can be used, how often, etc). DRM is applicable to a variety of types 
of content (e.g. music, books, video). Different definitions for DRM have been proposed but the 
European Standards Committee has proposed the following one [56]: 

“Digital Rights Management(DRM) is the management of rights to digital goods and content, 
including its confinement to authorized use and users and the management of any consequences of 
that use throughout the entire life cycle of the content.” 

Rosenblatt et al. [208] have also provided two definitions for DRM. With their first definition they 
refers to the technology that protects the digital content via encryption and access control 
mechanisms (“DRM is a persistent protection of digital data”), while with the second one they refer 
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to technology that must be used in order to manage and track digital content on the Internet (“DRM 
is everything that can be done to define, manage, and track rights to digital contents”). 

The broader use of the term DRM includes the description, identification, trading, protection, 
monitoring and tracking of all forms of rights usages over tangible and intangible assets including 
management of the rights holders relationships.  

Kurth [151] has pointed some of the advantages of a wide spread use of a DRM framework, such as 
the protection of the rights of the owners of digital works but also the fact that DRM can enable 
micropayment schemes, where users only pay for what they consume or are billed on a “per use” 
basis. Also micropayments in conjunction with digital distribution can lower or even essentially 
eliminate transaction costs. Since the cost of digital distribution is zero content creators can 
distribute their work immediately after production. This can reduce prices for consumers while 
content creators can market their creations without having to work with a publishing company.  

Matheus [171] identified the following functions in order to guarantee a working DRM system: 

⎯ Authentication is the process of determining whether someone or something is, in fact, who 
or what it is declared to be. In private and public computer networks (including the Internet), 
authentication is commonly done through the use of something secret (e.g. password, PIN), 
something you have in possession (e.g. smart card) or something that you are (e.g. finger 
print, iris scan). In a DRM system authentication specifies the means for proving identities 
of the provider of digital content, the licensor, the licensee as well as proofing the 
authenticity of a digital content and other entities like services and systems.  

⎯ Access control is the ability to permit or deny the use of an object (a passive entity, such as a 
system or file) by a subject (an active entity, such as an individual or process). In a DRM 
system the decision is based on a concrete request and a set of formalized rights. This set of 
rights contains not only access rights but important for the DRM system rights about 
copying, distribution and loan.    

⎯ Digital Signatures and Encryption defines the means for establishing confidentiality, 
integrity and authenticity of the digital content and its communication. In particular 
encryption can be used for the enforcement of licensed use for a digital content.  Digital 
Signatures can provide the means for proofing authenticity of digital content, legal entities 
like users as well as services or systems. Also watermarking and fingerprinting can be used, 
under certain circumstances, for proofing the authenticity of digital content and the 
legitimate owner of digital content. In any case, these techniques can provide the means to 
ensure that the content can only be used by the legitimate owner under certain rules. 

⎯ Delegation of Rights or Licensing is distinctively difference than access control. With 
access control, the access rights are typically enforced on the object side, where an access 
control decision is taken based on a concrete request and a set of formalized access rights. 
With licensing, rights like copying, total number of playback, etc. are also meaningful. 
These rights must be enforced on the user’s system to support offline use. Therefore, a 
license contains a set of permissions, which express the rights of the subject, identifying the 
licensor and licensee.  
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2.2.1.  Distribution architectures of DRM systems 
Park et al. [199] distinguished different possible distribution architectures that could be 
implemented for DRM enabled data distribution, based on the following three factors: the presence 
of a virtual machine (VM), the type of control sets and the distribution style.  

⎯ Virtual Machine: The Virtual Machine (VM) is described by Park et al. [199] as “software 
that runs on top of vulnerable computing environment and employs control functions to 
provide the means to protect and manage access and usage of digital information”. A VM 
can be in the form of a plug-in that controls access to DRM enabled data or embedded in the 
application itself. Systems that do not have a VM cannot manage and control the access and 
usage of DRM enabled data. 

⎯ Type of Control Sets: Control sets are the rules governing the use of DRM enabled data, 
using Right Expression Languages (REL) which allow the description and specification of 
the control sets. Control sets are distinguished into three types: fixed control sets, embedded 
control sets and external control sets. In fixed control sets, the virtual machine comes with a 
predefined control set which is enforced for all DRM enabled data. In an embedded control 
set, the DRM enabled data comes with the control set embedded into the work. This can be 
done by encapsulating the control set and the data in a security envelope. Finally, in an 
external control set, the DRM enabled data and the control sets are being distributed 
separately. The obvious advantage of this type of control set is that a single control set can 
be used to define rights for multiple works of the same type. A fixed control set can be 
combined with either an embedded or an external control set.  

⎯ Distribution process: The final distinction is in the distribution process. Park et al. [199] 
proposed two types of distribution: message push and external repository. In a message push 
system, the data is transferred from the owner to the buyer through a direct communication 
channel such as e-mail. In the case of an external repository, the buyer fetches the data from 
a central repository and there is no need to store them locally (e.g., a RealAudio feed of a 
radio station programme). Both systems have their uses in DRM systems and the choice of 
distribution system does not necessarily impact on the security of the data. Message push 
systems are useful in enterprises where the data is only meant to be available to specific 
employees. Message push also has a greater flexibility in managing individual right 
permissions. External repositories are useful for a wider range of deployment, where the 
prospective user is unknown. They can also be used in systems where the user cannot store 
the data permanently onto their own systems. This type of DRM allows the right holder a 
high degree of control in how the user accesses and uses the data. 

Based on these factors Park et al. [199] identified eight different architectures for a DRM system. 
Figure 1.1 illustrates these architectures.
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Figure 1.1 – Distribution architectures of DRM systems – (Park et al. 2000) 

 

 

2.2.2. Rights Expression Languages 
Rights expression languages (RELs) are used to define the rights and conditions for DRM enabled 
data that the rights holder gives to the user. RELs are usually modelled on access control languages, 
and usually take the form of: <USER> has the <RIGHT> to do an <ACTION> on the DRM 
enabled data. This can be enhanced by including parameters that restrict the right. 

The two most common RELs are the eXtended Rights Markup Language (XrML) and the Open 
Digital Rights Language (ODRL). The XrML [251] was developed originally at Xerox Parc labs 
and is now developed jointly by Microsoft and Xerox. XrML is an XML based REL, and its syntax 
is specified in XML. The XrML 2.0 specifications are split into three parts: a core schema, a 
standard extension schema to handle definitions that are broadly applicable but not a core feature, 
and a content specific extension schema to handle concepts specific to the type of digital content.  
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The XrML data model consists of four entities and the relationships between these entities. The 
basic relationship is defined by the XrML assertion “grant”. Structurally, an XrML grant consists of 
the following: 

⎯ The principal to whom the grant is issued 

⎯ The right that the grant specifies 

⎯ The resource for which the right is granted 

⎯ The condition that must be met for the right to be exercised 

So, in an XrML license, the issuer grants a set of principals with a set of rights under certain 
conditions for a set of resources. While the resources are usually digital files, XrML also provides 
mechanisms to include non digital objects such as “a computer terminal”, as well as, services and 
transactions. 

In the following example we can see the four entities of the XrML data model and the relationships 
between them. The following license consists of: 

⎯ keyHolder who is the principal designated with an RSA key. 

⎯ print which is the right being granted. 

⎯ digitalWork which is the resource specified as URI. 

⎯ validityInterval which is a condition permitting usage until Christmas 2001. 
<license> 

    <grant> 

<keyHolder> 

<info> 

<dsig:KeyValue> 

<dsig:RSAKeyValue> 

<dsig:Modulus>Fa7wo6NYfmvGqy4ACSWcNmuQfbe
jSZx7aCibIgkYswUeTCrmS0h27GJrA15SS7T
YZzSfaS0xR9lZdUEF0ThO4w== 

</dsig:Modulus> 

<dsig:Exponent>AQABAA==</dsig:Exponent> 

</dsig:RSAKeyValue> 

</dsig:KeyValue> 

</info> 

</keyHolder> 

<cx:print/> 

<cx:digitalWork> 

<cx:locator> 
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<nonSecureIndirect 

URI="http://www.sellbooks.com/sampleBook.
spd"/> 

</cx:locator> 

</cx:digitalWork> 

<validityInterval> 

<notAfter>2006-12-24T23:59:59</notAfter> 

</validityInterval> 

</cx:print> 

</grant> 

</license> 

The ODRL [127] initiative is an international effort of supporters (Nokia, AegisDRM, etc) aimed at 
developing an open standard for a DRM expression language. ODRL is also a language based 
XML. The ODRL model consists of the following core entities: 

⎯ Assets include any digital content that can be uniquely identified. 

⎯ Rights include information consisting of the following: 

• Permissions 

• Constrains 

• Requirements 

• Conditions 

⎯ Parties include end users, roles and rights holders who can assert some form of ownership 
over the Asset and/or its Permissions. 

With these three core entities, the foundation model can then express Offers and Agreements. 

⎯ Offers are proposals from rights holders for specific rights over their Assets (usually to end 
users). 

⎯ Agreements refer to contracts between Parties on the basis of specific Offers. 

The following example illustrates that Mary Smith is purchasing a book and that she is given the 
rights to display and print it (there are two separate permissions specified in the example). 
<?xml version=”1.0” encoding=”UTF-8”?> 

<o-ex:rights xmlns:o-ex=”http://odrl.net/1.1/ODRL-EX” 

xmlns:o-dd=”http://odrl.net/1.1/ODRL-DD”> 

      <o-ex:agreement> 

<o-ex:context> 

<o-
dd:uid>urn:ebook.world/999999/license/1234567890-
ABCDEF</o-dd:uid> 
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<o-dd:pLocation>Sydney, Australia</o-dd:pLocation> 

<o-dd:remark>Transacted by Example.Com</o-
dd:remark> 

</o-ex:context> 

<o-ex:asset> 

<o-ex:context> 

<o-dd:uid>urn:ebook.world/999999/ebook/rossi-
000001</o-dd:uid> 

</o-ex:context> 

</o-ex:asset> 

<o-ex:permission> 

<o-dd:display> 

<o-ex:constraint> 

<o-dd:cpu> 

<o-ex:context> 

<o-dd:uid>Adobe-WebBuy:CPD-
ID:ER-393939-DSS-787878</o-dd:uid> 

</o-ex:context> 

</o-dd:cpu> 

</o-ex:constraint> 

</o-dd:display> 

<o-dd:print> 

<o-ex:constraint> 

<o-dd:count>2</o-dd:count> 

</o-ex:constraint> 

</o-dd:print> 

<o-ex:requirement> 

<o-dd:prepay> 

<o-dd:payment> 

<o-dd:amount 

 o-dd:currency=”AUD”>20.00</o-
dd:amount> 

<o-dd:taxpercent 

 o-dd:code=”GST”>10.00</o-
dd:taxpercent> 

</o-dd:payment> 

SERENITY - 027587 Version 1.0   Page 15 of 126
 



 
A4.D1.1 – Review of the state of the art 

 
</o-dd:prepay> 

</o-ex:requirement> 

</o-ex:permission> 

<o-ex:party> 

<o-ex:context> 

<o-dd:uid>urn:ebook.world/999999/users/msmth-
000111</o-dd:uid> 

<o-dd:name>Mary Smith</o-dd:name> 

</o-ex:context> 

           </o-ex:party> 

</o-ex:agreement> 

</o-ex:rights> 
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3. Security Requirements Verification 

3.1. Overview 
As we have discussed, system verification methods are broadly distinguished into static and 
dynamic verification methods. 

Static verification methods aim to verify the satisfiability of specific properties by applying static 
analysis techniques to a program or a system specification without having to execute it. Static 
analysis techniques range from formal static verification to measuring the complexity or efficiency 
of algorithms.  

In this section, we review techniques for performing static verification. More specifically we focus 
on formal methods that have analysed cryptographic protocols in order to detect security flaws. 
Also, we discuss some formal methods that have been used in the development of security systems.  

 

3.2. Static Analysis of Cryptographic Protocols 
A cryptographic protocol is a set of rules that describe how two or more agents can securely 
communicate over insecure open networks or distributed systems. Many different cryptographic 
protocols have been identified, and security systems usually adopt one or more of these. Static 
analysis is applied to cryptographic protocols in order to detect and remove security flaws and 
several different formal methods have been developed for this purpose.    

In this Section, we first describe what a cryptographic protocol is. Then we identify two views of 
cryptography and briefly denote how they relate to one another. Moreover, we review the state-of-
the-art of work in which cryptography is viewed symbolically. Finally, we describe some formal 
methods that have been used for developing security systems.  

 

3.2.1. Cryptographic Protocols 
A protocol is a series of steps, involving and taken by two or more active entities/roles, which is 
designed to accomplish a goal/task that is predefined by the involved entities/roles. Every step in a 
protocol must be executed in turn, and no step can be taken before the previous step is finished. 
Although each of the entities which are involved in protocol can alone perform a series of steps to 
accomplish a task the actions of one entity in isolation do not form a protocol. Furthermore, 

⎯ Every entity that is involved in a protocol must know it in advance.  

⎯ Every entity that is involved in a protocol must agree to follow it.  

⎯ The protocol must be unambiguous; each step must be well defined and there must be no 
chance of a misunderstanding.  

⎯ The protocol must be complete; there must be a specified action for every possible situation.  

The execution of the protocol proceeds linearly through the steps, unless there are instructions to 
branch to another step. Each step involves at least one of two things: computations by one or more 
of the parties, or messages sent among the parties.  
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A cryptographic protocol is a protocol that uses cryptography. The parties can trust each other 
implicitly or they can be adversaries and not trust one another. One or more cryptographic 
algorithms can be involved during a cryptographic protocol, but generally the goal of the protocol is 
something beyond simple secrecy. The parties participating in the protocol might want to share 
parts of their secrets to compute a value, jointly generate a random sequence, convince one another 
of their identity, or simultaneously sign a contract. Cryptography is needed during the execution of 
a protocol in order to prevent or detect eavesdropping and cheating.  

Depending on the roles of the entities which participate in it, a cryptographic protocol may be 
categorised in different categories. The first category is the arbitrated protocols. An arbitrator is a 
disinterested trusted third party whose participation is necessary in order to complete a protocol.  
The arbitrator has no vested interest in the protocol and no particular allegiance to any of the parties 
involved. The rest of the involved entities in the protocol accept the arbitrator’s claims as true, its 
actions as correct, and that it will complete its part of the protocol. Arbitrators can help complete 
protocols between two mutually distrustful entities. An example of an arbitrated protocol is the time 
stamping protocol. In this case a party, P, wants to timestamp a digital document in order to certify 
that the specific document existed on a certain date. Using one-way hash functions and digital 
signatures we can provide a solution: 

1. P produces a one-way hash of the document.  

2. Then P transmits the hash to an arbitrator who is providing time stamping services.  

3. The arbitrator appends the date and time it received the hash onto the hash and then digitally 
signs the result.  

4. The arbitrator sends the signed hash with the timestamp back.  

Because of the high cost of hiring arbitrators, arbitrated protocols can be subdivided into two lower-
level sub-protocols. One is a non-arbitrated sub-protocol, executed every time parties want to 
complete the protocol. The other is an arbitrated sub-protocol, executed only in exceptional 
circumstances—when there is a dispute. This special type of arbitrator protocol is called an 
adjudicator protocol. An adjudicator is also a disinterested and trusted third party. Unlike an 
arbitrator, it is not directly involved in every protocol. The adjudicator is called in only to determine 
whether a protocol was performed fairly. For example, Alice and Bob might draw up a contract 
agreeable to both of them and sign it. Both keep a copy but later, if there is a dispute, both can 
present their evidence before an adjudicator. 

Finally the last type of cryptographic protocol is the self-enforcing protocol. A self-enforcing 
protocol is the best type of protocol because the protocol itself guarantees fairness. Neither an 
adjudicator nor an arbitrator is required to resolve disputes or to complete the protocol. The protocol 
is constructed so that there cannot be any disputes. If one of the parties tries to cheat, the other party 
immediately detects the cheating and the protocol stops. Whatever the cheating party hoped would 
happen by cheating, doesn’t happen. This is the most desirable type of protocol, but also more 
difficult to achieve, and such protocols are not known for all problems. 

 

3.2.2. Symbolic vs Computational View of Cryptography  
There are two different views of cryptography [2]: the symbolic and the computational view. 

The symbolic (or formal) view of cryptography treats cryptographic operations as “purely formal”, 
i.e. described using a formal notation or logic. For example, for an encryption protocol the 
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encrypted message, the key and the plaintext are all expressed as formal expressions. Operations are 
then considered as computations on expressions, usually generating other expressions. The security 
properties of encryption are built into the model that describes the system’s behaviour. The 
symbolic view of cryptography includes a variety of techniques and approaches from the fields of 
rewriting, modal logic, process algebra, formal methods, and others. Initial work in this area 
includes work by Dolev and Yao [87],   Kemmerer [136], Burrows et al. [48] and Meadows [174]. 

The computational view of cryptography is based on the framework of computational complexity 
theory. In an encryption protocol, for example, the encrypted message, the key and the plaintext are 
all strings of bits. And operations as, for example, the encryption function are simply algorithms. 
Abadi and Rogaway [2] indicate that the adversary is treated a Turing machine.  The aim of 
approaches and techniques that adopt the computational view of cryptography is to measure how 
good a protocol is in terms of probabilities and computational cost. A protocol is good if the 
adversary does not do "something bad" too often or too efficiently. Work in this area was initiated 
by Yao [254], Blum and Micali [38] and Goldwasser and Micali [103]. 

Abadi and Roagaway [2] show that there are connections between the symbolic and the 
computational view whose investigation should benefit both. These connections can, for example, 
help clarify any implicit assumptions or gaps in the formal methods. Methods for high level 
reasoning that are used to analyse complex systems seem necessary for computational cryptology.  

In this deliverable, we focus on the symbolic view of cryptography and in particular with formal 
methods that help us to detect security flaws. 

 

3.2.3. Formal Methods 
Formal methods describe a group of mathematically based approaches for specifying, designing, 
analysing and verifying systems. In the 70s and early 80s, the National Security Agency in the 
United States was a major source of funding for formal methods research and development, which 
resulted in the development of formal models of security systems and tools for analysing system 
security properties and proving that system are secure.   

In the following sections, we review the various methods for formally analysing cryptographic 
protocols as classified by Meadows [289]: 

⎯ General purpose verification methods and tools: These consist of specification languages 
and verification tools that were not specifically developed for statically analysing 
cryptographic protocols, but they have been used to do so. These include model checkers 
and theorem provers, and methods that combine both.  

⎯ Expert systems: A protocol designer may use expert systems to explore different scenarios. 

⎯ Modal logic based approaches: These approaches use modal logics based on knowledge 
and belief for modelling and verifying protocols.   

⎯ Algebraic based approaches: These develop a formal model based on the algebraic term-
rewriting properties of cryptographic systems.  

Moreover, we present formal methods that have been used for developing and analysing security 
systems, which can include cryptographic protocols, but not necessarily, and their security 
properties.  
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3.2.3.1 General purpose verification methods and tools  

General purpose static verification methods treat cryptographic protocols as distributed systems and 
try to prove their correctness. Firstly, the protocol and its desired properties (in this case security 
properties) are specified in the specification language of the method, such as finite state machines, 
Communication Sequential Process (CSP), Petri Nets. Subsequently, tools are used for verifying the 
properties, such as model checkers, theorem provers or even a combination of both.    

Model checkers analyse cryptographic protocols by exhaustively exploring the state space of a 
model in order to verify its desired properties. The properties are usually specified using temporal 
logic (usually Linear Temporal Logic or Computation Tree Logic or a variation of these). If a 
property is found to be false, a counter-example is produced outlining the steps that lead to the 
contradiction. Model checkers, however, suffer from the state space explosion problem, which can 
make model checking of large systems infeasible. To deal with this problem, researchers have 
developed symbolic algorithms, partial order reduction techniques, on the fly model checking and 
abstraction techniques [62].  

The CSP/FDR framework for the analysis of security protocols was initiated mainly by Gardiner, 
Goldsmith, Jackson, Lowe and Roscoe [206, 207]. The process algebra CSP is ideal for modelling 
security systems because it can describe systems that are composed of parallel processors 
communicating with one another by synchronisation of some common events. Roscoe and 
Goldsmith [290] describe how a cryptographic protocol attacker can be modelled by the CSP 
inference system. Once modelled in CSP, a security protocol can be verified using the FDR2 tool. 
FDR2 uses a lazy exploration strategy to examine subset of intruder states which are reachable by 
the protocol rules. Thus, FDR2 examines the behaviour of the intruder together with that of the 
protocol’s. An advantage of this approach is that it is able to reason about the absence of denial-of-
service attacks (liveness properties). Usually the CSP code is derived by hand which can be time-
consuming and error-prone.  A program called Casper [163] was developed to convert a high level 
description of a protocol (written in a simple language for describing protocols) into CSP code.  

Murφ [291] is a general-purpose state enumeration tool that was used by Mitchel et al. [292] to 
analyse security protocols. The approach of Murφ is similar to that used in CSP model checking. 
The protocols are described using the Murφ language which is a simple high-level language for 
describing non-deterministic finite-state machines. The properties are specified by invariants, i.e. 
Boolean conditions that have to be true in every reachable state (hence, no temporal operators).  
Murφ uses breath-first or depth-first full state enumeration for verifying that all reachable states of 
the system satisfy the desired properties. The main method adopted for analysing protocols consists 
of formulating the protocol in the Murφ language, adding an adversary to the system (the adversary 
is allowed to overhear, intercept and generate messages), stating the desired correctness condition 
(this has not proved to be difficult in the protocols they described, but for others protocols it could 
be), running the protocol with some specific size parameters, experimenting with alternative 
formulations, and repeating the steps. Known flaws of the Needham-Schroeder Public-Key [192], 
TMN [293] and Kerberos [294] protocols have been identified using this approach. The difficulties 
encountered with Murφ include modelling the adversary and formalising its "knowledge", and 
selecting a finite set of possible adversary actions at any point in the run of the protocol using the 
adversary's knowledge at that point. An advantage of Murφ is that it is possible to change a system 
description to reflect a situation where one or more items of secret information have been 
compromised. 
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ASTRAL [295] is a formal specification language for specifying real-time systems. ASTRAL 
consists of global and process specifications. Global specifications consist of declarations of 
process instances, global constants and non-primitive types that may be shared by process types, 
and system level critical requirements (properties that will be verified). ASTRAL specifications 
also include environmental assumptions that formalise the assumptions that must always hold on 
the behaviour of the environment to guarantee some desired system properties. The system 
properties are verified by the ASTRAL model checker. Since ASTRAL is undecidable, certain 
restrictions occur in order to be able to model check specifications in it. For instance, ASTRAL 
specifications are based on infinite state machines with unlimited time bounds and for model 
checking to be feasible, a finite time bound needs to be set by the user. ASTRAL was applied to the 
Needham-Schroeder public-key authentication protocol and the TMN protocol [296].   One of the 
flaws of the TMN protocol was missed by the ASTRAL model checker because it required excess 
time bound for the specific ASTRAL modelling of the protocol. This same flaw was detected by 
both FDR and Murφ. However, these results were preliminary. More recently, Dang and Kemmerer 
[297] analysed a more complex time-dependent protocol, called Mobile IP, that can be considered 
as a real-time protocol unlike Needham-Schroeder and TMN. For example, a timing property would 
require that a mobile node needs a time reference in order to decide whether its current registration 
is going to expire, and a timestamp mechanism to protect against potential replay attacks. The 
ASTRAL model checker detected specification errors and once these were corrected, no flaws in 
the protocol were discovered. 

As mentioned above, model checking suffers from the state space explosion problem. In order to 
address this problem, Bolignano [39] introduced an approach for generating human-readable proofs 
that can be used as part of a vulnerability analysis or formal code inspection. Specific properties of 
the problem are used to formalise the requirements and simplify the proofs. The conciseness of the 
verification process is comparable to that of the modal logic and this is because of the use of 
powerful invariants and the axiomatisation of the intruder knowledge. The Coq proof assistant [31] 
can be used to automate this process within a framework of typed logics. 

Schneider [216] describes an approach for the analysis and verification of authentication properties 
in CSP. The CSP syntax can describe authentication protocols precisely in terms of the messages 
accepted and transmitted by each participant in the protocol. Schneider’s aim was to build a 
separate theory for analysing authentication protocols on top of the general CSP framework.  This 
theory has been successfully used to model and verify the Zhou and Gollman fair non-repudiation 
protocol [257].   

Kemmerer [136, 137] introduced an approach based on an extension of first order predicate 
calculus, that uses the Ina Jo specification language. Ina Jo is a tool that was designed to support the 
development of software that includes correctness proofs. The security system is expressed as an 
Ina Jo specification and so are the security properties that must hold in all states. Verification occurs 
with the generation of theorems that are used to prove the properties. This approach detected a 
security flaw in the system. However, Buttyan [49] points out that since the designer needs to know 
the potential attacks in advance, the benefits of this approach are limited.  

Nieh and Tavares [195] use coloured Petri nets for modelling and analysing cryptographic 
protocols. A general intruder model is also included in the overall model in order to represent 
intruder attacks and generate test cases.  The security properties are analysed by performing an 
exhaustive penetration test that searches for scenarios that violate certain specified criteria. These 
criteria are defined in terms of requirements on Petri net states.  This approach suffers from the lack 
of available tools for automating the exhaustive search. A solution to this problem would be to 
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translate the coloured Petri nets to ordinary Petri nets and use the available tools. However, like 
model checkers, these tools suffer from the state explosion problem.    

More recently, Dai et al. [298] use the Software Architecture Model (SAM), a general formal 
framework that is based on Petri nets and temporal logic, to specify and analyse authentication 
protocols. In particular, they use Predicate Transition nets [100] and first order linear temporal logic 
[167] to model the registry protocol [109]. Each involved participant, including trusted principles 
and intruders, is explicitly modelled along with its behaviour and interactions. The SPIN model 
checker [124] is used for verification. Dai et al [298] describe a process that can be automated, i.e. 
they provide a systematic method for translating a SAM model into a SPIN specification. The main 
advantage of using this approach is that the graphical representation (Petri nets) enhances 
understanding and its well-defined semantics facilitates analysis. This approach identified similar 
security flaws as those identified by the LOTOS [155] when applied to the same case study.    

Other recent work in the area of Petri nets includes: Al-Azzoni et al. [7] who propose a technique 
for modelling and verifying cryptographic protocols using coloured Petri nets and Design/CPN and 
illustrate it on the TMN protocol; Aly and Mustafa [11] who analyse and verify the STS protocol 
[84] using coloured Petri nets; and Crazzolara and Winskel [74] who show how Petri nets can be 
used to prove security systems (these researchers present a process language together with 
semantics for security protocols).   

 

3.2.3.2 Expert Systems 

The Interrogator [179, 180] is a software tool written in Prolog that explores the state space of a 
model exhaustively in order to identify any security flaws. Interrogator is one of the first systems 
that uses the Dolev-Yao approach. The abstract model includes the usual state variable for the 
intruder’s set of known items. However, this known set is not explicitly mentioned in the state 
representation used by the recursive search algorithms. The Interrogator models the protocol’s 
participants as communicating state machines whose messages are intercepted by an intruder. The 
intruder can destroy messages, alter them, or let them pass through unaltered. Assuming a final state 
where the intruder knows some word that should be kept secret, the Interrogator explores all the 
possible paths through which it can reach that final state. If a path is found, then a security flaw is 
identified. However, if no path is found there is no guarantee that no attacks can exist in the system 
model. The Interrogator has identified only previously known attacks on the protocols analysed.       

The NRL Protocol Analyzer [137, 174, 175] is comparable to the Interrogator as it attempts to 
construct a path from an insecure state, given by the designer, to the initial state. The main 
difference between the NRL and the Interrogator is that NRL not only tries to find paths to the 
insecure states, but also proves that these states are unreachable. The proofs show that certain paths 
that lead backwards from the insecure states end up in infinite loops, and hence never reach the 
initial state. These paths can be eliminated, thus reducing the search space that is explored 
exhaustively.  However, the proofs require user guidance making the search less automated than 
that of the Interrogator. Another difference with the Interrogator is that the NRL Analyzer can 
construct a single path using an arbitrary number of protocol rounds, thus working in an infinite 
state space. Therefore, the NRL Analyzer can detect attacks based on a combination of protocol 
runs. The NRL Protocol Analyzer was successful in identifying a number of unknown flaws in 
several protocols [220, 47] as well as identifying known flaws.       

Longley and Rigby [162] have developed a rule based system that decomposes goals into subgoals, 
and then subgoals are decomposed further and so on to build a tree. The root node of the tree 
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represents the data item required by the intruder for an attack and the leaf nodes represent the data 
that must be known in order to know the root item. The user can interact with the system to 
determine whether or not a data item can be found by the intruder, even if the system has classified 
that data item as being inaccessible to the intruder. If a data item is found to be accessible to the 
intruder, it is added to the system and a tree is generated for it. The search tool developer [162] 
identified a subtle flaw of the hierarchical key management scheme.  Its approach is similar to that 
of the Interrogator; however it relies on user interaction.    

Expert systems developed specifically for the analysis of cryptographic protocols can be more 
successful than general purpose tools in detecting unknown flaws. However, they suffer from the 
state space explosion problem, which can lead to systems never halting and inconclusive results. To 
handle this problem, user interaction is required, which means that the search is not completely 
automated. The strength of expert systems lies in the fact that if they detect a flaw, then the attack 
scenario is directly available, which is not the case for modal logic based approaches. 

 

3.2.3.3 Modal logic based approaches 

A modal logic approach consists of a language that is used to describe the cryptographic protocol as 
logic statements expressing what the participants know and believe, and some inference rules for 
deriving new statements. The purpose of analysis is then to derive a statement that represents the 
correctness condition of the protocol. This derivation may often reveal flaws in the protocol. 

BAN logic [48] is the most widely used formal logic for analysing authentication protocols. It 
belongs to the class of KD45 modal logics, which means that any fact is only a belief and does not 
need to be universal in space and time. Ban logic analyses protocols by firstly, expressing the 
assumptions and goals as statements in a symbolic notation in order for the logic to proceed from a 
known state to one in which if can check whether the goals can be reached. Subsequently, the 
protocol steps are also formalised into the symbolic notation. Finally, postulates, which are a set of 
deduction rules, are applied and these should lead from the assumptions to the authentication goals, 
via intermediate formulas.  

The use of Ban logic has revealed flaws in several protocols, including Needham-Schroeder [192] 
and CIT X.509 [55]. It has also uncovered redundancies in Needham-Schroeder, Kerberos [181], 
Otway-Rees [196], and CCIT X.509. In spite of its success, however, BAN logic has been criticised 
by various researchers. This criticism relates, for example, to the difficulty of BAN logic in proving 
completeness properties [159], its limitation of providing only partial correctness proofs [223] and 
its inability to discover flaws which violate basic security requirements of authentication [194]. The 
most crucial weaknesses  of BAN logic, which have been discussed in the literature, are that there is 
no complete semantics for the logic and when modelling freshness, it is not possible to distinguish 
between freshness of creation and freshness of receipt. The lack of complete semantics can lead to 
problems when formulating the BAN specification of an informal protocol description (this process 
is called "idealisation") due to vagueness and ambiguity.  

Abadi and Tuttle [3] overcome the problem with idealisation by reformulating the original BAN 
logic and providing new semantics for it. The changes made include removing unnecessary mixing 
of semantic and implementation details in the definitions and inference rules, defining concepts 
such as seeing, believing, etc. independently rather than jointly with other concepts, and 
reformulating the set of inference rules as an axiomatisation with modus ponens and necessitation 
being the only rules. The result is a much simpler logic which was claimed to be sound with respect 
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to the new semantics although Syverson and van Oorschot [230] later identified an axiom of the 
logic that was not sound.    

Many extensions of BAN logic have been developed as researchers aim to improve on its 
limitations. One of these successful extensions is the GNY logic [104] which extends the scope of 
BAN logic but is more complicated. GNY logic analyses a protocol step-by-step, expresses any 
assumption required explicitly and draws conclusions about the final position that it has arrived at. 
GNY logic improves on the BAN logic in the following ways: 

⎯ It separates the content and the meaning of messages, therefore increasing consistency in the 
analysis and it is possible to reason in more than one level. 

⎯ Message data can include principles even if they don’t believe in them. 

⎯ The ability of a recipient to identify the expected message can be expressed and one is 
allowed to determine that some messages are not replays of the recipient’s earlier messages 
given in a session. 

The main drawbacks of GNY logic are that it addresses only authentication and many of its rules 
have to be considered at each stage, thus making it more complicated than other methods [13].  

BGNY [41] is an extended version of GNY logic that has been formalised with a Higher Order 
Logic (HOL) [105] theory. As with GNY logic, BGNY focuses only on authentication. The 
authentication properties of cryptographic properties are proved automatically with HOL software. 
BGNY differs from GNY as it is able to specify properties at intermediate stages and it is able to 
specify protocols that use multiple encryptions and hash operations, message authentication codes, 
and has codes as keys and key-exchange algorithms.     

Other extensions of BAN logics include: 

⎯ An extension by Mao and Boyd [169] whose work does not cover protocols using public-
key algorithms nor does it include theoretic proof soundness of the proposed idealisation 
rules;  

⎯ An extension by Gaarder and Snekkenes [99] which can reason about time; 

⎯ An extension of BAN and GNY [241] which handles key agreement protocols such as 
Deffie-Hellman; and 

⎯ An extension by Campbell et al. [52] which supports probabilistic reasoning for calculating 
a measure of trust rather than complete trust.  

The above list is not a complete account of work in this area and several other extensions have also 
been proposed. These extensions, however, are beyond the scope of this survey which focuses on 
dynamic verification. 

SvO is another logic [230] that encompasses the features and reasoning of four logics, namely 
BAN, BNY, Abadi-Tuttle logic and vO [241], in a unified framework. Syverson and van Oorschot 
define model-theoretic semantics for SvO with respect to which the logic is sound. SvO is 
considered to be easier to use and more expressive than the four logics it was derived from.   

Other logics for static verification which are not extensions of BAN logic include:  

⎯ Rangan’s logic [203], that can be used to reason about the effect of trust in the composition 
of secure communication channels and provides a formal basis for the evolution of belief 
from trust. 
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⎯ Moser’s logic [185] that is a non-monotonic logic used to reason about beliefs of protocol 
participants and how these beliefs change (e.g. in cases when a key used in a secure 
communication is compromised).    

⎯ Bierber’s CKT5 [37] that is used to reason about the evolution of knowledge about words 
used in a cryptographic protocol and makes a distinction about seeing a message and 
understanding its importance. 

⎯ Syverson’s  KPL [229] that is used in the same way as CKT5. 

⎯ The Yahalom et al. system [252] that is used to derive information about the nature of the 
trust that protocol participants must have in each other in order for a protocol to operate 
correctly.  

⎯  Kailar’s logic [132] that is used for the analysis of communication protocols that require 
accountability, for example, for secure electronic transactions. This logic is based on the 
AUTLOG semantics [139]. 

⎯ Wedel and Kessler logic [247] that is used for the analysis of authentication protocols and 
provides formal semantics for proving its soundness. A wide variety of cryptographic 
mechanisms can be described in this logic using the most concise notation. 

 

3.2.3.4 Algebraic approaches 

Algebraic approaches model a protocol as an algebraic system and use the algebra to formalise the 
state of each participant’s (including the intruder) knowledge about the protocol.  Research in this 
area is not as active as research in developing the other formal approaches. Nevertheless, algebraic 
models have shown to be successful when representing subtle kinds of knowledge in cryptographic 
protocols.  

Dolev and Yao [87] were the first to model a cryptographic protocol as an algebraic system. In their 
model, the intruder has control of the network and can read all the traffic, modify and destroy 
messages, and perform any operation, such as encryption, as an authorised user would. Initially the 
intruder does not know any of the secret information, such as the authorised user’s keys. 
Furthermore, Dolev and Yao treat every message sent by an authorised user as if it was sent to the 
intruder and every message received by the authorised user as if the intruder sent it. This is because 
of the intruder’s control over the network. Therefore, the system becomes a machine used by the 
intruder to generate words which obey certain re-write rules, for example a rule would be that 
encryption and decryption with the same key cancel each other out.  If the intruder’s aim is to 
discover a word that is secret, the problem of proving a protocol secure is the same as the problem 
of proving that a word cannot be generated in the term rewriting system. This observation is used to 
develop algorithms to analyse the security of certain classes of public key protocols, namely 
cascade protocols and name-stamp protocols.  

The Dolev and Yao approach is limited and cannot be useful for analysing a wide range of 
protocols for the following reasons. Firstly, it can only detect failures with respect to secrecy, and 
participants do not remember state information from one state to the next. Some research aims to 
overcome these problems and find ways to analyse other classes of protocols. These include, Merrit 
[177] who generalises the Dolev and Yao approach to model diverse cryptographic systems and 
formally proves other properties besides secrecy, and Toussaint [236] who describes a technique, 
which is based on Merrit’s [177] algebraic model, and can derive the complete knowledge of each 
participant in the protocol.      
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Recently, Abadi and Gordon [1] use the pi calculus to describe protocols at an abstract level. 
Properties of cryptographic protocols are modelled using pi calculus primitives for channels, in 
particular scoping rules. Pi calculus is further extended to what is known as spi calculus for 
analysing the protocols at a lower level of abstraction. The security properties of the protocol are 
expressed in spi calculus as equivalences between spi calculus processes. For example, the protocol 
keeps secret a piece of data X if the protocol containing X is equivalent to the protocol containing 
X’ for every X’. The intruder is not explicitly modelled, but is represented as an arbitrary spi 
process. This is an advantage as modelling the intruder can be difficult and error prone.   

 

3.2.4. Developing security systems with formal methods 
The Software Cost Reduction (SCR) method [299] is a set of techniques used for developing 
systematically formal specifications from a set of requirements. SCR was developed from a 
collaboration between David Parnas and Constance Heitmeyer, and other researchers from the U.S. 
Naval Research Laboratory (NRL) in the late 1970’s and consists of a tabular notation that is based 
on state machines. SCR specification properties are written as logical formulae and divided into 
static (no temporal operators) and transition properties (with temporal operators). SCR is supported 
by tools that have been developed for creating and validating SCR specifications, and analysing 
properties such as syntax and type correctness, case coverage, determinism and lack of circularity.  
The SCR toolset includes the model checker SPIN [124], the verifier TAME (i.e. a user-friendly 
interface for the PVS theorem prover [300]), a property checker based on decision procedures 
called Salsa [301], and an invariant generator. These tools can assist the verification of critical 
safety and security properties.  

SCR has been applied to a Communications Device (CD) that provides cryptographic processing 
for a U.S. Navy radio receiver and to a biometrics standard (BioAPI) [302]. As it has been reported, 
it took about one-person month to produce the SCR specification of CD (which was moderately 
complex) and to verify seven security properties. Developing a formal specification in SCR from 
the requirements document (expressed in prose) was very difficult as it was structured differently. 
This brought about some questions concerning the requirements and the use of tools such as the 
simulator and invariant generator, further errors and missing cases in the specification were 
identified. Tame was used to verify the security properties, which required supporting invariant 
lemmas that were obtained from the set of invariants produced by the invariant generator. There 
were problems verifying an eighth property in Spin because of the state space explosion problem.   

It took about two weeks to specify the BioAPI standard in SCR and to check that there were no 
missing cases and ambiguities, and to verify one critical authentication property. In fact, as reported 
in [302], the correct formulation of this particular security property was very difficult and it took a 
lot more time that it took to verify it.   

An open problem, discussed in [302], was how to validate the source code that implements a secure 
system. Even though the security properties are verified at the specification level, it is still 
necessary to demonstrate that the source code operates securely. Heitmeyer [302] suggests an 
approach where one can derive a set of test cases from the specification and use these in order to 
test that the source code satisfies the specification. Some initial work on this is presented in [303].    

The B-method is a formal method developed by Abrial [5] and is supported by two tool suites that 
have been used to develop industrial applications: the B-toolkit [35] and the Atelier B toolkit [20]. 
B specifications are expressed using the Abstract Machine Notation (AMN) that is based on first 
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order predicate logic and set theory. Temporal properties cannot be proven easily in B. To 
overcome this problem, Abrial and Mussat [304] introduced new clauses in the B notation to 
express temporal properties of event-driven systems. However, the manner in which these 
properties are expressed is complex and does not resemble their logical form. The overall 
development process that is based in this approach takes place through stepwise refinement. In this 
process, proofs have to be produced in each refinement to ensure consistency.   

A specific refinement technique was developed by Abrial for verifying security protocols. The basic 
idea is to describe the objective of the protocol in a single instantaneous operation along with a 
number of void (skip) operations that will be refined one by one in the following refinement steps, 
until the entire protocol is specified. By verifying each refinement and because of the transitivity of 
refinement, the entire development of a protocol is eventually verified. Compared to CSP, the B-
method is more state-based and therefore, it makes coding easier. However, it is not well-suited to 
dealing with concurrency.        

Recently, the B method has been used to model protocols for Java smart cards. The problems in this 
area are that Java cards have small memory and weak CPU, which consequently means that any 
security run-time checks must be minimised. Girard and Lanet [308] use the B method to model 
several parts of the Java card as well as the virtual machine. The main objectives for using B 
method for the design of the virtual machine are to:    

⎯ Express the virtual machine formally; 

⎯ Extract the static checks; 

⎯ Show formally that the interpreter satisfies the static constraints; and 

⎯ Provide an implementation of both the verifier and the interpreter. 

By applying this approach Girard and Lanet [308] were able to reduce the amount of run-time 
checks required. Also, they proved mathematically that the implementations of the interpreter, 
firewalls and backup mechanism (Operating System functionality) are correct, hence guaranteeing a 
secure platform. Other work with respect to developing smart cards includes [305, 306, 307, 308, 
310].  

Hall and Chapman [311] describe how they developed from requirements to code a commercial 
secure system, in particular a Certification Authority (CA) system, that had to meet stringent 
security requirements as well as normal commercial requirements (throughput, usability, cost). Hall 
and Chapman used a requirements-engineering method called Reveal [113], to define the CA's 
environment and business objectives, and map them into system requirements. The user 
requirements were written in English with context diagrams, class diagrams and structured 
operational definitions. Also, each requirement was labelled in order to be able to trace it back to its 
source. Security requirements would be traced back to the corresponding threats. Although the 
ITSEC (www.cesg.gov.uk) require Formal Security Policy Models, the requirements included an 
informal security policy that identified threats, assets and countermeasures.  Hall and Chapman 
reported that they managed to formalise only 23 items of the 28 technical items. 

In their case study, Hall and Chapman also used Z [225] to specify the modules that manage the 
cryptographic keys and their verification on system start-up. What they found was that Z was not a 
good language for expressing information separation, and that CSP was a better language for this. 
They did not carry out any proofs of correctness at this stage, only used a typechecker. They 
modelled the process structure in CSP, by mapping sets of Z operations to CSP actions. Checks 
were carried out to ensure the system was deadlock free and that there was no concurrent processing 
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of security functions. Translation rules were devised for mapping the CSP model to code (Ada95 
and Spark which is a subset of Ada95). Static analysis was carried out on the Spark code, which has 
additional annotations for performing data- and information flow analysis, and to prove properties 
of code, such as partial correctness and freedom from exceptions. A Spark program is checked to be 
free of any dataflow errors (such as the use of an initialised variable) that can lead to subtle security 
flaws. Thus, proof of correctness of Spark programs with respect to its formal specification can be 
achieved. 

 

3.2.5. Specification of security and other system properties for static verification 
Table 3.1 gives a summary of various formal notations which have been used by different static 
verification methods to express the properties to be verified and other functional and non functional 
characteristics of the systems and identifies languages and notations that have been specifically 
developed for expressing and verifying security properties. 

The security properties are usually expressed in some formal notation, chosen according to its 
expressivity and which verification approach is going to be used. For static verification of 
cryptographic protocols, BAN logic is most commonly used for formalising security properties. 
System descriptions (specifications) are also expressed using a formal notation, such as finite 
statemachines, Buchi automata or even CSP. Specifications can be defined at different levels of 
abstraction. For example, KAOS defines specification at a very high level of abstraction, i.e. in the 
requirements capturing phase. The B-method [5] allows one to express the specification initially at 
a high level of abstraction and then with a series of refinement steps, refines the specification to a 
low level of abstraction, where code can be generated automatically.  
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Languages for static verification of 
cryptographic protocols 

Languages for static verification of 
security systems 

BAN logics [48]; or various extensions of BAN 
logics 

SCR tabular notation & properties expressed 
as logic formulae [299] 

HOL [105] B-method [5]: Abstract Machine Notation – 
based on first order logic and set theory 

SvO [230] Z [225] 

Coq [31]  

CSP/FDR [206]  

Petri Nets [195]  

Astral Model Checker [295]  

Murφ langauge (based on finite-state machines) & 
properties are Boolean conditions that have to be 
true in every reachable state [291]. 

 

Table 3.1 –  Summary of formal languages used for static verification 

 

3.2.6. Conclusions for static verification and formal methods 
 

Although the use of formal methods and static verification have made significant contribution in the 
verification of security properties and the development of security solutions, the survey of the 
literature in this area has identified that these approaches have certain limitations. These limitations 
can be summarised as follows: 

⎯ As pointed out in [250], systems do not run in isolation but operate in typically complex 
environments. Thus, the formal specification of a system must always contain the 
environmental assumptions and a proof of correctness is valid only if these assumptions 
hold. It is, however, impractical to state every environmental assumption explicitly and 
some will inevitably be missed. Also, attackers can take advantage of the explicit modelling 
of such assumptions and find out how to violate them. Furthermore, even if one had 
thoroughly expressed each assumption, it is still possible that a system may eventually be 
deployed in a different environment in which the original environmental assumptions may 
not hold. 

⎯ Certain security properties are difficult to model and this reduces the applicability of use 
formal methods in large scale validation. 

⎯ The formal specification of security properties of complex systems, other behavioural 
properties of these systems which interact with the security properties and the interaction of 
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the systems with other systems in their environment may grow to a size that makes formal 
verification intractable due to the state explosion problem. This problem has been identified 
in almost all the reviewed static verification techniques which tend to focus on the 
verification of single security properties or small sets of such properties.    

⎯ Security is a combination of properties, which may be satisfied at varying degrees in 
different environments, rather than being completely satisfied or dissatisfied. Also, certain 
properties are more important than others and some might even be in conflict with each 
other. For example, in electronic payment systems, client anonymity and accountability of 
could both be desired albeit conflicting properties. Formal methods and static verification 
are not very well-suited to support analysis for graded satisfiability of properties of varying 
importance and possibly conflicting. 

⎯ Even if static verification can prove that the specification of a system satisfies certain 
security properties, there is no guarantee that the implementation of the system will be 
compliant with the specification and, therefore, the proved properties will also hold during 
the operation of the system. 

 

Finally, Meadows [176] has pointed out that certain open ended issues emerge from the formal 
analysis of cryptographic protocols. These issues include: how to model open-ended protocols with 
no fixed number of participants and unbounded length of messages, identifying new threats and 
modelling new types of applications, identifying security flaws at lower levels of abstraction and 
how can systems that use a composition of cryptographic protocols be verified.  
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4. Dynamic Verification 
Dynamic verification enables a software system to improve its dependability (and therefore 
security) [21], by checking whether its behaviour satisfies specific dependability and security 
properties while it is running. This can be accomplished by a software module, which monitors the 
execution of the system and checks its conformity with the specification of the relevant properties. 
This module can be either an external or an internal module of the monitored system. 

Software systems are increasingly becoming ubiquitous and heterogeneous and rely on technologies 
such as mobile code and components off the shelf (COTS). Static verification and testing of 
dynamically adapted entities cannot provide adequate results, each one for different reasons. Static 
verification is a formal method and can prove that a system (or to be more accurate its model) is 
correct but is very time consuming and demands substantial education and experience from 
practitioners. Testing [156] on the other hand is an informal method which cannot prove a system 
correct since it can never offer a complete coverage of all its possible executions but can be easily 
applied even from inexperienced practitioners. 

Being situated somewhere between static verification and testing, dynamic verification techniques 
aim to achieve the benefits of both approaches, by merging testing and formal specification. Thus, 
dynamic verification is considered to be a formal method applied to the implementation of the 
system that avoids the pitfalls of ad hoc testing and the complexity of full blown static verification 
techniques (model checking, theorem proving). 

According to the literature on dynamic verification [32, 78, 119], the basic stages of dynamic 
verification are: (i) the development of a formal specification of a system including various types of 
properties, like safety and security properties, (ii) the application of methods for capturing events of 
interest and (iii) checking for violations by a monitor which can verify whether the observed 
behaviour of a system satisfies the required properties. 

It should be noted that there are cases such as Aspect Oriented Programming [140] and Monitoring 
Oriented Programming [59] in which a monitor is generated automatically and inserted into the 
code that has to be monitored. Thus, in such cases, the second stage includes the monitor generation 
as well. On the other hand, in all the other cases, monitors are considered to be software modules, 
which have to be implemented [19, 119] separately from the monitored system. The monitor inputs 
are the formal specification of the system (product of first stage) and the flow of events generated 
during the execution of the system. The monitor then reasons about the conformance of the captured 
runtime behaviour of the system (events flow) against the indented system behaviour (formal 
specification).  
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Figure 4.1  – Conceptual Model for Dynamic Verification 

 

 

Figure 4.1 shows the conceptual model we have constructed to indicate the entities involved in 
dynamic verification. According to this model, the subject of dynamic verification that is signified 
by the class MonitorableEntity can be either a System or a System’s Environment. Dynamic 
verification is carried out by a Monitor which observes the Runtime Behaviour of a system or its 
environment. The RuntimeBehaviour is a set of events generated during the operation of the 
monitorable entities. These events are generated by one or more Event Generator according to 
different Event Emission Specifications. An event emission specification describes the particular 
Event Emission Method to be used and one or more Event Emission Descriptions, which describe 
the exact types of events which should be generated. The observation of the events in a Runtime 
Behaviour by the Monitor is carried out according to a specific Monitoring Policy which specifies 
the Monitoring Properties that should be verified at runtime and the set of Monitoring Actions the 
Monitor should perform to enable the system control and/or recover from violations of the 
monitoring properties. 

Figure 4.2 presents taxonomy of monitor and event generation features. This taxonomy has three 
layers which differentiate monitoring and event generation capabilities according to (a) the 
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controlling capabilities of a monitor, (b) the time of the event emission with respect to the 
occurrence of the action described by the event, and (c) the communication type between the 
monitor and the system.  

 

 

 

 

 

Figure 4.2 – Taxonomy of Monitor and Event Generation Features 

    

More specifically at the first layer a distinction is made based on whether the monitor has 
observation only, observation and control or control only capabilities. These capabilities can be 
summarised as follows: 

⎯ Observation (O): The monitor observes the runtime behaviour of the system by receiving the 
generated events and it checks whether the monitoring properties hold at runtime. 

⎯ Observation and Control (OC): The monitor observes the runtime behaviour of the system 
by receiving the generated events, it checks whether the monitoring properties hold at 
runtime and forces the system to execute specific actions. These actions can be either 
preventive or perform recovery. This class is also known as closed-loop control. 

⎯ Control (C): The monitor forces the system to execute actions without needing to observe 
the actual state of the system. This class is also known as open-loop control. 
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The second layer of the taxonomy presents a distinction according to the time of the event emission 
with respect to the occurrence of the action described by the event. According to the criterion, we 
can distinguish between two cases: 

⎯ Emission preceding the action (pre): The event precedes the action which it describes. For 
example, the event generator sends an event to the monitor informing it that the system 
wishes to lock some resource before the system locks it. 

⎯ Emission posterior to the action (post): The event follows the action which it describes. For 
example, the event generator sends an event to the monitor informing it that the system has 
completed some transaction. 

 

Finally, the third layer of the taxonomy refers to the type of the communication between the 
monitored system and the monitor. According to this criterion, we distinguish between the 
following two types of communication: 

⎯ Synchronous communication (S): The event generator uses a blocking send primitive to 
communicate with the monitor, waiting for a reply from it. This is only used when the 
monitor can exert control over the system.     

⎯ Asynchronous communication (A): The event generator uses a non-blocking send primitive 
to communicate with the monitor. It is mainly used when the monitor cannot exert any 
control over the system or when the control actions can be applied asynchronously. For 
example, the monitored system may notify the monitor that it will attempt to perform some 
action and start performing it without waiting for a permission to do so, as in optimistic 
transactions. If the monitor subsequently decides that this action is undesirable it can send a 
signal to the system to abort the action. 

 

4.1.1. Formalisation of Properties for Dynamic Verification 
4.1.1.1 General Purpose Systems 

In most of cases, the formal specification of the requirements that are to be dynamically verified is  
based on Linear Temporal Logic (LTL) [200] and variations of it including past and future time 
LTL (ptLTL and ftLTL respectively). Past and future time Linear Temporal Logics are modal 
logics for specifying properties of concurrent reactive systems and are used for analysing traces of 
execution of such systems. ptLTL provides temporal operators that refer to the past states of an 
execution trace, while ftLTL provides temporal operators that refer to the future/remaining part of 
an execution trace. In particular, the Temporal Rover (TR) tool [88] supports a future and past time 
Metric Temporal Logic (MTL). MTL [57] extends LTL with relative time and real time constraints. 
All four LTL future time operators can be constrained by relative time and real time constraints 
specifying the duration of the temporal operator. MTL constraints can specify lower bounds, upper 
bounds, and ranges for relative time and real time constraints. 

In the context of monitoring oriented programming (MoP), any monitoring formalism can be added 
to the system. ptLTL, ftLTL and extended regular expressions (ERE), which can express patterns in 
strings in a compact way [218], have been used to formalise properties to be monitored [59]. The 
proposed algorithms use binary transition tree finite state machines (BTT-FSMs) to monitor ftLTL 
properties [59], as well as, formulas written in a logic based on EREs [218].  
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Havelund et al. [116, 117, 118]  have developed several algorithms, which are relative to temporal 
logic generation and monitoring. For instance, they propose algorithms for past time logic 
generation by using dynamic programming [118]. Also they have used the MAUDE rewriting 
engine [63], for monitoring future time logic [116, 117] and have proposed algorithms that generate 
Büchi automata adapted to finite trace LTL [101]. 

Other logics/languages used for formalising properties are EAGLE [32] and HAWK [78]. EAGLE 
is a ruled-based language, which essentially extends the µ-calculus with data parameterization and 
past time logic. HAWK can be viewed as a specialization of EAGLE for JAVA, as it supports data 
binding and object reasoning. HAWK further extends EAGLE with event expressions, where events 
are restricted to method calls and returns. The integration of programming and logic as well as the 
notation and semantics of event expressions are similar to those used in modal logics like the π-
calculus. HAWK also supports extended regular expressions. 

According to the concept of Design by Contract (DBC) technique, introduced by Meyer [178] as a 
built-in feature of the Eiffel programming language, specifications of pre-conditions and post-
conditions can be associated with a class in the form of assertions and invariants and subsequently 
be compiled into runtime checks. Jass [184] and jContractor [4] are two Java-based DBC systems. 
Jass is a pre-compiler, which turns the assertion comments into Java code. The JASS sub-language 
for specifying trace-assertions is similar to CSP [123], and its syntax is more like a programming 
language. jContractor is implemented as a Java library which allows programmers to associate 
contracts, consisting of pre/post-conditions and invariants, with any Java class or interface.  

The Monitoring and Checking (MaC) framework [157] is based on a logic that combines a form of 
past time LTL and models real-time via explicit clock variables. JAVA MAC [142], a prototype 
implementation of the MaC framework for monitoring and controlling applications written in Java, 
defines an event-based language to describe monitors. Note that, in the context of the Java MaC 
framework, events refer to information that holds instantly during the system runtime, while 
conditions are defined to illustrate information that holds for a time period. The Java MaC 
framework is composed of two specification event-based languages: the Primitive Event Definition 
Language (PEDL) and the Meta Event Definition Language (MEDL). PEDL is used for writing 
low-level specifications and is tightly related to the programming language. As such it deals with 
primitive events and conditions that might occur during the program execution, which are defined 
using program entities such as variables and methods. The operations on events and conditions can 
be used to construct more complex events and conditions from the primitive ones. A MEDL 
specification then makes use of these primitive events and conditions in order to state high-level 
requirements. Using MEDL, a user can specify the correctness requirements declaratively, without 
worrying about operational issues related to the monitor. The MaC framework also supports the 
declaration of variables of primitive types which can be updated by user-defined assignment 
statements upon arrival of new events. These variables can be referred to in formulas. 

Recently, Mahbub and Spanoudakis [166] have developed a framework for monitoring the 
behaviour of service centric systems which expresses the requirements to be verified against this 
behaviour in event calculus [219]. In this framework, event calculus is used to specify formulas 
describing behavioural and quality properties of service centric systems, which are either extracted 
automatically from the coordination process of such systems (this process is expressed in WS-
BPEL) or are provided by the user.  

In the area of component based programming Barnett and Schulte [30] have proposed a framework 
which uses executable interface specifications and a monitor to check for behavioural equivalence 
between a component and its interface specification. In this framework, there is no need for 
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recompiling, re-linking, or any sort of invasive instrumentation at all, due to the fact that a proxy 
module is used for event emission. The component’s interface specifications are written in the 
Abstract State Machine Language (AsmL) [111], which is based on Abstract State Machines (ASM) 
[110]. This language is executable and supports non-deterministic specifications. Having native 
COM connectivity, one can not only specify and simulate components in AsmL but also substitute 
low-level implementations by high-level specifications. Specifications written in AsmL are 
operational specifications of the behaviour expected of any implementation. They provide a 
minimal model by constraining implementations as little as possible.  

Robinson [204] has proposed a framework for requirements monitoring based on code 
instrumentation in which the high-level requirements to be monitored are expressed in KAOS. 
KAOS [79] is a framework for goal oriented requirements specification  which is based on temporal 
logic. The KAOS modelling language can support all the phases of requirements acquisition and 
modelling, starting from initial functional and non-functional goals, formalising the meaning of 
such goals using temporal logic formulas and assigning the responsibility for the achievement of 
these goals to potential agents which may signify the system in question, systems that interoperate 
with it, and human actors interacting with the system. KAOS has also been used by Feather et al 
[96] in a framework that they have developed to monitor system requirements at runtime and which 
incorporates some capabilities regarding the reconciliation of requirements with the runtime system 
behaviour. 

 

4.1.1.2 Security Oriented Systems 

Some of the logics and languages reviewed in the previous section have also been used either as 
they were initially proposed or with some semantic modifications and extensions for the 
formalisation of security properties.  Naldurg et al [187], for instance, have proposed a framework 
for intrusion detection which takes advantage of the capabilities of the EAGLE language for 
specifying the attack-safe behaviour of a system. EAGLE is suitable for expressing temporal 
patterns that involve reasoning about the data values observed in individual events and thus it 
allows the description of attacks whose signatures appear to have statistical properties, e.g., 
password guessing or denial of service attacks. For such attacks there is no clear distinction between 
an intrusion and a normal behaviour and the detection of intrusions involves collecting statistics 
during runtime and using them to evaluate the probability of the occurrence of an attack. 

In the area of intrusion detection, Ko et al [148] have proposed a specification-based approach, 
which uses dynamic verification techniques to detect exploitations of vulnerabilities in security-
critical programs. According to this framework, one has to specify a trace policy which describes 
the intended behaviour of programs with regards to security properties. A trace policy determines 
security-valid operation sequences of the execution of one or more programs. For specifying such 
trace policies, Ko et al. [148] have developed a grammar, called "parallel environment grammar 
(PE-grammar)" whose alphabet consists of system operations. A PE-grammar can express various 
classes of security trace policies, including behaviour related to access to system objects, 
synchronization, and operation sequencing and race conditions in concurrent or distributed 
programs. 

Schneider [215] has developed a system called Execution Monitoring (EM) which can monitor 
violations of security policies by monitoring the execution steps of a system. This system is based 
on the security automata of Alpern and Schneider [8], which are a special type of Büchi automata. 
EM also incorporates mechanisms that can terminate the system execution if it is about to violate its 
security policy. Following the same automata-based formalism, Ligatti et al [160] extended the 
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control capabilities of security automata  by proposing edit automata, which can remove and add 
letters (i.e., system actions) to the words (i.e. execution traces) they recognise. 

Having proposed a security-policy enforcing model which follows the general dynamic verification 
approach, Bandara et al. [25] have specified a language based on Event Calculus to model the 
system behaviour and write security policy specifications. The form of EC, which is used in this 
work was presented in [209] and consists of: (i) a set of time points (that can be mapped to the non-
negative integers), (ii) a set of properties that can vary over the lifetime of the system (fluents), and 
(iii) a set of event types. System operations and domain-independent rules for policy enforcement 
were specified in this approach using these constructs. According to Bandara et al. [25], one can use 
EC to express system-models containing a combination of authorisation, obligation and refrain 
policies.  

Janicke et al [131] have proposed a security model that allows expressing dynamic access control 
policies, which can be either time or event-driven. A system’s overall security policy can then be 
composed out of smaller policies which capture specific requirements and which can be verified 
individually. The advantage of the access control model used in this work is that it allows 
expressing both parallel and sequential composition. Janicke et al. [131] based their security model 
on Interval Temporal Logic (ITL), a flexible notation for both propositional and first order 
reasoning about intervals of time. ITL allows to express properties for safety, liveness and 
timeliness. The policy model of Janicke et al. [131] provides a wide range of operators, for example 
to allow the dynamic addition/deletion of rules or to select different sub-policies based on to the 
occurrence of an event or a time-out. An important reason of choosing ITL was the availability of 
an executable subset of the logic, known as Tempura [186]. The use of ITL, together with its subset 
of Tempura, offers the benefits of traditional proof methods with the speed and convenience of 
computer-based testing through execution and simulation. 

Brisset [44] has worked on establishing and ensuring the correct operation of a Java platform 
security mechanism for runtime authorization of un trusted applications in remote hosts. The 
resulting Java security mechanism, which is called SecurityManager and belongs to the JAVA 
runtime library, essentially embodies the security policy of the virtual machine. The verification 
technique used a CTL-based language, which extends CTL with JVM-specific atomic propositions. 
Thus, JVM-specific atomic formulas can be used for runtime authorization of untrusted 
applications. In order to verify an application against these formulas its byte-code is translated into 
pre/post-condition generators for CTL formulas on-the-fly.  

Sekar et al. [217] presented an approach called model-carrying code (MCC) for mobile code 
security. The main components of MCC are: (a) a policy language for specifying security policies 
and a compiler for this language, (b) a language for specifying program behaviour models and 
techniques for extracting them, and (c) a policy refinement component which is based on model-
checking techniques. Their language for policies and behaviour models is called Behavior 
Monitoring Specification Language (BMSL) and it is compiled into extended finite state automata 
(EFSA). EFSA are standard finite state automata (FSA) augmented with the ability to store values 
in a fixed number of state variables. These state variables are capable of storing values over both 
finite and infinite domains. The state of the EFSA is then characterized by its control state (which 
has the same meaning as the notion of state in the case of FSA), plus the values of these state 
variables. Each transition in the EFSA is associated with an event, an enabling condition involving 
the event arguments and state variables, and a set of assignments to state variables. For a transition 
to be taken, the associated event must occur and the enabling condition must hold. The assignments 
associated with the transition are performed when the transition is taken. In usual behavioural 
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models the event alphabet of the EFSA consists of system-call names. On the other hand, security 
policies need to refer to particular uses of such system calls and be able to examine their respective 
arguments. These uses, for instance “read(sensitive_file)”, augment the alphabet of EFSA with 
parameters to the initial system call names event alphabet. The resulting language is therefore able 
to distinguish the difference between the opening of a temporary file and the opening of a password 
file. Moreover, EFSA can also represent properties that refer to the arguments to system calls in the 
past, e.g. a program opens a file, whose name was given as an argument in the command line in the 
past.  

For thoroughness we shall also mention certain higher-level languages and frameworks, which have 
been proposed for security requirements and policies. The KAOS framework, which we have 
already examined in the previous section on general-purpose formalisms, has been extended for 
modelling, specifying and analysing security requirements [153] by including the classical security 
concepts: 

⎯ Adversaries/attackers which are the malicious agents in the environment, 

⎯ Threats which are obstacles (anti-goals) intentionally set up by adversaries, and 

⎯ Assets, which must be protected against threats, are illustrated as passive or active objects. 

The Confidentiality, Integrity, Availability, Privacy, Authentication and Non-repudiation 
requirements are sub-classes of the meta-class SecurityGoal in KAOS. Finally, the formal first-
order, real-time, linear temporal logic of KAOS has been augmented with epistemic operators 
(Knows, Belief), which are needed in security-related properties (e.g. Authorized, UnderControl, 
Integrity or Using predicates). 

Damianou et al. [77] have defined a declarative, object-oriented language, called Ponder, to specify 
security policies which can be monitored and applied at runtime. Ponder can be used to specify 
security policies regarding role-based access control to system resources, and general-purpose 
system management policies. Security policies are distinguished by Damianou et al. [77] in 
authorisation, obligation, refrain and delegation policies. Authorisation policies specify whether a 
subject is permitted to perform a particular action on a target; obligation policies specify 
management operations that must be performed when a particular event occurs and some 
supplementary guarding conditions are true; refrain policies allow system administrators to specify 
conditions under which certain operations should not be performed; and delegation policies specify 
which actions subjects are allowed to delegate to others. Ponder has been designed with the 
intention to be an extensible security policy specification language that would be able to cater for 
future types of policies and, rather than assuming a particular implementation platform, it could 
map to, and co-exist with, different underlying platforms.  

In Service Oriented Computing, Baresi and Guinea [26] have proposed a framework for runtime 
monitoring of WS-BPEL processes. Monitoring rules are weaved at runtime into the process they 
must monitor and a proxy module supports their dynamic selection and execution [28]. Finally, they 
proposed a user-oriented language to integrate data acquisition and analysis into monitoring rules. 
Their monitoring rules define runtime constraints on WS-BPEL process executions and are 
expressed using the WSCoL language (Web Service Constraint Language). This development of 
this language has been inspired by the Java Modelling Language (JML) of Leavens, Baker and 
Ruby [154]. WS-CoL is a domain-independent policy assertion language for specifying user 
requirements (constraints) on the execution of Web services, which can be used within the 
framework of WS-Policy [214] and WS-Security [133]. WS-CoL is an assertion language 
augmented with features for allowing one to retrieve information that originates outside the process. 
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It distinguishes between data collection and data analysis to differentiate the phase in which 
information is collected (data collectionO, from the phase in which this data is analysed (data 
analysis). Data can be collected from the process directly (e.g., values of internal variable) but they 
can also come from external sources (e.g., exchanged SOAP messages). An example of a 
monitoring rule in this language could specify that all exchanged messages must be encrypted using 
the 3DES encryption algorithm. 

 

4.1.1.3 Summary of specification languages for security and other system properties for dynamic 
verification 

Table 4.1 gives a summary of various formal notations which have been used by different dynamic 
verification methods to express the properties to be verified and other functional and non functional 
characteristics of the systems and identifies languages and notations that have been specifically 
developed for expressing and verifying security properties. 

As shown in the table most of the approaches deploy languages which are based on some form of 
temporal logic as these languages provide the necessary operators for expressing conditions about 
the temporal ordering and boundaries of occurrence of events which is required for the expression 
of most of the properties that need to be verified at runtime.  The most popular formal notation for 
expressing security properties is Linear Temporal Logic (LTL) or extensions of it and languages 
with similar expressive power such as Event Calculus. 

 

Languages for expressing security properties 
for dynamic verification 

Languages for expressing  all types of 
properties  for dynamic verification 

Behaviour Monitoring Specification Language 
(BMSL) and Extended finite state automata (EFSA) EAGLE and HAWK 

EAGLE  CSP-like specification  

PE Grammar LTL   and its extensions 

ITL  PEDL and MEDL 

CTL (extended)  AsmL 

Security automata  Event Calculus  

Ponder  Ponder 

KAOS KAOS 

Table 4.1 – Summary of formal languages used for dynamic verification 
 

Some dynamic verification techniques reason about systems at both low and high level of 
abstraction, such as Primitive Event Definition Language (PEDL) and Meta Event Definition 
Language (MEDL) in Java Monitoring and Checking (JavaMaC) framework [157]. PEDL is used 
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for writing low-level specifications and is tightly related to the programming language, while 
MEDL specification makes use of primitive events and conditions in order to state high-level 
requirements. 

 

4.1.2. Methods for Capturing Events 
In the second stage of the general runtime verification process, the goal is to apply techniques so as 
to capture the real behaviour of the system during its execution.  

As shown in Figure 4.3, existing event emission methods can be divided into code modifying and 
non code modifying ones. Code modifying event emission methods require direct access to the 
source or binary code of a system in order to insert code statements that will generate the events of 
interest. Code instrumentation is an example of a code modifying event emission method in which 
event generation statements are inserted manually into the code of a system. Aspect Oriented 
Programming (AOP) has also been used to generate events (through the weaving of aspects into 
binary or source system code). AOP is a code modifying event emission method, which can be 
considered as a subcategory of code instrumentation. Monitoring Oriented Programming [59] and 
Design by Contract [178] are also code modifying event emission methods which can be regarded 
as subcategories of Aspect Oriented Programming [140]. 

Non code modifying event emission methods generate events without altering the code of a system. 
Such methods access, modify and/or take advantage of capabilities of the general computational 
environment in which a system is executed, in order to generate the events flow. Reflective 
middleware approaches [53, 54, 170], proxy-based architectures [30] and the use of application 
programming interfaces (APIs) [166, 19, 46] constitute examples of event emission methods which 
belong to this category.  
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Figure 4.3 – Taxonomy of Event Emission Methods 

 

 

4.1.2.1 Code-Modifying Event Capture Methods 

4.1.2.1.1 Code Instrumentation 
The technique of code instrumentation can be described [204] as the insertion of statements into the 
system’s code (source or binary code) for monitoring purposes. Instrumentation can be done 
manually or automatically e.g. by using Jtrek-JSpy [102] or Joie [65] which automatically 
instrument Java byte code. During the execution of the instrumented code, an event stream is 
generated. The generated events can then be passed directly to external monitors or pre-processed 
before they reach the verification stage. 

A tool using code instrumentation for capturing events in Java-based systems is RMon [204]. In 
Rmon, requirements are initially expressed in the KAOS framework [79], which provides a goal-
oriented formal specification language based on temporal logic. Requirements are thus specified as 
high level goals which must be achieved by the system. These goals must then be mapped onto low-
level events which can be monitored at runtime. The system’s code is then instrumented in order to 
capture these low level events, using the Joie framework [65]. 

In the initial phase of the Java MaC architecture [142], low-level specifications (written in PEDL) 
are inserted into the byte code of the monitored program through an automatic instrumentation 
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procedure. Furthermore, in the MONID tool [187] system-level events are generated by 
appropriately instrumented source code. 

 

4.1.2.1.2 Aspect Oriented Programming 
Aspect Oriented Programming (AOP) [140], also called Aspect Oriented Software Development 
(AOSD), was proposed to support the advanced identification, illustration and separation of non-
functional concerns, which crosscut the system’s main functionality. Complex programs include 
various crosscutting concerns (properties of interest such as QoS, energy consumption, fault 
tolerance, and security). While object-oriented programming abstracts out commonalities among 
classes in an inheritance tree, crosscutting concerns are scattered among different classes, 
complicating the development and maintenance of applications. As depicted in Figure 4.4, AOP 
enables the separation of crosscutting concerns during the development of the software. 
Specifically, the code implementing crosscutting concerns of the system, called aspects, is 
developed separately from other parts of the system. In AOP, locations in the program where aspect 
code can be woven, called pointcuts, are typically identified during development. Later, for 
example during compilation, an aspect weaver can be used to weave different aspects of the 
program together so as to form a program with new behaviour. AOP proponents argue that 
disentangling crosscutting concerns leads to simpler development, maintenance, and evolution of 
software [140]. Examples of AOP approaches include AspectJ [141] and Hyper/J [232]. 
 

 

 

 

Figure 4.4 – Conceptual Representation of Aspect Weaving  [140] 
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AOP supports dynamic re-composition in three major ways. First, most adaptations are relative to 
some crosscutting concern, such as quality-of-service or fault tolerance. AOP enables the code 
associated with these aspects to be written and managed independently of the application code as 
well as other parts of the system, such as traditional middleware platforms. Such a separation is 
needed in order to dynamically replace one instantiation of a particular solution for a concern with 
another. Second, although compile-time aspect weaving produces a tangled executable that cannot 
easily be reconfigured, delaying the weaving process until runtime provides a systematic way to 
realize dynamic re-composition [246, 122]. Finally, if adaptability itself is considered as a “generic” 
aspect [80, 253], then runtime weaving can be used to enhance the program with adaptive 
behaviour, not necessarily anticipated during the original development (e.g. to tolerate newly 
discovered faults or to detect and respond to new security attacks). This kind of upgrading is 
especially important in situations where the application is required to run continuously and cannot 
be easily halted for upgrade. However, the need of a formal aspect specification written in a 
domain-specific knowledge language or using logic, rather than the host programming language 
itself, is expressed in [59]. The mapping from specification to implementation, with the support of 
automatic code generation can then be formally verified. 

In particular, AspectJ [141] provides an approach to implementing cross-cutting features in Java. 
AspectJ provides a pattern mechanism, called pointcuts, for capturing groups of events, called 
joinpoints, that may occur during a program’s operation (such as method calls/receptions, 
constructor calls, field accesses, and exception events). The pattern matching mechanism includes 
regular expression matching, with wild-carding over fragments of method names, argument names, 
types etc. Extra code, called advices, can be associated with pointcuts, and is inserted by the 
AspectJ compiler into the join-points. Advices can inspect and modify data that are available at 
joinpoint events (e.g. method-call arguments and return values), and can create new data 
dynamically that is only shared with other advice. 

For instance, Dingwall-Smith and Finkelstein [85] have developed an aspect oriented approach, in 
which system providers specify instrumentation code in separate classes, and define composition 
rules which determine how this code is to be merged with the application code, by using Hyper/J 
[232]. Also, Baresi and Guinea [27] have proposed a framework for runtime monitoring of WS-
BPEL processes, in which monitoring rules are specified and weaved dynamically into the process 
they belong to. Furthermore, the instrumentation module of the JpaX framework performs a script-
driven automated instrumentation of the program to be verified. The automated AOP environment 
package, which is used in JPaX [116, 119], is JSpy [102]. 

 

4.1.2.1.3 Design by Contract 
Design by Contract (DBC), as proposed by Meyer [178] for the object-oriented language Eiffel, is a 
practical approach to runtime checking in applications. DBC is a lightweight formal technique, 
which allows one to add semantic information to a program by specifying assertions regarding the 
program's runtime state. Then, checks for specification violations are carried out at runtime. Such a 
technique stresses the importance of explicitly specifying the constraints that hold before (pre-
conditions) and after a program is executed (post-conditions). The technique’s name refers to a 
contract, which is made between the client and the supplier of a system module and defines 
conditions before and after the execution of the module. Thus, for monitoring reasons the entry and 
exit points of the module become the events that we want to observe. 
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In the context of the Eiffel object-oriented language, specifications of pre/post-conditions can be 
associated with a class in the form of assertions and invariants. Subsequently, inserted 
specifications can be compiled into monitoring code. In the Java language, there are two approaches 
which are based on DBC. Jass [33] is a pre-compiler which turns the assertion comments into Java 
code. Properties in Jass are called trace assertions and they specify permissible sequences of method 
calls in a CSP-like notation. Thus, processes, parallelism, conditionals and data exchange among 
processes can also be expressed. However, the trace assertions are interpreted loosely; no formal 
semantics is provided. The Jass pre-compiler translates the trace assertions into runtime checks.  

 

4.1.2.1.4 Monitoring Oriented Programming 
Monitoring Oriented Programming (MoP) is a paradigm which combines a formal specification 
with an implementation in order to form a system. In particular, it provides a light-weight formal 
method for runtime specification checks against the behaviour of the implementation. By using 
MoP, logical statements can be inserted anywhere in the program. These statements are simply 
Boolean expressions which can refer to past and future states of the program. A MoP user can insert 
such statements for different reasons e.g. to guide the system’s execution, terminate the program or 
throw exceptions. Thus, MoP can increase the dependability of a system by monitoring its 
requirements at runtime and controlling it at the same time. 

In particular, the statements, which can be inserted as annotations into the code, can be divided into 
three parts. The first part consists of a keyword defining the logic in which the rest of the inserted 
statements are expressed in. The second part comprises the definitions of the predicates and the 
formula to be monitored. Finally, user defined code which will be executed in case the monitored 
formula is violated is included in the third part, called a violation handler.    

The general MoP paradigm is language and specification formalism independent. According to 
Chen and Rosu [59], a MoP environment should provide the capability of adding any logic 
framework on top of any target programming language via logic plug-ins, which can be publicly 
accessed. A logic plug-in consists of two modules, namely the logic engine and the target language 
shell. Logic engines translate formulae into monitors, encoded in an abstract representation 
(pseudocode). Then the language shell transforms the monitor pseudocode into the target language 
code. Thus, the logic plug-in can be considered as the code generator of the monitor.  

Moreover, a MoP environment allows users to specify whether the monitoring code will be 
executed using the resources of the monitored program (internal monitor) or within a different 
process (external monitor). In the first case, the inserted logic statements contain the monitor’s 
specifications which are replaced by the generated monitoring code in the end. Note that internal 
monitors, in general, cannot check for program deadlocks and unexpected terminations. In case that 
a monitor is executed as a different process, the inserted statements are replaced by instrumentation 
code which operates as an event generator. The user can specify whether the monitor should be 
executed synchronously or asynchronously with the monitored system and whether it should be 
executed on the same machine with the system or a different one. 

 

4.1.2.2 Non Code Modifying Event Capture Methods 

4.1.2.2.1 Reflective Middleware 
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Middleware technologies [94] have been designed to support the development of distributed 
systems. Their success has been mainly due to their ability of making distribution transparent to 
both users and software engineers, so that systems appear as single integrated computing facilities. 
However, hiding the implementation details from the application completely is very difficult in a 
mobile setting and not even always desirable, since mobile systems need to quickly detect and adapt 
to changes in their environment. A new form of awareness is needed to allow application designers 
to inspect the execution context and adapt the behaviour of the middleware accordingly. 

Reflection and metadata can be successfully exploited to develop middleware targeted to mobile 
settings. By using metadata, we separate the middleware in two parts: what the middleware does 
and how the middleware does it. Reflection allows applications to inspect and adapt their metadata. 
In this way, applications can influence the way their middleware behaves, according to their current 
context of execution. 

Capra, Emmerich and Mascolo [54] proposed a framework designed to ease the adaptation of 
applications to changing execution conditions. The model considers different layers (operating 
system, middleware, application, and user), each of which is described using metadata in order to 
ease their interaction. When the application invokes a service, the middleware uses both the 
application metadata and the metadata reflecting the current execution conditions to decide how to 
offer the requested service. Applications can also ask the middleware to be notified when specific 
execution conditions occur. This system allows for a fine adaptation of applications, but it requires 
that service calls be coded explicitly in the applications. However, a complete transparency is not 
possible if adaptation (which requires awareness) is desired. 

XMIDDLE [170] is a middleware for mobile computing that focuses on the synchronization of 
replicated XML documents. In order to enable application-driven conflict detection and resolution, 
XMIDDLE supports the specification of conflict resolution policies through meta-data definitions 
using an XML schema.  

CARISMA [54] is a context-awareness based reflective middleware. It includes a reflective API, 
which allows applications to dynamically inspect their current configuration and alter it to best suit 
the current environment. CARISMA maintains a representation of the execution context by 
interacting with the underlying network operating system. Based upon this representation, the 
application may behave in different ways. For example, an application attempting to send messages 
in low bandwidth availability may compress messages before emitting them, whereas it would send 
them uncompressed when bandwidth availability is high. The behaviour of the middleware with 
respect to the application is referred to as an application profile. There are two main aspects of an 
application profile, services and policies. Services describe the services offered to the application 
and which the middleware can customize. Policies describe the different variations in which the 
services can be delivered. In the prior example, the service the application is using is sending 
messages, and the different policies to deliver the service are sending either compressed or 
uncompressed messages based upon the context environment (high or low bandwidth). In 
CARISMA, each time a service is invoked, the middleware examines the application profile. Based 
upon the context of the application, the middleware determines which policy is best suited for the 
current context. This relieves the application of the burden of determining how to optimise its own 
behaviour. 

 

4.1.2.2.2 Proxy Architecture 
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A proxy module acts as an intermediate between the monitored system and its environment, 
capturing their interaction and emitting the corresponding events. Thus, there is no need for code 
recompiling, re-linking or any other sort of invasive instrumentation at all. 
 

 

 

 

 

Figure 4.5 – A client-server architecture [30] 

 

For component based programming, Barnett and Schulte [30] have proposed a framework which 
uses executable interface specifications and a monitor to check for behavioural equivalence between 
a component and its interface specification. Let us assume that a client–server architecture is used, 
like the one illustrated in Figure 4.5.  

 

 

 

 

Figure 4.6 – Proxy Architecture [30] 

 

A component, P, which essentially operates as a proxy, is inserted between the client C and the 
server S as shown in Figure 4.6. Using a proxy allows the interaction of the client C and the server 
S to be observed without having to modify either component. P can be created automatically from 
the definition of the interfaces, which C and S use in order to interact. The proxy forks all of the 
calls made from C to S so that they are delivered to both S and the (AsmL specification based) 
model, M, managing the concurrent execution of M and S. Then P compares the results from 
components M and S. P checks at each interface whether the results agree in terms of their 
success/failure codes as well as any return values. As long as, the results are the same, they are sent 
to C. In any other case, S and M are deemed not to be behaviourally equivalent. 
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4.1.2.2.3 API-Based Event Capturing  
In the last non code modifying event emission subcategory, one finds approaches which make use 
of specific APIs for capturing and emitting events. 

For instance, the Jnuke tool takes advantage of its virtual machine’s (VM) specific API in order to 
observe the runtime behaviour of the monitored system. In particular, the event-based runtime 
verification API of JNuke’s VM serves as a platform for various runtime algorithms. This API 
provides access to events occurring during program execution. Event listeners can then query the 
VM for detailed data about its internal state and thus implement any runtime verification algorithm, 
including detection of high-level data races [18] or stale-value errors [17] - see 4.3.7 for more 
details. 

In the same family of event capturing methods is the prototype implementation of the specification 
based intrusion detection system, proposed by Ko et al. [148], which takes advantage of audit trails 
provided by the operating system. The prototype runs under the Solaris 2.4 operating system and 
uses the auditing services of the Sun BSM audit subsystem. The BSM audit subsystem provides a 
log of the activities that occur in the system. A BSM audit record contains information such as the 
process ID and the user ID of the process involved, as well as, the path name and the permission 
mode of the files being accessed. However, it does not contain information about the program the 
process is running. Therefore, an audit record pre-processor is used to associate the program 
identification with each audit record. The audit record pre-processor actually filters audit records 
that are irrelevant to the monitoring system and translates the BSM audit records into the format 
required by the monitoring system.  

 

4.1.3. Checking for Violations 
The third stage of dynamic verification is concerned with the checks that a monitor carries out to 
identify whether the runtime behaviour of a system conforms to certain properties. According to the 
taxonomy of Figure 4.2, the monitors with the most advanced capabilities are the "OC−pre−S" 
monitors. This category describes monitors, which verify the system’s correct behaviour based on 
events describing the system’s state before the execution of some action. The check is carried out 
while the system is halted, waiting for the monitor’s reply. Once the monitor assures that the 
monitored properties hold, it allows the system to continue with its normal execution. If however a 
violation is reported, the monitor can force the system to execute some other action so as to remedy 
the current violation. 

 

4.1.3.1 Checks for Admission 

A widely used type of runtime checks is the check for admission. In this check a monitor checks an 
incoming request/application for admission, before actually honouring/executing it. In the following 
we shall examine some of the solutions for performing admission checks. 

 

4.1.3.1.1 Proof Carrying Code 
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Proof Carrying Code (PCC) [191] can be used to increase security in systems executing untrusted, 
mobile code. With PCC, a program is supplied along with a proof of its correctness and this proof is 
in a form which can be easily verified mechanically before the program’s execution. Therefore, it is 
now the code producer’s responsibility to formally prove that the program will assure the safety 
properties specified by the code consumer, honouring the security policy of the underlying 
platform/system. Then, both the code and its proof are sent to the code consumer, where the safety 
properties are verified. A safety predicate is also generated directly from the native code to ensure 
that the accompanying proof does in fact correspond to the code sent. Once verified, the code can 
execute without any further checking. Any attempts to tamper with either the code or the safety 
proof result in a verification error. 

The PCC binary life-cycle includes three stages:  

⎯ Certification: During this stage, the code producer compiles and generates a proof for the 
code, proving that the source program adheres to the safety policy of the code consumer. 
The proof can be produced by theorem proving.  

⎯ Verification: This stage is performed in the code consumer side. The code consumer verifies 
the proof part of the PCC binary code. The verification is performed by a simple algorithm, 
which is trusted by the consumer. 

⎯ Execution: The code consumer can execute the code without any further run-time checks. 

For expressing safety policies Necula [191] has used first-order predicate logic, extended with 
predicates for type-safety and memory-safety. The untrusted code is in the form of machine code. 
For relating machine code to specifications they used a form of Floyd's verification-condition 
generator. Such a generator extracts the safety properties of a machine code program as a predicate 
in first-order logic. This predicate must then be proved by the code producer using axioms and 
inference rules supplied by the code consumer as part of the safety policy. For generating the safety 
proof, a theorem prover can be used, in the code producer’s side.  

Proof encoding can adequately be expressed using the Edinburgh Logical Framework (LF). LF is 
general and can easily encode a wide variety of logics, including higher-order logics. Another 
compact representation of proofs is a form of oracles, which guide a simple non-deterministic 
theorem prover in verifying the existence of the proof. For validating proofs encoded in LF, an LF 
type checker can be used. A non-deterministic logic interpreter can be used in the case that a proof 
is encoded as an oracle. 

Initial research has demonstrated the applicability of PCC for fine-grained memory safety and 
shown the potential of it for other types of safety policies, such as controlling resource use. 

PCC is based on principles from logic, type theory, and formal verification. There are, however, 
some potentially difficult problems to be solved before the approach is considered practical. These 
include a standard formalism for describing security policies, automated assistance for the 
generation of proofs and techniques for limiting the potentially large size of proofs that in theory 
can arise. In addition, the technique is tied to the hardware and operating environment of the code 
consumer, which may limit its applicability. 

Comparing PCC to signed code, PCC is a prevention technique, while code signing is an 
authentication and identification technique used to deter the execution of unsafe code. Furthermore, 
the proof is structured in such a way that simplifies its verification, since it must be carried out 
efficiently without using any external assistance. 
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4.1.3.1.2 Signature Verification of Signed Code 
Another technique for protecting a system, which is allowed to host mobile code, is by signing code 
with a digital signature. Using digital signatures, one can confirm the authenticity of the code, its 
origin, and its integrity. Typically the code signer is either the code producer or a trusted entity that 
has reviewed the code. Especially in mobile agents systems, where an agent can operate on behalf 
of an end-user or organization [231], the signature of an agent is used as an indication of the 
authority under which the agent operates. 

Code signing is tightly bound with public key cryptography, which relies on a pair of keys (private 
and public) associated with an entity. One key is kept private by the entity and the other is made 
publicly available. Digital signatures benefit greatly from the existence of a public key 
infrastructure (PKI), since certificates containing the identity of an entity and its public key (i.e., a 
public key certificate) can be readily located and verified. The code signer applies an irreversible 
hash function to the code. The result of this function is a unique message digest of the code, which 
the code producer encrypts with his private key, thus forming a digital signature of the code. 
Because the message digest is unique, and thus bound to the code, the resulting signature also 
serves as an integrity protection against any malicious code modifications. The produced signature 
and the public key certificate can then be sent along with the code to the code consumer. The code 
consumer can easily verify the source and authenticity of the code by using the same hash function 
and the appropriate decrypting mechanism, which the code producer used to sign the code. If the 
signature verification succeeds, the code consumer can execute the code.  

Note that the meaning of a signature may be different depending on the policy associated with the 
signature scheme and the party who signs. For example, the code producer, either an individual or 
an organization, may use a digital signature to indicate who produced the code, but not to guarantee 
that the code will be executed without faults.  

Microsoft's Authenticode [106], enables Java applets or Active X controls to be signed, ensuring 
consumers that the software has not been tampered with and that the identity of the code producer is 
verified. Moreover, JDK 1.1 introduced the capability to digitally sign Java byte code (at least byte 
code files placed in a Java archive, called a JAR file), which expanded more with Java 2 [172]. 
From a certificate authority perspective, VeriSign provided a solution which addressed signed code 
issues for specific Netscape objects [243].  

 

4.1.3.1.3 Model Carrying Code 
Model Carrying Code (MCC) is an approach for supporting the safe execution of untrusted mobile 
code [217]. The central idea of MCC is that the code producer sends the code along with a high-
level model, which describes the code’s security-relevant behaviour. It should be noted that the 
generated model has to be usable by all code consumers. The automated model generation is based 
on model extraction via machine learning from execution traces. In the consumer’s side, the model 
is checked for compliance with the consumer’s security policy. If the security policy is satisfied, the 
code can be executed. In case there are conflicts, the consumer’s policy can be refined, taking into 
consideration the code’s functionality. When the code is executed, runtime verification methods are 
used to guarantee that the consumer’s (refined) policy is not violated by the code (Figure 4.7).   

By these means, the model bridges the semantic gap between the low-level binary code and the 
high-level security policies of the consumer. Moreover, the code producer does not have to know 
the consumer’s security policies (as in PCC). Assuming that a model can be much less complex 
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than the corresponding program, it is feasible for a consumer to automatically determine whether a 
model conforms to his security policies.  

 

 

 

 

Figure 4.7 – The Model-Carrying Code framework [217] 

 

4.1.3.1.4 Java Virtual Machine Byte-Code Verifier 
The basic Java Virtual Machine (JVM) security model provides the capability of carrying out 
checks for admission for untrusted code, via a byte-code verifier [161]. In general the basic JVM 
security model comprises three related parts, namely the byte-code verifier, the class loader and the 
security manager. The JVM verifies all byte-code before execution.  

The byte-code verifier reconstructs type information by inspecting the byte-code [255]. The types of 
all parameters of all byte-code instructions must be checked. The JVM specification lists what must 
be checked and what exceptions may result from a failed check. However, the JVM specification 
does not define when and how type verification should be done. Thus, while the process of 
verification in Java is defined to allow different implementations of the JVM, most Java 
implementations take a similar approach to verification. The most common verification process 
consists of byte-code checks on the class file itself and runtime checks, which confirm whether the 
referenced classes, fields and methods are existing and compatible to their attempted use. 

The byte-code checks establish a basic level of security guarantees. In particular, the class file 
format is checked whether it is correct. This check is carried out with the class loader’s cooperation. 
The code is also verified for the correct hierarchical structure of its classes. Thus, every class must 
have a super-class, final classes cannot have subclasses, final methods cannot be overridden and all 
field and method references in the constant pool (a heterogeneous array composed of five primitive 
types) must have legal names and classes. Moreover, the byte-code is verified by using data-flow 

SERENITY - 027587 Version 1.0   Page 50 of 126
 



 
A4.D1.1 – Review of the state of the art 

 

analysis. By this means, it can be ensured that the operand stack can not be overflowed or 
underflowed, variables are properly initialised, register access is checked for using the proper value 
type, that method calls are done with the appropriate number and type of arguments, fields are 
updated with the appropriate type and all opcodes have the proper type of arguments on the stack 
and in the registers. 

During the class execution runtime checks can occur, since some aspects of Java's type system 
cannot be statically checked, like dynamic linking. Java loads each class only when it is actually 
needed at runtime (dynamic linking). Thus, whenever an instruction calls a method, or modifies a 
field, the runtime checks ensure that the method or field exists, type-checks the call and checks that 
the executing method has the appropriate access privileges.  

 

4.1.3.2 Post-Mortem Checks 

Monitors which can only observe the runtime behaviour of a system (“O, pre, A” and “O, post, A”) 
perform post-mortem checks. Post-mortem checks deal with properties which might not be of high 
importance. Proposed monitoring architectures for this category of monitors, like AMOS [64] and 
FLEA [95] maintain event logs and offer proprietary event pattern specification languages, or store 
events in relational databases and deploy standard SQL querying for detecting requirement 
violations [205]. 

 

4.2. Monitoring in Tuplespace-based Systems 
Coordination models and languages aims to keep separate the description of the internal behaviour 
of the entities in a system from the description of their interaction. 

In tuple-based (data-driven) coordination models client processes communicate and coordinate their 
activities by exchanging tuples of data via shared spaces (tuplespaces) [321]. 

The two key features of the tuple-based communication model are: 

⎯ time uncoupling: entities don’t need to synchronize in order to communicate: once a tuple is 
written into the space it can be read at any later time (the lifetime of sender and receiver 
don’t have to overlap). 

⎯ space uncoupling: entities don’t need to know each other identity/address: tuple-based 
communication does not require sharing of naming conventions (independence from a 
shared addressing space) (tuples are independent of their producer). In tuple-based 
communication is associative in the sense that shared information is accessed by its 
attributes rather than names or address. Moreover a reader process needs to provide only a 
partial description (template) of the tuple to be retrieved. 

The above features make the tuple-based coordination model appealing for Open Computing 
Environments, like the Internet and ad-hoc networks, where communicating entities can leave and 
join the network at will and more in general, where not all cooperating entities are known at design 
time. 

Indeed in the context of Tuplespace-based Systems run-time monitoring has been proposed mainly 
as a strategy for: 

⎯ resource management; 
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⎯ policy enforcement. 

Before proceeding with the review of the approaches to run-time monitoring in the context of 
Tuplespace-based Systems the next paragraph introduce the key security issues for the e-based 
communication model and some of the solutions proposed in the literature. These approaches make 
extensive use of cryptographic techniques. The subsequent two paragraphs present the use of run-
time monitoring for resource management and policy enforcement respectively. 

Security issues in the tuple-based communication model 

The key features that make tuplespaces an appealing coordination model become main security 
concerns in the context of Open Computing Environments. Since any entity is allowed to perform 
insertion, read and removal of tuples, a malicious or buggy entity can corrupt the integrity of data 
structures shared via a tuple space [262]: 

⎯ an entity can add an unbounded number of tuples (potential Denial of Service attack); 

⎯ an entity can remove all tuples matching a given template (potential corruption of data 
attack); 

⎯ it not possible to authenticate neither the producer nor the receiver of a tuple (potential 
disclosure of confidential information); 

In recent years different proposal have been made to add security mechanisms to the original tuple-
based communication model [263]. 

One of the first approaches proposed to enforce secure share of tuplespaces has been to join the use 
of multiple tuplespace (federated tuplespaces) with access control mechanisms such as password 
control. Following this approach multiple tuplespaces exist into the system each devoted to support 
communication between a groups of components (domain). In this kind of systems the security 
mechanisms in place have the granularity of the tuplespaces: in order to access the content of a 
tuplespace the client process must first get the access rights; once a client process gain access to a 
tuplespace it has full access on the content of the tuplespace. 

The main limitation of password-controlled domains is that it assumes that tuples can be partitioned 
in domains. For some applications tuples must be visible in different domains, i.e. domain can 
overlap. 

Moreover for some kind of applications its is required that some processes are able to access a tuple 
without accessing the value of the fields of the tuple: as an example a garbage collector process 
must remove garbage tuples without accessing the content of the filed since a buggy or malicious 
garbage collector could disclose confidential information. 

Due to the limitations of the coarse-grain access control mechanism at the level of tuplespace more 
sophisticated access has been proposed in the literature. 

In order to overcome the limitations of solutions dealing with the granularity of tuplespaces more 
recent works propose a data-driven approach to access control: the access to a tuple or one of its 
fields, is granted if the client process is able to proof it has knowledge of some data stored in the 
tuple. 

In the SecSpaces model [262] the granularity of the access control is the tuple. Each tuple is 
annotated with a couple of control fields for each input operation (in and rd): partition key and 
asymmetric key. 
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SecSpaces extends the standard matching rule. The new matching rule uses the control fields for 
controlling the access to the tuples. In order to access a tuple a client process must provide, along 
with the template, a partition key and an asymmetric key. A tuple is returned if two additional 
matches occur with respect to the access operation: 

⎯ the partition key of the template matches the partition key of the tuple; 

⎯ the asymmetric key of the template corresponds to the co-key of the asymmetric key of the 
tuple. 

The paper shows how the models can be used to support distributed session sharing and message 
brokering. 

In SecOS [264] the granularity for the access control mechanisms is the fields: a client process can 
access a field if and only if it possesses the access key for that field. The SecOS model define two 
kind of keys: 

⎯ symmetric keys: that both lock and unlock fields; 

⎯ asymmetric keys: that belong to an asymmetric key pair (fields are locked with one key and 
unlocked with the other). 

Indeed the SecOS model is quite different with respect to the standard tuplescapce model. First it 
the tuple model: tuple are unordered sequences of locked fields having the form (label:value). The 
pourpose of this redefinition is twofold. First labels are used to filter tuples during matching. 
Second labels are used as key to provide security in field access. redefines the standard matching 
rule for tuplespaces. According to the SecOS a tuple matches a template if each field of the template 
matches one field of the tuple. More specifically two fields match: 

⎯ If they have been locked with compatible keys. Symmetric keys are compatible if they are 
equals; asymmetric keys matches if they belong to the same key pair; 

⎯ If their values are equal or the template’s value is the wildcard matching any value. 

It has to be noted that the SecOS matching rule entails a concept of subsuption that is not present in 
the original tuplespace model. 

The KLAVA system [261] is a middleware with cryptographic primitives to enable encryption and 
decryption of tuple fields. The work is inspired by SecOS but has different main concerns leading to 
some key difference: 

⎯ Conformance to original tuplespace model: hence KLAVA does not support subsumption as 
SecOS does; 

⎯ Code mobility: hence KLAVA imposes additional restriction on the coordination model. 

In particular the code mobility explicit encryption and decryption and two stage pattern matching. 

[263] propose a reference architecture for secure coordination of tuplespace client processes. The 
main components of the architecture are: 

⎯ a reference monitor: is a component intercepting all access to the tuples and verifying that 
each access is allowed by the security policy; 

⎯ security policy: is a set of rules specifying how information has to be accessed; 

The paper focus on authentication and authorization requirements for tuple-based systems: 

User of a tuple-space must authenticate to a protocol authentication process (PAP) 
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Other approaches propose to follow a strategy based on run-time monitoring. 

 

4.2.1. Monitoring for resource management 
4.2.1.1 LIGIA 

The LIGIA system [284] uses run-time monitoring to manage garbage collection of tuplespaces. 
The LIGIA system allows client processes to create at run time new tuplespaces. In order to decide 
whether a given tuplespace is still required or not the system uses the concepts of process 
registration and tuple monitoring. 

Process registration enables the LIGIA kernel to establish which process is executing a given 
instruction. 

By means of tuple monitoring the system analyses the contents of the tuples being passed between 
registered processes. The analysis let the LIGIA kernel to keep up to date an internal graph structure 
representing the acquaintance relationship between processes and tuplespaces. The garbage 
collection of tuple spaces is driven by such a graph structure. 

 

4.2.1.2 JavaSpaces Leases 

The JavaSpace leasing mechanism give to JavaSpace compliant servers [280] a means to decide 
when discards tuples (named Entries in the context of the JavaSpace specifications). 

When a client process writes a tuple into a space it must specify the amount of time for which the 
server should guarantee the tuple will reside into the tuplespace. The actual amount of leased time is 
established by the server according to available resources and returned to the client process as 
return parameter of a write operation. 

JavaSpace compliant servers monitor their space in order to establish when discard tuples residing 
into the space. 

A client process that wrote a tuple may renew or cancel the corresponding lease before lease 
expires. 

 

4.2.2. Monitoring for policy enforcement 
4.2.2.1 Law-Governed Interaction 

The Moses toolkit [320]  is a toolkit for developing tuplespace based systems. The toolkit has been 
applied to T-Space system and BinProlog implementation of the Linda coordination model. 

The main objective of Moses is to enable enforcement of security policies by exploiting the concept 
of Law-Governed Interaction (LGI). 

Within the Moses toolkit there is a controller monitoring the messages exchanged between 
components in the system. There are controllers both for client processes and tuplespace servers. 
Controller are placed between each components and the communication media. Each controller has 
the goal to enforce locally the laws of the coordination policy valid for the system. 

A coordination policy is described by a four-tuple having the following components: 

5. A set M of messages; 
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6. An group G of heterogeneous agents that can change their membership; 

7. A mutable set of Control Sets (one for each agent in the group G); a control set is a 
collection of properties; 

8. A law L; where L is a collection of rules having the form event->[op1,…,opn] where opk are 
primitive operations on control states and messages; 

Each time a message is sent or received by the agent monitored by a controller, an event is raised 
within the controller itself and the controller evaluates the matching rules. The controllers evalute 
the rules sequentially in chronological order: the rules matching a new event are evaluated only 
when all rules matching the previous one have been evaluated. 

 

4.2.2.2 JavaSpace Distributed Events 

The JavaSpace Distributed Events enable JavaSpace clients to monitor at run time the content of a 
JavaSpace. 

The JavaSpace technology incorporates the Jini Distributed Event model that makes possible to 
pass events across different Java Virtual Machines. 

The JavaSpace Distributed Events model let a JavaSpace client process to register in a JavaSpace 
server its interest in the arrival of entries matching a specific template. When a new entry arrives the 
server notifies the event to all interested processes by remotely invoking a notify method of the 
registered process. It has to be noted that the invocation of the notify method is synchronous and 
hence during its execution neither other server activities nor the notify method of other clients are in 
execution. 

 

4.2.2.3 LIME 

The LIME [324] system extends the traditional tuplespace model to support the  development of 
mobile applications. The LIME model aims to support both host mobility and code mobility. 

The LIME coordination model introduces the concept of transiently shared tuple space. A 
transiently shared tuple space result form the aggregation of different tuplespaces. More in detail in 
the LIME model each client process has access to a permanently associated tuplespace (Interface 
Tuple Space) that is transferred along with the process across different hosts. The process access the 
content of the Tuple Space by means of the standard tuplespace operations (out, in and rd). 

An Interface Tuple Space (ITS) makes visible to its process the content of all other ITSs located in 
the same host: each time a process move to a new host the content of its ITS is re-computed and the 
tuples residing on the ITS of the other co-located processes are made visible to the process. When a 
process move to a new host the content of all ITSs hosted in the same node is recomputed as well. 

The ITS make visible also the content of the ITSs accessible across the network: each time a new 
host becomes visible in the network the ITS are synchronized. It is important to note here that in 
order to minimize data transfer the LIME model extends the standard tuplespace model with the 
notion of location: each time a process performs an out operation it specifies the intended location 
(i.e. ITS) for the produced tuple. The LIME kernel continuously monitors the network to detect if 
the intended ITS is in the reach: as soon as it becomes visible the tuple is transferred to the target 
ITS. 
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A part internal monitoring to support transiently tuple space the LIME system also has monitoring 
mechanisms to support reactive programming: client processes can register its interest in executing 
a non-reactive statement (reaction) as soon a tuple matching a given pattern is made visible through 
its ITS. 

Each time a new tuple appears in the ITS where the reaction is registered the LIME kernel selects 
non-deterministically a matching reaction to execute. Once the execution of the reaction has 
completed the kernel goes on selecting and executing another matching reaction until no other 
matching reaction exists. 

In order to avoid the need of a distributed transaction for each tuple space operation the LIME 
model offer also the possibility to register asynchronous reactions. An asynchronous reaction is not 
executed when a matching tuple is produced but in a later moment. The model guarantees that 
eventually the reaction will be executed. 

 

4.2.2.4 Reactive Tuple Spaces 

System relying on the concept of Reactive Tuple Spaces [265] aims to overcome the luck of 
flexibility of built-in associative mechanisms. 

Although tuplespace coordination model offers advantages in term of both time and space 
uncoupling, the associative mechanism for tuple retrieval is fixed into the tuplespace server. 

The drawback is that the coordination policies not directly supported by the tuplespace must be 
coded into the client process leading to break the separation of the description of the internal 
behaviour and coordination aspect. 

In reactive tuple spaces models a tuple space is not just a repository of messages but indeed it is 
extended with the capacity to react to operations on the tuplespace: the tuple spaces can be 
programmed with the action to be undertaken in reaction of operations. 

During their activity the tuplespace servers monitor the requests coming from client processes and 
apply the programmed reaction. 

Systems relying on Reactive Tuple Spaces differs mainly on the data model and programming 
paradigm for the specification of reactions: in the MARS system [265] tuples are objects and 
reactions are programmed using an imperative language; in TuCSoN [287] tuples are standard 
tuples and reactions are programmed by means of a language based on first order logic. 

 

4.3. General Purpose Dynamic Verification Tools 

4.3.1. The Java PathExplorer (JPaX) framework 
The Java PathExplorer (JPaX) is a tool for monitoring systems at their runtime [116, 119]. By using 
JPaX one can automatically instrument code and observe the system’s runtime behavior. It can be 
used during development to provide more robust verification. It can also be used in an operational 
setting, to help optimize & maintain systems as they mature. Figure 4.8 illustrates an overview of 
JPaX architecture. 
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Figure 4.8 – The JPaX architecture [119]   

 

JPaX consists of three modules: 

1. Instrumentation module: It performs a script-driven automated instrumentation of the 
program to be verified, through which the byte-code is automatically instrumented.  

2. Interconnection module: Its responsibility is to receive events about potential errors and 
transmit them to the observer module. 

3. Observer module: It performs two kinds of verification: 

• Checks events against a user-provided requirement specification written in Maude, a 
formal, modularized specification and verification language. JPaX supports linear 
temporal logic (LTL), for both future and past time. Future time LTL uses execution 
traces as an underlying model making it convenient for program monitoring. Past time is 
useful for verification of safety properties. 

• Carries out error pattern analysis by exploring an execution trace and detecting potential 
problems such as error-prone programming techniques, e.g. locking practices that may 
lead to data races and/or deadlocks. The important and appealing capability of the error 
pattern analysis algorithms is that they can find potential errors, even in the case where 
errors do not explicitly occur in the examined execution trace. However, error pattern 
analysis may sometimes find errors which cannot exist. Two algorithms focusing on 
concurrency errors are implemented for JPaX:  
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i. The “Eraser” data race analysis algorithm. A data race occurs when two or 
more concurrent threads access a shared variable simultaneously without any 
locking mechanism and at least one thread intends to write in the variable. 
The “Eraser” keeps track of thread locks and variables to find data race 
conditions. 

ii. Deadlock analysis algorithm. Deadlocks occur when multiple threads take 
locks in different order. For example, a deadlock condition occurs when:  

! Thread A acquires Lock 1 while Thread B acquires Lock 2 

! Thread A retains Lock 1 and asks for Lock 2 while Thread B retains Lock 2 
and asks for Lock 1 

JPaX monitors locks during program execution to find potential deadlocks. 

Using JPaX, a Java program byte-code is automatically instrumented using instructions from a user-
provided script. This script defines what kind of error pattern detection algorithms should be 
activated and what kind of logic-based monitoring should be performed. The automated 
instrumentation tool, which is used in JPaX, is JSpy [102]. JSpy can be seen as an Aspect Oriented 
Programming tool in the sense that it is guided by rules, or aspects, which specify how a program 
should be transformed to achieve additional functionality. However, the main purpose of these 
aspects is to extract information from a running program. JSpy itself is built on top of the low-level 
JTrek instrumentation package [66]. 

As aforementioned, JPaX makes use of the Maude system [63]. Maude is a specification and 
verification system which supports rewriting logic. Rewriting logic is appropriate for expressing 
concurrent changes, which can naturally deal with state and with concurrent computations. 
Therefore, rewriting logic can be used like a universal logic, due to the fact that the syntax and 
operational semantics of other logics (such as temporal logics) can be expressed in rewriting logic. 

The Maude rewriting engine can be used as: 

⎯ A monitoring engine during program execution. In JPaX, execution events are submitted to 
the Maude program that evaluates them against the requirements specification. 

⎯ Translation engine before execution. In JPaX, the specification is translated into a data 
structure optimised for program monitoring. This data structure is then used within the Java 
program to check the events at runtime. 

JPaX produces either no output (when no errors are found) or a set of warnings. The warnings deal 
not only with runtime violations of high-level requirements written in temporal logic formulae but 
also with low-level error-detection procedures like concurrency related problems such as deadlock 
and data race algorithms. 

The JPaX Java instrumentation module can be replaced with a C++ module to monitor C++ code. 
Experiments were conducted by the NASA Ames Robotic group on C++ code to check for 
deadlocks. JPaX located a potential deadlock that had not been previously detected during other 
testing [42].   

To conclude, JPaX can also find potential errors, even in the case where errors do not explicitly 
occur in the examined execution trace. However, its logic-based monitoring adds an overhead to the 
normal execution of programs. Moreover, its error pattern runtime analysis can detect problems that 
do not really exist (called false positives). 
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4.3.2. The Java Monitoring and Controlling Framework 
The Java Monitoring and Controlling (Java-MaC) framework uses formally specified properties to 
monitor Java programs at runtime [142]. Its architecture is shown in Figure 4.9. It can be divided in 
two main parts: the static phase (before a monitored entity runs) and the runtime phase (while the 
monitored entity is executing). During the static phase, the runtime modules, namely a filter (event 
generator), an event recognizer (event processing module), and a run-time checker (external 
monitor), are automatically generated from a formal requirements specification. During the runtime 
phase, events from the execution of the monitored program are collected and checked against the 
given requirements specifications. 

The static phase of the Java-MaC architecture starts with a formal requirements specification, which 
is written in both high-level and low-level specifications. Java-MaC makes use of two event-based 
formal languages, the Primitive and the Meta Event Definition Languages (PEDL and MEDL), 
which are used for writing low and high level specifications respectively.  PEDL is tightly related to 
the programming language. Specifications written in PEDL contain the definitions of primitive 
events and conditions expressed using these events. Such definitions are given in terms of program 
entities such as program variables and program methods and their purpose is to assign meanings to 
the program entities. MEDL specifications consist of required safety properties. Primitive events 
and conditions are used to express these safety properties. Intuitively, a condition is a state predicate 
and an event is an instantaneous state change. The reporting capabilities of the runtime checker are 
described in the MEDL specifications, as well. MEDL uses alarms to express a violation of a 
property. An alarm is an event that should not occur during an execution. If an alarm fires during an 
execution, then a user notification is issued. 

Once the specifications are written, the next step is the generation of the runtime modules. Low-
level specifications generate a filter that is inserted into the byte-code of the monitored program 
using an automatic instrumentation procedure. An event recognizer is also generated automatically 
by translating the PEDL specification. Similarly, a runtime checker is generated automatically from 
the higher-level MEDL specification. 
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Figure 4.9 – The Java-MaC architecture [142] 

 

During the runtime phase, the instrumented program is been monitored and checked against the 
requirements specification. Filter keep track of changes of monitored objects and send relevant 
information about the execution trace to the event recogniser. The event recognizer detects events 
from the state information received by the filter. An event can be either a primitive event (such as a 
method call) or a change in the state of a condition. Recognized events are sent to the run-time 
checker, which determines whether or not the current execution trace satisfies the requirements 
specification and raises an alarm if a violation is detected. 

 

4.3.3. The Java Monitoring-Oriented Programming Framework 
Chen and Rosu [60] proposed a development and analysis framework for Java, the Java 
Monitoring-Oriented Programming (Java-MoP). Java-MoP follows the MOP paradigm and thus 
monitoring is one of its fundamental principles. It also provides the capability of recovering from 
errors (specification violations) at runtime. 

According to its proposed distributed architecture, annotations formally describing requirements on 
past, current and future states, have first to be inserted into the monitored Java source code, in the 
client side. Java annotation processors send these annotations to the appropriate logic plug-ins, 
which reside at the server side. Essentially, each of the logic plug-ins implements an algorithm for 
synthesising monitoring code for a specific formalism. Logic plug-ins, which have already been 
implemented, support past and future time variants of temporal logics, as well as, extended regular 
expressions. Furthermore, Jass [184] and JML [154] annotations can be used. These specific 
annotations do not require a special logic plug-in, only a Java shell to transform them into Java 
executable code. 
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Once the annotations have been transformed into Java executable code at the server side, they are 
sent to the client side. Java assertion processors integrate the received code in the system, according 
to the configuration attributes of the monitor. In addition, the client side modules are also 
responsible for the system’s code instrumentation for emitting events, in case of an external 
monitor. In this Java-MoP implementation, AspectJ [141] is used as the instrumentation 
mechanism. 

The checks, which can be carried out by using Java-MoP, depend on the monitoring properties. 
Thus, a monitor implemented in Java-MoP can check for class invariants at every change of class 
state or for method pre/post-conditions. Also, a monitor can be configured to halt the program’s 
execution while it carries out specific checks which deal with critical properties (synchronised 
keyword). In case that a non-critical property must be checked, a monitor’s reply may not be 
important, so the system keeps running during the check (asynchronised keyword). 

MOP allows one to control the execution of a monitored program. By allowing users to specify 
handlers for the violation or validation of monitored properties, Java-MoP can support the runtime 
control and recovery of a monitored Java program. These handlers can either simply report errors 
and throw exceptions or take more complicated actions, like resetting states and performing 
alternative, error-correcting computations. 

 

4.3.4. The Jassda Framework 
An alternative to the Jass [33] approach, called Jassda [45], checks assertions on traces by 
observing the events generated for debuggers through the Java Debug Interface (JDI). An obvious 
shortcoming of this alternative is that the monitored program must be running in the debugging 
mode. 

The Jassda tool allows the dynamic verification of a system written in Java against a CSP-like 
specification. The events from the monitored system are obtained through a general event extraction 
and dispatching facility, the Jassda framework [45]. This framework can also be used for other 
purposes, e.g., to log events or to stimulate a program for testing purposes. 

 

 

 

SERENITY - 027587 Version 1.0   Page 61 of 126
 



 
A4.D1.1 – Review of the state of the art 

 

 

Figure 4.10 – The of Jassda architecture [45] 

 

The architecture of the Jassda framework is shown in Figure 4.10. At the lowest level JVMs execute 
the monitored system’s code (debuggees). These debuggees are connected to the Broker, which is 
the central component of the Jassda framework. The “Registry” database, an optional graphical user 
interface and the Broker build the Jassda core. Other Jassda modules connect to this core requesting 
and consuming events. The connection between the debuggees and the Jassda core transports the 
events that we want to observe. This connection is established by using the Java Platform Debugger 
Architecture (JPDA). The Jassda tool development aimed to achieve a method for monitoring Java 
programs which would be as less code intrusive as possible. The Java Debug Interface (JDI) [228] 
was used for this purpose. 

During runtime the debuggees can be configured to generate events for several situations, e.g. a 
method has started or terminated, an exception has occurred, a breakpoint is reached, a class is 
loaded/unloaded, read/write access to a variable, a thread was started/stopped. After having emitted 
an event, the debugging VM can be configured to suspend execution and thus allow a deep view 
into the VM. For example, for each currently running thread its stack trace can be analyzed or for 
each class its inner structure (like super-classes and implemented interfaces) can be read. Even the 
byte-code of every method can be accessed for further analysis. 

The Logger module logs the execution of a Java system by writing its sequence of events into a file. 
The amount of information that can be derived from an event as well as the alphabet of events can 
be configured by an XML-based configuration file. The most important event listening module is 
the Jassda Trace–Checker. The Trace–Checker reads one or more trace specifications written in 
CSPJassda and builds an internal process representation for the set of legal traces. With every 
received event the Trace–Checker will ensure that this actual sequence of events is a legal trace of 
the specification’s process representation or stop the program and inform the user of the 
specification violation. 
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4.3.5. The Temporal Rover Toolset 
The Temporal Rover [88] is a commercial toolset, which performs dynamic verification of temporal 
properties over programs written in Java, C, C++, VHDL, Verilog, and ADA. This is achieved by 
adding extra LTL/MTL assertions to the program source code. These assertions are embedded as 
comments into the source code. The Temporal Rover parser converts program files into new files, 
which are identical to the original files except for the assertions that are now implemented in source 
code.  

The Temporal Rover adopts a coarse-grained view of the state model. A state constitutes the values 
of variables within the scope of a given method. Method execution is viewed as an event that causes 
transition between states, and properties are evaluated only at the completion of a method 
execution. Clearly, it misses invalid states that may occur during the execution of a method. 
Properties are written inside methods and predicates map to the variables within the scope of the 
method. Consequently, each property has a unique perspective of the environment that it is 
validating and properties may not be composed. For example, even though one would imagine that 
two contradicting properties could be composed and reduced to “false”, this is not the case under 
the Temporal Rover’s state model. A property’s notion of time refers to the next execution of the 
method containing it. Two properties may therefore carry different semantics for the next-state 
operator. Another limitation of Temporal Rover is that under its state model one can not reason 
about control intensive properties such as method x must never execute after method y. The 
DBRover is a distributed-monitor version of the Temporal Rover where assertions are monitored on 
a remote machine, using HTTP, sockets or serial communication with the underlying target 
application. 

 

4.3.6. The Java PathFinder (JPF) Framework 
Java PathFinder (JPF) [245] is a model checker for Java byte code. More specifically, it is a 
specialized Java Virtual Machine (JVMJPF), which runs on top of the underlying host JVM. In 
contrast to the standard JVM, JVMJPF executes the program in all possible ways. The state space of 
a program is thus the resulting computational tree, whose branches are determined by the threads’ 
instructions and possible values of input data. JPF supports depth-first, breadth-first as well as 
heuristic search strategies to guide the model checker’s search in cases where the state explosion 
problem is too severe [108]. JPF contains no mechanism of its own to specify user-defined 
properties, but rather integrates with the Bandera toolset [69] and accepts the Bandera Specification 
Language (BSL) [68]. Even though JPF carries an elaborate state model (being able to capture 
every state of the JVM), temporal property specification is limited to the capabilities of BSL. Figure 
4.11 depicts the JPF architecture. 

Like other model checkers for concurrent programs, JPF supports the partial order reduction (POR) 
[62]. The purpose of this technique is to lower the state space size via including in the state space 
only one interleaving of instructions that are both independent and executed by different threads. 
The consequence is that JPF actually traverses a reduced state space where each state is associated 
with one of the following events (“points”) in the byte code execution: 

(a) Scheduling point: The current instruction is thread scheduling relevant (e.g. it accesses a shared 
variable, starts/stops a thread, blocks a thread, etc.) 

(b) Value point: A value selection takes place. 
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(Dotted lines indicate iterative analysis)

Figure 4.11 – The JPF Architecture [245] 

 

In order to check a code unit (e.g. a method) for different values of input data, JPF contains a static 
class Verify which provides methods for a systematic selection of values of virtually any type. The 
methods of Verify are to be called in the checked code. For example, if the checked code unit 
executes Verify.random(3), an integer value from the range 0..3 is selected. However, after reaching 
an end state, JPF backtracks up to the Verify.random(3) call and selects another value from 0..3; 
this is repeated until all the values from this interval have been used for execution. By employing 
methods of Verify the state space size increases since each selected value creates a different branch 
in the state space. 

By default, JPF searches the state space of the checked program for “low-level” properties like 
deadlocks, unhandled exceptions and failed assertions. However it is extensible via the 
publisher/listener pattern and as such it allows for observing more general properties. Since Java 
code assertions must always hold, temporal properties specified outside of BSL can be checked as 
well. This way, listeners can check for specific state-based properties. 

Each state of a checked program in JPF consists of the heap, static area and stacks of all threads. 
When traversing the state space, JPF checks whether the current state has already been visited. If 
this is so, it backtracks to the nearest scheduling/value point, for which there exists an unexplored 
branch and continues along that. This backtracking is based on keeping a stack representing the 
currently explored path in the state space (an item in the stack determines the list of yet unvisited 
branches). 

The Bandera toolset [114] is a collection of program analysis, transformation, and visualization 
components designed to allow experimentation with model-checking of Java programs. Bandera 
takes as input a Java source code and a program specification written in Bandera’s temporal 
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Specification Language (BSL), and produces a program model and a specification as input to 
model-checking applications, like Spin [124] and Java PathFinder [245]. Then, Bandera uses the 
corresponding model-checker to prove whether the model satisfies the required specification (i.e. 
whether the Java program satisfies the BSL specification). If the specification is not satisfied, then a 
counter example trace is returned. Bandera uses this to show the problematic execution path directly 
in the original Java code. Bandera deals with the state explosion problem and the fact that the 
program state models must be finite by providing data abstraction and program slicing methods 
when customizing the model. These features help produce a much smaller finite state model of the 
Java program. 

In particular, Bandera consists of five major components: 

⎯ Property specification is supported in Bandera through the use of global properties (e.g., 
deadlock) and application specific properties (e.g., assertions and temporal logic formulas). 
Users define observations of the execution state of a Java program, as predicates over 
program locations and data values in the program. Assertions and temporal formulas are 
then defined in terms of those observations. 

⎯ Program slicer: Automates the elimination of program components that are irrelevant for the 
property under analysis. Slicing criteria are automatically extracted from the observable 
predicates that are referenced in the property. Bandera’s Java slicer treats multi-threaded 
programs [115] and is based on calculation of the program’s data dependence graph. 

⎯ Program abstraction which can be summarized as: (i) definition of an abstraction mapping, 
which is appropriate for the property being verified, (ii) use of the abstraction mapping to 
transform the temporal property into an abstract property, (iii) use of the abstraction 
mapping to transform the concrete program into an abstract program, (iv) checking whether 
the abstract program satisfies the abstract property, (v) reasoning about the satisfaction of 
the concrete property by the concrete program.  

⎯ Verification code generator: Transforms the sliced, abstracted program into the input format 
of a selected model checker. This component is also responsible for establishing the 
correspondence between the states of the produced model and the states of the original 
program. 

⎯ Counter-example interpreter: Involves the mapping of low-level, verifier-specific counter-
examples back to the Java source code. Facilities for navigating through the counter-
example and displaying the values of both stack and heap allocated data are provided 
through a debugger-like interface. 

 

4.3.7. The JNuke tool 
JNuke is a framework for static and dynamic analysis of Java programs [16, 19]. It was originally 
designed for dynamic analysis, including explicit-state software model checking and runtime 
verification. 

JNuke’s virtual machine (VM) is the core element of the framework. For generic runtime 
verification, the engine executes only the program once according to a given scheduling algorithm. 
The VM API allows for event-based runtime verification through various runtime algorithms. This 
API provides access to events occurring during the program execution. Event listeners can, then, 
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query the VM for detailed data about its internal state and thus implement any runtime verification 
algorithm, including detection of high-level data races [18] and stale-value errors [17]. 

Before the execution of the monitored program, the class loader transforms the Java byte code into 
a simplified form containing only 27 instructions, which is then transformed into a register-based 
version [16]. Execution of the program generates an event trace. During execution, the runtime 
verification API allows event listeners to capture this event trace. These listeners are used to 
implement scheduling policies and runtime verification algorithms, like Eraser [213] and detection 
of high-level data races [18]. The verification algorithm is responsible to copy data it needs for later 
investigation, as the VM is not directly affected by the listeners and thus may choose to free data 
not used anymore. Figure 4.12 presents an overview of the JNuke VM and how a runtime 
verification algorithm can be executed by using callback functions in the VM. 

 

 

 

 

Figure 4.12 – Runtime verification in JNuke [16] 

 

JNuke was expanded with static analysis capabilities at a later stage. Static analysis is usually faster 
than dynamic analysis but less precise, approximating the set of possible program states. In static 
analysis, iterations over these approximated states are carried out until a fix point of them is 
computed [72]. Properties checked with static analysis require summary information of dependent 
methods or modules. Figure 4.13 illustrates the separate classical approaches to dynamic and static 
analysis. 

On the other hand, dynamic analysis examines properties against an event trace originating from a 
program execution. By using a free data flow analysis graph [182] static analysis can work similarly 
to the dynamic execution. Analysis algorithms based on such a graph can allow for non-
deterministic control-flow and use sets of states rather than single states in its abstract interpretation 
[16]. Moreover, in such a graph data locality is improved because an entire path of computation is 
followed as long as valid new successor states are discovered. Thus, all Java methods can be 
executed, allowing for a generic analysis algorithm to be executed under both static and dynamic 
analyses. The chosen analysis algorithm runs until an abortion criterion is met or the full abstract 
state space is exhausted. 
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Figure 4.13 – : Classical approach to dynamic & static analysis [16] 

 

 

 

 

Figure 4.14 – Generic analysis for both a static & dynamic environment [16] 

 

A generic analysis represents a single program state or a set of program states at a single program 
location. It also includes a number of event handlers, which model the semantics of byte code 
operations. Both static analysis and runtime analysis trigger an intermediate layer, which evaluates 
the events. The environment hides its actual nature (static or dynamic) from the generic algorithm 
and maintains a representation of the program state that is suitably detailed. 

Figure 4.14 shows the generic analysis principle. Run-time verification is driven by a trace, a series 
of events e emitted by the runtime verification API. An event represents a method entry or exit, or 
execution of an instruction at location l. Runtime analysis examines these events directly. The 
dynamic environment, on one hand, uses the event information to maintain a context c of algorithm-
specific data before relaying the event to the generic analysis. This context is used to maintain state 
information s that cannot be updated uniformly for the static and dynamic case. It is updated 
similarly by the static environment, which also receives events e, determining the successor states at 
location l which are to be computed. The key difference for the static environment is that it updates 
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c with sets of states S. Sets of states are also stored in components used by the generic algorithm. 
Operations on states (such as comparisons) are performed through delegation to component 
members. Therefore the “true nature” of state components, whether they embody single concrete 
states or sets of abstract states, is transparent to the generic analysis algorithm, which can thus be 
used either statically or dynamically. 

The abstract domain for the static analysis is chosen based on the features required by the generic 
analysis algorithm to evaluate given properties. Both the domain and the properties are 
implemented as an observer algorithm in JNuke. Future algorithms may include an interpreter for 
logics such as LTL. Interpretation of events with respect to temporal properties would then be 
encoded in the generic analysis while the event generation would be implemented by the static and 
dynamic environment, respectively. 

 

4.3.8. Summary of Dynamic Verification Tools 
The following table summarizes the surveyed verification tools in terms of the general dynamic 
verification approach steps of Figure 4.2. 

 

Tool 

Language for 
Properties 

Formalization 
Methods for Events 

Emission Monitor Category 

JPaX 

Temporal logic 
in Maude 
rewriting tool 

Automated 
Instrumentation using 
JSpy (modified JVM) Observer O, pre/post, A 

Java-MaC 

Past-time 
interval 
temporal logic 

Automated 
Instrumentation 
(Instrumentor) Runtime Checker O, pre/post, A 

JMoP 
ptLTL, ftLTL, 
EREs 

Automated 
instrumentation by 
using AspectJ 

Embedded in code 
or parallel process 
to the system on the 
same or different 
machine OC, pre/post, S/A 

Jassda CSPJassda

API based (from JVMs 
by using the Java 
Debug Interface) Trace checker OC, pre/post, A 

Temporal 
Rover 

LTL/MTL 
assertions Intrumentation 

Embedded (using 
alternating finite 
automata) OC, pre/post, S 
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JPF 

User defined 
assertions, LTL 
(by using 
BANDERA) 

By using BANDERA’s 
abstraction capability JVMJPF OC, A 

JNuke - 
API based (JNuke VM 
with RV API) 

Runtime 
verification 
algorithm O, post, A 

Table 4.2 – Summary of Dynamic Verification Tools 
 

4.4. Dynamic Verification Tools Focusing on Security Properties 

4.4.1. Firewalls 
A firewall [107] is a device or group of devices that controls access between networks. A firewall 
generally consists of filters and gateway(s), varying from firewall to firewall. It is a security 
gateway that controls access between the public Internet and an intranet and is a secure computer 
system placed between a trusted network and the generally not trusted Internet. A firewall is an 
agent, which monitors network traffic in some way, blocking traffic it believes to be inappropriate 
or dangerous. It is well known that Internet access provides benefits to individual users, government 
agencies and most organisations. But this access often creates a threat as a security flaw. The 
protective device that has been widely accepted is the firewall. When inserted between the private 
intranet and the public Internet it establishes a controlled link and erects an outer security wall or 
perimeter. The aim of this wall is to protect the intranet from Internet-based attacks and to provide a 
choke point where security can be imposed. 

The main purpose of a firewall is to impose restrictions on packets entering or leaving the private 
network. All traffic from inside to outside, and vice versa, must pass through the firewall, but only 
authorised traffic will be allowed to pass. Packets are not allowed through unless they conform to a 
filtering specification.  

Firewalls, as mentioned above, create choke points between an internal private network and the not 
trusted Internet. Once the choke points have been clearly established, the device can monitor, filter 
and verify all inbound and outbound traffic on the basis of IP source and destination addresses and 
TCP port number. 

The firewall also enforces logging, and provides alarm capacities as well. By placing logging 
services at firewalls, security administrators can monitor all access to and from the Internet. Good 
logging strategies are one of the most effective tools for proper network security. 

A firewall can limit network exposure by hiding the internal network systems and information from 
the public Internet. 

The firewall certainly has some negative aspects: it cannot protect against internal threats such as a 
trusted entity which cooperates with an external attacker; it is also unable to protect against the 
transfer of virus-infected programs or files because it is impossible for it to scan all incoming files, 
e-mail and messages for viruses. However, since a firewall acts as a protocol endpoint, it may use 
an implementation methodology designed to minimise the likelihood of bugs. 
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Firewalls can be classified into three main categories: packet filters, circuit-level gateways and 
application-level gateways. 

 

4.4.1.1 Packet Filters 

Packet filters are one of several different types of firewalls that process network traffic on a packet-
by-packet basis. A packet filter’s main function is to filter traffic from a remote IP host, so a router 
is needed to connect the internal network to the Internet. Packet filters typically set up a list of rules 
that are sequentially read line by line. Filtering rules can be applied based on source and destination 
IP addresses or network addresses, and TCP or UDP ports. Packet filters are read and then treated 
on a rule-by-rule basis. A packet filter will provide two actions, forward or discard. If the action is 
in the forward process, the action takes place to route the packet as normal if all conditions within 
the rule are met. The discard action will block all packets if the conditions in the rule are not met. 
For example, if TELNET services were forbidden in a network protected by a packet filter, then the 
rule in the packet filter would discard any packet from the Internet with destination IP within the 
intranet and port 23. Thus, a packet filter is a device that inspects each packet for predefined 
content. Although it does not provide an error-correcting ability, it is almost always the first line of 
defence.  

Since a packet filter can restrict all inbound traffic to a specific host, this restriction may prevent a 
hacker from being able to contact any other host within the internal network. 

However, the significant weakness with packet filters is that they cannot discriminate between good 
and bad packets. Even if a packet passes all the rules and is routed to the destination, packet filters 
cannot tell whether the routed packet contains good or malicious data. Another weakness of packet 
filters is their susceptibility to spoofing where the attacker sends packets with an incorrect source 
address.  

 

4.4.1.2 Circuit-level gateway 

The circuit-level gateway represents a proxy server that statically defines what traffic will be 
forwarded. Circuit proxies always forward packets containing a given port number if that port 
number is permitted by the rule set. This gateway acts as an IP address translator between the 
Internet and the internal system. The main advantage of a proxy server is its ability to provide 
Network Address Translation (NAT). NAT hides the internal IP address from the Internet. NAT is 
the primary advantage of circuit-level gateways and provides security administrators with great 
flexibility when developing an address scheme internally. 

Circuit-level gateways are based on the same principles as packet filter firewalls. When the internal 
system sends out a series of packets, these packets appear at the circuit-level gateway where they 
are checked against the predetermined rules set. If the packets do not violate any rules, the gateway 
sends out the same packets on behalf of the internal system. 

The packets that appear on the Internet originate from the IP address of the gateway’s external port, 
which is also the address that receives any replies. This process efficiently shields all internal 
information from the Internet.  
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4.4.1.3 Application-Level Gateways 

The application-level gateway represents a proxy server, performing at the TCP/IP application 
level, that is set up and torn down in response to a client request, rather than existing on a static 
basis. Application proxies forward packets only when a connection has been established using some 
known protocol. When the connection closes, a firewall using application proxies rejects individual 
packets, even if the packets contain port numbers allowed by a rule set. 

The application gateway analyses the entire message instead of individual packets when sending or 
receiving data. When an inside host initiates a TCP/IP connection, the application gateway receives 
the request and checks it against a set of rules or filters. The application gateway (or proxy server) 
will then initiate a TCP/IP connection with the remote server. The server will generate TCP/IP 
responses based on the request from the proxy server. The responses will be sent to the proxy server 
(application gateway) where the responses are again checked against the proxy server’s filters. If 
the remote server’s response is permitted, the proxy server will then forward the response to the 
inside host. 

Application level gateway technology using proxy services has several advantages. Proxy services 
enforce high-level protocols such as HTTP and FTP. Information about the communications 
passing through the firewall server is maintained by the proxy service. Proxy services can permit 
access to certain network services, while denying access to others. Packet data can be processed and 
manipulated by proxy services. Internal IP addresses are shielded from the external world because 
proxy services do not allow direct communications between external server and internal computers. 
Administrators are able to monitor attempts to violate the firewall’s security policies using the audit 
records that proxy services can generate.   

Although application level gateways provide increased security over a packet filter there are some 
disadvantages to using an application level gateway. Application level gateways are slower since 
inbound data is processed by the application and by its proxy. A new proxy usually must be written 
for each protocol that is to pass through the firewall. This can cause the number of available 
network services and their scalability to be limited. Proxy services are vulnerable to operating 
system and application level bugs. 

 

4.4.2. Intrusion Detection Systems 
An Intrusion Detection System (IDS) is software designed to detect unauthorised access to a 
computer system or network. This may take the form of attacks by adversaries using automated 
tools, the attack tools, which are designed for violating the security policy of a system. An IDS is 
required to detect different types of malicious network traffic and computer utilization. This 
includes network attacks against vulnerable services, data driven attacks on applications, host based 
attacks such as unauthorised logins and access to sensitive files, and malware (viruses, trojan 
horses, and worms). 

The primary goals of IDS are: 

⎯ Intrusion detection for known and unknown attacks. (In the latter case, a learning 
mechanism, for new types of attacks or for changes observed in system user activities, 
should be implemented in an IDS). 
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⎯ Intrusion detection in admissible time limits.  

⎯ Precise results generation. (IDS results must be precise). 

 

Other desirable characteristics of IDS are: 

⎯ To run continually 

⎯ To be fault tolerant 

⎯ To be configurable 

⎯ To be adaptable 

⎯ To be scalable 

⎯ To allow dynamic reconfiguration 

 

A general model for IDS was proposed by Denning [81]. The main assumption of this model is that 
the exploitation of system vulnerabilities requires irregular usage of accepted commands, so that the 
security breaches can be monitored. The proposed model consists of three detection types that can 
lead us to intrusion detection in a system: anomaly detection, misuse detection and specification–
based detection.  

 

4.4.2.1 Anomaly detection models 

According to anomaly detection model, unexpected behaviours illustrate/give indication for 
intrusions. Evidently, there must be a measure that defines the expected user or process behaviour. 
The anomaly detection model, especially, analyses a group of system features and compares the 
behaviour of these features with a set of expected values for these features. 

The concept of anomaly detection pertains directly to the concept of value deviation detection. This 
value deviation can deal with values (for system features) that don’t agree or are out of the limits of 
a predefined set of reasonable values for the system. The value deviations are taken as anomalies. 
Labelling a value as anomaly implies that there is a method for labelling values as normal (accepted 
for the system under examination). This method is based on statistical models.   Denning [81] 
described five different statistical models: Operational Model, Mean and Standard Deviation 
Model, Multivariate Model, Markov Process Model, Time Series Model. 

 

4.4.2.2 Misuse detection models 

In the area of the intrusion detection systems, the concept of the misuse refers to detection based on 
rules. Misuse detection, specifically, determines if a system command sequence violates the system 
security policy. In such case, a possible intrusion is described. 

Misuse detection requires knowledge of all the vulnerabilities that occur in a system. This 
knowledge is concentrated in a rule set that constitutes a core and critical component of a misuse 
detection system. A misuse detection system applies these rules on data that have been provided to 
(or gathered by) the system, in order to decide if these sequences of data agree with rules of the set. 
If there is such an agreement, it is deduced that a possible attack is in progress. This category of 
intrusion detection systems is usually based on expert systems. Such a system can not detect attacks 
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that are not known to rule sets designers. Recent detection systems use adaptative methods, like 
neural networks and Petri nets, to ameliorate the detection capabilities. 

 

4.4.2.3 Specification – based detection 

The specification – based detection method searches the space of a system states. When the system 
enters a state that is known to be unwelcome, a possible intrusion is reported. Specification – based 
detection defines if a command/process sequence violates or not the normal execution of a program 
or of a whole system. 

For security reasons, only the programs that can change, in any way, the protection state of the 
system, should be allocated and checked. Specification-based detection is based on either traces, or 
event sequences [148] and is on its initial steps. Between its positive and innovative features, one 
can stand on the formalization of the events that could happen. By this means, the unknown attacks 
could be detected. However, this method requires great effort for the detection and the analysis of 
the programs that could raise security issues. 

Ko et al. [148], developed a specification – based detection model for UNIX. They identified 
aspects of program behavior that are relevant to security: access of system objects, process 
sequencing, program synchronization and race condition (a special problem in program 
synchronization). Their model is based on traces and a formal notion of monitored subjects. They 
developed a prototype of a specification-based intrusion detection system that detects attacks 
exploiting the vulnerabilities of privileged programs in UNIX. An important aspect of their research 
is that they developed a language framework, parallel environment grammars, for specifying trace 
policies (capture the intended behavior of a program). The systematic methodology for developing 
trace policies for programs may also be useful in future research on developing overall security 
policies for computer systems and networks. 

 

4.4.2.4 Intrusion Response 

Once an intrusion has been detected, the next major research issue was how a system should 
response in this case. The main goal is: the attack to be faced with the minimum possible impact on 
system, as it has predefined by the security policy of the system. IDS generate alerts notifying 
administrators of this fact. The next (response) step is undertaken either by the administrators of the 
system or the IDS itself, by taking advantage of additional countermeasures (specific block 
functions to terminate sessions, backup systems, routing connections to a system trap etc.) – 
following the system security policy.    

Ragsdale et al. [202] have made a research and a list of all existing intrusion detection and response 
systems.  Most of intrusion detection and response systems are notification systems - systems that 
generate reports and alarms only. Some systems provide the additional capability for the system 
administrator to initiate a manual response from a limited pre-programmed set of responses. While 
this capability is more useful than notification only, there is still a time gap between when the 
intrusion is detected and when a response is initiated. Automatic response systems immediately 
respond to an intrusion through pre-programmed responses. With some exceptions, all of these 
automatic response systems use a simple decision table where a particular response is associated 
with a particular attack. If an attack occurs, a pre-programmed response executes. These pre-
programmed responses consist predominantly of the execution of a single command or action 
instead of the invocation of a series of actions in order to limit the effectiveness of the adversary. 
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One of the exceptions of the automatic response systems is Event Monitoring Enabling Responses 
to Anomalous Live Disturbances (EMERALD) [201]. EMERALD resolver – an expert system - is 
the component that has the responsibility to receive reports for resource objects under attack from 
activities analysis EMERALD components and to revoke the various response handlers that have 
been defined for the object that reports refer to. Different responses are associated with different 
suspicion levels and the system adapts its responses based on the degree of suspicion. 

 

4.4.3. Intrusion Prevention Systems 
Firewalls, as mentioned above, can prevent attempts to access the internal network by blocking 
specific addresses while Intrusion Detection Systems can identify and alert the user for a possible 
attack as it occurs. Both technologies are critical for the defence mechanism of a system, but they 
both have limitations. A firewall cannot scan and evaluate the contents of every package in an 
efficient way in order to block suspicious packages. An IDS, in contrast, can scan and evaluate 
traffic that passes through but cannot do anything to stop it. Intrusion Prevention Systems (IPS) 
come in this point as proactive defence mechanisms that are able to detect malicious packages, 
through a comprehensive scan, and stop an intrusion before it harms the system. They basically 
combine the blocking capabilities of a firewall with the traffic inspection of an IDS.  

Some use the IPS term to describe the next-generation of IDS systems that will be able to block 
certain kinds of attacks. Others use the same term more broadly and include firewalls, for instance, 
in the intrusion-prevention category, since firewalls can block certain attacks. IPSs are designed to 
sit in-line on the network and monitor the network traffic, just like IDSs, but when an event occurs 
can take an action and based on predefined rules. 

There are two main categories of Intrusion Prevention Systems: Network-based IPS (NIPS) and 
Host-based IPS (HIPS): 

 

Network-based IPS (NIPS) 
A NIPS is an in-line device, between the Internet and the internal network, that can make decisions 
on whether or not to allow packages from the Internet to pass into the internal network based on 
attack detection. It actually combines features of a standard IDS (attack detection) and a firewall 
(blocking capabilities). 

As an in-line device, a NIPS has at least two network interfaces, one for the internal network and 
one for the Internet. Packets reaching each interface are being examined whether or not they may 
pose a possible threat. The threat detection is based on methods of signature detection and anomaly 
detection. The content of each packet is examined for known signatures of threats or for unusual 
content. If a possible threat is detected, the NIPS in addition to alerting the user for the threat, it will 
automatically block the packet and mark the specific flow of packets as a threat. Thus, all the 
remaining packets from this flow will also be blocked. Packets that don’t pose a threat will be 
passed to the other network interface. 

In order to prevent and stop unknown threats before their deployment an anomaly detection method 
is used. This method is based on the previous knowledge of the specific protocol or the usual 
behaviour of the specific application. Any packet that does not act according to this knowledge is 
treated as a threat. This system has the drawback of only being able to protect certain protocols and 
applications that are in wide use.

SERENITY - 027587 Version 1.0   Page 74 of 126
 



 
A4.D1.1 – Review of the state of the art 

 

 

Host-based IPS (HIPS) 
Host-based IPSs reside on servers and workstations. They are monitoring the hosts’ application 
actions and calls to the system in order to detect a prohibited or unusual action. The methods they 
use are based on the signature detection of known viruses or malicious programs and anomalous or 
irregular behaviour of the system. In order for a HIPS to specify an abnormal behaviour, a policy 
that specifies the normal behaviour of the supporting operating system or application is provided. 
Any behaviour that doesn’t align with this policy is treated as an irregular behaviour.    

The attacks that host-based IPSs protect against include viruses, spam, spyware, worms, Trojan 
horse programs, key loggers, bots, buffer overflows and denial of service attacks.  

Host-based IPS can also provide protection from internal attacks such as the installation or 
execution of a malicious program from a legitimate user. 

 

Desai [82] introduced another classification, distinguishing among five types of IPSs: 

⎯ In-line NIDS: this type of IPS works exactly like the NIPS described above. It’s an in-line 
device that monitors all the traffic between the internal and external network. It uses 
signature or anomaly detection methods in order to pick out possible threats while it works 
in a transparent way for both the legitimate users and intruders.  

⎯ Application-based firewalls/IDS: the combination of application firewalls and IDSs is 
usually marketed as an intrusion prevention solution. Both application firewall and IDS 
must be loaded on each server that is to be protected. This kind of IPS is customizable to 
each server and application that needs to be protected because there must be a 
profiling/training phase before the protection phase. During the profiling phase, the IPS can 
watch the user’s interaction with the application and the application’s interaction with the 
operating system to determine what legitimate interaction looks like. After the IPS has 
created a profile, a policy is constructed and it can be set to enforce it. This type of IPS 
offers one of the greatest amounts of protection for custom written applications because one 
can customize each policy so that it offers the greatest amount of protection since each 
application firewall/IDS is loaded on each physical server you. 

⎯ Layer seven switches: Layer seven switches are devices that work as the usual network 
switches but in their case they work in the application layer. They are usually used to 
balance the load of an application across multiple servers by inspecting the protocol of every 
packet and forwarding the packets to specific servers according to predefined rules. The 
intrusion prevention capabilities they offer are limited in denial of service attacks detection 
and prevention. They work using a signature detection method for stopping these attacks and 
without affecting the network performance, thus guaranteeing speed and uptime.  

⎯ Hybrid Switches: This type of IPS is a combination of the host-based application 
firewall/IDS and the layer seven switches. These systems are implemented in hardware, 
located in front of the servers, like the layer seven switches, but instead of using a set of 
predefined rules, they use a policy similar to the application firewall/IDS. They inspect 
packets for malicious content defined by the policy.  

Deceptive Applications: This type of IPS first observes all the network traffic and figures out what 
legitimate traffic looks like, similar to the profiling phase of the application firewall/IDS. Then, 
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when it sees attempts to connect to services that do not exist, it sends back a marked response to the 
attacker with some bogus data so that when the attacker tries to exploit the server the IPS will see 
the marked data and stop all traffic coming from the attacker. 

 

4.4.4. Access Control Models 
Access control models provide high-level, domain-independent, and implementation independent 
reference models for the architecture and design of access mechanisms. 

Historically, access control models are classified in two broad categories: mandatory [189] and 
discretionary [189, 190]. Later on the need for a more flexible access control model, which it would 
be suitable for big organisations, has lead to the role based access control model and the context 
based access control model. We will describe each model in the next section and highlight their 
characteristics. 

 

4.4.4.1 Mandatory Access Control 

Mandatory access control governs the access of objects by subjects by using a classification 
hierarchy of labels. Every subject and object is assigned a label. All access is based on comparisons 
of these labels and, in general, is statically enforced. We say that access control is mandatory 
because the system centrally enforces all decisions to permit a subject’s activities based on labels 
alone. Entities have no say in the matter. 

Mandatory access control centralizes the knowledge base used to make decisions, although subjects 
and objects can negotiate access based on local information. Entities are allowed to read objects 
with lower classifications and can write to objects only with the same classification level. 

 

4.4.4.2 Discretionary Access Control 

Discretionary access model organizes the security of a system into a two-dimensional matrix of 
authorizations in which each subject-object pair corresponds to a set of allowed access modes. The 
access modes in the matrix can be modified through commands.  

Discretionary access control governs the access of objects by subjects based on ownership or 
delegation credentials provided by the subject. These models are implicitly dynamic in that they 
allow users to grant and revoke privileges to other users or entities. 

Once access is granted, it can be transitively passed onto other entities either with or without the 
knowledge of the owner or originator of the permissions. Discretionary access control models 
enable subjects to transfer access rights for the objects they own or inherit, or for which they have 
received “grantor” privileges. 

Discretionary access control is flexible, but the propagation of rights through the system can be 
complex to track and can create paradoxes.  

 

4.4.4.3 Role Based Access Control 

Role based access control (RBAC) has its roots in historical practices that predate its formal model, 
except that RBAC’s features stem primarily from the commercial world. Also like multilevel 
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security, RBAC is conceptually simple: Access to computer system objects is based on a user’s role 
in an organization. Roles with different privileges and responsibilities have long been recognized in 
business organizations, and commercial computer applications. From the late 1980s until now 
several access control models [43, 86, 188, 235] have been introduced based on the conception of 
the role. The two major proposals from [97, 211] prompted NIST to initiate an effort to establish an 
international consensus standard for RBAC which it was finally published in the ACM RBAC 
workshop in 2000 [212]. 

The proposed standard is divided in two sections: the reference model and the functional 
specifications. The reference model section defines the sets of the basic RBAC elements (i.e., users, 
roles, permissions, operations, and objects), the relations between them and the functions that are 
included in this standard. Additionally it provides a separation between all the available features of 
RBAC defining four packages. The Core RBAC package with the basic RBAC features, the 
Hierarchical RBAC package for supporting role hierarchies, the Static Separation of Duty package 
for avoiding conflict of interests by enforcing constrains on the assignments of the roles and the 
Dynamic Separation of Duty Package which can avoid conflicts of interest by imposing constraints 
on the roles that can be activated within or across a user’s session. The functional specifications 
section defines the functional requirements for every package of the RBAC model (i.e. functional 
requirements for administrative operations and queries for the creation, maintenance, and review of 
RBAC sets and relations)   

The pervasiveness of RBAC’s application within modern day IT infrastructures is significant. 
Today, RBAC features are included at all levels of enterprise computing, including operating 
system, database management system, network, and enterprise management levels. RBAC is being 
incorporated and integrated within infrastructure technologies such as public key infrastructure 
(PKI), directory and Web services. 

 

4.4.4.4 Context Based Access Control 

Context based access control (CBAC) models leverages and extends the power of traditional role 
based access control models by taking access control decisions based on the combination of the 
required credentials of users and the context and state of the system. RBAC systems required only 
user credentials in order to assign a role to the user and then permit or deny the access to an object. 
CBAC requires, additionally to those credentials, dynamic information such as the physical location 
of the user, date and time of the access control request, the state in which the desired object is, etc. 
Those variables consists the context information, which the decision system requires to take in 
account before it delivers a decision.  

Several proposes and implementations have been introduced the last years  based in the conception 
of the context based access control, but none of them have been recognised as a standard yet. 
Covington, Moyer and Ahamad [73] are from the first who tried to expand the RBAC model by 
introducing roles for subjects, objects and the environment of the system. These three types of roles 
consists the context information needed for the access control decisions. Also Kumar, Kamik and 
Chafle [150] later expanded the RBAC model by introducing the notions of role context and context 
filters. Context filters are Boolean expressions based on the context information of the user 
attempting to get authorized, as well as the context information of the object upon which this 
authorization is attempted. 

 Srinivasan et al. [226] proposal was focused on context-aware applications and how they can take 
access control decisions in a ubiquitous computing environment while Corradi, Montanari, Tibaldi 
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[70] presented a context-centric access control middleware, called UbiCOSM, that is suitable for 
implementation of services in such an environment. 

Another approach from [125] presented a way to use context information (location specific) to 
provide anonymous access to services without limiting the ability of the service provider to impose 
various security levels. They provided a list of methods that can verify the user’s claimed 
authenticity in various ways and degrees. 

Other proposals for using CBAC in specific environments delivered by Wilikens et al. [249] who 
described the requirements for authorization and access control within a healthcare environment 
based on an extended model of RBAC which incorporates contextual information and can be 
integrated in a wider trust infrastructure including the use of Smart Cards and Cholewka, Botha and 
Eloff [61] who proposed and implement a context-sensitive access control mechanism within a 
workflow environment. 

 

4.4.5. Conclusions 
We presented the current approaches of security and cryptographic mechanisms used by the 
majority of the information systems. All those mechanisms provide ways to protect and maintain 
the three basic principles of security, confidentiality, integrity and availability. However, in many 
cases these mechanisms are not enough to guarantee those principles.  

Many security protocols, using cryptographic techniques, have been proposed in the literature to 
achieve several goals, e.g., authentication and secrecy. They are supposed to succeed even in the 
presence of malicious entities that can interfere with their correct execution. Unfortunately, many of 
them may fail when an intruder intercepts some messages and exploits the information they contain. 
The failure of such protocols sometimes lies in the implementation environment of the protocol that 
is not verified for full correctness. 

Firewalls have also many weaknesses. Packet filtering firewalls suffer from a number of 
weaknesses, as described by Chapman [58]. Among them is the complexity in the specification and 
verification of the rules; the shortage of the audit capabilities; and the possibility to get around the 
filtering policy (e.g. a site system's telnet server that normally listens at port 23 could be told to 
listen at port 9876 instead; users on the Internet could then telnet to this server even if the packet 
filter blocks destination port 23). 

Weak points can also appear in Application level gateways. The main problem is their slow speed. 
According to their design, every packet has to pass through them and the contents of every 
completed connection are examined in detail. Such process adds, of course, more time to complete. 
Moreover, they cannot protect against internal threats and they are also unable to protect against the 
transfer of unknown malicious programs, which they do not look harmful during their admission 
but they actually contain hostile code within.   

Intrusion detection systems (for example, those surveyed [22, 29, 224] suffer from at least two of 
the following problems: First, the information used by the intrusion detection system is obtained 
from audit trails or from packets on a network. Audit data has to traverse a longer path from its 
origin in order to reach the intrusion detection system and be analysed. During this process, it can 
potentially be destroyed or modified by an attacker. Thus, the intrusion detection system, which has 
to infer of the behaviour of the system from the data collected, can conclude to real time system’s 
behaviour misinterpretations.  
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Second, due to the satisfaction of the desired intrusion detection system property, i.e. to run 
continuously, an IDS has to utilize system resources all the time even when there are no intrusions 
occurring.  

Third, because the components of the intrusion detection system are implemented as separate 
programs, they are susceptible to tampering. An intruder can potentially disable or modify the 
programs running on a system, rendering the intrusion detection system useless or unreliable.  

Finally, although access control mechanisms seems to be useful for checking static information, 
their evolution has shown that more dynamic properties of the entity which requests authentication 
are needed to make sure access control decisions. 

 

4.5. Next Generation Intrusion Detection Systems  

4.5.1. Distributed Intrusion Detection System (DIDS) 
DIDS [222] combines the capabilities of an intrusion detection system designed for a network with 
a monitoring capability for intrusion in distributed systems. A network intrusion system has been 
introduced in [120] under the name of Network Security Monitor (NSM). 

The NSM system has been developed to run in LANs. In the beginning, it creates a profile of the 
network regarding the expected network utilization and then, in the operation, it compares the 
network utilization with the one of the profile. In addition, the NSM allows a set of valid signatures 
to be predefined, in order to detect suspicious network utilization that may lead to attacks. The 
NSM can be configured to monitor a user, a group of users or a service activity and to record 
potential anomaly. 

The NSM monitors the source of network utilization, the destination and the provided service. It 
defines a unique connection ID for every connection. Sources, destinations and provided services 
constitute the base of a three dimensional table. Each element of this table illustrates the number 
and the overall payload of packets that were sent through this connection during a predefined time 
period. In addition, the NSM estimates the expected overall payload of this connection. Table data 
and the NSM estimations are compared and any table element that is out of the estimated value 
range is interpreted as an anomaly. 

NSM developers discovered that a great amount of data was produced during a network analysis. 
For reducing the respective cost, they established a hierarchy for the table data and respectively for 
the estimated expected values. If there is an anomaly in any data set of the hierarchy, the security 
administrator of the system can configure the NSM to analyze the set (in which there is an anomaly) 
in lower levels. A hierarchical data set, for instance, could be constituted by transferred data 
through two systems connection for every service, e.g. {(A, B, SMTP), (A, B, FTP)…} where A, B 
are the connected systems. In the higher level, the NSM would analyze the source data. If an 
anomaly occurred, the NSM could investigate and define in which exact source – destination pair 
the anomaly occurred.   

Based on the NSM data table, a simple signature – based scheme for misuse pattern identification 
was developed. For instance, repeated telnet connections which last as long as the standard access 
time could give an indication for failing login attempts. A definite rule could search for the above 
incident among the table elements. Heberlein et al. [120] developed a number of rules for network 
utilization. Among those were rules for dealing with monitoring for excessive amount of login 
attempts and for the connections of one system with fifteen or more other systems. 
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The NSM is important for two reasons. A lot of posterior IDSs were based on it. In addition, 
network intrusion detection is feasible in a practical level, as it was illustrated the NSM 
implementation. While network traffic is distinguished by encrypted messages exchange/flow to 
such a degree that analysing capability of packet content fades, NSM analyses the traffic itself and 
not the packet content.    

With the evolution of possible attacks on systems, it was concluded that monitoring of network 
utilization alone and, on the other hand, the monitoring of a single host alone were insufficient. An 
intruder who tries to connect to a system through a login account that does not require password, is 
not detected as malicious by an IDS dedicated to network monitoring (e.g. NSM). Once the 
adversary has access to the system, he might exhibit behaviour that would have alerted most of the 
existing single host IDSs (e.g., changing passwords and failed events). Similarly, if an intruder tries 
a few common account and password combinations on each of a number of LAN computers, the 
IDS on each host may not flag the attack. On the other hand, an IDS dedicated to network 
utilization monitoring could detect the repeated failed logins. 

The DIDS architecture, combines distributed monitoring and data reduction with centralized data 
analysis. The DIDS components are the DIDS director, a single host monitor per host and a single 
LAN monitor for each broadcast LAN segment in the monitored network.  

The DIDS director consists of a communication manager (responsible for data transfer between the 
director and the monitors), a rule - based expert system (that evaluates and reports the security state 
of the monitored system by making inferences based on the events that monitors send) and a system 
security officer (that pertains the critical management component). 

The host monitor consists of a host event generator and a host agent. In the DIDS prototype that has 
been implemented on Sun SPARCstations running SunOS 4.0.x, host monitors take advantage of 
the C2 security package functionality (through this package, the OS produces audit records for 
virtually every transaction on the system). Based on these audit records, host event generators create 
events that are sent to the expert system for processing. The format of an event is: significant data 
provided by the audit record, plus action (e.g. session_start or end, read, write, etc.), plus object 
(e.g. authentication, network, sys_info, etc.). 

The LAN monitor’s responsibility is to observe all of the traffic on its segment. In order to monitor 
host-to-host connections, utilised services and volume of traffic can be especially helpful. The LAN 
monitor reports, which are sent to the DIDS director, have to do with network activity (e.g. rlogin 
connections), security-related services utilization and deviation from network traffic patterns. 

Snapp et al. [222], gave a solution to one of the more interesting issues for intrusion detection in a 
networked environment; the tracking of users and objects (e.g. files). They have addressed the 
multiple user identities problem by creating a network-user identification the first time a user enters 
the monitored environment. 

Another point that is of significant importance is the utilization of a rule based expert system with 
learning capability in the DIDS prototype. The expert system applies the rules to the evidence 
provided by monitors. Each rule has a rule value that can be changed after configuration. This value 
illustrates the confidence that the rule is useful in detecting intrusions. If a report for an intrusion 
made by the expert system was faulty, the expert system lowers the rule values of the associated 
rules that were used to draw that conclusion.   
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4.5.2. Autonomous Agents for Intrusion Detection (AAFID) System 
By investigating intrusion detection approaches from fault tolerance perspective, Crosbie and 
Spafford [75] drew the conclusion that the monolithic IDS approach represents a single point of 
failure. By attacking successfully the IDS, protected system security is greatly reduced. Thus, they 
proposed that it would be useful to distribute the IDS functionality across multiple independent (and 
simple) components, autonomous agents, in a networked environment. 

According author’s approach, the internal design of the agents is based on the genetic programming 
paradigm (that is a powerful machine learning paradigm and allows both feedback learning and 
discovery to agents).Each one of the autonomous agents that are used is responsible for monitoring 
one small aspect of overall system. When an agent detects any misuse, anomaly or specification 
deviation, it reports the evidence to the other agents. All of the agents that operate on the system 
and cooperate together, then, can define if the reported evidences were enough to indicate a possible 
intrusion. 

The most important aspect of this architecture is the cooperation of the independent agents. Thus, 
there is not, any longer, a single point of failure. If an agent stops running, the rest of them can carry 
on. Moreover, if an adversary takes an agent under control, no critical information about the other 
agents is revealed to the adversary. 

AAFID system [23] implements the above approach. Each host of a network can contain any 
number of agents that monitor for interesting events occurring in the host. All the agents in a host 
report their findings to a single transceiver. Transceivers are per-host entities that supervise the 
operation of all the agents running in their host. The transceivers report their results to one or more 
monitors. Each monitor oversees the operation of several transceivers. Monitors have access to 
network-wide data, therefore they are able to perform higher-level correlation and detect intrusions 
that involve several hosts. Monitors can be organized in a hierarchical fashion such that a monitor 
may in turn report to a higher-level monitor. Also, a transceiver may report to more than one 
monitor to provide redundancy and resistance to the failure of one of the monitors. Ultimately, a 
monitor is responsible for providing information and getting control commands from a user 
interface. 

The main advantage of AAFID architecture is that can be easily extended configured and modified. 
On the other hand, it faces many problems that always occur in the area of distributed systems, such 
as performance (especially from a host perspective) and security (referring to means for securing 
the communication among the independent components of the distributed IDS). 

 

4.5.3. Immunology-based Security 
The Artificial Immune Systems (AIS) are one of the biologically inspired computing paradigms like 
Neural Networks and Genetic Algorithms. The aim of biologically inspired computing is to design 
systems to solve complex problems taking inspiration from mechanisms (problem solving 
techniques) evolved over thousands of years by biological systems to cope with the complexity of 
natural world. 

An overview of basic theory of Artificial Immune Systems and application based on this paradigm 
can be found in [269]. 
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There are various features that make natural immune system an appealing source of inspiration for 
designing computer security systems [275]: 

⎯ Multilayered protection: a breaches or attack occurring at one level can be detected by the 
next layer; 

⎯ Distributed detection: the detection and memory system is highly distributed and without a 
centralized control; 

⎯ Unique copies of detection systems (diversity): each individual has a unique set of 
characteristic; there is always the chance that some individual in the population is able to 
resist to an attack due its specific characteristic; 

⎯ Detection of previously unseen foreign material: the natural immune system is able to 
recognize new forms of infections; 

⎯ Imperfect detection: the natural immune system is able to detect foreign entity even if it 
doesn’t posses a detector perfectly matching that entity; 

In the context of Computer Security the AIS paradigm has been investigated in three main area of 
application: 

⎯ anomaly detection; 

⎯ virus detection and elimination; 

⎯ network intrusion detection. (Protection from network-based intrusions) 

In the following section we review the most relevant works in each area. 

 

4.5.3.1 Virus detection and elimination 

One of the key design principle adopted in Artificial Immune Systems is the principle of the 
Self/Non-Self discrimination. According to this principle the Immune System is interpreted as a 
system able to distinguish internal components (self) from external entities (non-self) and, therefore, 
the problem of protecting computer systems can be reformulated as the problem of learning to 
distinguish self (legitimate users, authorized actions original source code etc.) from other (intruders, 
computer viruses, Trojan horses, etc.). 

One the first application area of application of the principle of Self/Non-Self discrimination has 
been the computer virus detection and elimination [271, 281]. 

The main goal of the work described in [281] was to create a system able to automatically create 
and promptly distribute anti-virus data to networked hosts. The main motivation was the need to 
contrast the increasing speed of diffusion of computer viruses enabled by open networking 
environments by removing humans from the response loop to computer virus infections. 

The system was designed after the two main components of Biological Immune Systems: 

⎯ Innate immune system: a first line defence having knowledge of both the self and of some 
broad classes of harmful entities. This component provide a generic defence to ongoing 
attacks; 

⎯ Adaptive immune system: a learning system able to produce a strong response very specific 
to the ongoing attack; this component is activate by the activation of the Innate Immune 
System. 
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The proposed approach consists of the following steps: 

4. Discovering of previously unknown virus on a infected hosts; 

5. Capturing a sample of the virus and sending it to a central computer; 

6. Analysing the virus automatically to derive a prescription for detecting and removing it from 
the infected hosts; 

7. Delivering the prescription to the monitored hosts and running the local copy of the anti-
virus to detect and remove all occurrences of the virus; 

8. Disseminating the prescription to all other computer on the network. 

In the above procedure steps 1 and 2 pattern the innate immune system whilst 3,4 and 5 the adaptive 
immune system. 

In step 1 the new unknown viruses are discovered exploiting two alternative approaches: Generic 
Disinfections heuristic and a classification system. 

The Generic Disinfections heuristic is an implementation of Self/Non-Self discrimination principle: 

1. When a new program is installed a fingerprint is computed and stored in a database. This 
fingerprint represent a compact description of the “self”. 

2. During the monitoring the fingerprint of the program is recomputed and compared with the 
one (the “self”) stored in the database. If a mismatch arise a contamination is detected i.e. a 
“non-self” is in the system. 

The Biological Immune System is a source of inspiration also in step 3. The derivation of a 
prescription is done using decoy programs. The virus discovered in step 1 is executed in a 
controlled environment in order to make it infect a diverse suite of “decoy” programs. The infected 
“decoy” programs are the basis to extract the virus signature by means of pattern matching. 
Digestion and exposition of its foreign proteins (antigens) is indeed one of the core strategies of the 
Adaptive Immune System. 

Indeed one of the first relevant works to suggest the use of the Self/Non-Self discrimination 
principle to computer security is [271]. The work introduces a change detection algorithm inspired 
by Immune System and applies it to the problem of detecting computer viruses.  

The proposed algorithm (negative-selection algorithm) runs in the following stages: 

1. define self  S as a collection of binary strings of length l over a finite alphabet representing D 
the data to protect; 

2. generate a set R of detectors each of which fails to match any string in self;  

3. monitor self for changes by continually matching the detectors R against S. If some string in 
R matches S then S has been corrupted. 

The key point in the above algorithm is that in the monitoring step (3) the matching is done against 
a description of the non-self (derived in step 2) hence the name of the algorithm. The step 2 is 
inspired by the censoring activity taking place in the thymus where, to prevent autoimmunity, T 
cells reacting with the normal occurring patterns in the body are destroyed. 

Another key point is that the matching is a partial matching:  

Although counterintuitive the important mathematical result is that even with a small number of 
detectors a random change in S has a very high probability to be detected. Moreover the size of R 
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can remain small as the size of S grows. In recent years a formal framework has been proposed to 
analyse the tradeoffs between positive and negative detection schemes [270]. 

The claimed advantages for the negative-selection algorithm are: 

⎯ The checking activity can be distributed; 

⎯ The quality of checking: the probability of a change detection can be traded off against the 
cost of checking; 

⎯ Protection is symmetric S and R protect each other: S can be used to monitor changes in R; 

⎯ Due to the computational complexity of generating detectors it is hard to alter detectors to 
hide change in S; 

 

4.5.3.2 Anomaly detection 

In a later paper [272] propose to use a similar approach based on positive selection to address the 
problem of anomaly detection in Unix systems. 

In order to apply the immune-system inspired approach the first issue to be addressed is how to 
define a suitable “self” in a computer system. The solution is complex since: 

⎯ System configuration changes; 

⎯ Users change their personal work habits; 

⎯ New users and new machines are added to computer networks. 

The paper adopts the normal behaviour of a Unix process as “self”: short sequences of system calls 
represent a stable signature for normal behaviour. The experiments conducted by the authors show 
that such signatures: 

⎯ Have low variance over a wide range of normal operating conditions; 

⎯ Are specific to each different kind of processes; 

⎯ Have high probability to be perturbed when attack or attacks attempts occur. 

The proposed algorithm runs in to phases: 

1. Training phase: for each process a database of normal patterns are created by scanning traces 
of normal runs; [288] compares alternative schemes for representing normal patterns: stide, 
t-stide, RIPPER, HMM. 

2. Monitoring phase: traces are scanned looking for sequences that are not present in the 
normal database. 

The expected advantage from the approach is that having a simple definition of normal behaviour 
(self) enables on-line monitoring that runs in real-time (the operating system could perform the 
check at each system call without affecting performances). Moreover since the normal behaviour is 
created by tracing normal runs of the program the approach doesn’t require determining a 
behavioural specification from the program code. The preliminary work consider only privileged 
processes (sendmail, lpr) since: 

⎯ they are likely more dangerous than other programs (they can access more parts of the 
computer system); 

⎯ they have a limited range of behaviours; 
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⎯ they behaviour is stable over time. 

The recognized disadvantages of the approach are: 

⎯ It ignores the parameters of system calls; 

⎯ It ignores timing information (unable to detect attacks relying on race conditions); 

⎯ It ignores instruction sequences between system calls. 

 

4.5.3.2.1 Beyond Self/Non-self discrimination 
The work of [277] proposes a real-valued negative selection (RNS) algorithm to overcome some of 
the drawbacks in the original binary version [276]: 

⎯ Scalability: a large number of detectors has to be generated as grows the required detection 
accuracy; 

⎯ It is difficult to map detectors to domain space: hence it is difficult to explain where is the 
problem once it has been detected; 

⎯ There is a sharp distinction between self and non-self; 

⎯ Binary representation of self makes difficult to integrate the negative selection algorithm 
with other algorithms. 

The main distinctive features of the RNS algorithm are: 

⎯ The detectors are a couple defined by a n-dimensional real vector and real value hence 
detectors are hyperspheres in Rn; 

⎯ The matching rule is defined by a fuzzy membership function depending on the Euclidean 
distance from the detector and the radius of the detector. 

The RNS algorithm is used in [277] as basis to define an hybrid approach to immunology-based 
anomaly detection: the RNS algorithm is used to generate abnormal samples from normal samples; 
both normal and abnormal samples are then used to create a classifier by means of a supervised 
algorithm. 

By adopting a fuzzy membership function the RNS algorithm represent one of the first tentative to 
depart form the Self/Non-Self principle in the context of the Artificial Immune System. This 
departure indeed reflects also the evolutions in the Immunology area. These evolutions are 
motivated by the fact that the Self/Non-Self model is not able to explain the observed behaviour of 
the Biological Immune System when the biological “self” changes [323]. 

Indeed it can be said that the RNS algorithm could be seen as the digital counterpart of the 
Infectious-Nonself principle. The Infectious-Nonself principle postulates the existence of different 
classes of Non-Self and that the Immune System activates an immunitary response only against 
some of these classes (Infectious-Nonself). 

One of the most controversial evolutions in the interpretation of the Immune System is the Danger 
Theory. According to this theory an immunitary response only when detection of non-self co-occur 
with the detection of danger signals produced by cells under stress conditions (as an injury). 

In recent years the Danger Theory has been proposed to overcome some of the limitations of the 
Self/Non-Self model widely adopted in the Artificial Immune System [259]. 

SERENITY - 027587 Version 1.0   Page 85 of 126
 



 
A4.D1.1 – Review of the state of the art 

 

The Danger Theory is a source of inspiration in [282] to design a system able to extend a policy for 
the systrace system call policy checker. In the system the danger signals controlling the activation 
of an appropriate response are: 

⎯ Security policy violation; 

⎯ Highly fluctuating process cpu or memory usage; 

⎯ System load average. 

 

4.5.3.3 Network intrusion detection 

The Artificial Immune System paradigm has received attention also for the development of 
Intrusion Detection Systems [259]. 

The LISYS system described in [278] address the problem of detecting anomalous network traffic 
in a broadcast Local Area Network (LAN). LISYS is an implementation of the conceptual 
framework ARTIS inspired by Immune Systems and described in the same paper. The main 
components of the ARTIS framework are: 

⎯ Detectors: to represent a subset of the non-self; 

⎯ Anomaly detection to detect non-self  string that have not been encountered previously; 

⎯ Sensitivity levels to increase the ability to detect divers non-self strings; 

⎯ Memory detectors: to improve detection of previously encountered non-self; 

⎯ Activation thresholds: to reduce false positive; 

⎯ Co stimulation to reduce false positives by eliminating auto-reactive detectors (detectors 
matching elements belonging to self); 

⎯ Tolerization: to reduce false positives; 

⎯ Multiple representation to improve detection rates when the relevant non-self strings are 
similar to self strings; 

⎯ Finite lifetimes: to ensure that gaps in detection coverage are not static and predictable; 

Within LISYS the self of the network is represented by a collection of “normally occurring” 
connection triples (“datapath”) having the form (sender IP address, receiver IP address, receiver 
TCP port) obtained monitoring TCP SYN packets. Normal occurrence of a connection triple is 
defined by observing the network traffic over a certain amount of time. 

The architecture of the system is distributed each node in the network runs a detection node. Since 
the network is a broadcast network each detection node sees every packet. 

Each detection node contains a different set of detectors each consisting of a binary string (binary 
representation of a datapath). Each detector can assume one of three states: immature, naïve or 
memory. 

Detection of anomalous packet is performed trying to match packets against a set of detectors of a 
detection node. Packets are matched against detectors using r-contiguous bits matching rule: a 
detector matches a packet if they have r contiguous bits in common. Each time a packet is matched 
against a detector the state of the detector changes according to the transitions of a Finite State 
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Machine. Matching that move the matched detector to the activated state indicate that the packet 
belong to non-self (negative selection). 

The system runs in two phases: 

1. Training phase: during this phase an initial set of detectors is created at each node by 
exposing the system to events generated by normal traffic (the system is not under attack). 
During this phase all detectors matching any packet are discarded (negative selection) and 
replaced by a new one randomly created. At the end of this phase each detection node 
receives a set of naïve detectors; 

2. Monitoring phase: during this phase each detection node performs the following operations: 

a. Tries to match received packets against its set of detectors. If the packet doesn’t 
match any detector the packet is considered to belong to the self and hence it is 
ignored. If one or more matches occur the state of the matching detectors is 
changed according to the lifecycle defined in ARTIS. If one or more matching 
detectors reach the activated state a human operator is asked to decide if the 
packet belongs to non-self (i.e. if it is an anomaly resulting from an attack) or it 
represent a false positive. Detectors that generated false positive are discarded. 

b. Discards naïve detectors did not exceeded activation threshold during lifetime. 

c. Generates new randomly created detectors and tries to match against the self. 

One of the major criticisms to the negative-selection algorithm is the high computational 
complexity required to generate the set of detectors [322]. Indeed one of the most active research 
areas for the negative-selection algorithm is the quest of scalable algorithms to generate detectors. 
However it is worth noting that the scalability problem reported in [322] strongly depends on the 
choices made for the alphabet (10 letters) and the r parameter of the matching rule [260]. 

The AIS paradigm is used in [283] to detect node misbehaviour in ad-hoc network running the 
Dynamic Source Routing protocol (DSR). The work proposes a mapping between the components 
of AIS and the elements of an ad-hoc network. The proposed system monitors sequences of 
protocol events collected over limited period of time and having a maximum length. In order to 
avoid performance issues the sequences of events are encoded using a scheme counting the 
occurrences of predefined regular patterns within the sequence. 

When a non-self sequence of event is detected the node is classified as “detected”. Eventually a 
node becomes “misbehaving” if in average the number of time the node is classified as “detected” is 
more of a given threshold. 

In the area of Network Intrusion Detection the Danger Theory has been proposed [282] to design a 
system for automated Worm Detection and Responses. The key requirement for the described 
system is to keep low the number of false positive to avoid that unnecessary automated counter 
measures compromise the functioning of the system. More in general the requirement is to keep the 
response adequate to the attack severity and certainty. 

 

4.5.3.4 The Immune System as a Multi-Agent System. 

The natural immune system is also been taken as a model to organize Multi-Agent System for 
intrusion detection and response. The main reason residing on the similarities that can be drawn 
between the two models: 
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⎯ They are distributed systems with decentralized control; 

⎯ Their components are (semi) autonomous entities; 

⎯ They have capabilities to learn from their experience; 

⎯ Their components coordinate and communicate; 

⎯ They are able to adapt to changes in the environment; 

The SANTA system (Security Agents for Networks Traffic Analysis) [267] is a Multi-Agent 
System that organize the society of agents according to concepts burrowed from the Immune 
System: 

⎯ Monitoring agents: these agents monitor computational nodes looking for specific anomalies 
(e.g. unusual user behaviour patterns, unusual usage of computational resources, invalid 
processes and priority violations; 

⎯ Communicator agents: they carry messages to other agents in the system; 

⎯ Decision/Action agents: they take decisions and perform task in order to enforce security 
policy. Tasks may activate one of the following type of response agents: 

• Helper agents: they report the status of the environment to the end user; 

• Killer agents: they are in charge to perform action like node shut down, kill processes, 
discard streams of or disconnect user sessions; 

• Suppressor agents: they role is mainly to suppress the action of other response agents in 
order to prevent actions due to false positive detections. 

The MMDS system (Multi-level Monitoring and Detection System, [268]) follow a similar 
organization targeted for anomaly detection in ad-hoc networks. In MMDS Decision agents take 
their decision using fuzzy rules and the rule are evolved using genetic algorithms. 

The CDIS system [326] is another MAS model of adopting an organization inspired by the Immune 
System. The main distinctive features of CDIS are: 

⎯ The distinctive features that define the self are 28 instead of the 3 of LISYS; 

⎯ All TCP, UDP and ICMP packets are monitored. 

The AISIMAM system [325] uses the Jerne’s model of immune network to organize a society of 
agents. Self-agents and Non-self agents share a common environment where they operate. 

 

4.6. Open research issues for dynamic verification 
Based on our survey, the open research issues related to dynamic verification relate to: 

⎯ The need to provide support for transforming of specifications of security and dependability 
properties that need to be monitored at runtime into the event patterns that should be 
observed to verify them.  

⎯ The need to develop mechanisms that can support the diagnosis of the reasons underpinning 
run-time violations of security and dependability properties requirements that could inform 
system adaptation to ensure that violations will not re-occur.  
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⎯ The ability to support the specification of end-user personal and ephemeral security and 
dependability properties, the automatic assessment of whether or not such properties can be 
monitored at run-time, and the transformation of these properties onto monitorable patterns 
of run-time events. 

⎯ The development of techniques that would allow the identification of scenarios of potential 
security and dependability threats (i.e. potential violations of security and dependability 
properties that have not occurred yet but seem to present a realistic possibility for the 
subsequent operations of a system) and the translation of these scenarios into monitorable 
event patterns that would allow the development of pro-active techniques for protecting 
security. 

⎯ The need to develop mechanisms that can ensure that the events used in dynamic 
verification have not been altered by an attacker in order to affect the results of the 
verification process and consequently the recovery actions that may be taken in response to 
these results. 

 

An additional, but by no means less important, open issue in dynamic verification is the need to 
develop monitors that could detect violations of security and dependability properties efficiently 
and in time that will allow the effective reaction to such violations.  
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5. Recovery 
Research in security and dependability has been primarily concerned with the prevention and 
detection of threats and system faults rather than recovery from them when they occur. The ability, 
however, to recover from security attacks or system faults identified at run-time and possibly adapt 
in order to handle these attacks or faults is also increasingly recognised as an important requirement 
related to the security and dependability of systems. Recovery capabilities are required to ensure 
that the scale of an attack is minimised, the system's critical functionality is preserved and a system 
is guarded from further attacks.  Such capabilities have been studied extensively in the areas of 
safety-critical systems (fault-tolerance) [14] and databases [36]. 

In this section, we provide an overview of recovery approaches and mechanisms that have been 
adopted and developed as part of run-time verification systems, safety-critical systems (concerned 
mainly with preserving dependability properties) and mission-critical distributed systems 
(concerned mainly with preserving survivability properties), and trusted recovery approaches 
developed as part of information warfare defence. 

 

5.1. Recovery for run-time verification systems 
Recovery mechanisms for modern programming languages are almost non-existent [168]. Usually, 
this task is left to the programmer that must implement them manually. Moreover, it is generally 
accepted that programmers are very bad at planning for fault recovery [248].  With this in mind, 
Manson et al. [168] have proposed a new programming language based approach, called RESCUE, 
for determining and recovering from faults, for applications developed using Aspect Oriented 
Programming (AOP). It is an extension of ApectJ [141] and aims to expose underlying features of 
the virtual machine in order to express faults in a variety of run-time constraints. RESCUE provides 
an asynchronous construct (the mutex qualifier) that can be combined with the code at runtime to 
handle exceptional conditions. The mutex qualifier is used on a plan to prevent that plan from 
executing concurrently with its parameter. A plan is a specification of fault conditions as a predicate 
over meters. Meters provide an interface to monitoring events.   

Moreover, Manson et al. [168] present two ways of assisting the programmer with recovery: 

⎯ Checkpointing: This mechanism copies the program state periodically. They show a way of 
checkpointing relevant data selectively with aspects, in the customisable virtual machine. 
However, this approach is not accessible as it requires in depth knowledge of how the virtual 
machine works. 

⎯ Transactions: The aim of RESCUE is to support transactions in the following way. If a write 
transaction occurs, the original value of the heap location is written to a log. Thus, when a 
fault occurs, the original values can be restored from the log. Therefore, program flow is 
resumed from the beginning of the transaction or continued as if the fault never happened. 
RESCUE uses transactions in conjunction with programming language support for plans and 
meters.  

 

d'Amorim and Havelund [78] have suggested that the integration of a system like Eagle and AspectJ 
could support temporal cutpoints where temporal Eagle formulae can function as triggers for 
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actions to be executed. This would then be useful for developing fault tolerant programs that can 
change their behaviour when the temporal properties have been violated. 

Kazman et al. [135] present an architecture model that allows a system to reason about its behaviour 
at runtime, by being self-reflective, and taking action in cases where it is required to change its 
behaviour, accordingly. This architectural model uses both runtime monitoring and abstraction, as 
well as codified knowledge of architectural styles, to develop a dynamic view of its architecture as 
it runs.  DiscoTech is a system that is built to recover the architecture of systems, i.e. interpret the 
run-time behaviour in terms of architecturally meaningful events. Any analysis and repair of the 
run-time system is performed on the architectural model and not directly on the running system. No 
explanation of how this recovery is performed is given.    

Feather et al. [97] present an architecture and a development process for monitoring system 
requirements (expressed as goals in KAOS) at run-time in order to reconcile the requirements with 
the system’s run-time behaviour. The recovery phase is closely related to how requirement 
violations are managed and two such approaches are discussed [238, 240]:  

1. At specification time, the developer anticipates as many obstacles to requirements as 
possible. Once these have been identified, the more robust specifications are defined 
taking into consideration the obstacles. 

2. At run-time, violations of requirements are detected and resolved by making on-the-fly, 
acceptable changes to the requirements. By acceptable, they mean that the changes must 
satisfy the high-level goals underpinning the requirements that were violated. 

Feather et al. [97] focus on the dynamic approach. The recovery step is the last step that happens at 
run-time and consists of analysing the violation file and applying the reconciliation tactic that was 
defined in the development level (statically). The reconciliation tactics are choices that have to be 
made for each breakable assertion between enforcing it and finding an alternative. Assertions may 
be constraints (an implementable goal), or assumptions (a fact taken for granted about agents in the 
environment of the system). 

 

5.2. Recovery in safety-critical systems 
Dependability of a computer system is defined by Avizienis et al. [21] as “the ability to deliver 
service that can justifiably be trusted”. The service that is delivered is the system behaviour as 
viewed by its users. A user is another system or human that interacts with the system via the service 
interface. A correct service is one that implements the system function. A system failure is an event 
that happens once the service deviates from correct service. Hence, a failure causes a transition 
from correct service to incorrect service. An outage is the delivery of an incorrect system. Another 
definition of dependability that they give in terms of failure is: “the ability of a system to avoid 
failures that are more frequent or more severe, and outage durations that are longer, than is 
acceptable to the user(s)”.   

Dependability is achieved by addressing the following concepts: attributes, means and threats [21], 
as given in Table 5.1. 
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Attributes Means Threats

Availability Fault prevention Faults 

Reliability Fault Tolerance Errors 

Safety Fault Removal Failures 

Confidentiality Fault Forecasting  

Integrity   

Maintainability   

Table 5.1 – Dependability concepts [21] 
 

 

Avizienis et al. [21] have also suggested that failures can be characterised further according to their 
domain, perception by system users and consequences on the environment of the system.  These are 
given in Table 5.2. 

 

Domain Perception by two or more users Consequences on environment 

Value failures Consistent failures Minor failures 

Timing failures Inconsistent failures Varying degree of failures … 

  Catastrophic failures 

Table 5.2 – The failure modes [21] 

 

Faults can be classified according to six different criteria as given in Table 5.3. Malicious faults that 
compromise security fall under the intent category. These can be further divided into the following 
classes: malicious logics and intrusions. Malicious logics [312] include the developmental faults 
such as Trojan horse, timing bombs and trapdoors, as well as operational faults such as viruses or 
worms.   
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Phase of 
creation or 
occurrence  

System 
boundaries 

Domain Phenomenological 
cause 

Intent Persistence 

Development 
faults 

Internal faults Hardware 
faults 

Natural faults Non-
malicious 
(accidental) 
deliberate 
faults 

Permanent 
faults 

Operational 
faults 

External 
faults 

Software 
faults 

Human-made faults Deliberate 
malicious 
faults 

Transient 
faults 

Table 5.3 – Categories of faults [21] 
 

Techniques that have been used to combat faults and achieve dependability of a system under 
construction can be grouped as follows [128]: 

⎯ Fault avoidance: During requirements analysis, specification and design and later during 
maintenance (such as bug fixing, performance improvement), the methodologies used for 
system development should aim to produce a system that works as expected without the 
inclusion of errors (only a minimum of errors exist) [313]. Examples of such techniques 
include structured programming, information hiding, modularisation, etc. Also, firewalls and 
similar defences can be used for preventing malicious faults. 

⎯ Fault elimination (detection and removal): During requirements analysis, specification 
and design, and also during maintenance, faults in the system must be detected and removed 
by using techniques extensively, such as verification and validation techniques. 

⎯ Fault tolerance: Fault tolerance may be used during system execution in order to cope with 
run-time failures. In order for fault tolerance to be used, it has to be build into the system in 
the proceeding phases. A system is called fault tolerant with respect to a set of faults if it is 
able to deliver the expected service when the faults of that set occur. Fault tolerance is 
implemented mainly by error detection and system recovery.  

⎯ Fault evasion: During system execution, it is sometimes possible to monitor the system 
behaviour and detect some abnormal behaviour that suggests that some component is likely 
to fail or is under some strain. Fault evasion is the use of some compensating action is used 
to avoid some fault or its consequences.  

Avizienis et al. [21] present similar techniques for achieving dependability: fault prevention that can 
be compared to fault avoidance; fault tolerance; fault elimination that can be compared to fault 
removal; and fault forecasting that is similar to fault evasion but refers to the way to estimate the 
current number of faults, any future incidence and the likely consequences of faults.  Fault 
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forecasting is conducted by performing an evaluation of the system’s behaviour with respect to fault 
occurrence or activation.   

Safety analysis is only concerned with faults that compromise safety and also it considers what 
happens if the system environment changes somehow in an extreme way and some parts of the 
system do not behave as planned. Security analysis is similar to safety analysis but focuses on 
malicious attacks or faults that compromise security.  The traditional definition of security is given 
as a composite notion, namely the combination of confidentiality, integrity and availability, where 
all these three concepts are attributes of dependability. Safety is also an attribute of dependability 
and denotes the absence of catastrophic consequences on the user or environment. 

It should also be appreciated that the desired system reaction to a fault may be different depending 
on whether the system is safety-critical. While normally in safety-critical systems reactions to 
detected faults tend to bring the system to a halt (if a fault occurs in a nuclear plant, for example, the 
shutdown of the system is normally recommended), in non safety-critical systems it is not always 
desirable to halt the system, as this could be the intent of a malicious attacker (e.g., an attack that is 
aimed at causing denial of service).    

Fault tolerance and evasion are the dependability and security addressing techniques which relate to 
the deployment and operational life of a system and hence relevant to our survey. In Section 6, we 
have discussed techniques for monitoring the operation of a system that can broadly address fault 
evasion. Thus, in the rest of this section we focus on fault tolerance and discuss it further. 

 

5.2.1. Fault-tolerance 
Fault tolerance aims to ensure that a correct system service is delivered, even when active faults 
exist. Fault tolerance is implemented by error detection and recovery [21]. 

Error detection identifies error signals or messages in the system. A latent error is an error that is 
present but not detected. Two classes of error detection techniques exist [21]:  

⎯ Concurrent error detection, which happens during service delivery, 

⎯ Pre-emptive error detection that occurs which the service is suspended. It checks for latent 
errors and dormant faults. 

Error recovery aims to convert a system state that contains one or more errors or faults, into a state 
that does not contain any detected errors or faults that can be re-activated. The main activities of 
recovery are error and fault handling.  

Error handling removes errors from the system state and can be realised by the following means 
[21]: 

⎯ Rollback − Rollback is an error handling approach which returns a system back to a state 
saved before an error was detected. This state is referred to as a checkpoint. This approach is 
also known as backward recovery (see section  5.5).  Checkpointing is a popular technique 
for reducing the recovery time from a fault and much research has been devoted to analysing 
checkpoint schemes and determining optimal checkpoint placement strategies [314]. The 
existence of optimal checkpoint placement strategies is significant as the frequency of and 
the intervals between checkpoints affect the system's execution time. Also, there is a trade-
off between the re-processing time (i.e, the time taken for processing after a fault has 
occurred) and the overhead of checkpointing that must be considered [315].  
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⎯ Rollforward − Rollforward is an error handling approach which attempts to construct a new 
system state without the detected errors. This approach is known as "forward recovery" (see 
section  5.5). Fail-safe behaviour may be seen as a rollforward technique. A fail-safe system 
is "a system whose failures are, to an acceptable extent, all minor ones" [128].  

⎯ Fault masking − This is a form of recovery that uses sufficient redundancy to allow for 
recovery without explicit error detection [21]. Fault masking techniques hide the effects of 
failures through the means that redundant information outweighs the incorrect information. 
An example of fault masking is majority voting, where the idea is to take a majority vote on 
a calculation replicated N times.  

Fault handling prevents detected faults from being re-activated and, according to [21], consists of: 

⎯ fault diagnosis which identifies and records the causes of errors in terms of both location 
and type; 

⎯ fault isolation which excludes, physically or logically, the faulty component of a system 
from further involvement in service delivery and thus makes the fault dormant (a fault is 
dormant when it cannot produce an error) [21];  

⎯ system reconfiguration which switches the responsibility for system functions from faulty 
components to spare components or reassigns functions between non-failed components; 
and 

⎯ system reinitialisation which checks, updates and records the new configuration of a 
system and updates its tables and records.  

Fault handling is usually followed by corrective maintenance in which faults that have been 
identified and isolated by fault handling are removed. The main difference between maintenance 
and fault tolerance is that the former requires an external agent to be involved in the process.   
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Figure 5.1 – Some strategies for implementing fault tolerance  [316] 

 

Figure 5.1 illustrates four typical schematic examples of strategies for implementing fault tolerance 
which have been suggested by Avizienis et al. [316].  Some points that Avizienis et al. [316] 
suggest are noteworthy: 

⎯ Rollback and rollforward are not mutually exclusive. Rollback can be undertaken first and 
subsequently, if the error still persists, rollforward can also be performed. 

⎯ Intermittent faults are faults that occur periodically. They can be identified by error handling 
(if an error re-occurs then it is not intermittent) or via fault diagnosis when rollforward is 
used. Isolation and reconfiguration are not required. 

⎯ After error detection error handling can be skipped and fault handling may directly follow. 

The choice of error detection, fault handling and error handling techniques depends on the 
underlying assumptions about faults. The types of faults that can actually be tolerated depend on the 
fault assumptions made. For example, a system might choose different fault-tolerance mechanisms 
for dealing with deliberate malicious faults than the mechanisms used for dealing with natural 
faults.   

Fault tolerance techniques have also been distinguished depending on whether they apply to single 
or multiple versions of software systems. More specifically, Torres-Pomales [317] distinguishes 
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between single version and multi-version fault tolerance techniques. In the former of these types 
redundancy is introduced to a single version of a piece of software in order to detect and recover 
from faults. In the latter type, more than one version of a piece of software are executed in parallel 
or in sequence to avoid and recover from faults. 

According to Torres-Pomales [317] single version fault tolerance techniques include:  

⎯ Software structure and actions: These techniques are concerned with the software 
architecture. For example, decomposition techniques can be used to break up a system into 
components which are used to achieve fault tolerance. Partitioning techniques aimed at 
providing isolation between functionally independent modules which may also be applied to 
achieve fault tolerance are classified into this category.   

⎯ Error detection: Error detection techniques are concerned with the introduction of 
capabilities for detecting external errors (from information passed to it from other system 
components) and internal errors into a system.  

⎯ Exception handling: These techniques support the interruption of normal system operation 
to deal with abnormal responses.  

⎯ Checkpointing and restart: This is a recovery mechanism (there are only a few in single 
version software). A restart can be of two types: static and dynamic. Static corresponds to 
forward recovery and dynamic corresponds to backward recovery. Checkpoints can be 
created at fixed intervals or at particular points during execution determined by some 
optimising rule. The advantage of these checkpoints is that they are based on states that are 
created during execution, and thus can be used to allow forward progress of execution 
without having to lose all the work produced up to the when the error was detected.   

⎯ Process pairs: The recovery mechanism used here is checkpoint and restart. A process pair 
uses two identical versions of the software that run on separate processors, which are 
labelled primary and secondary. Firstly, the primary processor actively processes the input 
and creates the output while generating checkpoint information that is sent to the secondary 
process (backup). When an error is detected, the secondary processor loads the last 
checkpoint as its initial state and takes over the role of the primary processor. The faulty 
processor goes offline and performs some diagnostic checks. After the primary processor is 
repaired, it takes on the role of the secondary processor and receives checkpoints from the 
primary. The advantage of this technique is that the service is delivered continuously even 
with the detection of a failure in the system.   

⎯ Data diversity: This technique aims to increase the effectiveness of checkpoint and restart 
by using different input re-expressions (input is changed) on each entry. The objective of 
each entry is to generate output results that are either exactly the same or semantically 
equivalent. Three data diversity models are presented: input data re-expression, input re-
expression with post-execution adjustment, re-expression via decomposition and 
recombination. Data diversity can be used together with Process Pairs and also with the 
multi version fault tolerance techniques. 

 

According to Torres-Pomales [317], multi version fault tolerance techniques include: 

⎯ Recovery blocks: This technique combines the checkpoint and restart approach and applies 
them to multiple versions of a software component. Checkpoints are created before a version 
of a component is executed and are used to recover from an error when this version of the 
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component fails. The essence of the technique is that a different version of the component 
will be tried when an error is detected.  

⎯ N-version programming: In this technique, multiple versions of a component are designed 
to satisfy the same basic requirements and the decision of output correctness is based on the 
comparison of all the outputs of these components. The difference between this and the 
recovery blocks approach is that the former uses a generic decision algorithm (usually a 
voter) to select the correct outputs.  N-version programming requires more effort for 
developing the system but it is not more complex than building a single version.  

⎯ N self-checking programming: This technique combines multiple software versions with 
structural variations of Recovery Blocks and N-Version Programming. In this case, the 
versions and the acceptance tests are developed independently from common requirements. 
Also, separate acceptance tests are used for each version.   

⎯ Consensus recovery blocks: This technique combines N-Version Programming and 
Recovery Blocks to enhance reliability. It uses a decision algorithm similar to N-version 
programming as a first layer of decision. If a failure is detected in this layer, then a second 
layer using acceptance tests is invoked. This is a more complex model and because of its 
complexity it could result in a less reliable system due to the introduction of errors.   

⎯ t/(n-1) – variant programming: This technique uses an architecture that consists of n 
variants and uses the t/(n-1) diagnosibility measures to isolate faulty units to a subset of size 
at most (n-1) assuming there are at most t faulty units. Therefore, at least one non-faulty unit 
exists such that its output is correct and can be used as the result of the computation module.  
It can potentially tolerate multiple dependent faults among the versions.  

 

5.3. Recovery for intrusion-tolerant systems 
Intrusion tolerance has emerged in the past decade and gained momentum recently [152]. It is the 
notion of dealing with a wide set of faults, including intended and malicious faults, which may lead 
to system failure if nothing is done to counteract their effect on the system [244]. In other words, 
it’s a tolerance paradigm in security that: 

⎯ Assumes that attacks on the system can happen, and hence malicious or other faults occur; 

⎯ Faults generate errors which compromise component-level security; 

⎯ Error processing mechanisms are used to prevent security failure. 

A complete approach combines tolerance with prevention, removal, forecasting and all the typical 
dependability actions. Some researchers present intrusion-tolerant systems as being the "new era of 
survivability" [152, 197]. They are considered as being the third generation of security systems that 
shift the security paradigm from simply warding off intruders at all costs, to a more cost-effective 
and affordable approach of combining prevention, detection and tolerance.  

Verissimo et al. [244] discuss two error processing mechanisms in order to recover from intrusions: 

⎯ Processing the errors deriving from intrusions. The typical error processing mechanisms 
used in fault tolerance for the IT view are: error detection, error recovery and error masking. 
We have already described these briefly in Section5.2.1. 
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⎯ Intrusion detection mechanism. Classic intrusion detection systems can be divided into 
two types: (a) behaviour based (or anomaly) detection systems, and (b) knowledge based (or 
misuse) detection system. Behaviour based detection systems are characterised by the fact 
that they need no knowledge about specific tasks. Systems of this type are only provided 
with knowledge of the normal behaviour of the monitored system and do not require any 
additional knowledge of attack signatures to guide monitoring. Knowledge based detection 
systems, on the other hand, rely on such knowledge. In such systems, when an activity 
matches an attack signature in the knowledge base, an alarm containing diagnostic 
information about the cause is generated.  The main drawbacks of behaviour based intrusion 
detection systems are that they may generate false alarms if the usage of the system is not 
predictable with time and they cannot provide diagnostic information is with the alarm. 
Their main disadvantage of knowledge based intrusion detection systems is that they cannot 
detect attacks which are not store in their  knowledge base, i.e. unknown or new attacks.  

Combinations of intrusion detection and automated recovery mechanisms have recently been under 
investigation in the context of specific architectures, such as in the Willow architecture [145], the 
MAFTIA project [6]. Cukier et al. [76] and Connelly and Chien [67]. 

 

5.4. Recovery in survivable distributed systems  
Survivability is a new property of dependability and since it is also a new research area, a precise 
definition of it is still under debate. According to the most popular definition in the literature, 
survivability is defined as "the ability of a system to fulfil its mission, in a timely manner, in the 
presence of attacks, failures and accident" [91, 92, 93, 121, 51, 146]. In this definition, the term 
"system" is used in a broad sense, including networks as well as large scale systems and the term 
"mission" signifies a set of abstract requirements or goals. Survivability is a property implying that 
a system can deliver essential services and maintain essential properties such as performance, 
security, reliability, availability and modifiability despite the presence of intrusions and − compared 
to traditional security measures that require central control or administration − survivability aims to 
address unbounded network environments. 

In his survey of IT systems survivability, Tarvainen [233], has summarised the different definitions 
of survivability that have been given in the literature and points out that the definition of 
survivability depends on the domain. Despite some similarities between them, survivability is 
different from fault tolerance [233]: fault tolerance is a mechanism for achieving certain 
dependability properties while survivability is a dependability property. Moreover, describing a 
system as fault tolerant is a comment about how the system was designed.  

 

 Definition Domain Reference 

1 “Survivability is the degree to which essential 
functions are still available even though some 
part of the system is down.” 

IT systems in 
general 

[83] 
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2 “Survivability is a property of a system, 
subsystem, equipment, process or procedure that 
provides a defined degree of assurance that the 
names entity will continue to function during and 
after a natural or man-made disturbance. Note: 
Survivability must be qualified by specifying the 
range of conditions over which the entity will 
survive the minimal acceptable level or post-
disturbance functionality and the maximum 
acceptable outage duration.”  

Telecommunication 
Systems 

[237] 

3 “Survivability is the ability of a network 
computing system to provide essential services in 
the presence of attacks and failures and recover 
full services in a timely manner.” 

Network 
Computing Systems

[91] 

4 “Survivability is the capability of a system to 
fulfil its mission, in a timely manner, in the 
presence of attacks, failures or accidents.” 

Critical and defence 
systems 

[92, 50, 93, 121, 51, 
146, 143]  

 

5 “Survivability is the ability [of a system] to 
continue to provide service, possibly degraded or 
different, in a given operating environment when 
various events cause major damage to the system 
or its operating environment.” 

Critical and defence 
systems 

[144, 147]  

Table 5.4 – Definitions of Survivability [233] 
 

Survivability is also sometimes viewed as being the same as security. A survivable system must be 
able to survive from a malicious attack, hence survivability involves security. For example, a 
system that consists of some security mechanisms, such as passwords and encryptions, may still be 
vulnerable as it might fail if the server or network link dies. Two aspects of survivability are 
identified by Tarvainen [233]: survival by protection and survival by adaptation. Survival by 
protection involves the use of security mechanisms, such as access control and encryption, for 
protecting applications from harmful, accidental and malicious changes in the environment. 
Survival by adaptation consists of monitoring and changing the Quality of Service available to 
applications. 

A number of survivability architectures, such as ITDOS [210] and SABER [138], have been defined 
for designing systems specifically to deal with certain faults. However, these architectures are not 
mature enough for practical use. Moreover, in this section we are primarily interested in recovery 
models for survivable distributed systems.  Park and Chandramohan [198] present three Recovery 
Models: Static, Dynamic and Hybrid Recovery Models. Detailed schemas for the static and the 
dynamic models are also described [198]. 

⎯ Static Recovery Model: This recovery model is based on redundant servers that are 
prepared before execution, to provide critical services continuously in a distributed client-
server environment. The dynamic reconfiguration approach is associated with this model 
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even though it uses the term “dynamic” because the components are generated before 
execution.  Redundancy in different machines or domains enhances survivability because 
the replaced server can be running in an unaffected area. For example, if the redundant 
servers are distributed in different network places, then in the event of network failures, the 
servers can be recovered in different environments. In the case where a failure occurs within 
a server, it is not effective to replace the server with an identical copy because identical 
components in the same environment will still be vulnerable.    

⎯ Dynamic Recovery Model: This recovery model replaces components, which cause 
failures, contained failures, or are under attack, dynamically by generating components on 
the fly. These components are deployed at runtime as and when they are required. Moreover, 
this model can replace infected components by immunised components, thus providing more 
robust services than that of the static model. Immunised components are components that 
are not vulnerable to the same type of failure or attack as the infected component.  

⎯ Hybrid Model: This recovery model combines features of both the static and the dynamic 
models in order to improve on the disadvantages of both. As shown in Table 5.5, the 
disadvantage of the dynamic model is with regards to service downtime. This could range 
from seconds to a few minutes, which suggests that there will be no service available for 
clients during the recovery period. Alternatively, the disadvantage of the static model 
concerns resource efficiency, adaptation and robustness.  The main weakness of the hybrid 
model is its more complex to implement than the other two models. 

Park and Chandramohan’s [198] have compared the above survivability models. A summary of this 
comparison is shown in Table 5.5. 

 

 Static Recovery 
Model 

Dynamic Recovery 
Model 

Hybrid Model 

Simplicity Higher Medium Lower 

Resource 
Efficiency 

Lower Higher Medium 

Adaptation Pre-fixed Dynamic Pre-fixed & 
Dynamic 

Service 
Downtime 

Shorter Longer Shorter 

Immunization Environments Environments & 
Components 

Environments & 
Components 

Robustness Lower Medium Higher 

Table 5.5 – Comparison of the three survivability models [198] 
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5.5. Information warfare defence 
Certain organisations, such as defence and civil, depend heavily on their information systems and 
networks, to the extent that a malicious attack could have devastating effects. Much attention has 
been given to the prevention and detection of attacks. However, hacker attacks have proved that 
protective mechanisms are not infallible. If a successful attack is made on a system, the system must 
be able to identify the attack and respond in a way that maintains system availability of critical 
functions and allows recovery of capabilities to proceed. Also, any damage that is incurred must be 
contained. For example, if a cryptographic key for one file is recovered, an attacker should not be 
allowed to read all of the files on hard disc [318]. Another example given by Schneier [318] 
concerns smart cards. If an attacker performs reverse-engineering on a smart card to obtain its 
secrets, s/he should not be able to obtain information that would allow him/her to break other smart 
cards in a system.  

The defender aims to anticipate and block possible attacks, to detect and respond in a way that 
limits the damage and ensure that critical activities are functioning, while simultaneously the system 
is in the process of recovery. Jajodia et al. [130] identify the defender’s cycle of activities:  

⎯ Prevention: Protective measures are put into place by the defender.  

⎯ Attack detection: The defender observes symptoms of a problem that determines that an 
attack is going to happen or has happened. The defender collects information in order to 
diagnose whether symptoms are due to a legitimate activity or not.  

⎯ Damage assessment and containment: The defender determines the extent of damage to 
the system by examining it. Also, it takes immediate action to ensure the attacker is 
excluded from the system and to contain the problem.  

⎯ Recovery: The defender may reconfigure the system to allow it to operate in a degraded 
mode while recovery proceeds. For example, it might need to cut back on some non-critical 
functions in order to deal with the critical functions. The defender then recovers any 
corrupted or lost data, and reinstalls any missing functions in order to restore normal 
operation.  

⎯ Fault treatment: Weaknesses in the systems that the attacks uncovered are examined and 
steps are taken to ensure this attack is not repeated. This phase in the cycle relates to both 
prevention and reaction.   

In the field of fault-tolerance, two types of errors are identified: anticipated errors and those that are 
unanticipated [14].  For anticipated errors, the prediction or assessment of damage can be made. 
This is not true of unanticipated errors. To recover from these errors the following two methods 
have been defined and discussed by Jajodia et al. [130]. These are the same as rollforward and 
rollback, but we describe them again in the context of information defence. 

⎯ Forward Recovery: These methods are usually used to recover from anticipated errors. 
Since these errors can be predicted, contingency update instructions can be defined or a 
means of deriving a correct value. If the recovery method is supported by the semantics, 
compensating transitions can anticipate error scenarios [319]. For some items that are 
replaced regularly through normal processing, the errors can be corrected simply by waiting 
for the replacement transactions to occur. There are two limitations with regards to forward 
recovery methods. Firstly, these methods are system specific. Secondly, the success of these 
methods depends on how accurate the capability of predicting or assessing the damage from 
faults is.  

SERENITY - 027587 Version 1.0   Page 102 of 126
 



 
A4.D1.1 – Review of the state of the art 

 

⎯ Backward Recovery: These methods are used to recover from unanticipated errors. They 
require that the entire state be replaced by a consistent prior state. This method is not 
optimal as it requires that the system be halted temporarily. For denial of service attacks, it 
may be the attacker’s intention to halt the system and this could be harmful if the system is 
halted at a critical moment. Database management systems (DBMS) provide a rich set of 
recovery methods that mainly depend on backward recovery methods for restoring the 
database to a consistent state.  There are some limitations with backward recovery methods 
used in DBMS and specification with regards to security attacks. Firstly, suppose that a 
transaction is aborted, the transaction isolation property supports recovery in the sense that 
the transaction can be withdrawn without completion, without affecting other transactions. 
In the case of a malicious attack, the isolation property does not help because the transaction 
placed by the attacker seems normal to the DBMS and is completed (but creates bad data). 
Undo/redo logs assist in recovery when the system fails with a number of uncompleted 
transactions, however not in this case. In the meantime, other transactions might use the bad 
data created to perform some computations, and store the results in other items (hence 
creating further bad data). The only general mechanism that is available is backward 
recovery that will roll the database back to an approved checkpoint. However, the problem 
with this mechanism is that all other computations undertaken after this checkpoint are also 
lost.     

 

Three recovery models are presented by Jajodia et al. [130] that can be used to formalise recovery 
methods: 

⎯ HotStart: This can be seen as being a mostly forward recovery method. It is appropriate for 
attacks in which the system must respond transparently to the user. Let’s assume that an 
attacker introduces a corrupted executable at a particular site and use it to initiate an 
availability, integrity or trust attack. This attack can be dealt by a HotStart model if it 
satisfies the following two conditions. Firstly, the attack must have been detected early 
enough so that the damage is limited to the executable. Secondly, an uncorrupted standby 
(known as hot standby) must be available to take over. Also, the path by which the attacker 
introduced the corrupt binary must be disabled and the proper binary from the backup store 
must be restored.   

⎯ WarmStart: This model should be used when it is difficult to hide all aspects of response to 
the user. The users are aware of the attack as the system operation is degraded. However, 
damage must be contained and the main system services must be available, trustworthy and 
reliable. The level of service depends on the extent of the attack. Some of the functionality 
might be missing, could be untrustworthy or the information held could be incorrect. 
Usually, checkpoints are used for quick recovery and audit trails for intercepting the 
attacker. If an availability attack occurs, a WarmStart would respond in a nontransparent but 
automatic way to recover the system from confined damage. If a trust attack occurs, a 
WarmStart response would mean that only certain operations could be trusted while the 
response to the attack occurs. If an integrity attacks occurs, a WarmStart response means 
that only certain system functionality is enabled.     

⎯ ColdStart: This can be seen as being mostly a backward recovery method and is appropriate 
for most serious attacks. For example, when the attacker manages to halt the delivery of 
system services. The aim of the ColdStart is to get the system running as soon as possible in 
a usable, trustworthy and consistent state. Effective CodStarts must be supported by policies 
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and algorithms. Also, compensation for unrecoverable components, such as leaked 
information that the intruder now knows , is vital.    

Jajodia et al. [130] present several additional methods (i.e. not only forward and backward 
recovery) that could be used to deal with recovery and these are discussed in relation to the 
recovery models.  

⎯ Redundancy: This is a key technique for recovery and it means that either a data item is 
stored redundantly somewhere in the system and retrieved when lost or damaged, or it can 
be derived from some other elements in the system.  Such redundancy take the form of 
alternative algorithms, backups at geographically distant locations, compensation methods 
for unrecoverable components, and audit trails for tracking the system usage and access. 
Redundancy is useful in all three recovery models. For example in the HotStart model, if an 
attack that has damaged an executable, then a hot standby executable at a different 
geographic location can take over. For WarmStart recovery, derived data could be of use as 
these could be labelled with attribute evaluation rules explain how to derive them from other 
attributes that could be found outside the system. Coldstart models make use of recovery 
logs. 

⎯ Static partitioning of information elements: This method pertains to the design of the 
database and its applications in such a way that transactions only affect data in a single 
region. Hence, damage caused by an attack can be contained and applications that use other 
partitions of the database can proceed normally. This design could be impractical for many 
databases. An alternative solution could be to define borders of regions, identify triggers or 
generate updates that cross the borders, and limit the conditions under which the data may 
flow across [130].  

⎯ Versioning: This concept is borrowed from concurrent engineering. Trees consisting of 
versions, where each version is a checkpoint between transactions, are maintained to enable 
a more elegant restoration of a consistent state. If the current database state was found to be 
corrupted, then a different branch could be adopted. Therefore, this type of versioning is 
closely linked to states of the database applications. 

⎯ Dynamic partitioning of information elements: The objective of this method is to use 
recovery methods to identify data items that can be removed from use, repaired and added 
back for use dynamically. This is a crucial technique for the HotStart recovery model.  

⎯ Countermeasure transactions:  These are special type of transactions that are designed to 
repair or detect damage. An attack can be detected by a variety of means. These can be 
grouped into two categories. Those that are internal to the database, for example, an integrity 
constraint violation detection via the firing of an action rule in an active database. Those that 
are external to the database, for example, an alert officer that notices a abnormally high 
number of aircrafts are scheduled for refuelling at a specific tanker. Also, damage can be 
repaired using drastic measure such as resetting the database to a prior consistent state or by 
defining transaction that will eventually overwrite the bad data with good data. The 
advantage of using countermeasure transactions for recovery is that the power of the 
transaction model can be used to implement fault tolerance across the entire system. 
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6. Conclusion 
In this deliverable we provided a review of the state of the art in the dynamic verification (aka 
monitoring) of security and dependability properties, and methods developed to support recovery 
from violations of such properties when they occur. Our review has also covered static verification 
techniques and discussed limitations of these techniques that demonstrate the reasons that make 
dynamic verification a necessary verification instrument for complex and highly interoperable and 
dynamic systems2. We have also provided an overview of different languages and notations that 
have been used to specify the behaviour of systems and the dependability and security properties 
that need to be verified against this behaviour statically or dynamically. 

 

As part of our survey, we have also identified a number of open research issues related to dynamic 
system verification that will inform further research in Activity 4 of the project. 

 

                                                 
2 Our survey has covered static verification techniques to a lesser extent than dynamic verification as the former techniques are 

outside the scope of A4 and are covered by the state of the art reviews that have been conducted by other problem activities in 
SERENITY  
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