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Executive Summary 

This document specifies the basic set of information collection mechanisms that we have developed 

in the SERENITY project in order to support run-time security and dependability monitoring. The 

developed mechanisms include: 

 Operating System event collection mechanisms, i.e. mechanisms that support the 

collection of events which relate to system calls to the operating platform on which an 

application runs, for example calls of operations for creating, reading and accessing files.  

 Middleware layer event collection mechanisms, i.e. these mechanisms that support 

the collection of events which relate to any middleware on which an application may run 

including mechanisms for tuple space event collection, workflow engine event collection 

and communication Protocol event collection. 

The development of the above mechanisms has been based on the definition of an XML event 

representation schema that we have specified in order to provide a uniform way of reporting the 

events captured by the above mechanisms to the monitoring components of the SERENITY 

framework. This schema is also defined in this deliverable. 

Furthermore, the implementations of the above event collection mechanisms are provided as a 

source code archive that accompanies this deliverable. This archive includes also simple 

applications that can be used to deploy the developed mechanisms in order to demonstrate their use. 

The basic instructions for the installation and use of these applications have been given in this 

deliverable. 

Additional mechanisms to support the collection of events directly from applications will be 

specified and implemented in the next deliverable on event collection mechanisms (A4.D2.4) that is 

due in month 15. As part of the investigation of possible mechanisms for event collection at the 

application layer we will experiment with: 

 Aspect-based event collection 

 Java bytecode instrumentation 

 Source code instrumentation 
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1. Introduction 

This document presents the basic set of event collection mechanisms which we have developed in 

the SERENITY project in order to support run-time security and dependability monitoring. 

In order to help the reader we will first give a short description of the S&D patterns in SERENITY 

so that it is easier to understand how the event collection mechanisms will be used in SERENITY. 

Then, we will briefly cover some general aspects of event collection and follow with the 

presentation of the architecture we consider, the structure of the information we collect and a 

description of the initial set of mechanisms we have developed for information collection. 

1.1. S&D Patterns in SERENITY 

In SERENITY, S&D requirements are described using what we call "S&D patterns". These patterns 

describe S&D requirements and generic solutions to them, i.e., a particular security protocol which 

can meet the specified requirement. Along with the solution, an S&D pattern contains a description 

of the context of the solution, i.e., the specific conditions under which this solution is applicable, as 

well as, a set of monitoring rules which must be monitored at run-time to ensure that the solution 

and therefore the system that incorporates it correctly meets its S&D requirements. The monitoring 

rules can be used either for asserting certain requirements which cannot be proven statically or for 

asserting the context conditions of each solution in each possible state of the running system which 

must be satisfied for the solution to work properly. 

An S&D pattern may be implemented in different ways and for different systems by what has been 

termed in the project as "S&D pattern implementations". In general, an S&D pattern contains a 

single S&D requirement, a solution for this requirement, a set of conditions which must be satisfied 

for the solution to work, and a set of monitoring rules. It can also be associated with a number of 

different S&D pattern implementations. 

The implementations of a pattern are responsible not only for implementing the solution itself but 

also for observing and emitting the events that the pattern demands to be monitored (by referring to 

them in its monitoring rules). As such, the implementations need to use what we call event 

collection mechanisms to catch the different events as they occur and notify them to the monitor. 

1.2. Purpose of this deliverable 

The objective of this deliverable is to specify and provide an implementation of a basic set of event 

collection mechanisms, which can be used by the designers/developers of the different 

implementations of SERENITY S&D patterns in order to ease the development of systems that 

want to deploy the SERENITY framework and become monitorable by it. The deliverable also 

specifies the form in which these events should be reported to the SERENITY framework and the 

mechanism for reporting them to it   

1.3. Overview of the Monitoring Language 

The monitoring engine that we envisage to use in SERENITY will use EC-Assertion as the 

language for expressing the monitoring rules which need to be checked for verifying requirements 

at run-time.  A monitoring rule can express either a functional or a quality requirement and may be 

associated with assumptions specifying effects of the behaviour of a system (and its constituent 

components) that affect the satisfiability of the requirements expressed by the rules. At runtime the 
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monitoring engine checks whether the monitoring rules are satisfied. During this check, any 

assumptions that have been specified for the rules are also used to generate additional information 

about the effects of the behaviour of the system and its components which affect the satisfiability of 

the rules.  

EC-Assertion has been defined as an extended form of event calculus (EC) which is a first-order 

temporal formal language thus allowing us to specify properties of dynamic systems which change 

over time. 

1.3.1. Overview of Event Calculus 

In EC properties of dynamic systems which change over time are specified in terms of events and 

fluents. An event is something that occurs at a specific instance of time (e.g., invocation of an 

operation) and may change the state of a system. Fluents are conditions regarding the state of a 

system. A fluent may, for example, signify that a specific system variable has a particular value at a 

specific instance of time. Fluents are initiated and terminated by events 

The occurrence of an event in EC is represented by the predicate Happens(e,t,ℜ(t1,t2)). This 

predicate signifies that an instantaneous event e occurs at some time t within the time range ℜ(t1,t2). 

The boundaries of ℜ(t1,t2) can be specified by using either time constants or arithmetic expressions 

over the time variables of other predicates in an EC formula. 

The initiation of a fluent is signified by the EC predicate Initiates(e,f,t). The meaning of this 

predicate is that a fluent f starts to hold after the occurrence of an event e at time t. The termination 

of a fluent is signified by the EC predicate Terminates(e,f,t). The meaning of Terminates(e,f,t) is 

that a fluent f ceases to hold after the event e occurs at time t. An EC formula may also use the 

predicates Initially(f) and HoldsAt(f,t) to signify that a fluent f holds at the start of the operation of a 

system and at time t, respectively.  

1.3.2. Special types of fluents and events used in EC-Assertion 

Our EC based language uses special types of events and fluents to specify monitorable properties of 

systems. More specifically, fluents can be defined by the user as relations between objects as 

follows:  

 

relation(Object1, …, Objectn) (I) 

 

where relation is the name of the relation that takes as arguments n objects (Object1, …, Objectn) 

that can be fluents or terms. A pre-defined relation for fluents that is commonly used is: 

 

valueOf(variable,  value_exp) (II) 

 

The meaning of (II) is that the fluent signified by variable has the value value_exp. In (II), 

 variable denotes a typed variable or a list of typed variables which may be: 

• System variables − A system variable is a variable of the system that is being monitored 

whose value can be captured at any time during the monitoring process, or 
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• Monitoring variables −  A monitoring variable is introduced by the users of the 

monitoring framework to represent the deduced states of the system at runtime (i.e. states 

which the system itself might not be aware of but the monitor of the system uses in order to 

reason about the system). 

If variable has the same name as a variable in the monitored system then it denotes this variable 

and is treated as an internal variable. In all other cases, variable denotes a monitoring variable 

and its type is determined by the type of value_exp as described below.  

 value_exp is a term that either represents an EC variable or signifies a call to an operation 

that returns an object of some type. The operation called by value_exp may be an internal operation 

that is provided by the monitoring framework or an operation that is provided by an external entity. 

If value_exp signifies a call to an operation, it can take one of the following two forms: 

• S:O(_Oid,_P1,…,_Pn) that signifies the invocation of an operation O in an external 

component S.  

• self:O(_Oid,_P1,…,_Pn) that signifies the invocation of the built-in operation O of the 

monitor. 

In these forms, 

• _Oid is a variable whose value identifies the exact instance of O's invocation within a 

monitoring session, and 

• _P1, …, _Pn are variables that indicate the values of the input parameters of the operation 

O at the time of its invocation. 

 

The internal operations which may be used in the specification of fluents are shown in Table 1. An 

example of an internal operation is add(n1:Real, n2:Real):Real that returns n1+n2. 

In addition to the generic fluents introduced above, we are extending EC-Assertion with a set of 

predefined fluents to support the specification of security monitoring rules. Two such fluents are: 

 authorised(authorisingAgent,authorisedAgent,e): This fluent denotes that the agent 

authorisedAgent has been authorised to receive and process the event e or to send an event e by 

the agent authorisingAgent. 

 exposes(o, owner, i): This fluent denotes that the response generated from the execution of 

an operation o will disclose  an information term  i which belongs to the agent owner. 

Events in our framework represent exchanges of messages between the agents that constitute a 

system. A message can invoke an operation in an agent or return results following the execution of 

an operation. Events are described in EC according to the following generic form: 

e(_id, _sender, _receiver, _status, _o, _source) 

where: 

 _event is the name of the event 

 _ID is a unique identifier for the event 

 _sender is the name of the entity that sent the message. 

 _receiver is the name of the entity that receives the message. 
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 _status represents the processing status of an event. The status of the event can be: (i) REQ-

B, that is a request for the invocation of an operation that has been received but whose 

processing has not started yet; (ii) REQ-A, that is a request for the invocation of an operation 

that has been received and whose processing has started; (iii) RES-B, that is a response 

generated upon the completion of an operation that has not been dispatched yet; or (iv) RES-A, 

that is a response generated upon the completion of an operation that has been dispatched.  

 _o is a list of arguments and their types that the operation/event takes. 

 _source is the name of the agent that provided information about the event.  

 

In addition to the EC predicates and event/fluent denoting terms that we overviewed above, 

formulas that express properties that can be monitored in EC-Assertion may use the predicates < 

and = to express time conditions (the predicate t1 < t2 is true if t1 is a time instance that occurred 

before t2, and the predicate t1 = t2 is true if t1 is a time instance that is equal to t2) and to compare 

values of different variables. Also an EC formula that expresses a monitorable property must 

specify boundaries for the time ranges ℜ(LB,UB) which appear in the Happens predicates – there 

are closed ranges, i.e., by saying that time instance t1 is in ℜ(LB,UB) we mean that LB<=t1 and 

t1<=UB. 

 

Operation  Description 

add(n1:Real, n2:Real): Real This operation returns n1+n2 

sub(n1:Real, n2:Real): Real This operation returns n1-n2 

mul(n1:Real, n2:Real): Real This operation returns n1* n2 

div(n1:Real, n2:Real): Real This operation returns n1/n2 

append(a[]: list of <T>, e:T): list of <T> 

where T is Real, Int or String. 

This operation appends e to a[]. 

del(a[]: list of <T>, e:T): list of <T> 

where T is Real, Int or String. 

This operation deletes the first occurrence of e in a[]. 

delAll(a[]: list of <T>, e:T): list of <T> 

where T is Real, Int or String. 

This operation deletes all occurrences of e in a[]. 

size(a[]: list of <T>): Int 

where T is Real, Int or String. 

This operation returns the number of elements in a[]. 

max(a[]: list of <T>):<T> 

where T is Real, Int or String. 

This operation returns the maximum value in a[]. 

min(a[]: list of <T>):<T> 

where T is Real, Int or String. 

This operation returns the minimum value in a[]. 

sum(a[]: list of <T>):<T> 

where T is Real or Int. 

This operation returns the sum of the values in a[]. 

avg(a[]: list of <T>): <T> 

where T is Real or Int. 

This operation returns the average of the values in a[]. 

median(a[]: list of <T>):<T> This operation returns the arithmetic median of the 
values in a[]. 
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where T is Real, Int or String. values in a[]. 

mode(a[]: list of <T>): <T> 

where T is Real, Int or String. 

This operation returns the most frequent element in a[]. 

new(type_name:String): ObjectIdentifier This operation creates a new object instance of type T 
and returns an atom that is a unique object identifier for 
this object. 

Table 1 - Built-in operations of EC-Assertion 

 

If the variable t in such predicates is existentially quantified, at least one of LB and UB must be 

specified. These boundaries can be specified by using: (i) constant time indicators or (ii) arithmetic 

expressions of time variables t' which appear in Happens predicates of the same formula provided 

that the latter variables are universally quantified, and that the expression appears in their scope. If t 

is a universally quantified variable both LB and UB must be specified. Happens predicates with 

unrestricted universally quantified time variables take the form Happens(e,t,ℜ(t,t)). These 

predicates express instantaneous events. Furthermore, a formula is valid in EC-Assertion if the time 

variables of all the predicates which include existentially quantified non-time variables, take values 

in time ranges with fixed boundaries. These restrictions guarantee the ability to check the 

satisfiability of formulas.  

A monitoring specification in EC-Assertion is composed of: 

 a monitoring rule which defines in a parameterised form the event calculus formulas that 

will need to be monitored at runtime, and 

 a set of assumptions which define in parameterised forms the event calculus formulas that 

can be used at runtime to deduce information about the state of the monitored systems that affects 

the satisfiability of the monitoring rule based on captured runtime events. 

 

1.3.3. Example of EC-Assertion monitoring specifications 

 

To illustrate the use of EC-Assertion in the specification of monitoring rules and assumptions, we 

use a case study based on an e-healthcare system supporting monitoring, assistance and provision of 

medication to patients with critical medical conditions based on smart-item technology that is 

described in the A7.D2.1 deliverable of SERENITY [6]. In this case study, patients who have been 

discharged from hospitals with potentially threatening medical conditions can use an e-health 

terminal (EHT) − that is an e-health application installed on their PDAs − to contact an emergency 

response centre (ERC) for assistance and fast ordering of medication. 

In one scenario of this case study, a patient who had suffered from a cardiac arrest, feels unwell and 

sends through his EHT a request for assistance to ERC. To establish the cause of the problem, ERC 

retrieves the patient’s medical record through the EHT. From this record, ERC establishes that the 

patient’s doctor is on vacation and broadcasts a message to a group of doctors known to be able to 

substitute the patient’s doctor. A doctor D receives this message on his own EHT and replies 

immediately. ERC verifies D’s ability to substitute for the patient’s doctor for the specific 

assistance request. Following this, D’s EHT interrogates ERC to receive the patient’s medical data. 
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D analyses all these data, identifies the most appropriate treatment, and writes the electronic 

prescription on his/her EHT which subsequently sends the prescription to ERC which forwards it to 

the patient’s EHT after registering it. 

In this scenario, Campadello et al. [6] have identified the following confidentiality requirement: 

“A patient’s substitute doctor can access the patient’s medical data if and only if he is the 

selected doctor” (i.e., Req. 2.2.1.7 in [6]) 

 

Suppose that ERC provides the operation fetchPatientData(docID:String, request:String, 

patInfo:MedicalRecord) which retrieves the medical record of a patient (patInfo) given (as input) a 

medical assistance request associated with the patient (request) and the identifier of a requesting 

doctor (docID). Given the above operation, the requirement Req. 2.2.1.7 can be monitored by a 

monitoring rule requiring that when a doctor's EHT invokes the operation fetchPatientData in ERC 

which will disclose confidential patient data, the doctor's ID that is provided as an input parameter 

to the operation fetchPatientData must be authorised to request the execution of this operation and 

therefore receive the relevant patient record. This rule is specified below: 

Rule CR1:  

 ∀ _eID1, _ercID, _docEhtID, _request:String; _patInfo: MedicalRecord; 

t1,t2:Time  

 Happens( 

 e(_eID1,_ercID,_docEhtID, RES-B, 

fetchPatientData(_docID,_request,_patInfo), _ercID),t1,ℜ(t1,t1)) ∧ 

 HoldsAt(exposes( 

 fetchPatientData(_docID,_request,_patInfo), _patInfo), t1) ⇒ 

 HoldsAt(authorised(_ercID,_docEhtID, 

 e(_eID1, _ercID,_docEhtID, RES-B, 

fetchPatientData(_docID,_request,_patInfo),_ercID)), t1) 

 

In this rule, 

 the predicate 

Happens( 

e(_eID1,_ercID,_docEhtID,RES-B, 

fetchPatientData(_docID,_request,_patInfo), _ercID),t1,ℜ(t1,t1)) 

denotes the occurrence of the event  

e(_eID1,_ercID,_docEhtID,RES-B, 

fetchPatientData(_docID,_request,_patInfo), _ercID) 

that represents the response of the ERC to the invocation of the operation  

fetchPatientData(_docID,_request,_patInfo) 

 the predicate 

  HoldsAt(exposes(fetchPatientData(_docID,_request,_patInfo), 

 _patInfo), t1) 

 denotes that the execution of the operation fetchPatientData(_docID,_request,_patInfo) will 

disclose patient data (_patInfor), and 
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 the predicate 

HoldsAt(authorised(_ercID,_docEhtID, 

e(_eID1, _ercID,_docEhtID, RES-B, 

fetchPatientData(_docID,_request,_patInfo),_ercID)), t1) 

 denotes that a doctor's EHT is authorised by ERC to receive a response from the execution 

of the operation fetchPatientData(_docID,_request,_patInfo) will disclose patient data (_patInfor) 

(following an earlier invocation of this operation). 

 

Assuming that the authorisation of a doctor's EHT to request the execution of the operation 

fetchPatientData for a specific patient is determined by the operation verifyDoctor(docID:String, 

request:String, verified: Boolean) of ERC which verifies if the doctor (docID) can deal with a given 

request (request), the monitoring of the above rule requires the specification of the following 

assumption: 

 

Assumption CA1:  

∀_eID1, _eID2,_ercID,_docEhtID:String; 

 _verified: Boolean; t:Time 

 Happens(e(_eID2,_ercID,_ercID, RES-A,               

 verifyDoctor(_docID,_request,_verified),_ercID), t,ℜ(t,t)) ∧ 

 HoldsAt(equalTo(_verified, True),t) ⇒ 

 Initiates(e(_eID2,_ercID,_ercID, RES-A, 

 verifyDoctor(_docID,_request,_verified), _ercID), 

 authorised(_ercID,_docEhtID, 

 e(_eID1, _ercID,_docEhtID, RES-B, 

fetchPatientData(_docID,_request,_patInfo),_ercID)), t) 

  

Whilst monitoring CR1, the assumption CA1 is used to derive the authorisation of a doctor's EHT 

(_docEhtID) to receive a response from the execution of the operation fetchPatientData that will 

disclose the record of a specific patient (_patInfo). This information is derived by deduction from 

the execution of the operation verifyDoctor. More specifically, according to CA1 the fluent 

authorised(_ercID,_docEhtID,e(_eID1,_ercID,_docEhtID,RES-

B,fetchPatientData(_docID,_request,_patInfo), _ercID)) which denotes the authorisation of a 

doctor's EHT (_docEhtID) to receive the results of the execution of the operation 

fetchPatientData(_docID,_request,_patInfo) that will expose _patInfo is initiated only if the event  

e(_eID2,_ercID,_ercID, RES-A, verifyDoctor(_docID,_request,_verified), _ercID) that indicates 

the dispatch of a response from the execution of the operation verifyDoctor has occurred and the 

result of this operation (i.e., the value of the variable _verified) is equal to a value that indicates the 

authorisation of the doctor that owns the EHT (i.e., True). Following the initialisation of the above 

authorisation fluent at some time t0 the predicate HoldsAt(authorised(_ercID,_docEhtID, e(_eID1, 
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_ercID,_docEhtID, RES-B, fetchPatientData(_docID,_request,_patInfo),_ercID)), t1) of the rule 

CR1 can be shown to hold at any time t1 after t0 by the following axiom of EC [19]
1
: 

 

HoldsAt(f,t2) ⇐ (∃e,t) Happens(e,t,ℜ(t1,t2)) ∧ Initiates(e,f,t) ∧ 

¬Clipped(t,f,t2) 

Furthermore, the monitoring of CR1 will require the initiation of a fluent representing the fact that 

the execution of the operation fetchPatientData will disclose confidential information about 

patients. This knowledge can be deduced from assumptions about information disclosure by 

operations. In our example, to indicate that the execution of the operation fetchPatientData will 

expose the data of a specific patient we can specify the following assumption: 

 

Assumption CA2:  

Initially(exposes( 

 fetchPatientData(_docEhtID,_request,_patInfo),_patInfo)) 

 

CA2 specifies that the operation fetchPatientData discloses patInfo and by virtue of the EC axiom 

HoldsAt(f,t) ⇐ Initially(f) ∧ ¬Clipped(0,f,t) 

it can be used to deduce the predicate 

HoldsAt(exposes(fetchPatientData(_docID,_request,_patInfo),_patInfo),t1) 

in rule CR1. 

To summarise, according to CR1, following a request for the execution of the operation 

fetchPatientData by a doctor’s EHT to the ERC it should be checked if the requesting doctor’s EHT 

has been authorised to receive the information that is to be disclosed to him/her. Then, according to 

CA1 this authorisation can be obtained through the execution of verifyDoctor.  

 

                                                 

1
 This is true assuming that no other event that could have terminated − i.e. clipped in terms of EC 

− the fluent  authorised(_ercID,_docEhtID, e(_eID1, _ercID, _docEhtID, RES-B, 

fetchPatientData(_docID,_request,_patInfo), _ercID)) occurred between t0 and t1. 
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2. Basic Architecture for Event Capturing 

In this section we will describe the basic architecture of the systems which may be monitored in 

SERENITY and their deployment architecture that provide the basis for designing and developing 

our event collection mechanisms. 

 

Figure 1 - Different layers in a system 

As can be seen in Figure 1, we assume a general multi-teer deployment system architecture in 

which a software system is implemented and operates as a succession of different layers. Each of 

these layers uses the services offered by the lower layer(s). Typically, these layers include the 

Operating System (OS) layer, some middleware layer(s) above it (e.g., the Java virtual machine, 

workflow execution engines), and finally the application itself. In SERENITY, we are interested in 

observing events which occur both at the interfaces of the different layers, as well as, at the interior 

of these layers in certain cases. For example, we may wish to observe the value of an internal 

application variable (application layer internal event) or the interactions of the application and the 

OS (application-OS interface event). 

Based on the generic system architecture of Figure 1, we distinguish the following generic 

categories of the event collection mechanisms that will be developed in SERENITY: 

1. Operating System event collection mechanisms − these mechanisms will support the 

collection of events which relate to the operating platform on which an application runs, for 

example calls of operations for creating, reading and accessing files.  

• System Call event collection 

2. Middleware layer event collection − these mechanisms will support the collection of events 

which relate to any middleware on which an application may run and will include 

mechanisms for: 

• Tuple space event collection 

• Workflow engine event collection 

• Communication Protocol event collection 

3. Application Call event collection − these mechanisms will support the collection of events 

which relate to the application itself as, for example, calls of operations in the API of an 

Operating System 

 Middleware 

Application 
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application, responses generated by the application after the invocation of operations, 

updates of internal application variables etc. The collection of such events may be based on:  

• Aspect-based event collection mechanisms and construction of generic application 

wrappers that can catch the calls to an application and responses generated by it. 

• Java bytecode instrumentation 

• Source code instrumentation 

In this deliverable, we concentrate on the Operating System and Middleware event collection 

mechanisms, i.e., system call and communication protocol event collection mechanisms. The 

collection mechanisms related to the application layer will be specified and implemented in the next 

deliverable on event collection mechanisms (A4.D2.4) which is due in month 15. 

Table 2 presents a summary of the events that can be captured by the SERENITY event capturing 

mechanisms. The table indicates the types of the captured events and the deliverable in which the 

mechanisms for capturing them will be specified (i.e., this deliverable or A4.D2.4). Event types are 

characterised by the layer at which an event occurs (i.e., OS, Middleware and Application) and 

whether the event is internal to the layer or external (i.e., an interface event between two layers). 

 A4.D2.2 A4.D2.4 

Layer OS Middleware Application 

 System 

Call Event 

Collection 

Tuple 

Space 

Event 

Collection 

Workflow 

Engines 

Event 

Collection 

SOAP 

Messages 

Event 

Collection 

Java 

Source 

code 

Event 

Collection 

Java 

Bytecode 

Event 

Collection 

C/C++ 

Binaries 

Event 

Collection 

Interface 

Events 
���� ���� ���� ���� ���� ���� ���� 

Internal 

Events 
  ����  ���� ���� ���� 

Table 2 – Overview of SERENITY event capturing mechanisms 

It should be noted that certain mechanisms can be applied to more than one layer. For example, the 

application layer event collection mechanisms could also be applied to the middleware layer. This is 

because the application layer event collection mechanisms are generic enough to be applied to a 

middleware as well. For example, if the middleware has been implemented in Java then we can use 

either the Java source code or the Java bytecode to collect events which are internal to the 

middleware. 

These event collection mechanisms can be used by the designers/developers of pattern 

implementations to capture the events mentioned in the monitoring rules specified in the relevant 

patterns. Of course there will be cases where these mechanisms do not suffice, either because they 

are not fast enough/small
2
 enough or because the events are not in the categories we are considering 

                                                 

2
 In an embedded system, the memory footprint of the overall application can be very constrained – indeed, 

memory is usually the most expensive component of embedded systems. 



 

A4.D2.2 – Basic set of Information Collection 

Mechanisms for Run-Time S&D Monitoring 

 

SERENITY - 027587 Version 0.15   Page 16 of 55 

 

in this deliverable. For example, there may be events internal to an OS, such as device driver status, 

which cannot be captured by our generic mechanisms. For such specialised events, the developers 

of pattern implementations will need to develop their own event collection mechanisms. Such non 

generic event capturing mechanisms may have their own internal specification and implementation 

but should adhere to the requirements of reporting events to the SERENITY framework.  

 

 

Figure 2 – Basic Architecture for Event Collection 

 

These requirements have to do with the particular format that the collected events should have. To 

understand this requirement it is helpful to examine the generic architecture that the SERENITY 

will adopt for the collection of events and their reporting to its framework. This architecture is 

shown in Figure 2. As shown in this figure, first an Event Collector that is connected to a system 

that is being monitored or its deployment platform (e.g. middleware) captures the events of interest 

during runtime and transmits them through a socket to a remote Event Receiver. The transmitted 

events are represented in XML according to an XML schema that we define in Section 3. The Event 

Receiver is a component of the SERENITY framework that is responsible for storing the events that 

it receives in an event database. This database is accessed by another component of the SERENITY 

framework, called Event Calculus (EC) Transformer, at regular intervals. The EC Transformer 

retrieves all the new events that have been stored in the event database, translates them into Event 

Calculus terms and sends then to the EC monitoring engine. The EC Monitoring Engine accepts the 

reported EC terms and checks the monitoring rules against them. 

The XML document which describes an event is being transferred as plain text. Many security 

issues rises as the data during this transportation can be attacked by a malicious user in order to 

prevent the normal functionality of the monitoring system or extract confidential information. 

Various kinds of attacks can take place during the transportation of the XML data such as 

modification of the data, exposure of data to unauthenticated users, or even attacks directly to the 

Event Receiver including, for instance, transmissions of forged XML documents in order to confuse 

the EC Monitoring Engine or cause denial of service. Thus, XML event documents must be 

protected. Mechanisms for the protection of the integrity, confidentiality, authenticity, 

accountability and authorization of XML documents have been introduced by the World Wide Web 

Consortium (W3C). XML Signatures [3], for instance can be used to authorize, provide non-

repudiation mechanisms and check the integrity of XML documents, and XML Encryption [14] can 

provide document confidentiality. We are currently investigating these standards (along with their 

existing implementations) to establish if they can offer a sufficient level of security for the XML 

events required by our monitoring system and protect it from attacks. The adoption of such 
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mechanisms will be discussed in the second deliverable on event collection mechanisms (i.e., 

A4.D2.4) 
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3. Event Representation Schema 

In this section we introduce the XML schema that we have developed to define the representation of 

events that are reported to the SERENITY framework. This schema is needed in order to provide a 

standard way of representing events which may be created by/observed at different layers of a 

system and by different event collectors (e.g., local function calls, remote procedure calls, SOAP 

messages, BPEL instructions, etc.). 

Our schema assumes that interactions between the components of the systems which are being 

monitored are based on exchanging messages which may be calling functions or methods, or 

transmit data or signals. Generally, the description of a message should include: 

 Message Type 

This field contains an unambiguous description of the message’s type. A message 

can be either an operation or a communication of data (e.g. signals). When the 

message defines an operation this field contains the operation’s name. That is, in the 

case of a polymorphic method, the name is a mangling of the operation name and the 

type of its arguments. In the case the message concerns a data communication then 

the data type and the data themselves are included in this field. 

 Sender & Receiver 

These fields of an event identify the entity which initiated the event (sender) and the 

one which this event is directed to (receiver).  

 Event Source 

This field describes the entity which the event was captured at (or emitted from), that 

is, the sender or the receiver. 

 Event status (request / processing notification / response) 

This field identifies whether the event is a request for executing an operation to be 

executed (request), one which is currently being executed (processing notification) or 

one which has already been completed (response). The information herein will play a 

major role once we examine control mechanisms; indeed, it is much easier to control 

the execution of an operation which has not yet started, than one which is currently 

executing or has already finished.  

 Event & Operation Correlation ID  

The event field contains an ID which can be used for correlating the current event 

with other events in the same “transaction”/“session”. The operation ID appears only 

in the messages describing operations and it’s used for correlating the current 

operation event with other events produced from the same operation. For example, it 

can be used to correlate an operation’s response event to the respective operation’s 

request event or a requested with a processed operation event. 

 Collection Timestamp  

This field contains a timestamp which gives the time at which the event collector 

mechanism created this event; see Figure 2. 

 Reception Timestamp  
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This field contains a timestamp which gives the time at which the event receiver at 

the monitoring engine side received this event, again see Figure 2. 

 Data types and values 

This field contains a portable description of the types of the parameters/results, as 

well as, the values of the input arguments. 

Our need to support different system layers and implementation languages leads us 

towards a solution which is based on WSDL [7] descriptions of the data types. 

 Context 

The event context depends on the type of the event and the layer it is originating 

from. For example, in the case of system calls it can contain the time of the operation 

request/execution, the time that was reported to the monitor and the source of the 

event. Additional contextual information can be added in different implementations 

depending specific needs for monitoring. 

Based on the above, we have defined an XML schema for describing events that represent 

messages. A graphical representation of this schema is shown in Figure 3 (continued in Figure 4) 

and its complete specification is given in 6. According to this schema, an event is described as an 

instance of the type eventType and is composed of: 

 An element called eventID of type unsignedLong. This element is used to identify the event. 

Every event can be uniquely identified using this element with conjunction with the event 

source element. 

 An element called type of type EventType. This element is used to provide information 

about the type of the event. An event can be: (i) a message related to the execution of an 

operation (i.e. a message that requests the execution of an operation or a message that 

notifies the completion of the execution of an operation) or (ii) a message that transmits data 

between systems (e.g. a signal). To capture both these cases, the complex type EvenType is 

composed of either an OperationMessage or a DataMessage element. 

 An OperationMessage element is used in cases where a message calls or reports the results 

of an operation above and is of type OpMsg. The type OpMsg is composed of the elements 

operationName, operationID, status and op_args which are used to represent information 

related to the execution of an operation. More specifically, 

• The element operationName is of type string and is used to specify the name of the 

operation. 

• The element operationID is of type long and is used to identify the specific instance of an 

operation call or response within the execution of an application
3
.  

• The element status is of type string and is used to indicate the status of the operation 

execution event. The status of an operation execution event is: (i) REQ-B, if the message 

is a request for the execution of an operation that has been received but not processed yet, 

                                                 

3
 In cases where a message notifies the response from the execution of an operation, the value of 

operationID of the response message must be the same as the value of operationID of the message which 

called the operation.  
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(ii) REQ-A, if the message is a request for the execution of an operation that has been 

received and its processing has started, (iii) RES-B, if the message is a response ready to 

be dispatched but not dispatched yet, or (iv) RES-A, if the message is a response that has 

been dispatched. 

• The element op_args is of type argumentsType and is used to specify the arguments of 

the relevant operation. The element op_args is optional because in some cases operations 

may have no arguments. The complex type argumentsType is a sequence of one or more 

elements of type argumentType that represent the arguments of the operation. The type 

argumentType defines a structure that is composed of either an element called 

SimpleArgument or an element called Struct. A SimpleArgument is used to represent 

operation arguments that have scalar values (e.g. real or integer values, strings etc). The 

type of this element is simpleArgument and is composed of the element’s name, type, 

value and argumentType which represent the name, value and type of the relevant 

operation argument, respectively. The argumentType represents the type of the argument, 

i.e. if the argument is used as an input to the operation (then its value should be IN) or an 

output value from the operation (OUT). A Struct element is used to represent operation 

arguments of complex types. Struct is defined as a sequence of one or more variable 

elements of type argumentType. Thus, Struct can represent arguments of complex 

structures which may contain simple arguments as well as structured parts.  

 A DataMessage element is used to describe messages that exchange data (e.g. signals). 

These elements are of type DataMsg. DataMsg has the elements type and value which are 

used to specify the type and the value of a datum exchanged by a data message. 

 An element called message_args that is of type MessageArgsList and is used to provide 

information regarding the dispatch of a message. The type MessageArgsList is composed of 

three elements: 

• The element sender which is of type Entity and indicates the entity that dispatched the 

relevant message. The type Entity is used to define any entity that can send or receive an 

event. Therefore it can be defined using any combination of the following elements:  

• Name: defining the name of the sender. In the case of BPEL for example, this 

may be the partner name which represents a web service we have invoked. 

• ipAddress: the IP address of the entity from which the event was produced.  

• port: Port number of the entity 

• UserID: the user ID that produced this event 

• processID: the process ID that produced this event or that the event refers to.  

• The element receiver which describes the receiver of a message (i.e. the entity which will 

process the relevant message). The receiver is of the same type as the sender of the 

message, and therefore it can be defined using the complex element Entity as described 

above. 

• The element context which is of type Context and is used to provide additional contextual 

information for the specific event. For now, this contextual information includes the time 

the event collector captured the event (see the element collectionTime in Figure 4), the 

time the event reported to the monitor (see the element reportTime in Figure 4), and the 

source of the event (see the element eventSource in Figure 4). 



 

A4.D2.2 – Basic set of Information Collection 

Mechanisms for Run-Time S&D Monitoring 

 

SERENITY - 027587 Version 0.15   Page 21 of 55 

 

 

Figure 3 – XML Event Representation Schema (part I) 
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Figure 4 – XML Event Representation Schema (part II) 
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An example of an event described according to our event representation XML schema is given in 

Table 3. In this example of XML document we can see the representation of an event describing a 

system call from an application to the OS. The system call is for the operation open (line 07) and 

the arguments that it uses is the pathname for the file that is about to be accessed and the flags that 

represent what action is to be taken upon the file. The first argument is shown in lines 11 to 18, 

where we state the name, the type, the value and the type of the argument. The second argument is 

described in the same way between lines 19 and 26. The sender of this event is identified through 

the lines 31 to 35, where it is stated his IP address, his user ID and the process ID. Using the same 

way we represent the receiver of this event through the lines 36 to 40. In this case the receiver of the 

event is the OS, that’s why the user ID and the process ID are set to zero. Any contextual 

information is described between the lines 41 to 49. For this event the contextual information is the 

time when the event was collected and the time in which it was reported and the source of the event. 

The combination of the fields which describe the event source (lines 44-48) and the event ID (line 

4) can help us to identify uniquely this event.  

 

01 <?xml version="1.0" encoding="UTF-8"?> 

02 <event xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

03     xsi:noNamespaceSchemaLocation="file:/Z:/workspace1/events/events_v5.xsd"> 

04     <eventID>23</eventID> 

05     <type> 

06         <OperationMessage> 

07              <operationName>open</operationName> 

08              <operationID>2</operationID> 

09              <status>REQ-B</status> 

10              <op_args> 

11                 <argument> 

12                     <SimpleArgument> 

13                         <name>pathname</name> 

14                         <type>*char</type> 

15                         <value>input.dat</value> 

16                           <argumentType>IN</argumentType> 

17                     </SimpleArgument> 

18                 </argument> 

19                 <argument> 

20                     <SimpleArgument> 

21                         <name>flags</name> 

22                         <type>int</type> 

23                         <value>0</value> 

24                         <argumentType>IN</argumentType> 
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25                     </SimpleArgument> 

26                 </argument> 

27              </op_args> 

28          </OperationMessage> 

29     </type> 

30     <message_args> 

31         <sender> 

32             <ipAddress>138.40.95.52</ipAddress> 

33             <UserID>1002</UserID> 

34             <processID>1617</processID> 

35         </sender> 

36         <receiver> 

37             <ipAddress>138.40.95.52</ipAddress> 

38             <UserID>0</UserID> 

39             <processID>0</processID> 

40         </receiver> 

41         <context> 

42             <collectionTime>2006-08-30T12:02:57</collectionTime> 

43             <reportTime>2006-08-30T12:02:57</reportTime> 

44             <eventSource> 

45                 <ipAddress>138.40.95.52</ipAddress> 

46                 <UserID>1002</UserID> 

47                 <processID>1617</processID> 

48             </eventSource> 

49         </context> 

50     </message_args> 

51 </event> 

Table 3 – Example of an XML document representing an event 
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4. Event Capturing at the OS layer 

This is an event capturing mechanism that is positioned between the application/middleware and the 

operating system layer and is used to intercept system calls. By using this mechanism, the monitor 

is able to obtain the system calls along with their arguments and context (which it interprets as 

events). This information may be necessary for checking monitoring rules regarding the correct 

execution of an application. 

4.1. System calls proxies 

For the OS layer, often it is necessary to be able to monitor the requests for system resources from 

an application (e.g. file access requests, process priority change requests etc). These requests occur 

in the form of so-called system calls. System calls form the API of the OS that is available to the 

application and are implemented as special procedures of a library provided along with the OS 

kernel that a user-space application can call to pass to the kernel the type of request it wants to 

make along with any relevant parameters. For example, in order to obtain access to a file, a user 

process needs to make a system call to the OS kernel and pass with it the name of the file, the way it 

wants to access the file (read, write, read-write), etc. Then the kernel checks the privileges of the 

process and the respective file, updates its internal data structures and returns either a file handle to 

the user application or an error indicating the reason for which the request could not be fulfilled. 

The ability to monitor these requests is very important because it allows the monitor to verify the 

correct functionality of the system at the most basic layer, without which the higher level requests 

cannot operate correctly and securely. Our current implementation attaches the event collectors at 

the application when the latter starts executing. To understand how this is done we will first 

describe the use of system calls in a specific OS, namely Linux. 

The OS makes available a number of different types of requests that a user process (UP) can make 

to it. The UP then uses the syscall() procedure to initiate these requests. For example, if UP wishes 

to find its group ID, it needs to call syscall(SYS_getpgid, pid). Since the syscall procedure is a rather 

low-level and cumbersome API, there has been developed a higher-level API, which offers a single 

procedure for each type of system call request. This API is implemented inside the libc library. The 

libc library is the basic library that any Unix-like operating system uses to define its collection of 

system calls and other basic facilities. When applications are executed, they are first linked 

dynamically with libc so that they may make use of this higher-level API at runtime. Provided that 

it is dynamically linked to libc, the UP would need to call getpgid(pid) in order to find its group ID 

which is not only simpler but also allows the compiler to check the type of the argument. 

In order to be able to observe the system calls we have developed a new library containing 

specialised implementations of the various system calls in libc. Each time a system call is made our 

implementation sends a message to a socket containing the description of the particular call and 

then forwards the call to the OS by using the low-level API of syscall. By placing our library at the 

front of the path for dynamically linked libraries we can ensure that the linker will chose our 

implementation of the system calls instead of the one found in libc (Figure 5(a)). Thus, system calls 

will be handled by the newly developed library, which can record and transmit the relevant 

information to the monitor, before delegating the responsibility for the execution of the system call 

to the OS kernel itself. 
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Figure 5 – System call proxies 

4.1.1. Advantages, Limitations & Extensions 

The advantages of this approach are that it is relatively easy to develop this new library and that we 

do not need to change either the application code or the kernel of the underlying OS. The 

disadvantages on the other hand are the following. First, an application could have been linked 

statically with all the libraries it needs (including libc). In this case our library will be ignored and 

the application will communicate with the OS directly. Another possibility is for an application to 

not use the higher-level API of libc at all but instead use the low-level one of syscall. Again in this 

case our library will not be able to catch these system calls. These disadvantages will exist in any 

solution which wishes not to modify the OS kernel and are not specific to our solution. 

The alternative that could be used if one wants to ensure that all system calls will be captured, 

independently of how the application has been developed and linked, would be to modify the kernel 

itself and introduce the code for capturing the system call events inside the kernel (Figure 5(b)). 

This is a possibility that we are planning to examine for the second deliverable on event collection 

mechanisms (i.e., A4.D2.4). 

It should also be noted that we do not catch all the interactions between the OS and an application, 

independently of whether we use our current, library-based system call event collection 

implementation or a kernel-based one. The only interactions which are captured are the ones which 

occur through system calls. Other types of events that we do not catch are the asynchronous signals 

that the OS can send to an application (for example to kill it). These signals do not make use of the 

system call mechanism and as such are not covered by the mechanisms we have described in this 

section. To be more precise, what cannot be captured by the system call event collectors are the 

reception of a signal by an application and the invocation of a signal by the OS (to an application). 

We can, nevertheless, capture the invocation of a signal by an application towards some other 

application because this is performed using a system call (called kill).  

Another aspect of the system call proxies which will be further investigated in the next deliverable 

is the optimisation of the event communication. Currently, a new socket connection is opened for 

each event, the event is transmitted and then the connection is closed. While this suffices for a 

proof-of-concept system, it is evident that there is a big room for improvement. A simple 
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optimisation we will consider is the reuse of the initial socket connection to send the future events 

as well, so as to avoid opening a new socket and reclaiming it for each event. Another one has to do 

with deferring the transmission of events, choosing to buffer them instead in a local-memory buffer. 

This buffer can then be read by another process periodically and that process will be the one 

consuming the events and transmitting them to the event receiver, thus allowing the application, the 

OS and the system call event-collector to not wait for the actual transmission of the events over the 

network. 

4.1.2. Capture of  System Calls 

According to the description in the previous section the implementation of the collection of system 

calls is based on a library which is loaded with the application and acts as a middle layer between 

the application and the operating system. The additional functionality that this layer introduces is 

the transformation of the system calls to events, based on the XML schema described in section 3 

and its transmission to the Event Receiver. Our implementation for the capturing of system calls is 

based on Debian GNU/Linux system (kernel ver. 2.4.27-2-386). In the implementation of the 

library we have implement a set of system calls demonstrating by this way how the development 

should be for the whole set of the system calls.    

 

 Implementation 

The implementation as mentions above is based on a GNU/Linux system. It has two components: 

the Event Receiver and the Event Collector library. The Event Receiver is a simple server 

application which can listen to a given port and display any incoming message. In this application 

we will be able to see the XML reports of events that the Event Collector library transmits. In order 

to execute the application we must go to the directory in which we untar the SCProxies.tgz, 

probably $HOME/SCProxies/ and execute the command ./server address port. The argument 

address specifies the IP address of the server and the port specifies the port number in which the 

application will listen for the events. For example ./server 138.40.95.52 9734 (Figure 6). 

 

 

Figure 6 - Execution of Event Receiver 

 

The event collection library is the libfuncs.c. There is the code for the system calls we can 

intercept. Before we try to compile the library we must edit it and modify the lines 75 and 76 

specifying the IP address and port number of the event receiver. According to our example for the 

execution of the event receiver the lines shall be modified as shown in Figure 7. 
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Figure 7 - IP/port modification 

The “138.40.95.52” and “9734” are the IP address and the port number in which the Event 

Receiver is waiting for events. 

After these modifications we are ready to compile the library giving the command make while we 

are in the same directory as libfuncs.c. For the demonstration of the library in the directory we 

included a testing application. This application doesn’t do anything specific. It just calls a number 

of system calls that are modified inside our library in order to be give as the chance to see the 

creation of the events on the event receiver. To run this application using our library we must 

execute in the same directory the command 

LD_PRELOAD=/home/costasba/SCProxies/libfuncs.so ./test_app . The test application 

begins its execution informing us for the commands that it executes while we can observe in the 

event receiver the events generated from the execution of the application as shown in Figure 8. 
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Figure 8 - Reported Event 
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5. Event Capturing at the Middleware Layer 

The systems targeted by SERENITY may comprise several different middleware layers. For 

example, a system may be using a virtual machine like the Java Virtual Machine (JVM), a Message 

Oriented Middleware (MOM) like a tuplespace, or a workflow engine. Typically, SERENITY 

patterns will specify monitoring rules defined in terms of events that are dispatched and received by 

each of these layers. Consequently, the SERENITY framework should provide a set of mechanisms 

for capturing such events. The mechanisms developed in the SERENITY project in order to capture 

events at the middleware layer are described in this section. 

Our focus is the types of middleware targeted by the SERENITY framework, namely tuple spaces, 

workflow engines and communication protocols. 

 

5.1. Tuple space proxies 

Tuple spaces are shared repositories of data items which are aimed at supporting coordination and 

communication between concurrent processes. The tuplespace concepts were originally introduced 

by the Linda coordination language ([10]) but more recently the tuplespace model has been 

investigated also as a model to program coordination protocols in distributed computing settings 

([9][18]). In tuple-based (data-driven) coordination models, client processes communicate and 

coordinate their activities by exchanging tuples of data via tuple spaces. 

In this section we introduce the architecture proposed by SERENITY to collect messages 

exchanged between a tuplespace client and a tuplespace server. 

The proposed architecture is shown in the Figure 5. 
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Figure 9 – Deployment of the SERENITY tuplespace logging subsystem 

 

The components in this architecture are: 

 Tuplespace client: This component is any application making use of a tuplespace service. 

 Tuplespace event collector: This component intercepts tuplespace service requests. The 

component forwards tuplespace service requests to the remote tuplespace service and, at the 

same time, logs operations by means of the remote logging service. 

 Tuplespace service: This component provides the tuplespace service. For testing our 

implementation we used the Outrigger tuplespace server available in the Jini environment 

[9]. 

 Event Logging service: This component provides the logging service via the Event Receiver 

interface (see also Figure 2 in Section 0). 

5.1.1. The tuplespace event collector 

A tuplespace event collector provides two interfaces to its clients: 

 Tuplespace interface: This interface is used by the clients of a tuplespace proxy to submit 

service requests to a tuplespace service. This interface is specific to the actual tuplespace 

technology of the tuplespace service components. Our implementation is based on the 

JavaSpace specifications. 

 Configuration interface: This interface is used by clients to control which tuplespace service 

requests operations have to be logged (e.g. clients running on nodes having connections with 

limited bandwidth might exploit this feature to reduce the network traffic). Developers of 

tuplespace proxies should implement this interface in order to render their proxies suitable 

for SERENITY; 

A tuplespace proxy component also requires a Logger interface: 

 Event Receiver interface: this interface is used by a tuplespace proxy component to log 

requests intended for a (possibly remote) tuplespace service. 

5.1.2. A Tuplespace model for the Tuplespace interface 

The Tuplespace interface is the interface that a Tuplespace Proxy offers to its clients to request 

operations on a tuplespace. 

The lack of a standard interface for current tuple-based technologies (e.g. JavaSpace [9], TSpace 

[20], etc.) implies that the SERENITY Architecture cannot provide a single implementation of the 

Tuplespace proxy component and, hence, it is required to develop a proxy for each technology. 

However, in the literature there are proposals for general frameworks able to capture the main ideas 

underlying the different tuple-based models subsumed by the different technologies. In particular 

the SERENITY Tuplespace logger follows the tuplespace framework proposed in [5]. 

In such a model each client is supposed to operate over a denumerable set of tuple spaces: each 

operation has the general form op(…)@s where s is a tuplespace service. In the description of the 

operations in the model, for the sake of clarity we omit the tuplespace service specification part. 
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The general model proposed by SERENITY for tuplespace defines the following operations to 

modify the content of a tuplespace: 

 Basic operations defined in all Linda-like languages: 

• out(t): adds a tuple into a tuplespace; 

• in(p): remove and return a tuple matching the template p from the tuplespace. The 

operation blocks until a tuple matching the p appears; 

• rd(p): return (do not remove) a tuple matching the template p from the tuplespace. The 

operation blocks until a tuple matching p appears; 

 Transaction operations. These operate on multiset of data: 

• rew(m1, m2): atomically removes the tuples matching the template m1 and then 

atomically produces the multiset data m2; 

 Global operations. These operations require a global vision of the shared data space: 

• tfa(p): verifies that no data matching a template p are available; 

• inp(p): non-blocking version of the take operation; 

• rdp(p): non-blocking version of the read operation; 

 Global transaction operations. These are transaction operations which are able to test the 

global state of a shared data space: 

• collect(p): removes and returns all tuples matching the template p; 

• copy_collect(p): returns (does not remove) all tuples matching the template p; 

Given the above model, a SERENITY proxy for Tuplespace will generate events according to the 

language described in Section 3. 

The availability of a general framework enables the specification of the mapping of an expression 

from a technology specific tuplespace language (e.g. JavaSpace, Tspace, etc.) to the SERENITY 

event representation schema that we introduced in Section 3 in two steps: 

1. from the technology specific language to the abstract tuplespace model; 

2. from the abstract tuplespace model to the event representation language; 

In this section we describe the first mapping that is valid for all technologies. Appendix B contains, 

as an example, the mapping between the JavaSpace model [9] and the general model. 

The following table shows how the major components of the event representation language are used 

by SERENITY tuplespace proxies:  

Event language element Usage 

operationName Name of the tuplespace operation (e.g. out, 

in, rd). 

status REQ-B 

op_args One element for each field of the tuple 

given as actual parameter to the tuplespace 
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operation. In our implementation, based on 

the JavaSpace specifications, an extra field 

is added to represent the type of the object 

given as actual parameter (this is required 

since the arguments of JavaSpace 

operations are objects and not tuples). 

sender TCP address of the host where the 

operation took place. 

receiver TCP address of the tuplespace services. 

collectionTime time the operation took place (expressed as 

host local time). 

Table 4 – Usage of the Event language elements 

5.1.3. Control Interface 

The Control interface defines the following methods: 

 new(s): creates a new tuplespace service for the proxy; 

 moveTo(s): changes the tuplespace service referenced by the proxy 

 enableLogging(op): enables logging of operation op; 

 disableLogging(op): disables logging of operation op; 

 restoreDefaultLogging(): restores the default logging settings for the proxy; 

5.1.4. Logger Interface 

The Logger Interface defines the following methods: 

 log(od): where od is a tuplespace operation description done with the event model described 

in paragraph 3. 

5.1.5. Dynamic Behaviour 

The following sequence diagram shows a typical interaction between the components of the 

Tuplespace logging subsystem: 
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Figure 10 - Logging tuplespace operations 

The interaction between components goes through the following sequence: 

1. In order to access a Tuplespace a Tuplespace client creates a Tuplespace event collector. 

Upon initialisation a Tuplespace event collector discovers and binds a Tuplespace service. 

2. Each time a Tuplespace event collector intercept an operation request for the Tuplespace 

service it logs the request to the Logging service; 

3. The Tuplespace Event collector forward the operation to the Tuplespace service bound 

during step 1. 

4. Upon reception of a response from a Tuplespace service the Tuplespace Event collector logs 

the event. 

 

5.2. Workflow engine event capturing 

The goal of this paragraph is to extend the set of event monitored by the SERENITY Architecture 

in the BPEL/Web-Services context and introduced in paragraph 1.2.2. Such an extension is needed 

to be able to deal with distributed ([15]) and/or QoS-aware ([22]) workflow engines. 

5.2.1. Distributed engines events 

Distribution of the orchestration process reduces inefficiencies introduced by a centralized control 

and improves performance and throughput. Distributed workflow engines typically aim to minimize 

communications costs and maximize the throughput of multiple concurrent instances of the input 

program. 

In Ambient Intelligence (AmI) settings distribution of workflow engine has an additional 

motivation due to the fact that computational nodes have limited resources and none of them, in 
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principle, could be able to run a fully flanged workflow engine. In mobile information systems 

distribution of the workflow engine is the only option to orchestrate web services ([16]). 

Typically in distributed workflow engines the execution of an instance of a process goes through 

the following steps: 

1. The process definition is partitioned into a set of equivalent programs; 

2. Each programs is assigned to a (possibly different) workflow engine; 

3. All programs are executed in parallel by exploiting the computational resources available at 

the node that the programs have been assigned to. 

The above general scheme may have some variation to provide the system with more adaptivity; for 

example the assignment of programs to nodes (step 2) might be redone during execution (step 3) to 

cope with variations in the availability of resources at nodes. 

In SERENITY we introduce the following events to monitor the activity of distributed workflow 

engines: 

 acquire(hostID, engineID, procDefId, procId, activityName): the activity activityName 

belonging to the process procDefId has been assigned to the engineID workflow engine 

residing at hostID host. The assignment is valid for the execution of the procId instance of 

the process. 

 lose(hostID, engineID, procDefId, procId, activityName): the assignment signalised by an 

acquire event having the same actual parameters is no longer valid (It is going to be 

reassigned to a new node). 

 run(hostID, engineID, procDefId, procId, activityName): the activity activityName 

belonging to the process procDefId is being executed by the engineID workflow engine 

residing at hostID host. The run is part of the execution of the procId instance of the 

process. 

5.2.2. QoS-aware engines events 

QoS-aware workflow engines aim to maximize the Quality of Service (QoS) of composite service 

execution by taking into account the constraints and preferences of the users. QoS-aware engines 

rely on the concepts of abstract services and dynamic bindings. In this context composite services 

are described in term of abstract services that do not correspond to any specific implementation: 

loosely speaking abstract services are placeholders representing the whole set of actual “concrete” 

services sharing the same semantic. At design time the designer/developer of the composite service 

reason in term of abstract services. 

At run-time, when the process instances are created and executed, the engines replace each abstract 

service (placeholder) with a concrete one (i.e. one running on a actual node on a network) selected 

from the set of semantically equivalent ones. The selection (binding) process takes into account 

both the QoS constraints defined on the process at design time and the constraints imposed by the 

user of the composite service. 

Typically the selection process takes place whenever a new process instance is created. However, 

during the execution of a process instance some of these kinds of workflow engines have the 

possibility to measure the actual QoS of selected services ([22]). In case the actual measures 

indicate a possible violation of the QoS constraints the engine tries to recover by re-running the 

binding phase for the not yet executed service invocation activities. 
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Thanks to ability to measure actual QoS and to re-run the binding phase, QoS-aware workflow 

engines are able to react (adapt) to changes occurring during the execution of composite services. 

The ability to react to changes is of extreme value in AmI settings where, due to the volatile nature 

of the involved networks, continuous and unpredictable variations of QoS are the norm. 

Typically in a QoS-aware workflow engines execution of an instance of a process goes through the 

following steps: 

1. “concretisation” phase: by consulting some sort of registry the engine binds each abstract 

service to a concrete one satisfying QoS constraints and trying to optimise some goal 

function; 

2. execution and monitoring phase: the engine carries on the execution of the process instance 

by utilising the binding established in the previous phase. During execution, QoS of actual 

services are measured and, in the case the actual values lead to violation of the QoS the 

concretisation phase is re-run; 

SERENITY introduces the following events to monitor the activity of QoS-aware workflow 

engines: and generated by the workflow engine during the “concretisation” phase: 

 bind(procDefId, procId, activityName, service, port, op, serviceAddr): in the procId process 

instance the op operation of the port interface of the service abstract service will be executed 

by the service available at the address serviceAddr. 

 rebind(procDefId, procId, activityName, service, port, op, oldSAddr, newSAddr): in the 

procId process instance the oldSAddr service has been replaced by the newSAddr service for 

the execution of the the op operation of the port interface of the service abstract service. 

 unsatisfied(procDefId, procId, constrId, qosMeauseres): the constrId constraint defined on 

the procDefId process is no longer satisfied for the procId process instance given the 

qosMeauseres measures of QoS. 

5.3. Event capture based on communication protocols 

Many middleware systems are based on standardised communication protocols. As such, it is 

possible to capture events from the systems which make use of these middleware by observing the 

packets transmitted among processes/machines and analysing them accordingly to their protocol. 

For example, in a Web-Services [7] context, communication follows the SOAP [4] protocol 

standard. Thus, we can construct event collectors that capture the SOAP messages exchanged from 

different processes and translate these to invocations of web-services and the respective responses. 

In this case there are two different positions where we can place our collectors; at the side of the 

web-services which are being called or at the side of the BPEL [1] engine which initiates these calls 

(if the calls have indeed been initiated by a BPEL engine). In both cases we wish to observe the 

events on the side of the web-services or on the side of the BPEL engine, so we need to install our 

proxies in a manner which will not cause any changes to the way the web-service/BPEL engine has 

been advertised to the rest of the world. Usually, web-services/BPEL engine are listening to the port 

#8080 of a server for requests from other applications. What we desire therefore is to introduce our 

proxy/event-collector in the server in such a way that all external requests to the web-service/BPEL 

engine will be received first by the proxy and only then will the proxy forward the requests to the 

web-service. We need therefore to change the port that the web-service/BPEL engine is listening to 

(say to port #8081) and attach our proxy to the port #8080. Once this is accomplished, our proxy 
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will be able to receive all requests from external processes (BPEL engines, other web-services) 

which wish to communicate with our web-service/BPEL engine, without the external processes 

knowing anything about the fact that we are capturing their requests. Once our proxy has noted the 

requests and notified the monitoring subsystem of them, it will forward them to the real port that the 

local web-service/BPEL engine is listening to, i.e., port #8081 in our example. External entities 

which wish to communicate with the web-service/BPEL engine continue to use the port 8080 since 

that was the one which was advertised for the web-service/BPEL engine. However, all their 

messages are captured by our proxy which is the one listening in port 8080 and once the proxy has 

informed the monitoring subsystem about them, it forwards them to the web-service/BPEL engine 

on port 8081, receives the reply from the web-service/BPEL engine, inform again the monitoring 

subsystem of it and forwards it to the external entity which had initiated the request. 

5.3.1. Event capture on Tuple Space 

Tuplespace based applications communicate by reading/writing tuples from/to a tuplespace. In 

order to monitor this kind of communication SERENITY requires that a tuplespace server a 

Configuration interface and use the Logger interface both defined in Section 5.1. 

5.3.2. Capture of SOAP messages 

SOAP messages can be transferred by a variety of protocols, such as HTTP or SMTP, but HTTP 

protocol has gained wider acceptance as it works well with today's Internet infrastructure. In our 

implementation we focused on capturing SOAP messages using the HTTP protocol for 

transportation. The HTTP protocol is a request/response protocol between a client and a server. A 

client initiates a request by establishing a connection to a particular port on a remote host. Upon 

receiving this request, the remote host sends back some status headers, such as “HTTP/1.1 200 OK” 

and a message, the body of which is the requested document. SOAP messaging works in a very 

similar way. Every SOAP request message is followed by a SOAP response in a synchronous 

exchange. The client creates a SOAP request message which binds in the HTTP request message 

(Table 5). Upon receiving this HTTP request the server which hosts the web service, extracts the 

SOAP request from the body of the message. The web service process the SOAP request and 

produces a SOAP response, which is send back attached in the body of the HTTP response message 

(Table 6).  

 

POST /axis/servlet/AxisServlet HTTP/1.0 

Content-Type: text/xml; charset=utf-8 

Accept: application/soap+xml, application/dime, multipart/related, text/* 

User-Agent: Axis/1.4 

Host: localhost:8080 

Cache-Control: no-cache 

Pragma: no-cache 

SOAPAction: "" 

Content-Length: 438 

 

<?xml version="1.0" encoding="UTF-8"?> 

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 
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xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><soapenv:Body> 

<ns1:getQuote soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 

xmlns:ns1="urn:xmltoday-delayed-quotes"><symbol 

xsi:type="xsd:string">XXX</symbol></ns1:getQuote> 

</soapenv:Body></soapenv:Envelope> 

Table 5 – SOAP request through HTTP protocol 

 

HTTP/1.1 200 OK 

Content-Type: text/xml;charset=utf-8 

Date: Mon, 11 Sep 2006 12:41:52 GMT 

Server: Apache-Coyote/1.1 

Connection: close 

 

<?xml version="1.0" encoding="UTF-8"?> 

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"><soapenv:Body><ns1:getQuoteResponse 

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 

xmlns:ns1="urn:xmltoday-delayed-quotes"><getQuoteReturn 

xsi:type="xsd:float">55.25</getQuoteReturn></ns1:getQuoteResponse></soapenv:Body></soape

nv:Envelope> 

Table 6 - SOAP response through HTTP protocol 

 

The above description of a synchronous SOAP messaging through HTTP protocol is the target of 

our Event Collector mechanism. The Event Collector as described in the section 0 works as a proxy 

between the client who requests a service and the server who offers the requested service. When a 

request for a service is made, the collector can capture the event and transmit it through a socket to 

the Event Receiver and then forward it to the real web service. In the same way the response of the 

web service is transmitted through the Event Collector to the client. In both cases the Event 

Collector reports the events of request and response to the Event Receiver in the form of XML 

documents based on the XML schema we defined in the Section 3. 

 

 Implementation 

 

The Event Collector is based on the Axis TCP Monitor (tcpmon) utility. This utility can be used to 

monitor the data flowing on a TCP connection. tcpmon can be placed in-between a client and a 

server. When a client makes a connection to tcpmon, tcpmon forwards the data to server along-with 

displaying it. The functionality of this utility has been extended in order to be able to (i) distinguish 

the request and response SOAP messages, (ii) construct the XML document for each event that a 

SOAP message represents and (iii) communicates these events to a remote Event Receiver. The 
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Event Receiver for our examples is a simple server application that can receive and display any 

incoming message (XML representations of events in our case). 

 

 Required Software 

 

The Event Collector has been developed and tested on a Debian GNU/Linux machine (kernel ver. 

2.4.27-2-386). In order to demonstrate the tool the following software must be installed: 

 

• Java 2 Platform, Standard Edition, v 1.4.2_12 

(http://java.sun.com/j2se/1.4.2/download.html) 

• Jakarta-Tomcat  5.0.30 (http://tomcat.apache.org/) 

• Axis 1.4 (http://ws.apache.org/axis/) 

• Xerces-J 2.8.0 (http://xerces.apache.org/xerces-j/) 

• Bexee BPEL Execution Engine (http://bexee.sourceforge.net/) 

• Apache Ant 1.6.5 (http://ant.apache.org/index.html) 

 

Installation guides can be found in each site.  

 

 Installation 

 

The installation of the tool has two parts. In the first part we must setup the Event Receiver where 

the events are going to be reported.  

 

•  Untar the EventReceiver.tgz in your $HOME directory using the command “tar –xzvf 

EventReceiver.tgz”. 

 

• Go to the new directory called EventReceiver and execute the event receiver using the 

command “java MultiEchoServer portnumber”. The portnumber should be the number 

of the port that the receiver will listen for new events. In our example if we want to use the 

port number 8008 then the command shall be “java MultiEchoServer 8008”. 

 

In the second part of the installation we must setup the Collector. The collector as described in the 

section 5.3 must be installed to the same server that provides the web service we would like to 

monitor. Also it should listen to the port number that our web service is already advertised. Thus, 

we must restart the Tomcat server giving him a new connection port. This change must be done at 

the file conf/server.xml in our Jakarta-Tomcat directory. There we must modify the Connection 

port as shown in the Figure 11. Let’s say that the new port of Tomcat is set to 8081. 
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Figure 11 – Modifing connection port in Tomcat 

 

After that we have to  

• untar the archive called tcpmon.tgz using the command: tar –xzvf tcmpon.tgz.  

 

• A new directory has been created with the name tcpmon-1.0-src. In order to execute 

the event collector the CLASSPATH must be updated. Include the path /tcpmon-1.0-

src/src/ to your existing CLASSPATH.  

 

• The application can now be executed by the command: “java 
org.apache.ws.commons.tcpmon.TcpTunnel 8080 localhost 8081 

EventReceiverHost 8008”. The first argument is the port number that the collector should 

listen. The second and third arguments are the hostname and the port number of the server 

where the collector should forward the requests. As we mentioned above the collector is 

running in the same server as the web service (localhost) and our web service is listening at 

8081. Finally the last two arguments are the remote server where the Event Receiver waits 

for the events.  

 

After that every SOAP message that reaches our server in the port 8080, is displayed by the tcpmon 

tool (Figure 13), reported to the event receiver (Figure 12) and forwarded to the real web service 

that operates in the port 8081. 
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Figure 12 - Event Receiver 
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Figure 13 - Event Collector 

 

 Example 

In order to demonstrate the features of the Event Collector, in this section we use two examples. 

The first example is a use case taken from the samples of Axis1.4 and it can be found in the 

directory $HOME/axis-1.4/samples/stock. Before we execute this example we must make sure 

that some preconditions are valid:  

 

• The directories $HOME/axis-1.4/ and $HOME/axis-1.4/samples/ are already included 

in the CLASSPATH. If not they can be added with the following commands:  

export CLASSPATH=$CLASSPATH:$HOME/axis-1.4/ 

export CLASSPATH=$CLASSPATH:$HOME/axis-1.4/samples/ 

 

• The sample stock web service must be deployed and undeployed on the server on the 

specific port number. In our implementation we changed the connection port number of our 

server to 8081. The sample code contained in the file $HOME/axis-

1.4/samples/stock/testit.sh will try to deploy and undeploy the web service in the 

default port number, which is 8080. Therefore for the right execution of the sample we can 

either edit the testit.sh file adding the argument for the new port number on the deploy 
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and undeploy commands (Figure 14) or execute the sample giving the following series of 

commands: 

 

• Deploy web service: java org.apache.axis.client.AdminClient -p 8081 

deploy.wsdd 

• Execute sample invocations to the service: java samples.stock.GetQuote -

uuser1 -wpass1 XXX  

• java samples.stock.GetQuote -uuser2 XXX 

• java samples.stock.GetInfo -uuser3 -wpass3 IBM address 

• Undeploy service: java org.apache.axis.client.AdminClient -p 8081 

undeploy.wsdd  

 

 

Figure 14 - Modification of example script 

 

During the execution of the invocations to the web service we will be able to see the events 

generated and transmitted to the Event Receiver while the SAOP messages exchanged are displayed 

to the Event Collector. 
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With the second example we demonstrate the event collection from the execution of a BPEL 

process. The sample BPEL process is from the Bexee BPEL execution engine and can be found in 

the $HOME/bexee-0.1/samples/BookTravel/TravelProcess/ directory. For the same reasons as 

above the deployment and undeployment of the web services that this process uses must be done to 

the 8081 port. Thus, we must edit the built.xml file located in $HOME/ bexee-

0.1/samples/BookTravel/TravelProcess/ and adjust the port number in the sections referring 

to the deployment and undeployment of the process as shown in Figure 15. 

 

Figure 15 - Modification of the built.xml 
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After that we can use the commands: 

• ant deploy: for the deployment of the service 

• ant start: to invoke the process 

• ant undeploy: to undeploy the  service. 

 

5.3.2.1 Implementation Limitations/Benefits of Capturing SOAP messages 

Currently our implementation is limited in capturing SOAP messages based on the synchronous 

SOAP over HTTP message exchange. HTTP messaging protocol consists of a response message for 

each request message during a HTTP connection. Therefore every SOAP request shall have a 

response message. Our implementation is capable to capture and correlate the request/response 

messages even if other invocations have taken place in the time between.   

In some cases the web service is possible to respond with a Fault message. This can happen when 

the request message is faulty (e.g. bad method parameter values, improperly formatted) or for other 

back-end problems. In these cases the response message has a different structure that informs the 

client for the faults that had been encountered. For now our collector can not distinguish this kind of 

messages. 

Finally SOAP messages are also exchanged by BPEL engines. BPEL engines can orchestrate 

existing Web Services, by defining interactions among them. By this way BPEL engines can offer 

new services by composing and integrating existing services. Any BPEL process-a composition of 

web services- is appeared to the end user as a single web service. When the user requests the 

execution of such a service the BPEL engine executes a number of requests to other web services in 

order to compose the response to the request. In our implementation of Event Collector we took into 

account such processes and it is possible to distinguish and collect events produced by such BPEL 

engines. 
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6. Event Capturing at the Application Layer 

6.1. Aspect based capture 

This section gives a preliminary report into the event capturing mechanism we plan to develop for 

monitoring binary executables for which we do not have the source code and which have been 

developed with a language other than Java. The problem in this case is that there is usually 

extremely little information one can derive from the binary code and it is difficult to control it at 

specific locations. That is, one cannot easily create a mechanism for stopping an application when a 

particular internal function is called or some variable changes its value. Indeed, most of the time the 

information which assigns names to the internal variables and functions has been lost at this stage. 

This is the basic reason why there has been a lot of work on Aspect-Oriented Programming (AOP) 

for Java, where the bytecode form of a program contains all the information we need, while there’s 

extremely little work on AOP for C/C++ binaries where this information is traditionally removed 

(mostly for optimisation reasons). 

The basic design goal of AOP is to weave (i.e., introduce) additional code into an application at 

particular points (usually before and after some function call). So it needs to be able to identify a 

particular function/method F, and introduce a new function call A before F is executed and another 

function B after F has been executed. In order to be able to identify a specific function (or variable) 

in a binary executable, we need to have what is commonly called debugging information for that 

binary. That is, the binary should have been compiled with the appropriate flags for producing extra 

information which is used during debugging. This information is always present in a normal Java 

bytecode file and contains the names of the functions, variables, etc. that form the program. It also 

contains information which allows debugging tools to stop the execution of the program 

temporarily at various locations so that the developers can examine the internal state of the 

program. In the Linux OS that we are mainly working on, the default compiler and debugger is 

GCC [11] & GDB [12] respectively. When passed the –g option GCC produces the extra debugging 

information needed by GDB. The latter can then be used to set so called breakpoints, i.e., places in 

the code where the execution of the code should be stopped. These breakpoints can be at the 

entrance to a function or even at a specific source line. Once the program is stopped, the developer 

can use the front-end of GDB to examine the state of the system, call other functions, etc. Another 

useful option of GDB is its ability to set watch-points, i.e., conditions upon which the program 

should be stopped. These conditions are defined with respect to the values of the program’s 

variables. 

Therefore, one can use this mechanism to build an AOP-like tool for C/C++ binary programs, 

where the aspects are introduced through breakpoints and watchpoints. A very simple such 

prototype can communicate with GDB using its textual interface, passing it commands to execute 

and receiving the results as strings that it then parses. Indeed this is how some of the interfaces to 

GDB currently work (e.g., DDD [8], Emacs, GDBtk). 

Some of the disadvantages of this approach are: 

 It is very sensitive to changes in GDB's output. 

 Performance is restricted by the speed of communication between the GUI and GDB. 
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 It is difficult to keep the GUI 
4
 consistent with the CLI 

5
. 

However, there is an ongoing project for exposing the internal functionality of GDB as a normal 

library (libgdb, see [13]). Using this library one can develop the AOP-like tool we envisage 

programmatically, without having to send commands and receive results as strings. 

Using this tool we will be able to stop a program at specific locations (in our case at function calls), 

call some other code (our event collectors) and then restart the application. We will be able to 

observe internal function calls and variables, calls to the middleware, system calls, signals, 

exceptions, etc. The only problem is that this tool will only work for programs compiled with the 

GCC compiler and then only if they have been compiled with the debugging information enabled 

(i.e., the –g switch). 

 

                                                 

4
 Graphical User Interface 

5
 Command-Line Interface 
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7. Conclusion & Future Work 

In this document we have described the basic set of information collection mechanisms that we 

have developed in the SERENITY project in order to support run-time security and dependability 

monitoring. These mechanisms support the collection of events from: 

 Operating System Calls, and 

 Middleware including mechanisms for collection of events from tuple spaces and 

communication protocols 

To provide a uniform way of reporting the events captured by the above mechanisms we have 

defined an XML schema which we have discussed in this report. 

The implementations of the above event collection mechanisms are provided as a source code 

archive that accompanies this deliverable. This archive includes also simple applications that can be 

used to deploy the developed mechanisms in order to demonstrate their use. The basic instructions 

for the installation and use of these applications have been given in this deliverable. 

Additional mechanisms to support the collection of events from application layers will be specified 

and implemented in the next deliverable on event collection mechanisms (A4.D2.4) that is due in 

month 15. As part of the investigation of possible mechanisms for event collection at the 

application layer we will experiment with: 

 Aspect-based event collection 

 Java bytecode instrumentation 

 Source code instrumentation 
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Appendix A. XML Schema of Events 

<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 

    <xs:element name="event" type="eventType"/> 

     

    <xs:complexType name="eventType"> 

        <xs:sequence> 

            <xs:element name="eventID" minOccurs="1"  

                        maxOccurs="1" type="EventID"/> 

            <xs:element name="type" minOccurs="1"  

                        maxOccurs="1" type="EventType"/> 

            <xs:element name="message_args"  type="MessageArgsList"  

                        minOccurs="1" maxOccurs="1"/>             

        </xs:sequence> 

    </xs:complexType> 

 

    <xs:complexType name="MessageArgsList"> 

        <xs:sequence> 

            <xs:element name="sender" type="Entity"  

                        minOccurs="1" maxOccurs="1" /> 

            <xs:element name="receiver" type="Entity"  

                        minOccurs="1" maxOccurs="1" /> 

            <xs:element name="context" type="Context"  

                        minOccurs="1" maxOccurs="1" /> 

        </xs:sequence> 

    </xs:complexType> 

     

    <xs:complexType name='Entity'> 

        <xs:sequence minOccurs="1" maxOccurs="1"> 

            <xs:element name="name" type="xs:string"  

                        minOccurs="0" maxOccurs="1"/> 

            <xs:element name="ipAddress" type="ip"  

                        minOccurs="0" maxOccurs="1"/>    

            <xs:element name="port" type="xs:long"  

                        minOccurs="0" maxOccurs="1"/> 

            <xs:element name="UserID" type="xs:long"  
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                        minOccurs="0" maxOccurs="1"/>    

            <xs:element name="processID" type="xs:long"  

                        minOccurs="0" maxOccurs="1"/> 

        </xs:sequence> 

    </xs:complexType> 

     

    <xs:simpleType name="ip"> 

        <xs:restriction base="xs:string"> 

            <xs:pattern value = "[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}"/> 

        </xs:restriction> 

    </xs:simpleType> 

     

    <xs:simpleType name="Status">   

        <xs:restriction base ="xs:string"> 

            <xs:pattern value = " REQ-B|REQ-A|RES-B|RES-A"/> 

        </xs:restriction> 

    </xs:simpleType> 

 

    <xs:complexType name="EventType">   

        <xs:choice minOccurs="1" maxOccurs="1"> 

            <xs:element name="OperationMessage" type="OpMsg"/> 

            <xs:element name="DataMessage" type="DataMsg"/> 

        </xs:choice> 

    </xs:complexType> 

     

    <xs:complexType name='OpMsg'> 

        <xs:sequence minOccurs="1" maxOccurs="1"> 

            <xs:element name="operationName" type="xs:string" 

                        minOccurs="1" maxOccurs="1"/> 

            <xs:element name="operationID" type="xs:long"  

                        minOccurs="1" maxOccurs="1"/> 

            <xs:element name="status" type="Status"  

                        minOccurs="1" maxOccurs="1" /> 

            <xs:element name="op_args" type="argumentsType"  

                         minOccurs="0" maxOccurs="1"/> 

        </xs:sequence> 

    </xs:complexType> 
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    <xs:complexType name="DataMsg"> 

        <xs:sequence>   

            <xs:element name="type" type="xs:string"  

                        minOccurs="1" maxOccurs="1"/> 

            <xs:element name="value" type="xs:string"  

                        minOccurs="1" maxOccurs="1"/> 

        </xs:sequence> 

    </xs:complexType> 

     

    <xs:complexType name="Context"> 

        <xs:sequence> 

            <xs:element name="collectionTime" type="xs:dateTime"  

                        minOccurs="1" maxOccurs="1"/> 

            <xs:element name="reportTime" minOccurs="1"  

                        maxOccurs="1" type="xs:dateTime"/> 

            <xs:element name="eventSource" type="Entity"  

                        minOccurs="1" maxOccurs="1" /> 

        </xs:sequence> 

    </xs:complexType> 

        

    <xs:simpleType name="EventID"> 

        <xs:restriction base="xs:unsignedLong"/> 

    </xs:simpleType> 

     

    <xs:complexType name="argumentsType"> 

        <xs:sequence minOccurs="1" maxOccurs="unbounded"> 

            <xs:element type="argumentType" name="argument"/> 

        </xs:sequence> 

    </xs:complexType> 

     

    <xs:complexType name="argumentType"> 

        <xs:choice maxOccurs="1"> 

            <xs:element name="SimpleArgument" type="simpleArgument"  

                        minOccurs="1" maxOccurs="1"/> 

            <xs:element name="Struct" minOccurs="1" maxOccurs="1"> 

                <xs:complexType> 

                    <xs:sequence minOccurs="1" maxOccurs="unbounded"> 

                        <xs:element type="argumentType" name="variable"/> 
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                    </xs:sequence> 

                </xs:complexType> 

            </xs:element> 

        </xs:choice> 

    </xs:complexType> 

     

    <xs:complexType name="simpleArgument"> 

        <xs:sequence minOccurs="1" maxOccurs="1"> 

            <xs:element name="name" type="xs:string"  

                        minOccurs="1" maxOccurs="1"/> 

            <xs:element name="type" type="xs:string"  

                        minOccurs="1" maxOccurs="1"/> 

            <xs:element name="value" type="xs:anySimpleType"  

                        minOccurs="1" maxOccurs="1"/> 

            <xs:element name="argumentType" type="xs:string"  

                        minOccurs="1" maxOccurs="1"/> 

        </xs:sequence> 

    </xs:complexType> 

     

</xs:schema> 

Table 7 – Event representation XML schema 
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Appendix B. JavaSpace operations mapping 

This appendix introduces the mapping between the tuplespace operations defined by the JavaSpace 

Specifications and the general tuplespace model described in paragraph 5.1.2. 

JavaSpace Abstract Tuplespace Model 

Lease write(Entry entry, 

            Transaction txn, 

            long lease) 

 

out(entry) 

Entry read(Entry tmpl, 

           Transaction txn, 

           long timeout) 

 

rd(tmpl) 

Entry readIfExists(Entry tmpl, 

                   Transaction txn, 

                   long timeout) 

 

rdp(tmpl) 

Entry take(Entry tmpl, 

           Transaction txn, 

           long timeout) 

 

in(tmpl) 

Entry takeIfExists(Entry tmpl, 

                   Transaction txn, 

                   long timeout) 

 

inp(tmpl) 

Collection take(Collection tmpls, 

                Transaction txn, 

                long timeout, 

                long maxEntries) 

 

rew(tmpl, null) 

MatchSet contents(Collection tmpls, 

                  Transaction txn, 

                  long leaseDuration, 

                 long maxEntries) 

 

copy_collect(tmp) 

List write(List entries, 

           Transaction txn, 

           List leaseDurations) 

 

rew(null, entries) 

Table 8 - JavaSpace operations Mapping 
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