

A4.D2.2 – Basic set of Information Collection
Mechanisms for Run-Time S&D Monitoring

C. Kloukinas, C. Ballas, D. Presenza, G. Spanoudakis

Document Number A4.D2.2

Document Title Basic set of Information Collection Mechanisms for Run-Time
S&D Monitoring

Version 0.15

Status Final

Work Package WP 4.2

Deliverable Type Report

Contractual Date of Delivery 31 August 2006

Actual Date of Delivery 11 October 2006

Responsible Unit CUL

Contributors CUL, ENG

Keyword List S&D monitoring, runtime events, event capture

Dissemination level PU

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 2 of 55

Change History

Version Date Status Author (Unit) Description

0.1 14/7/2006 Draft Christos Kloukinas Table of contents, indicative

section contents

0.2 28/7/2006 Draft Christos Kloukinas First draft with event structure

and description of event

mechanisms (chapters/sections

1, 2, 3, 4, 5.3.2, 6, 7 and

appendices A &B)

0.3 30/7/2006 Draft Domenico Presenza Event collection for tuple spaces

0.4 6/8/2006 Draft George Spanoudakis Integration of materials from

ENG (sections 5.1, 5.2, 5.3.1),

description of EC-Assertion

0.5 11/8/2006 Draft Costas Ballas Amendments to XML schema

for events

0.6 21/08/2006 Draft Domenico Presenza Modified the text according to

the comments to the previous

version. Aligned Tuple Space

Proxy Architecture to the

General Architecture of figure

2. Completed specification of

the Tuple Space Abstract

Language. First draft of the

mapping between the Tuple

Space Abstract Language and

the SERENITY event language.

Added Appendix B.

0.7 25/8/2006 Draft George Spanoudakis Editing

0.14 25/9/2006 Draft Costas Ballas Merging of final ENG materials

0.15 11/10/2006 Final Costas Ballas Corrections for adherence to the

quality requirements.

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 3 of 55

Executive Summary

This document specifies the basic set of information collection mechanisms that we have developed

in the SERENITY project in order to support run-time security and dependability monitoring. The

developed mechanisms include:

 Operating System event collection mechanisms, i.e. mechanisms that support the

collection of events which relate to system calls to the operating platform on which an

application runs, for example calls of operations for creating, reading and accessing files.

 Middleware layer event collection mechanisms, i.e. these mechanisms that support

the collection of events which relate to any middleware on which an application may run

including mechanisms for tuple space event collection, workflow engine event collection

and communication Protocol event collection.

The development of the above mechanisms has been based on the definition of an XML event

representation schema that we have specified in order to provide a uniform way of reporting the

events captured by the above mechanisms to the monitoring components of the SERENITY

framework. This schema is also defined in this deliverable.

Furthermore, the implementations of the above event collection mechanisms are provided as a

source code archive that accompanies this deliverable. This archive includes also simple

applications that can be used to deploy the developed mechanisms in order to demonstrate their use.

The basic instructions for the installation and use of these applications have been given in this

deliverable.

Additional mechanisms to support the collection of events directly from applications will be

specified and implemented in the next deliverable on event collection mechanisms (A4.D2.4) that is

due in month 15. As part of the investigation of possible mechanisms for event collection at the

application layer we will experiment with:

 Aspect-based event collection

 Java bytecode instrumentation

 Source code instrumentation

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 4 of 55

Table of Contents

Change History ..2

Executive Summary ...3

Table of Contents ...4

1. Introduction...6

1.1. S&D Patterns in SERENITY ..6

1.2. Purpose of this deliverable ..6

1.3. Overview of the Monitoring Language ...6

1.3.1. Overview of Event Calculus ..7

1.3.2. Special types of fluents and events used in EC-Assertion ...7

1.3.3. Example of EC-Assertion monitoring specifications...10

2. Basic Architecture for Event Capturing ...14

3. Event Representation Schema ..18

4. Event Capturing at the OS layer ...25

4.1. System calls proxies ..25

4.1.1. Advantages, Limitations & Extensions..26

4.1.2. Capture of System Calls..27

5. Event Capturing at the Middleware Layer..30

5.1. Tuple space proxies ...30

5.1.1. The tuplespace event collector ...31

5.1.2. A Tuplespace model for the Tuplespace interface...31

5.1.3. Control Interface ..33

5.1.4. Logger Interface...33

5.1.5. Dynamic Behaviour ...33

5.2. Workflow engine event capturing ...34

5.2.1. Distributed engines events ...34

5.2.2. QoS-aware engines events ...35

5.3. Event capture based on communication protocols ..36

5.3.1. Event capture on Tuple Space..37

5.3.2. Capture of SOAP messages ...37

5.3.2.1 Implementation Limitations/Benefits of Capturing SOAP messages45

6. Event Capturing at the Application Layer ..46

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 5 of 55

6.1. Aspect based capture ...46

7. Conclusion & Future Work ..48

Appendix A. XML Schema of Events ...49

Appendix B. JavaSpace operations mapping...53

References ..54

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 6 of 55

1. Introduction

This document presents the basic set of event collection mechanisms which we have developed in

the SERENITY project in order to support run-time security and dependability monitoring.

In order to help the reader we will first give a short description of the S&D patterns in SERENITY

so that it is easier to understand how the event collection mechanisms will be used in SERENITY.

Then, we will briefly cover some general aspects of event collection and follow with the

presentation of the architecture we consider, the structure of the information we collect and a

description of the initial set of mechanisms we have developed for information collection.

1.1. S&D Patterns in SERENITY

In SERENITY, S&D requirements are described using what we call "S&D patterns". These patterns

describe S&D requirements and generic solutions to them, i.e., a particular security protocol which

can meet the specified requirement. Along with the solution, an S&D pattern contains a description

of the context of the solution, i.e., the specific conditions under which this solution is applicable, as

well as, a set of monitoring rules which must be monitored at run-time to ensure that the solution

and therefore the system that incorporates it correctly meets its S&D requirements. The monitoring

rules can be used either for asserting certain requirements which cannot be proven statically or for

asserting the context conditions of each solution in each possible state of the running system which

must be satisfied for the solution to work properly.

An S&D pattern may be implemented in different ways and for different systems by what has been

termed in the project as "S&D pattern implementations". In general, an S&D pattern contains a

single S&D requirement, a solution for this requirement, a set of conditions which must be satisfied

for the solution to work, and a set of monitoring rules. It can also be associated with a number of

different S&D pattern implementations.

The implementations of a pattern are responsible not only for implementing the solution itself but

also for observing and emitting the events that the pattern demands to be monitored (by referring to

them in its monitoring rules). As such, the implementations need to use what we call event

collection mechanisms to catch the different events as they occur and notify them to the monitor.

1.2. Purpose of this deliverable

The objective of this deliverable is to specify and provide an implementation of a basic set of event

collection mechanisms, which can be used by the designers/developers of the different

implementations of SERENITY S&D patterns in order to ease the development of systems that

want to deploy the SERENITY framework and become monitorable by it. The deliverable also

specifies the form in which these events should be reported to the SERENITY framework and the

mechanism for reporting them to it

1.3. Overview of the Monitoring Language

The monitoring engine that we envisage to use in SERENITY will use EC-Assertion as the

language for expressing the monitoring rules which need to be checked for verifying requirements

at run-time. A monitoring rule can express either a functional or a quality requirement and may be

associated with assumptions specifying effects of the behaviour of a system (and its constituent

components) that affect the satisfiability of the requirements expressed by the rules. At runtime the

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 7 of 55

monitoring engine checks whether the monitoring rules are satisfied. During this check, any

assumptions that have been specified for the rules are also used to generate additional information

about the effects of the behaviour of the system and its components which affect the satisfiability of

the rules.

EC-Assertion has been defined as an extended form of event calculus (EC) which is a first-order

temporal formal language thus allowing us to specify properties of dynamic systems which change

over time.

1.3.1. Overview of Event Calculus

In EC properties of dynamic systems which change over time are specified in terms of events and

fluents. An event is something that occurs at a specific instance of time (e.g., invocation of an

operation) and may change the state of a system. Fluents are conditions regarding the state of a

system. A fluent may, for example, signify that a specific system variable has a particular value at a

specific instance of time. Fluents are initiated and terminated by events

The occurrence of an event in EC is represented by the predicate Happens(e,t,ℜ(t1,t2)). This

predicate signifies that an instantaneous event e occurs at some time t within the time range ℜ(t1,t2).

The boundaries of ℜ(t1,t2) can be specified by using either time constants or arithmetic expressions

over the time variables of other predicates in an EC formula.

The initiation of a fluent is signified by the EC predicate Initiates(e,f,t). The meaning of this

predicate is that a fluent f starts to hold after the occurrence of an event e at time t. The termination

of a fluent is signified by the EC predicate Terminates(e,f,t). The meaning of Terminates(e,f,t) is

that a fluent f ceases to hold after the event e occurs at time t. An EC formula may also use the

predicates Initially(f) and HoldsAt(f,t) to signify that a fluent f holds at the start of the operation of a

system and at time t, respectively.

1.3.2. Special types of fluents and events used in EC-Assertion

Our EC based language uses special types of events and fluents to specify monitorable properties of

systems. More specifically, fluents can be defined by the user as relations between objects as

follows:

relation(Object1, …, Objectn) (I)

where relation is the name of the relation that takes as arguments n objects (Object1, …, Objectn)

that can be fluents or terms. A pre-defined relation for fluents that is commonly used is:

valueOf(variable, value_exp) (II)

The meaning of (II) is that the fluent signified by variable has the value value_exp. In (II),

 variable denotes a typed variable or a list of typed variables which may be:

• System variables − A system variable is a variable of the system that is being monitored

whose value can be captured at any time during the monitoring process, or

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 8 of 55

• Monitoring variables − A monitoring variable is introduced by the users of the

monitoring framework to represent the deduced states of the system at runtime (i.e. states

which the system itself might not be aware of but the monitor of the system uses in order to

reason about the system).

If variable has the same name as a variable in the monitored system then it denotes this variable

and is treated as an internal variable. In all other cases, variable denotes a monitoring variable

and its type is determined by the type of value_exp as described below.

 value_exp is a term that either represents an EC variable or signifies a call to an operation

that returns an object of some type. The operation called by value_exp may be an internal operation

that is provided by the monitoring framework or an operation that is provided by an external entity.

If value_exp signifies a call to an operation, it can take one of the following two forms:

• S:O(_Oid,_P1,…,_Pn) that signifies the invocation of an operation O in an external

component S.

• self:O(_Oid,_P1,…,_Pn) that signifies the invocation of the built-in operation O of the

monitor.

In these forms,

• _Oid is a variable whose value identifies the exact instance of O's invocation within a

monitoring session, and

• _P1, …, _Pn are variables that indicate the values of the input parameters of the operation

O at the time of its invocation.

The internal operations which may be used in the specification of fluents are shown in Table 1. An

example of an internal operation is add(n1:Real, n2:Real):Real that returns n1+n2.

In addition to the generic fluents introduced above, we are extending EC-Assertion with a set of

predefined fluents to support the specification of security monitoring rules. Two such fluents are:

 authorised(authorisingAgent,authorisedAgent,e): This fluent denotes that the agent

authorisedAgent has been authorised to receive and process the event e or to send an event e by

the agent authorisingAgent.

 exposes(o, owner, i): This fluent denotes that the response generated from the execution of

an operation o will disclose an information term i which belongs to the agent owner.

Events in our framework represent exchanges of messages between the agents that constitute a

system. A message can invoke an operation in an agent or return results following the execution of

an operation. Events are described in EC according to the following generic form:

e(_id, _sender, _receiver, _status, _o, _source)

where:

 _event is the name of the event

 _ID is a unique identifier for the event

 _sender is the name of the entity that sent the message.

 _receiver is the name of the entity that receives the message.

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 9 of 55

 _status represents the processing status of an event. The status of the event can be: (i) REQ-

B, that is a request for the invocation of an operation that has been received but whose

processing has not started yet; (ii) REQ-A, that is a request for the invocation of an operation

that has been received and whose processing has started; (iii) RES-B, that is a response

generated upon the completion of an operation that has not been dispatched yet; or (iv) RES-A,

that is a response generated upon the completion of an operation that has been dispatched.

 _o is a list of arguments and their types that the operation/event takes.

 _source is the name of the agent that provided information about the event.

In addition to the EC predicates and event/fluent denoting terms that we overviewed above,

formulas that express properties that can be monitored in EC-Assertion may use the predicates <

and = to express time conditions (the predicate t1 < t2 is true if t1 is a time instance that occurred

before t2, and the predicate t1 = t2 is true if t1 is a time instance that is equal to t2) and to compare

values of different variables. Also an EC formula that expresses a monitorable property must

specify boundaries for the time ranges ℜ(LB,UB) which appear in the Happens predicates – there

are closed ranges, i.e., by saying that time instance t1 is in ℜ(LB,UB) we mean that LB<=t1 and

t1<=UB.

Operation Description

add(n1:Real, n2:Real): Real This operation returns n1+n2

sub(n1:Real, n2:Real): Real This operation returns n1-n2

mul(n1:Real, n2:Real): Real This operation returns n1* n2

div(n1:Real, n2:Real): Real This operation returns n1/n2

append(a[]: list of <T>, e:T): list of <T>

where T is Real, Int or String.

This operation appends e to a[].

del(a[]: list of <T>, e:T): list of <T>

where T is Real, Int or String.

This operation deletes the first occurrence of e in a[].

delAll(a[]: list of <T>, e:T): list of <T>

where T is Real, Int or String.

This operation deletes all occurrences of e in a[].

size(a[]: list of <T>): Int

where T is Real, Int or String.

This operation returns the number of elements in a[].

max(a[]: list of <T>):<T>

where T is Real, Int or String.

This operation returns the maximum value in a[].

min(a[]: list of <T>):<T>

where T is Real, Int or String.

This operation returns the minimum value in a[].

sum(a[]: list of <T>):<T>

where T is Real or Int.

This operation returns the sum of the values in a[].

avg(a[]: list of <T>): <T>

where T is Real or Int.

This operation returns the average of the values in a[].

median(a[]: list of <T>):<T> This operation returns the arithmetic median of the
values in a[].

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 10 of 55

where T is Real, Int or String. values in a[].

mode(a[]: list of <T>): <T>

where T is Real, Int or String.

This operation returns the most frequent element in a[].

new(type_name:String): ObjectIdentifier This operation creates a new object instance of type T
and returns an atom that is a unique object identifier for
this object.

Table 1 - Built-in operations of EC-Assertion

If the variable t in such predicates is existentially quantified, at least one of LB and UB must be

specified. These boundaries can be specified by using: (i) constant time indicators or (ii) arithmetic

expressions of time variables t' which appear in Happens predicates of the same formula provided

that the latter variables are universally quantified, and that the expression appears in their scope. If t

is a universally quantified variable both LB and UB must be specified. Happens predicates with

unrestricted universally quantified time variables take the form Happens(e,t,ℜ(t,t)). These

predicates express instantaneous events. Furthermore, a formula is valid in EC-Assertion if the time

variables of all the predicates which include existentially quantified non-time variables, take values

in time ranges with fixed boundaries. These restrictions guarantee the ability to check the

satisfiability of formulas.

A monitoring specification in EC-Assertion is composed of:

 a monitoring rule which defines in a parameterised form the event calculus formulas that

will need to be monitored at runtime, and

 a set of assumptions which define in parameterised forms the event calculus formulas that

can be used at runtime to deduce information about the state of the monitored systems that affects

the satisfiability of the monitoring rule based on captured runtime events.

1.3.3. Example of EC-Assertion monitoring specifications

To illustrate the use of EC-Assertion in the specification of monitoring rules and assumptions, we

use a case study based on an e-healthcare system supporting monitoring, assistance and provision of

medication to patients with critical medical conditions based on smart-item technology that is

described in the A7.D2.1 deliverable of SERENITY [6]. In this case study, patients who have been

discharged from hospitals with potentially threatening medical conditions can use an e-health

terminal (EHT) − that is an e-health application installed on their PDAs − to contact an emergency

response centre (ERC) for assistance and fast ordering of medication.

In one scenario of this case study, a patient who had suffered from a cardiac arrest, feels unwell and

sends through his EHT a request for assistance to ERC. To establish the cause of the problem, ERC

retrieves the patient’s medical record through the EHT. From this record, ERC establishes that the

patient’s doctor is on vacation and broadcasts a message to a group of doctors known to be able to

substitute the patient’s doctor. A doctor D receives this message on his own EHT and replies

immediately. ERC verifies D’s ability to substitute for the patient’s doctor for the specific

assistance request. Following this, D’s EHT interrogates ERC to receive the patient’s medical data.

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 11 of 55

D analyses all these data, identifies the most appropriate treatment, and writes the electronic

prescription on his/her EHT which subsequently sends the prescription to ERC which forwards it to

the patient’s EHT after registering it.

In this scenario, Campadello et al. [6] have identified the following confidentiality requirement:

“A patient’s substitute doctor can access the patient’s medical data if and only if he is the

selected doctor” (i.e., Req. 2.2.1.7 in [6])

Suppose that ERC provides the operation fetchPatientData(docID:String, request:String,

patInfo:MedicalRecord) which retrieves the medical record of a patient (patInfo) given (as input) a

medical assistance request associated with the patient (request) and the identifier of a requesting

doctor (docID). Given the above operation, the requirement Req. 2.2.1.7 can be monitored by a

monitoring rule requiring that when a doctor's EHT invokes the operation fetchPatientData in ERC

which will disclose confidential patient data, the doctor's ID that is provided as an input parameter

to the operation fetchPatientData must be authorised to request the execution of this operation and

therefore receive the relevant patient record. This rule is specified below:

Rule CR1:

 ∀ _eID1, _ercID, _docEhtID, _request:String; _patInfo: MedicalRecord;

t1,t2:Time

 Happens(

 e(_eID1,_ercID,_docEhtID, RES-B,

fetchPatientData(_docID,_request,_patInfo), _ercID),t1,ℜ(t1,t1)) ∧

 HoldsAt(exposes(

 fetchPatientData(_docID,_request,_patInfo), _patInfo), t1) ⇒

 HoldsAt(authorised(_ercID,_docEhtID,

 e(_eID1, _ercID,_docEhtID, RES-B,

fetchPatientData(_docID,_request,_patInfo),_ercID)), t1)

In this rule,

 the predicate

Happens(

e(_eID1,_ercID,_docEhtID,RES-B,

fetchPatientData(_docID,_request,_patInfo), _ercID),t1,ℜ(t1,t1))

denotes the occurrence of the event

e(_eID1,_ercID,_docEhtID,RES-B,

fetchPatientData(_docID,_request,_patInfo), _ercID)

that represents the response of the ERC to the invocation of the operation

fetchPatientData(_docID,_request,_patInfo)

 the predicate

 HoldsAt(exposes(fetchPatientData(_docID,_request,_patInfo),

 _patInfo), t1)

 denotes that the execution of the operation fetchPatientData(_docID,_request,_patInfo) will

disclose patient data (_patInfor), and

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 12 of 55

 the predicate

HoldsAt(authorised(_ercID,_docEhtID,

e(_eID1, _ercID,_docEhtID, RES-B,

fetchPatientData(_docID,_request,_patInfo),_ercID)), t1)

 denotes that a doctor's EHT is authorised by ERC to receive a response from the execution

of the operation fetchPatientData(_docID,_request,_patInfo) will disclose patient data (_patInfor)

(following an earlier invocation of this operation).

Assuming that the authorisation of a doctor's EHT to request the execution of the operation

fetchPatientData for a specific patient is determined by the operation verifyDoctor(docID:String,

request:String, verified: Boolean) of ERC which verifies if the doctor (docID) can deal with a given

request (request), the monitoring of the above rule requires the specification of the following

assumption:

Assumption CA1:

∀_eID1, _eID2,_ercID,_docEhtID:String;

 _verified: Boolean; t:Time

 Happens(e(_eID2,_ercID,_ercID, RES-A,

 verifyDoctor(_docID,_request,_verified),_ercID), t,ℜ(t,t)) ∧

 HoldsAt(equalTo(_verified, True),t) ⇒

 Initiates(e(_eID2,_ercID,_ercID, RES-A,

 verifyDoctor(_docID,_request,_verified), _ercID),

 authorised(_ercID,_docEhtID,

 e(_eID1, _ercID,_docEhtID, RES-B,

fetchPatientData(_docID,_request,_patInfo),_ercID)), t)

Whilst monitoring CR1, the assumption CA1 is used to derive the authorisation of a doctor's EHT

(_docEhtID) to receive a response from the execution of the operation fetchPatientData that will

disclose the record of a specific patient (_patInfo). This information is derived by deduction from

the execution of the operation verifyDoctor. More specifically, according to CA1 the fluent

authorised(_ercID,_docEhtID,e(_eID1,_ercID,_docEhtID,RES-

B,fetchPatientData(_docID,_request,_patInfo), _ercID)) which denotes the authorisation of a

doctor's EHT (_docEhtID) to receive the results of the execution of the operation

fetchPatientData(_docID,_request,_patInfo) that will expose _patInfo is initiated only if the event

e(_eID2,_ercID,_ercID, RES-A, verifyDoctor(_docID,_request,_verified), _ercID) that indicates

the dispatch of a response from the execution of the operation verifyDoctor has occurred and the

result of this operation (i.e., the value of the variable _verified) is equal to a value that indicates the

authorisation of the doctor that owns the EHT (i.e., True). Following the initialisation of the above

authorisation fluent at some time t0 the predicate HoldsAt(authorised(_ercID,_docEhtID, e(_eID1,

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 13 of 55

_ercID,_docEhtID, RES-B, fetchPatientData(_docID,_request,_patInfo),_ercID)), t1) of the rule

CR1 can be shown to hold at any time t1 after t0 by the following axiom of EC [19]
1
:

HoldsAt(f,t2) ⇐ (∃e,t) Happens(e,t,ℜ(t1,t2)) ∧ Initiates(e,f,t) ∧

¬Clipped(t,f,t2)

Furthermore, the monitoring of CR1 will require the initiation of a fluent representing the fact that

the execution of the operation fetchPatientData will disclose confidential information about

patients. This knowledge can be deduced from assumptions about information disclosure by

operations. In our example, to indicate that the execution of the operation fetchPatientData will

expose the data of a specific patient we can specify the following assumption:

Assumption CA2:

Initially(exposes(

 fetchPatientData(_docEhtID,_request,_patInfo),_patInfo))

CA2 specifies that the operation fetchPatientData discloses patInfo and by virtue of the EC axiom

HoldsAt(f,t) ⇐ Initially(f) ∧ ¬Clipped(0,f,t)

it can be used to deduce the predicate

HoldsAt(exposes(fetchPatientData(_docID,_request,_patInfo),_patInfo),t1)

in rule CR1.

To summarise, according to CR1, following a request for the execution of the operation

fetchPatientData by a doctor’s EHT to the ERC it should be checked if the requesting doctor’s EHT

has been authorised to receive the information that is to be disclosed to him/her. Then, according to

CA1 this authorisation can be obtained through the execution of verifyDoctor.

1
 This is true assuming that no other event that could have terminated − i.e. clipped in terms of EC

− the fluent authorised(_ercID,_docEhtID, e(_eID1, _ercID, _docEhtID, RES-B,

fetchPatientData(_docID,_request,_patInfo), _ercID)) occurred between t0 and t1.

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 14 of 55

2. Basic Architecture for Event Capturing

In this section we will describe the basic architecture of the systems which may be monitored in

SERENITY and their deployment architecture that provide the basis for designing and developing

our event collection mechanisms.

Figure 1 - Different layers in a system

As can be seen in Figure 1, we assume a general multi-teer deployment system architecture in

which a software system is implemented and operates as a succession of different layers. Each of

these layers uses the services offered by the lower layer(s). Typically, these layers include the

Operating System (OS) layer, some middleware layer(s) above it (e.g., the Java virtual machine,

workflow execution engines), and finally the application itself. In SERENITY, we are interested in

observing events which occur both at the interfaces of the different layers, as well as, at the interior

of these layers in certain cases. For example, we may wish to observe the value of an internal

application variable (application layer internal event) or the interactions of the application and the

OS (application-OS interface event).

Based on the generic system architecture of Figure 1, we distinguish the following generic

categories of the event collection mechanisms that will be developed in SERENITY:

1. Operating System event collection mechanisms − these mechanisms will support the

collection of events which relate to the operating platform on which an application runs, for

example calls of operations for creating, reading and accessing files.

• System Call event collection

2. Middleware layer event collection − these mechanisms will support the collection of events

which relate to any middleware on which an application may run and will include

mechanisms for:

• Tuple space event collection

• Workflow engine event collection

• Communication Protocol event collection

3. Application Call event collection − these mechanisms will support the collection of events

which relate to the application itself as, for example, calls of operations in the API of an

Operating System

 Middleware

Application

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 15 of 55

application, responses generated by the application after the invocation of operations,

updates of internal application variables etc. The collection of such events may be based on:

• Aspect-based event collection mechanisms and construction of generic application

wrappers that can catch the calls to an application and responses generated by it.

• Java bytecode instrumentation

• Source code instrumentation

In this deliverable, we concentrate on the Operating System and Middleware event collection

mechanisms, i.e., system call and communication protocol event collection mechanisms. The

collection mechanisms related to the application layer will be specified and implemented in the next

deliverable on event collection mechanisms (A4.D2.4) which is due in month 15.

Table 2 presents a summary of the events that can be captured by the SERENITY event capturing

mechanisms. The table indicates the types of the captured events and the deliverable in which the

mechanisms for capturing them will be specified (i.e., this deliverable or A4.D2.4). Event types are

characterised by the layer at which an event occurs (i.e., OS, Middleware and Application) and

whether the event is internal to the layer or external (i.e., an interface event between two layers).

 A4.D2.2 A4.D2.4

Layer OS Middleware Application

 System

Call Event

Collection

Tuple

Space

Event

Collection

Workflow

Engines

Event

Collection

SOAP

Messages

Event

Collection

Java

Source

code

Event

Collection

Java

Bytecode

Event

Collection

C/C++

Binaries

Event

Collection

Interface

Events
���� ���� ���� ���� ���� ���� ����

Internal

Events
 ���� ���� ���� ����

Table 2 – Overview of SERENITY event capturing mechanisms

It should be noted that certain mechanisms can be applied to more than one layer. For example, the

application layer event collection mechanisms could also be applied to the middleware layer. This is

because the application layer event collection mechanisms are generic enough to be applied to a

middleware as well. For example, if the middleware has been implemented in Java then we can use

either the Java source code or the Java bytecode to collect events which are internal to the

middleware.

These event collection mechanisms can be used by the designers/developers of pattern

implementations to capture the events mentioned in the monitoring rules specified in the relevant

patterns. Of course there will be cases where these mechanisms do not suffice, either because they

are not fast enough/small
2
 enough or because the events are not in the categories we are considering

2
 In an embedded system, the memory footprint of the overall application can be very constrained – indeed,

memory is usually the most expensive component of embedded systems.

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 16 of 55

in this deliverable. For example, there may be events internal to an OS, such as device driver status,

which cannot be captured by our generic mechanisms. For such specialised events, the developers

of pattern implementations will need to develop their own event collection mechanisms. Such non

generic event capturing mechanisms may have their own internal specification and implementation

but should adhere to the requirements of reporting events to the SERENITY framework.

Figure 2 – Basic Architecture for Event Collection

These requirements have to do with the particular format that the collected events should have. To

understand this requirement it is helpful to examine the generic architecture that the SERENITY

will adopt for the collection of events and their reporting to its framework. This architecture is

shown in Figure 2. As shown in this figure, first an Event Collector that is connected to a system

that is being monitored or its deployment platform (e.g. middleware) captures the events of interest

during runtime and transmits them through a socket to a remote Event Receiver. The transmitted

events are represented in XML according to an XML schema that we define in Section 3. The Event

Receiver is a component of the SERENITY framework that is responsible for storing the events that

it receives in an event database. This database is accessed by another component of the SERENITY

framework, called Event Calculus (EC) Transformer, at regular intervals. The EC Transformer

retrieves all the new events that have been stored in the event database, translates them into Event

Calculus terms and sends then to the EC monitoring engine. The EC Monitoring Engine accepts the

reported EC terms and checks the monitoring rules against them.

The XML document which describes an event is being transferred as plain text. Many security

issues rises as the data during this transportation can be attacked by a malicious user in order to

prevent the normal functionality of the monitoring system or extract confidential information.

Various kinds of attacks can take place during the transportation of the XML data such as

modification of the data, exposure of data to unauthenticated users, or even attacks directly to the

Event Receiver including, for instance, transmissions of forged XML documents in order to confuse

the EC Monitoring Engine or cause denial of service. Thus, XML event documents must be

protected. Mechanisms for the protection of the integrity, confidentiality, authenticity,

accountability and authorization of XML documents have been introduced by the World Wide Web

Consortium (W3C). XML Signatures [3], for instance can be used to authorize, provide non-

repudiation mechanisms and check the integrity of XML documents, and XML Encryption [14] can

provide document confidentiality. We are currently investigating these standards (along with their

existing implementations) to establish if they can offer a sufficient level of security for the XML

events required by our monitoring system and protect it from attacks. The adoption of such

EC
Monitoring

Engine EC

Terms

EC
Transformer Event

Database

Event
Receiver

Event
Collector

System

Socket

Runtime SERENITY framework

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 17 of 55

mechanisms will be discussed in the second deliverable on event collection mechanisms (i.e.,

A4.D2.4)

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 18 of 55

3. Event Representation Schema

In this section we introduce the XML schema that we have developed to define the representation of

events that are reported to the SERENITY framework. This schema is needed in order to provide a

standard way of representing events which may be created by/observed at different layers of a

system and by different event collectors (e.g., local function calls, remote procedure calls, SOAP

messages, BPEL instructions, etc.).

Our schema assumes that interactions between the components of the systems which are being

monitored are based on exchanging messages which may be calling functions or methods, or

transmit data or signals. Generally, the description of a message should include:

 Message Type

This field contains an unambiguous description of the message’s type. A message

can be either an operation or a communication of data (e.g. signals). When the

message defines an operation this field contains the operation’s name. That is, in the

case of a polymorphic method, the name is a mangling of the operation name and the

type of its arguments. In the case the message concerns a data communication then

the data type and the data themselves are included in this field.

 Sender & Receiver

These fields of an event identify the entity which initiated the event (sender) and the

one which this event is directed to (receiver).

 Event Source

This field describes the entity which the event was captured at (or emitted from), that

is, the sender or the receiver.

 Event status (request / processing notification / response)

This field identifies whether the event is a request for executing an operation to be

executed (request), one which is currently being executed (processing notification) or

one which has already been completed (response). The information herein will play a

major role once we examine control mechanisms; indeed, it is much easier to control

the execution of an operation which has not yet started, than one which is currently

executing or has already finished.

 Event & Operation Correlation ID

The event field contains an ID which can be used for correlating the current event

with other events in the same “transaction”/“session”. The operation ID appears only

in the messages describing operations and it’s used for correlating the current

operation event with other events produced from the same operation. For example, it

can be used to correlate an operation’s response event to the respective operation’s

request event or a requested with a processed operation event.

 Collection Timestamp

This field contains a timestamp which gives the time at which the event collector

mechanism created this event; see Figure 2.

 Reception Timestamp

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 19 of 55

This field contains a timestamp which gives the time at which the event receiver at

the monitoring engine side received this event, again see Figure 2.

 Data types and values

This field contains a portable description of the types of the parameters/results, as

well as, the values of the input arguments.

Our need to support different system layers and implementation languages leads us

towards a solution which is based on WSDL [7] descriptions of the data types.

 Context

The event context depends on the type of the event and the layer it is originating

from. For example, in the case of system calls it can contain the time of the operation

request/execution, the time that was reported to the monitor and the source of the

event. Additional contextual information can be added in different implementations

depending specific needs for monitoring.

Based on the above, we have defined an XML schema for describing events that represent

messages. A graphical representation of this schema is shown in Figure 3 (continued in Figure 4)

and its complete specification is given in 6. According to this schema, an event is described as an

instance of the type eventType and is composed of:

 An element called eventID of type unsignedLong. This element is used to identify the event.

Every event can be uniquely identified using this element with conjunction with the event

source element.

 An element called type of type EventType. This element is used to provide information

about the type of the event. An event can be: (i) a message related to the execution of an

operation (i.e. a message that requests the execution of an operation or a message that

notifies the completion of the execution of an operation) or (ii) a message that transmits data

between systems (e.g. a signal). To capture both these cases, the complex type EvenType is

composed of either an OperationMessage or a DataMessage element.

 An OperationMessage element is used in cases where a message calls or reports the results

of an operation above and is of type OpMsg. The type OpMsg is composed of the elements

operationName, operationID, status and op_args which are used to represent information

related to the execution of an operation. More specifically,

• The element operationName is of type string and is used to specify the name of the

operation.

• The element operationID is of type long and is used to identify the specific instance of an

operation call or response within the execution of an application
3
.

• The element status is of type string and is used to indicate the status of the operation

execution event. The status of an operation execution event is: (i) REQ-B, if the message

is a request for the execution of an operation that has been received but not processed yet,

3
 In cases where a message notifies the response from the execution of an operation, the value of

operationID of the response message must be the same as the value of operationID of the message which

called the operation.

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 20 of 55

(ii) REQ-A, if the message is a request for the execution of an operation that has been

received and its processing has started, (iii) RES-B, if the message is a response ready to

be dispatched but not dispatched yet, or (iv) RES-A, if the message is a response that has

been dispatched.

• The element op_args is of type argumentsType and is used to specify the arguments of

the relevant operation. The element op_args is optional because in some cases operations

may have no arguments. The complex type argumentsType is a sequence of one or more

elements of type argumentType that represent the arguments of the operation. The type

argumentType defines a structure that is composed of either an element called

SimpleArgument or an element called Struct. A SimpleArgument is used to represent

operation arguments that have scalar values (e.g. real or integer values, strings etc). The

type of this element is simpleArgument and is composed of the element’s name, type,

value and argumentType which represent the name, value and type of the relevant

operation argument, respectively. The argumentType represents the type of the argument,

i.e. if the argument is used as an input to the operation (then its value should be IN) or an

output value from the operation (OUT). A Struct element is used to represent operation

arguments of complex types. Struct is defined as a sequence of one or more variable

elements of type argumentType. Thus, Struct can represent arguments of complex

structures which may contain simple arguments as well as structured parts.

 A DataMessage element is used to describe messages that exchange data (e.g. signals).

These elements are of type DataMsg. DataMsg has the elements type and value which are

used to specify the type and the value of a datum exchanged by a data message.

 An element called message_args that is of type MessageArgsList and is used to provide

information regarding the dispatch of a message. The type MessageArgsList is composed of

three elements:

• The element sender which is of type Entity and indicates the entity that dispatched the

relevant message. The type Entity is used to define any entity that can send or receive an

event. Therefore it can be defined using any combination of the following elements:

• Name: defining the name of the sender. In the case of BPEL for example, this

may be the partner name which represents a web service we have invoked.

• ipAddress: the IP address of the entity from which the event was produced.

• port: Port number of the entity

• UserID: the user ID that produced this event

• processID: the process ID that produced this event or that the event refers to.

• The element receiver which describes the receiver of a message (i.e. the entity which will

process the relevant message). The receiver is of the same type as the sender of the

message, and therefore it can be defined using the complex element Entity as described

above.

• The element context which is of type Context and is used to provide additional contextual

information for the specific event. For now, this contextual information includes the time

the event collector captured the event (see the element collectionTime in Figure 4), the

time the event reported to the monitor (see the element reportTime in Figure 4), and the

source of the event (see the element eventSource in Figure 4).

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 21 of 55

Figure 3 – XML Event Representation Schema (part I)

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 22 of 55

Figure 4 – XML Event Representation Schema (part II)

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 23 of 55

An example of an event described according to our event representation XML schema is given in

Table 3. In this example of XML document we can see the representation of an event describing a

system call from an application to the OS. The system call is for the operation open (line 07) and

the arguments that it uses is the pathname for the file that is about to be accessed and the flags that

represent what action is to be taken upon the file. The first argument is shown in lines 11 to 18,

where we state the name, the type, the value and the type of the argument. The second argument is

described in the same way between lines 19 and 26. The sender of this event is identified through

the lines 31 to 35, where it is stated his IP address, his user ID and the process ID. Using the same

way we represent the receiver of this event through the lines 36 to 40. In this case the receiver of the

event is the OS, that’s why the user ID and the process ID are set to zero. Any contextual

information is described between the lines 41 to 49. For this event the contextual information is the

time when the event was collected and the time in which it was reported and the source of the event.

The combination of the fields which describe the event source (lines 44-48) and the event ID (line

4) can help us to identify uniquely this event.

01 <?xml version="1.0" encoding="UTF-8"?>

02 <event xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

03 xsi:noNamespaceSchemaLocation="file:/Z:/workspace1/events/events_v5.xsd">

04 <eventID>23</eventID>

05 <type>

06 <OperationMessage>

07 <operationName>open</operationName>

08 <operationID>2</operationID>

09 <status>REQ-B</status>

10 <op_args>

11 <argument>

12 <SimpleArgument>

13 <name>pathname</name>

14 <type>*char</type>

15 <value>input.dat</value>

16 <argumentType>IN</argumentType>

17 </SimpleArgument>

18 </argument>

19 <argument>

20 <SimpleArgument>

21 <name>flags</name>

22 <type>int</type>

23 <value>0</value>

24 <argumentType>IN</argumentType>

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 24 of 55

25 </SimpleArgument>

26 </argument>

27 </op_args>

28 </OperationMessage>

29 </type>

30 <message_args>

31 <sender>

32 <ipAddress>138.40.95.52</ipAddress>

33 <UserID>1002</UserID>

34 <processID>1617</processID>

35 </sender>

36 <receiver>

37 <ipAddress>138.40.95.52</ipAddress>

38 <UserID>0</UserID>

39 <processID>0</processID>

40 </receiver>

41 <context>

42 <collectionTime>2006-08-30T12:02:57</collectionTime>

43 <reportTime>2006-08-30T12:02:57</reportTime>

44 <eventSource>

45 <ipAddress>138.40.95.52</ipAddress>

46 <UserID>1002</UserID>

47 <processID>1617</processID>

48 </eventSource>

49 </context>

50 </message_args>

51 </event>

Table 3 – Example of an XML document representing an event

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 25 of 55

4. Event Capturing at the OS layer

This is an event capturing mechanism that is positioned between the application/middleware and the

operating system layer and is used to intercept system calls. By using this mechanism, the monitor

is able to obtain the system calls along with their arguments and context (which it interprets as

events). This information may be necessary for checking monitoring rules regarding the correct

execution of an application.

4.1. System calls proxies

For the OS layer, often it is necessary to be able to monitor the requests for system resources from

an application (e.g. file access requests, process priority change requests etc). These requests occur

in the form of so-called system calls. System calls form the API of the OS that is available to the

application and are implemented as special procedures of a library provided along with the OS

kernel that a user-space application can call to pass to the kernel the type of request it wants to

make along with any relevant parameters. For example, in order to obtain access to a file, a user

process needs to make a system call to the OS kernel and pass with it the name of the file, the way it

wants to access the file (read, write, read-write), etc. Then the kernel checks the privileges of the

process and the respective file, updates its internal data structures and returns either a file handle to

the user application or an error indicating the reason for which the request could not be fulfilled.

The ability to monitor these requests is very important because it allows the monitor to verify the

correct functionality of the system at the most basic layer, without which the higher level requests

cannot operate correctly and securely. Our current implementation attaches the event collectors at

the application when the latter starts executing. To understand how this is done we will first

describe the use of system calls in a specific OS, namely Linux.

The OS makes available a number of different types of requests that a user process (UP) can make

to it. The UP then uses the syscall() procedure to initiate these requests. For example, if UP wishes

to find its group ID, it needs to call syscall(SYS_getpgid, pid). Since the syscall procedure is a rather

low-level and cumbersome API, there has been developed a higher-level API, which offers a single

procedure for each type of system call request. This API is implemented inside the libc library. The

libc library is the basic library that any Unix-like operating system uses to define its collection of

system calls and other basic facilities. When applications are executed, they are first linked

dynamically with libc so that they may make use of this higher-level API at runtime. Provided that

it is dynamically linked to libc, the UP would need to call getpgid(pid) in order to find its group ID

which is not only simpler but also allows the compiler to check the type of the argument.

In order to be able to observe the system calls we have developed a new library containing

specialised implementations of the various system calls in libc. Each time a system call is made our

implementation sends a message to a socket containing the description of the particular call and

then forwards the call to the OS by using the low-level API of syscall. By placing our library at the

front of the path for dynamically linked libraries we can ensure that the linker will chose our

implementation of the system calls instead of the one found in libc (Figure 5(a)). Thus, system calls

will be handled by the newly developed library, which can record and transmit the relevant

information to the monitor, before delegating the responsibility for the execution of the system call

to the OS kernel itself.

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 26 of 55

Figure 5 – System call proxies

4.1.1. Advantages, Limitations & Extensions

The advantages of this approach are that it is relatively easy to develop this new library and that we

do not need to change either the application code or the kernel of the underlying OS. The

disadvantages on the other hand are the following. First, an application could have been linked

statically with all the libraries it needs (including libc). In this case our library will be ignored and

the application will communicate with the OS directly. Another possibility is for an application to

not use the higher-level API of libc at all but instead use the low-level one of syscall. Again in this

case our library will not be able to catch these system calls. These disadvantages will exist in any

solution which wishes not to modify the OS kernel and are not specific to our solution.

The alternative that could be used if one wants to ensure that all system calls will be captured,

independently of how the application has been developed and linked, would be to modify the kernel

itself and introduce the code for capturing the system call events inside the kernel (Figure 5(b)).

This is a possibility that we are planning to examine for the second deliverable on event collection

mechanisms (i.e., A4.D2.4).

It should also be noted that we do not catch all the interactions between the OS and an application,

independently of whether we use our current, library-based system call event collection

implementation or a kernel-based one. The only interactions which are captured are the ones which

occur through system calls. Other types of events that we do not catch are the asynchronous signals

that the OS can send to an application (for example to kill it). These signals do not make use of the

system call mechanism and as such are not covered by the mechanisms we have described in this

section. To be more precise, what cannot be captured by the system call event collectors are the

reception of a signal by an application and the invocation of a signal by the OS (to an application).

We can, nevertheless, capture the invocation of a signal by an application towards some other

application because this is performed using a system call (called kill).

Another aspect of the system call proxies which will be further investigated in the next deliverable

is the optimisation of the event communication. Currently, a new socket connection is opened for

each event, the event is transmitted and then the connection is closed. While this suffices for a

proof-of-concept system, it is evident that there is a big room for improvement. A simple

Record

and

transmit

event

Operating System

Our library

APP

Record

and

transmit

events

Record

and

transmit

events

Operating System

Our library

libc

APP1 APP2

(a) Using a library (b) Inside the kernel

libc

Record

and

transmit

event

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 27 of 55

optimisation we will consider is the reuse of the initial socket connection to send the future events

as well, so as to avoid opening a new socket and reclaiming it for each event. Another one has to do

with deferring the transmission of events, choosing to buffer them instead in a local-memory buffer.

This buffer can then be read by another process periodically and that process will be the one

consuming the events and transmitting them to the event receiver, thus allowing the application, the

OS and the system call event-collector to not wait for the actual transmission of the events over the

network.

4.1.2. Capture of System Calls

According to the description in the previous section the implementation of the collection of system

calls is based on a library which is loaded with the application and acts as a middle layer between

the application and the operating system. The additional functionality that this layer introduces is

the transformation of the system calls to events, based on the XML schema described in section 3

and its transmission to the Event Receiver. Our implementation for the capturing of system calls is

based on Debian GNU/Linux system (kernel ver. 2.4.27-2-386). In the implementation of the

library we have implement a set of system calls demonstrating by this way how the development

should be for the whole set of the system calls.

 Implementation

The implementation as mentions above is based on a GNU/Linux system. It has two components:

the Event Receiver and the Event Collector library. The Event Receiver is a simple server

application which can listen to a given port and display any incoming message. In this application

we will be able to see the XML reports of events that the Event Collector library transmits. In order

to execute the application we must go to the directory in which we untar the SCProxies.tgz,

probably $HOME/SCProxies/ and execute the command ./server address port. The argument

address specifies the IP address of the server and the port specifies the port number in which the

application will listen for the events. For example ./server 138.40.95.52 9734 (Figure 6).

Figure 6 - Execution of Event Receiver

The event collection library is the libfuncs.c. There is the code for the system calls we can

intercept. Before we try to compile the library we must edit it and modify the lines 75 and 76

specifying the IP address and port number of the event receiver. According to our example for the

execution of the event receiver the lines shall be modified as shown in Figure 7.

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 28 of 55

Figure 7 - IP/port modification

The “138.40.95.52” and “9734” are the IP address and the port number in which the Event

Receiver is waiting for events.

After these modifications we are ready to compile the library giving the command make while we

are in the same directory as libfuncs.c. For the demonstration of the library in the directory we

included a testing application. This application doesn’t do anything specific. It just calls a number

of system calls that are modified inside our library in order to be give as the chance to see the

creation of the events on the event receiver. To run this application using our library we must

execute in the same directory the command

LD_PRELOAD=/home/costasba/SCProxies/libfuncs.so ./test_app . The test application

begins its execution informing us for the commands that it executes while we can observe in the

event receiver the events generated from the execution of the application as shown in Figure 8.

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 29 of 55

Figure 8 - Reported Event

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 30 of 55

5. Event Capturing at the Middleware Layer

The systems targeted by SERENITY may comprise several different middleware layers. For

example, a system may be using a virtual machine like the Java Virtual Machine (JVM), a Message

Oriented Middleware (MOM) like a tuplespace, or a workflow engine. Typically, SERENITY

patterns will specify monitoring rules defined in terms of events that are dispatched and received by

each of these layers. Consequently, the SERENITY framework should provide a set of mechanisms

for capturing such events. The mechanisms developed in the SERENITY project in order to capture

events at the middleware layer are described in this section.

Our focus is the types of middleware targeted by the SERENITY framework, namely tuple spaces,

workflow engines and communication protocols.

5.1. Tuple space proxies

Tuple spaces are shared repositories of data items which are aimed at supporting coordination and

communication between concurrent processes. The tuplespace concepts were originally introduced

by the Linda coordination language ([10]) but more recently the tuplespace model has been

investigated also as a model to program coordination protocols in distributed computing settings

([9][18]). In tuple-based (data-driven) coordination models, client processes communicate and

coordinate their activities by exchanging tuples of data via tuple spaces.

In this section we introduce the architecture proposed by SERENITY to collect messages

exchanged between a tuplespace client and a tuplespace server.

The proposed architecture is shown in the Figure 5.

Tuplespace
Client

Tuplespace
Proxy

Tuplespace
Service

Logging
Service

Logging Host

Tuplespace Host
Client Host

Tuplespace Tuplespace

Control

Event Receiver

Tuplespace
Client

Tuplespace
Client

Tuplespace
Proxy

Tuplespace
Proxy

Tuplespace
Service
Tuplespace
Service

Logging
Service
Logging
Service

Logging Host

Tuplespace Host
Client Host

Tuplespace Tuplespace

Control

Event Receiver

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 31 of 55

Figure 9 – Deployment of the SERENITY tuplespace logging subsystem

The components in this architecture are:

 Tuplespace client: This component is any application making use of a tuplespace service.

 Tuplespace event collector: This component intercepts tuplespace service requests. The

component forwards tuplespace service requests to the remote tuplespace service and, at the

same time, logs operations by means of the remote logging service.

 Tuplespace service: This component provides the tuplespace service. For testing our

implementation we used the Outrigger tuplespace server available in the Jini environment

[9].

 Event Logging service: This component provides the logging service via the Event Receiver

interface (see also Figure 2 in Section 0).

5.1.1. The tuplespace event collector

A tuplespace event collector provides two interfaces to its clients:

 Tuplespace interface: This interface is used by the clients of a tuplespace proxy to submit

service requests to a tuplespace service. This interface is specific to the actual tuplespace

technology of the tuplespace service components. Our implementation is based on the

JavaSpace specifications.

 Configuration interface: This interface is used by clients to control which tuplespace service

requests operations have to be logged (e.g. clients running on nodes having connections with

limited bandwidth might exploit this feature to reduce the network traffic). Developers of

tuplespace proxies should implement this interface in order to render their proxies suitable

for SERENITY;

A tuplespace proxy component also requires a Logger interface:

 Event Receiver interface: this interface is used by a tuplespace proxy component to log

requests intended for a (possibly remote) tuplespace service.

5.1.2. A Tuplespace model for the Tuplespace interface

The Tuplespace interface is the interface that a Tuplespace Proxy offers to its clients to request

operations on a tuplespace.

The lack of a standard interface for current tuple-based technologies (e.g. JavaSpace [9], TSpace

[20], etc.) implies that the SERENITY Architecture cannot provide a single implementation of the

Tuplespace proxy component and, hence, it is required to develop a proxy for each technology.

However, in the literature there are proposals for general frameworks able to capture the main ideas

underlying the different tuple-based models subsumed by the different technologies. In particular

the SERENITY Tuplespace logger follows the tuplespace framework proposed in [5].

In such a model each client is supposed to operate over a denumerable set of tuple spaces: each

operation has the general form op(…)@s where s is a tuplespace service. In the description of the

operations in the model, for the sake of clarity we omit the tuplespace service specification part.

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 32 of 55

The general model proposed by SERENITY for tuplespace defines the following operations to

modify the content of a tuplespace:

 Basic operations defined in all Linda-like languages:

• out(t): adds a tuple into a tuplespace;

• in(p): remove and return a tuple matching the template p from the tuplespace. The

operation blocks until a tuple matching the p appears;

• rd(p): return (do not remove) a tuple matching the template p from the tuplespace. The

operation blocks until a tuple matching p appears;

 Transaction operations. These operate on multiset of data:

• rew(m1, m2): atomically removes the tuples matching the template m1 and then

atomically produces the multiset data m2;

 Global operations. These operations require a global vision of the shared data space:

• tfa(p): verifies that no data matching a template p are available;

• inp(p): non-blocking version of the take operation;

• rdp(p): non-blocking version of the read operation;

 Global transaction operations. These are transaction operations which are able to test the

global state of a shared data space:

• collect(p): removes and returns all tuples matching the template p;

• copy_collect(p): returns (does not remove) all tuples matching the template p;

Given the above model, a SERENITY proxy for Tuplespace will generate events according to the

language described in Section 3.

The availability of a general framework enables the specification of the mapping of an expression

from a technology specific tuplespace language (e.g. JavaSpace, Tspace, etc.) to the SERENITY

event representation schema that we introduced in Section 3 in two steps:

1. from the technology specific language to the abstract tuplespace model;

2. from the abstract tuplespace model to the event representation language;

In this section we describe the first mapping that is valid for all technologies. Appendix B contains,

as an example, the mapping between the JavaSpace model [9] and the general model.

The following table shows how the major components of the event representation language are used

by SERENITY tuplespace proxies:

Event language element Usage

operationName Name of the tuplespace operation (e.g. out,

in, rd).

status REQ-B

op_args One element for each field of the tuple

given as actual parameter to the tuplespace

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 33 of 55

operation. In our implementation, based on

the JavaSpace specifications, an extra field

is added to represent the type of the object

given as actual parameter (this is required

since the arguments of JavaSpace

operations are objects and not tuples).

sender TCP address of the host where the

operation took place.

receiver TCP address of the tuplespace services.

collectionTime time the operation took place (expressed as

host local time).

Table 4 – Usage of the Event language elements

5.1.3. Control Interface

The Control interface defines the following methods:

 new(s): creates a new tuplespace service for the proxy;

 moveTo(s): changes the tuplespace service referenced by the proxy

 enableLogging(op): enables logging of operation op;

 disableLogging(op): disables logging of operation op;

 restoreDefaultLogging(): restores the default logging settings for the proxy;

5.1.4. Logger Interface

The Logger Interface defines the following methods:

 log(od): where od is a tuplespace operation description done with the event model described

in paragraph 3.

5.1.5. Dynamic Behaviour

The following sequence diagram shows a typical interaction between the components of the

Tuplespace logging subsystem:

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 34 of 55

Tuplespace

Client

Tuplespace
Event
Collector

Tuplespace
Logging
Service

new

OP(…)

log(OP(…), REQ-B)

OP(…)

log(OP(…), RES-B)

Tuplespace

Client

Tuplespace
Event
Collector

Tuplespace
Logging
Service

new

OP(…)

log(OP(…), REQ-B)

OP(…)

log(OP(…), RES-B)

Figure 10 - Logging tuplespace operations

The interaction between components goes through the following sequence:

1. In order to access a Tuplespace a Tuplespace client creates a Tuplespace event collector.

Upon initialisation a Tuplespace event collector discovers and binds a Tuplespace service.

2. Each time a Tuplespace event collector intercept an operation request for the Tuplespace

service it logs the request to the Logging service;

3. The Tuplespace Event collector forward the operation to the Tuplespace service bound

during step 1.

4. Upon reception of a response from a Tuplespace service the Tuplespace Event collector logs

the event.

5.2. Workflow engine event capturing

The goal of this paragraph is to extend the set of event monitored by the SERENITY Architecture

in the BPEL/Web-Services context and introduced in paragraph 1.2.2. Such an extension is needed

to be able to deal with distributed ([15]) and/or QoS-aware ([22]) workflow engines.

5.2.1. Distributed engines events

Distribution of the orchestration process reduces inefficiencies introduced by a centralized control

and improves performance and throughput. Distributed workflow engines typically aim to minimize

communications costs and maximize the throughput of multiple concurrent instances of the input

program.

In Ambient Intelligence (AmI) settings distribution of workflow engine has an additional

motivation due to the fact that computational nodes have limited resources and none of them, in

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 35 of 55

principle, could be able to run a fully flanged workflow engine. In mobile information systems

distribution of the workflow engine is the only option to orchestrate web services ([16]).

Typically in distributed workflow engines the execution of an instance of a process goes through

the following steps:

1. The process definition is partitioned into a set of equivalent programs;

2. Each programs is assigned to a (possibly different) workflow engine;

3. All programs are executed in parallel by exploiting the computational resources available at

the node that the programs have been assigned to.

The above general scheme may have some variation to provide the system with more adaptivity; for

example the assignment of programs to nodes (step 2) might be redone during execution (step 3) to

cope with variations in the availability of resources at nodes.

In SERENITY we introduce the following events to monitor the activity of distributed workflow

engines:

 acquire(hostID, engineID, procDefId, procId, activityName): the activity activityName

belonging to the process procDefId has been assigned to the engineID workflow engine

residing at hostID host. The assignment is valid for the execution of the procId instance of

the process.

 lose(hostID, engineID, procDefId, procId, activityName): the assignment signalised by an

acquire event having the same actual parameters is no longer valid (It is going to be

reassigned to a new node).

 run(hostID, engineID, procDefId, procId, activityName): the activity activityName

belonging to the process procDefId is being executed by the engineID workflow engine

residing at hostID host. The run is part of the execution of the procId instance of the

process.

5.2.2. QoS-aware engines events

QoS-aware workflow engines aim to maximize the Quality of Service (QoS) of composite service

execution by taking into account the constraints and preferences of the users. QoS-aware engines

rely on the concepts of abstract services and dynamic bindings. In this context composite services

are described in term of abstract services that do not correspond to any specific implementation:

loosely speaking abstract services are placeholders representing the whole set of actual “concrete”

services sharing the same semantic. At design time the designer/developer of the composite service

reason in term of abstract services.

At run-time, when the process instances are created and executed, the engines replace each abstract

service (placeholder) with a concrete one (i.e. one running on a actual node on a network) selected

from the set of semantically equivalent ones. The selection (binding) process takes into account

both the QoS constraints defined on the process at design time and the constraints imposed by the

user of the composite service.

Typically the selection process takes place whenever a new process instance is created. However,

during the execution of a process instance some of these kinds of workflow engines have the

possibility to measure the actual QoS of selected services ([22]). In case the actual measures

indicate a possible violation of the QoS constraints the engine tries to recover by re-running the

binding phase for the not yet executed service invocation activities.

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 36 of 55

Thanks to ability to measure actual QoS and to re-run the binding phase, QoS-aware workflow

engines are able to react (adapt) to changes occurring during the execution of composite services.

The ability to react to changes is of extreme value in AmI settings where, due to the volatile nature

of the involved networks, continuous and unpredictable variations of QoS are the norm.

Typically in a QoS-aware workflow engines execution of an instance of a process goes through the

following steps:

1. “concretisation” phase: by consulting some sort of registry the engine binds each abstract

service to a concrete one satisfying QoS constraints and trying to optimise some goal

function;

2. execution and monitoring phase: the engine carries on the execution of the process instance

by utilising the binding established in the previous phase. During execution, QoS of actual

services are measured and, in the case the actual values lead to violation of the QoS the

concretisation phase is re-run;

SERENITY introduces the following events to monitor the activity of QoS-aware workflow

engines: and generated by the workflow engine during the “concretisation” phase:

 bind(procDefId, procId, activityName, service, port, op, serviceAddr): in the procId process

instance the op operation of the port interface of the service abstract service will be executed

by the service available at the address serviceAddr.

 rebind(procDefId, procId, activityName, service, port, op, oldSAddr, newSAddr): in the

procId process instance the oldSAddr service has been replaced by the newSAddr service for

the execution of the the op operation of the port interface of the service abstract service.

 unsatisfied(procDefId, procId, constrId, qosMeauseres): the constrId constraint defined on

the procDefId process is no longer satisfied for the procId process instance given the

qosMeauseres measures of QoS.

5.3. Event capture based on communication protocols

Many middleware systems are based on standardised communication protocols. As such, it is

possible to capture events from the systems which make use of these middleware by observing the

packets transmitted among processes/machines and analysing them accordingly to their protocol.

For example, in a Web-Services [7] context, communication follows the SOAP [4] protocol

standard. Thus, we can construct event collectors that capture the SOAP messages exchanged from

different processes and translate these to invocations of web-services and the respective responses.

In this case there are two different positions where we can place our collectors; at the side of the

web-services which are being called or at the side of the BPEL [1] engine which initiates these calls

(if the calls have indeed been initiated by a BPEL engine). In both cases we wish to observe the

events on the side of the web-services or on the side of the BPEL engine, so we need to install our

proxies in a manner which will not cause any changes to the way the web-service/BPEL engine has

been advertised to the rest of the world. Usually, web-services/BPEL engine are listening to the port

#8080 of a server for requests from other applications. What we desire therefore is to introduce our

proxy/event-collector in the server in such a way that all external requests to the web-service/BPEL

engine will be received first by the proxy and only then will the proxy forward the requests to the

web-service. We need therefore to change the port that the web-service/BPEL engine is listening to

(say to port #8081) and attach our proxy to the port #8080. Once this is accomplished, our proxy

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 37 of 55

will be able to receive all requests from external processes (BPEL engines, other web-services)

which wish to communicate with our web-service/BPEL engine, without the external processes

knowing anything about the fact that we are capturing their requests. Once our proxy has noted the

requests and notified the monitoring subsystem of them, it will forward them to the real port that the

local web-service/BPEL engine is listening to, i.e., port #8081 in our example. External entities

which wish to communicate with the web-service/BPEL engine continue to use the port 8080 since

that was the one which was advertised for the web-service/BPEL engine. However, all their

messages are captured by our proxy which is the one listening in port 8080 and once the proxy has

informed the monitoring subsystem about them, it forwards them to the web-service/BPEL engine

on port 8081, receives the reply from the web-service/BPEL engine, inform again the monitoring

subsystem of it and forwards it to the external entity which had initiated the request.

5.3.1. Event capture on Tuple Space

Tuplespace based applications communicate by reading/writing tuples from/to a tuplespace. In

order to monitor this kind of communication SERENITY requires that a tuplespace server a

Configuration interface and use the Logger interface both defined in Section 5.1.

5.3.2. Capture of SOAP messages

SOAP messages can be transferred by a variety of protocols, such as HTTP or SMTP, but HTTP

protocol has gained wider acceptance as it works well with today's Internet infrastructure. In our

implementation we focused on capturing SOAP messages using the HTTP protocol for

transportation. The HTTP protocol is a request/response protocol between a client and a server. A

client initiates a request by establishing a connection to a particular port on a remote host. Upon

receiving this request, the remote host sends back some status headers, such as “HTTP/1.1 200 OK”

and a message, the body of which is the requested document. SOAP messaging works in a very

similar way. Every SOAP request message is followed by a SOAP response in a synchronous

exchange. The client creates a SOAP request message which binds in the HTTP request message

(Table 5). Upon receiving this HTTP request the server which hosts the web service, extracts the

SOAP request from the body of the message. The web service process the SOAP request and

produces a SOAP response, which is send back attached in the body of the HTTP response message

(Table 6).

POST /axis/servlet/AxisServlet HTTP/1.0

Content-Type: text/xml; charset=utf-8

Accept: application/soap+xml, application/dime, multipart/related, text/*

User-Agent: Axis/1.4

Host: localhost:8080

Cache-Control: no-cache

Pragma: no-cache

SOAPAction: ""

Content-Length: 438

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 38 of 55

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><soapenv:Body>

<ns1:getQuote soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:ns1="urn:xmltoday-delayed-quotes"><symbol

xsi:type="xsd:string">XXX</symbol></ns1:getQuote>

</soapenv:Body></soapenv:Envelope>

Table 5 – SOAP request through HTTP protocol

HTTP/1.1 200 OK

Content-Type: text/xml;charset=utf-8

Date: Mon, 11 Sep 2006 12:41:52 GMT

Server: Apache-Coyote/1.1

Connection: close

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"><soapenv:Body><ns1:getQuoteResponse

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:ns1="urn:xmltoday-delayed-quotes"><getQuoteReturn

xsi:type="xsd:float">55.25</getQuoteReturn></ns1:getQuoteResponse></soapenv:Body></soape

nv:Envelope>

Table 6 - SOAP response through HTTP protocol

The above description of a synchronous SOAP messaging through HTTP protocol is the target of

our Event Collector mechanism. The Event Collector as described in the section 0 works as a proxy

between the client who requests a service and the server who offers the requested service. When a

request for a service is made, the collector can capture the event and transmit it through a socket to

the Event Receiver and then forward it to the real web service. In the same way the response of the

web service is transmitted through the Event Collector to the client. In both cases the Event

Collector reports the events of request and response to the Event Receiver in the form of XML

documents based on the XML schema we defined in the Section 3.

 Implementation

The Event Collector is based on the Axis TCP Monitor (tcpmon) utility. This utility can be used to

monitor the data flowing on a TCP connection. tcpmon can be placed in-between a client and a

server. When a client makes a connection to tcpmon, tcpmon forwards the data to server along-with

displaying it. The functionality of this utility has been extended in order to be able to (i) distinguish

the request and response SOAP messages, (ii) construct the XML document for each event that a

SOAP message represents and (iii) communicates these events to a remote Event Receiver. The

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 39 of 55

Event Receiver for our examples is a simple server application that can receive and display any

incoming message (XML representations of events in our case).

 Required Software

The Event Collector has been developed and tested on a Debian GNU/Linux machine (kernel ver.

2.4.27-2-386). In order to demonstrate the tool the following software must be installed:

• Java 2 Platform, Standard Edition, v 1.4.2_12

(http://java.sun.com/j2se/1.4.2/download.html)

• Jakarta-Tomcat 5.0.30 (http://tomcat.apache.org/)

• Axis 1.4 (http://ws.apache.org/axis/)

• Xerces-J 2.8.0 (http://xerces.apache.org/xerces-j/)

• Bexee BPEL Execution Engine (http://bexee.sourceforge.net/)

• Apache Ant 1.6.5 (http://ant.apache.org/index.html)

Installation guides can be found in each site.

 Installation

The installation of the tool has two parts. In the first part we must setup the Event Receiver where

the events are going to be reported.

• Untar the EventReceiver.tgz in your $HOME directory using the command “tar –xzvf

EventReceiver.tgz”.

• Go to the new directory called EventReceiver and execute the event receiver using the

command “java MultiEchoServer portnumber”. The portnumber should be the number

of the port that the receiver will listen for new events. In our example if we want to use the

port number 8008 then the command shall be “java MultiEchoServer 8008”.

In the second part of the installation we must setup the Collector. The collector as described in the

section 5.3 must be installed to the same server that provides the web service we would like to

monitor. Also it should listen to the port number that our web service is already advertised. Thus,

we must restart the Tomcat server giving him a new connection port. This change must be done at

the file conf/server.xml in our Jakarta-Tomcat directory. There we must modify the Connection

port as shown in the Figure 11. Let’s say that the new port of Tomcat is set to 8081.

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 40 of 55

Figure 11 – Modifing connection port in Tomcat

After that we have to

• untar the archive called tcpmon.tgz using the command: tar –xzvf tcmpon.tgz.

• A new directory has been created with the name tcpmon-1.0-src. In order to execute

the event collector the CLASSPATH must be updated. Include the path /tcpmon-1.0-

src/src/ to your existing CLASSPATH.

• The application can now be executed by the command: “java
org.apache.ws.commons.tcpmon.TcpTunnel 8080 localhost 8081

EventReceiverHost 8008”. The first argument is the port number that the collector should

listen. The second and third arguments are the hostname and the port number of the server

where the collector should forward the requests. As we mentioned above the collector is

running in the same server as the web service (localhost) and our web service is listening at

8081. Finally the last two arguments are the remote server where the Event Receiver waits

for the events.

After that every SOAP message that reaches our server in the port 8080, is displayed by the tcpmon

tool (Figure 13), reported to the event receiver (Figure 12) and forwarded to the real web service

that operates in the port 8081.

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 41 of 55

Figure 12 - Event Receiver

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 42 of 55

Figure 13 - Event Collector

 Example

In order to demonstrate the features of the Event Collector, in this section we use two examples.

The first example is a use case taken from the samples of Axis1.4 and it can be found in the

directory $HOME/axis-1.4/samples/stock. Before we execute this example we must make sure

that some preconditions are valid:

• The directories $HOME/axis-1.4/ and $HOME/axis-1.4/samples/ are already included

in the CLASSPATH. If not they can be added with the following commands:

export CLASSPATH=$CLASSPATH:$HOME/axis-1.4/

export CLASSPATH=$CLASSPATH:$HOME/axis-1.4/samples/

• The sample stock web service must be deployed and undeployed on the server on the

specific port number. In our implementation we changed the connection port number of our

server to 8081. The sample code contained in the file $HOME/axis-

1.4/samples/stock/testit.sh will try to deploy and undeploy the web service in the

default port number, which is 8080. Therefore for the right execution of the sample we can

either edit the testit.sh file adding the argument for the new port number on the deploy

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 43 of 55

and undeploy commands (Figure 14) or execute the sample giving the following series of

commands:

• Deploy web service: java org.apache.axis.client.AdminClient -p 8081

deploy.wsdd

• Execute sample invocations to the service: java samples.stock.GetQuote -

uuser1 -wpass1 XXX

• java samples.stock.GetQuote -uuser2 XXX

• java samples.stock.GetInfo -uuser3 -wpass3 IBM address

• Undeploy service: java org.apache.axis.client.AdminClient -p 8081

undeploy.wsdd

Figure 14 - Modification of example script

During the execution of the invocations to the web service we will be able to see the events

generated and transmitted to the Event Receiver while the SAOP messages exchanged are displayed

to the Event Collector.

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 44 of 55

With the second example we demonstrate the event collection from the execution of a BPEL

process. The sample BPEL process is from the Bexee BPEL execution engine and can be found in

the $HOME/bexee-0.1/samples/BookTravel/TravelProcess/ directory. For the same reasons as

above the deployment and undeployment of the web services that this process uses must be done to

the 8081 port. Thus, we must edit the built.xml file located in $HOME/ bexee-

0.1/samples/BookTravel/TravelProcess/ and adjust the port number in the sections referring

to the deployment and undeployment of the process as shown in Figure 15.

Figure 15 - Modification of the built.xml

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 45 of 55

After that we can use the commands:

• ant deploy: for the deployment of the service

• ant start: to invoke the process

• ant undeploy: to undeploy the service.

5.3.2.1 Implementation Limitations/Benefits of Capturing SOAP messages

Currently our implementation is limited in capturing SOAP messages based on the synchronous

SOAP over HTTP message exchange. HTTP messaging protocol consists of a response message for

each request message during a HTTP connection. Therefore every SOAP request shall have a

response message. Our implementation is capable to capture and correlate the request/response

messages even if other invocations have taken place in the time between.

In some cases the web service is possible to respond with a Fault message. This can happen when

the request message is faulty (e.g. bad method parameter values, improperly formatted) or for other

back-end problems. In these cases the response message has a different structure that informs the

client for the faults that had been encountered. For now our collector can not distinguish this kind of

messages.

Finally SOAP messages are also exchanged by BPEL engines. BPEL engines can orchestrate

existing Web Services, by defining interactions among them. By this way BPEL engines can offer

new services by composing and integrating existing services. Any BPEL process-a composition of

web services- is appeared to the end user as a single web service. When the user requests the

execution of such a service the BPEL engine executes a number of requests to other web services in

order to compose the response to the request. In our implementation of Event Collector we took into

account such processes and it is possible to distinguish and collect events produced by such BPEL

engines.

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 46 of 55

6. Event Capturing at the Application Layer

6.1. Aspect based capture

This section gives a preliminary report into the event capturing mechanism we plan to develop for

monitoring binary executables for which we do not have the source code and which have been

developed with a language other than Java. The problem in this case is that there is usually

extremely little information one can derive from the binary code and it is difficult to control it at

specific locations. That is, one cannot easily create a mechanism for stopping an application when a

particular internal function is called or some variable changes its value. Indeed, most of the time the

information which assigns names to the internal variables and functions has been lost at this stage.

This is the basic reason why there has been a lot of work on Aspect-Oriented Programming (AOP)

for Java, where the bytecode form of a program contains all the information we need, while there’s

extremely little work on AOP for C/C++ binaries where this information is traditionally removed

(mostly for optimisation reasons).

The basic design goal of AOP is to weave (i.e., introduce) additional code into an application at

particular points (usually before and after some function call). So it needs to be able to identify a

particular function/method F, and introduce a new function call A before F is executed and another

function B after F has been executed. In order to be able to identify a specific function (or variable)

in a binary executable, we need to have what is commonly called debugging information for that

binary. That is, the binary should have been compiled with the appropriate flags for producing extra

information which is used during debugging. This information is always present in a normal Java

bytecode file and contains the names of the functions, variables, etc. that form the program. It also

contains information which allows debugging tools to stop the execution of the program

temporarily at various locations so that the developers can examine the internal state of the

program. In the Linux OS that we are mainly working on, the default compiler and debugger is

GCC [11] & GDB [12] respectively. When passed the –g option GCC produces the extra debugging

information needed by GDB. The latter can then be used to set so called breakpoints, i.e., places in

the code where the execution of the code should be stopped. These breakpoints can be at the

entrance to a function or even at a specific source line. Once the program is stopped, the developer

can use the front-end of GDB to examine the state of the system, call other functions, etc. Another

useful option of GDB is its ability to set watch-points, i.e., conditions upon which the program

should be stopped. These conditions are defined with respect to the values of the program’s

variables.

Therefore, one can use this mechanism to build an AOP-like tool for C/C++ binary programs,

where the aspects are introduced through breakpoints and watchpoints. A very simple such

prototype can communicate with GDB using its textual interface, passing it commands to execute

and receiving the results as strings that it then parses. Indeed this is how some of the interfaces to

GDB currently work (e.g., DDD [8], Emacs, GDBtk).

Some of the disadvantages of this approach are:

 It is very sensitive to changes in GDB's output.

 Performance is restricted by the speed of communication between the GUI and GDB.

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 47 of 55

 It is difficult to keep the GUI
4
 consistent with the CLI

5
.

However, there is an ongoing project for exposing the internal functionality of GDB as a normal

library (libgdb, see [13]). Using this library one can develop the AOP-like tool we envisage

programmatically, without having to send commands and receive results as strings.

Using this tool we will be able to stop a program at specific locations (in our case at function calls),

call some other code (our event collectors) and then restart the application. We will be able to

observe internal function calls and variables, calls to the middleware, system calls, signals,

exceptions, etc. The only problem is that this tool will only work for programs compiled with the

GCC compiler and then only if they have been compiled with the debugging information enabled

(i.e., the –g switch).

4
 Graphical User Interface

5
 Command-Line Interface

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 48 of 55

7. Conclusion & Future Work

In this document we have described the basic set of information collection mechanisms that we

have developed in the SERENITY project in order to support run-time security and dependability

monitoring. These mechanisms support the collection of events from:

 Operating System Calls, and

 Middleware including mechanisms for collection of events from tuple spaces and

communication protocols

To provide a uniform way of reporting the events captured by the above mechanisms we have

defined an XML schema which we have discussed in this report.

The implementations of the above event collection mechanisms are provided as a source code

archive that accompanies this deliverable. This archive includes also simple applications that can be

used to deploy the developed mechanisms in order to demonstrate their use. The basic instructions

for the installation and use of these applications have been given in this deliverable.

Additional mechanisms to support the collection of events from application layers will be specified

and implemented in the next deliverable on event collection mechanisms (A4.D2.4) that is due in

month 15. As part of the investigation of possible mechanisms for event collection at the

application layer we will experiment with:

 Aspect-based event collection

 Java bytecode instrumentation

 Source code instrumentation

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 49 of 55

Appendix A. XML Schema of Events

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="event" type="eventType"/>

 <xs:complexType name="eventType">

 <xs:sequence>

 <xs:element name="eventID" minOccurs="1"

 maxOccurs="1" type="EventID"/>

 <xs:element name="type" minOccurs="1"

 maxOccurs="1" type="EventType"/>

 <xs:element name="message_args" type="MessageArgsList"

 minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="MessageArgsList">

 <xs:sequence>

 <xs:element name="sender" type="Entity"

 minOccurs="1" maxOccurs="1" />

 <xs:element name="receiver" type="Entity"

 minOccurs="1" maxOccurs="1" />

 <xs:element name="context" type="Context"

 minOccurs="1" maxOccurs="1" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name='Entity'>

 <xs:sequence minOccurs="1" maxOccurs="1">

 <xs:element name="name" type="xs:string"

 minOccurs="0" maxOccurs="1"/>

 <xs:element name="ipAddress" type="ip"

 minOccurs="0" maxOccurs="1"/>

 <xs:element name="port" type="xs:long"

 minOccurs="0" maxOccurs="1"/>

 <xs:element name="UserID" type="xs:long"

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 50 of 55

 minOccurs="0" maxOccurs="1"/>

 <xs:element name="processID" type="xs:long"

 minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="ip">

 <xs:restriction base="xs:string">

 <xs:pattern value = "[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="Status">

 <xs:restriction base ="xs:string">

 <xs:pattern value = " REQ-B|REQ-A|RES-B|RES-A"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="EventType">

 <xs:choice minOccurs="1" maxOccurs="1">

 <xs:element name="OperationMessage" type="OpMsg"/>

 <xs:element name="DataMessage" type="DataMsg"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name='OpMsg'>

 <xs:sequence minOccurs="1" maxOccurs="1">

 <xs:element name="operationName" type="xs:string"

 minOccurs="1" maxOccurs="1"/>

 <xs:element name="operationID" type="xs:long"

 minOccurs="1" maxOccurs="1"/>

 <xs:element name="status" type="Status"

 minOccurs="1" maxOccurs="1" />

 <xs:element name="op_args" type="argumentsType"

 minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 51 of 55

 <xs:complexType name="DataMsg">

 <xs:sequence>

 <xs:element name="type" type="xs:string"

 minOccurs="1" maxOccurs="1"/>

 <xs:element name="value" type="xs:string"

 minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="Context">

 <xs:sequence>

 <xs:element name="collectionTime" type="xs:dateTime"

 minOccurs="1" maxOccurs="1"/>

 <xs:element name="reportTime" minOccurs="1"

 maxOccurs="1" type="xs:dateTime"/>

 <xs:element name="eventSource" type="Entity"

 minOccurs="1" maxOccurs="1" />

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="EventID">

 <xs:restriction base="xs:unsignedLong"/>

 </xs:simpleType>

 <xs:complexType name="argumentsType">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element type="argumentType" name="argument"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="argumentType">

 <xs:choice maxOccurs="1">

 <xs:element name="SimpleArgument" type="simpleArgument"

 minOccurs="1" maxOccurs="1"/>

 <xs:element name="Struct" minOccurs="1" maxOccurs="1">

 <xs:complexType>

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element type="argumentType" name="variable"/>

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 52 of 55

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="simpleArgument">

 <xs:sequence minOccurs="1" maxOccurs="1">

 <xs:element name="name" type="xs:string"

 minOccurs="1" maxOccurs="1"/>

 <xs:element name="type" type="xs:string"

 minOccurs="1" maxOccurs="1"/>

 <xs:element name="value" type="xs:anySimpleType"

 minOccurs="1" maxOccurs="1"/>

 <xs:element name="argumentType" type="xs:string"

 minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

Table 7 – Event representation XML schema

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 53 of 55

Appendix B. JavaSpace operations mapping

This appendix introduces the mapping between the tuplespace operations defined by the JavaSpace

Specifications and the general tuplespace model described in paragraph 5.1.2.

JavaSpace Abstract Tuplespace Model

Lease write(Entry entry,

 Transaction txn,

 long lease)

out(entry)

Entry read(Entry tmpl,

 Transaction txn,

 long timeout)

rd(tmpl)

Entry readIfExists(Entry tmpl,

 Transaction txn,

 long timeout)

rdp(tmpl)

Entry take(Entry tmpl,

 Transaction txn,

 long timeout)

in(tmpl)

Entry takeIfExists(Entry tmpl,

 Transaction txn,

 long timeout)

inp(tmpl)

Collection take(Collection tmpls,

 Transaction txn,

 long timeout,

 long maxEntries)

rew(tmpl, null)

MatchSet contents(Collection tmpls,

 Transaction txn,

 long leaseDuration,

 long maxEntries)

copy_collect(tmp)

List write(List entries,

 Transaction txn,

 List leaseDurations)

rew(null, entries)

Table 8 - JavaSpace operations Mapping

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 54 of 55

References

[1] Andrews T., Curbera F., Dholakia H., Goland Y., Klein J., Leymann F., Liu K., Roller D., Smith D.,

Thatte S., Trickovic I., and Weerawarana S. (2005) “Business process execution language for web

services version 1.1” Technical report, BEA Systems, International Business Machines Corporation,

Microsoft Corporation, SAP AG, Siebel Systems, July 2002. Last updated: February. Available from

http://www.ibm.com/developerworks/library/ws-bpel/

[2] Andrieux A., Czajkowski K., Dan A., Keahey K., Ludwig H., Pruyne J., Rofrano J., Tuecke S. and Xu

M. (2004) "Web Services Agreement Specification", Global Grid Forum, May. Available from:

http://www.gridforum.org/Meetings/GGF11/Documents/draft-ggf-graap-agreement.pdf

[3] Bartel M., Boyer J., Fox B., LaMacchia B., and Simon E. (2002). XML-signature syntax and

processing, In D. Eastlake, J. Reagle, and D. Solo, editors, W3C Recommendation. Feb. 12. {Last

accessed: August 30, 2006}, http://www.w3.org/TR/xmldsig-core/.

[4] Box D., Ehnebuske D., Kakivaya G., Layman A., Mendelsohn N., Nielsen H. F., Thatte S., and Winer

D. (2000) “Simple Object Access Protocol (SOAP)”. Technical Report version 1.1, W3C, May.

Available from http://www.w3.org/TR/soap/

[5] Busi N., Ciancarini P., Gorrieri R., Zavattaro G. (2001) “Coordination Models: A Guided Tour”, in

Coordination of Internet Agents, A. Omicini, M. Klusch, R. Tolksdorf, F. Zambonelli (eds.), Springer.

[6] Campadello S. et al. (2006) “S&D Requirements Specification”, SERENITY Deliverable A7.D2.1

[7] Christensen E., Curbera F., Meredith G., and Weerawarana S. (2001) “Web services description

language (WSDL) 1.1”. Technical Report Note 15, W3C, March. Available from

http://www.w3.org/TR/wsdl

[8] DDD (2005) “DDD - Data Display Debugger” Retrieved from http://www.gnu.org/software/ddd/ Last

updated: 2005-10-22

[9] Freeman E., Hupfer S., Arnold K. (1999) JavaSpaces: Principles, Patterns, and Practice, The Jini

Technology Series, Addison-Wesley.

[10] Gelernter, D. (1985). “Generative communication in Linda”. ACM Transactions on Programming,

2(1):80—112.

[11] GNU-GCC (2006) “GCC, the GNU Compiler Collection” Retrived from http://gcc.gnu.org/ Last

updated: 2006-07-25

[12] GNU-GDB (2006) “GDB: The GNU Project Debugger” Retrieved from

http://sources.redhat.com/gdb/ Last updated: 2006-07-05

[13] GNU-libgdb (2002) “libGDB” Retrieved from http://sources.redhat.com/gdb/papers/libgdb2/ Last

updated: 2002-09-19

[14] Imamura T., Dillaway B. and Simon E. (2002) XML Encryption Syntax and Processing, In D.

Eastlake and J. Reagle., editors, W3C Proposed Recommendation, Dec. 10. {Last accessed: August

30, 2006}, http://www.w3.org/TR/xmlenc-core/

A4.D2.2 – Basic set of Information Collection

Mechanisms for Run-Time S&D Monitoring

SERENITY - 027587 Version 0.15 Page 55 of 55

[15] Nanda M.G., Chandra S., Sarkar V. (2004) “Decentralizing Execution of Composite Web Services”,

OOPSLA’04, Oct. 24-28.

[16] Pernici B. (2006) (ed.), Mobile Information Systems, Sprinter.

[17] Rossi D., Cabri G., Denti E. (2001) “Tuple-based Technologies for Coordination”, in Coordination of

Internet Agents, A. Omicini, M. Klusch, R. Tolksdorf, F. Zambonelli (eds.), Springer.

[18] Rowstron A. (2001) “Run-Time Systems for Coordination”, in Coordination of Internet Agents, A.

Omicini, M. Klusch, R. Tolksdorf, F. Zambonelli (eds.), Springer.

[19] Shanahan M. P. (1999) The Event Calculus Explained, in Artificial Intelligence Today, ed.

M.J.Wooldridge and M.Veloso, Springer Lecture Notes in Artificial Intelligence no. 1600,), pages

409-430, Springer.

[20] Wickoff P. (1998) “T Spaces”, IBM System Journal, Vol.37, No.3.

[21] Wikipedia contributors (2006) Battleship (game). In Wikipedia, The Free Encyclopedia, last revised

13 September 2006, 10:27 UTC, Accessed 13 September 2006

<http://en.wikipedia.org/w/index.php?title=Battleship_%28game%29&oldid=75479522>

[22] Zeng L., Benatallah B., Ngu H.H., Dumas M., Cakagnanam J., Chang H. (2004) “QoS-aware

Middleware for Web Services Composition”, IEEE Transactions On Software Engineering, Vol.30,

No.5, May.

