

A4.D3.1 – V1 of Dynamic Validation Prototype
K. Androutsopoulos, C.Ballas, C. Kloukinas, K. Mahbub, G. Spanoudakis

Document Number A4.D3.1

Document Title V1 of Dynamic Validation Prototype

Version 1.2

Status Final

Work Package WP 4.3

Deliverable Type Prototype

Contractual Date of Delivery 31 December 2006

Actual Date of Delivery 8 February 2006

Responsible Unit CUL

Contributors CUL

Keyword List S&D Monitoring Tool

Dissemination level PU

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 2 of 55

Change History

Version Date Status Author (Unit) Description

0.1 1/2/07 Draft K. Androutsopoulos Table of contents, indicative
section contents

0.2 4/2/07 Draft G. Spanoudakis Added section 2.

0.3 5/2/07 Draft C. Kloukinas Added section 3.3/4/6/7, 4 +
corrections

0.4 6/2/07 Draft C. Ballas Sections 3.3, 5

0.5 6/2/07 Draft K. Mahbub Sections 3.2, 3.4, 3.6

1.0 8/2/07 Final C. Kloukinas Sections 1, 4, 6

1.1 12/2/07 Final C. Kloukinas Changes to make document
compliant with the quality plan

1.2 12/2/07 Final K. Androutsopoulos Changes to make document
compliant with the quality plan

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 3 of 55

Executive Summary

This document complements the code which has been delivered as the deliverable A4.D3.1. It
contains a description of the first version of the Dynamic Validation Prototype which has been
delivered, starting from the initial version of it and describing which architectural and other changes
have been performed. It then goes through some of the limitations of the current version, some of
which will be remedied in the second version of the Dynamic Validation Prototype (deliverable
A4.D3.3).

Finally, the present document contains an installation and usage guide for the code which has been
delivered in A4.D3.1.

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 4 of 55

Table of Contents

1. Introduction ... 6

2. Original Monitoring Environment .. 7

2.1. Overview .. 7

2.2. Event Calculus.. 8

2.3. EC-Assertion .. 9

3. DVPv1... 11

3.1. Overview .. 11

3.2. New Form of EC Assertion Rules ... 12

3.2.1. The XML Schema for Monitoring Rules .. 12

3.2.2. Example of Monitoring Rules Expressed in XML.. 26

3.3. Communication with Event Collectors .. 30

3.3.1. New Event Structure & Event Buffer ... 30

3.3.2. Complex Object Types... 31

3.3.3. User-Defined Complex Object Types... 31

3.3.4. Support for Type Inheritance ... 31

3.3.5. Native Type Generator (NTG) ... 31

3.4. Fluent Modelling .. 39

3.5. Unification/Relations of objects .. 39

3.6. Support for Past-Time Formulae ... 39

3.6.1. Overview ... 39

3.6.2. Method for Checking Past-Time Predicates.. 42

3.7. Support for HoldsAt Predicates... 43

3.7.1. Fluent Initiates and Terminates Database ... 43

3.7.2. Query Generation for HoldsAt ... 43

4. Limitations... 44

4.1. Support for Future-Time HoldsAt Predicates .. 44

4.2. Lack of Multiple Inheritance... 44

4.3. Support for Logical Clocks ... 44

4.4. Support for Non-Determinism... 45

4.5. Support for a Full Object-Oriented Database... 45

4.6. Minimisation of Past-Time Predicates in the DB... 45

4.7. Calling External Functions.. 45

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 5 of 55

4.8. Supporting Internal Alarms ... 45

5. Installation and Usage Guide.. 46

5.1. Required Software .. 46

5.2. Installation.. 46

5.3. How to Use the DVP... 46

5.3.1. The Data Analyzer ... 46

5.3.2. The Monitoring Manager ... 46

5.4. Example of Using the DVP Together With an Event Collector.. 53

6. Conclusion... 54

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 6 of 55

1. Introduction
This report is part of the SERENITY A4.D3.1 deliverable and describes the implementation of the
1st version of the dynamic validation prototype of SERENITY. It also gives guidelines on how to
install and use it in conjunction with the event captors that were developed and documented in
deliverable A4.D2.2 [1]. It should be noted that, in addition to this report, A4.D3.1 includes:

 the source code of the 1st version of the dynamic validation prototype of SERENITY

 Example specifications of security and dependability properties that can be monitored using
this prototype.

 Mock up implementations of systems that could be monitored using the formulae provided
in (2).

 A set of event captors that need to be installed in order to generate the events required for
monitoring the formulae described in (2).

The 1st version of the dynamic validation prototype, shortly referred to as DVPv1 in the rest of this
report has been based on an Event Calculus [4] monitoring engine that had been developed by City
University and is described in [3][6][2]. DVPv1 extends this engine considerably by supporting the
monitoring of past-time event calculus formulae, the use of variables in event calculus formulae
which may be of arbitrary object types, the modelling of fluents which describe the state of a
monitored system and its environment using object types, and reasoning about the truth value of
such fluents on the basis of primitive fluent initiation and termination facts. These extensions were
all necessary in order to support the monitoring of types of formulae which are necessary in order to
specify basic security properties in Event Calculus and provide a more complete coverage of this
temporal logic language.

The rest of this report is structured as follows. In Section 2, we describe the general architecture and
functionality of the core monitoring engine upon which the development of DVPv1 has been based.
In Section 3, we describe the extensions that we have introduced to this engine as part of the
implementation of DVPv1. In Section 4, we provide an overview of the limitations of the current
implementation of DVPv1 and make an initial assessment of the need to support them in the
subsequent version of the dynamic validation prototype which is due in month 18. In Section 5, we
provide guidelines for the installation and use of DVPv1. Finally, in Section 6 we provide some
concluding remarks for DVPv1.

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 7 of 55

2. Original Monitoring Environment

2.1. Overview
The original environment that DVPv1 is based on was developed to monitor the operation of
service based systems. This environment supports the monitoring of service based systems that are
implemented by executable workflows which interact with web-services. More specifically, the
monitoring environment supports workflows that are expressed in BPEL and assumes that there is
some middleware platform that executes the workflow and can emit events regarding its execution.
The properties that this environment can monitor are expressed in a language called EC-Assertion
that is based on Event Calculus [4] and is specified by an XML schema. At runtime the
environment checks the properties specified in EC-Assertion against the stream of events which are
captured from the middleware platform that executes the service based system workflow and
reports violations of these formulae. The monitoring environment is also capable of producing
derived events and check whether the monitored properties are satisfied against the set of both the
recorded and the derived events. The derivation of events is based on a special type of EC-Assertion
formulae which are called assumptions.

Monitor

Deviation Database Handler

Event Collector

Monitor Manager

Monitoring
Console

IMonitor

Manager

Service based System

Deviation Port

Deviation Port

Event Port

A Key: B
A exposes the interface I, and B uses the
interface I

C
A B A writes to port C that B listens to

I

C

Event Buffer

IEventDBHandler

IMonitor

IDeviationDBHandler

IEventReceiver

Figure 1 – Architecture of Original Monitoring Environment

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 8 of 55

Figure 1 shows the architecture of the original monitoring environment that DVPv1 is based on. As
shown in the figure, this environment consists of a monitoring manager, an event collector, a
monitor, an event database, a deviation database and a monitoring console.

The monitoring manager is the component that has responsibility for initiating, coordinating and
reporting the results of the monitoring process. Once it receives a request for starting a monitoring
activity, it checks whether it is possible to monitor the requested properties and, if it can, it starts an
event collector to capture events from the SBS execution environment and passes to it the events
that should be collected. It also sends to the monitor the formulae to be checked.

The event collector polls the event port of the SBS execution environment to get the stream of
events sent to this port. After receiving an event, the event collector identifies its type and, if it is
relevant to the properties which are being monitored, it sends it to the event buffer. All the events
which are not relevant to the monitoring of the requested formulae or the assumptions which are
used in order to derive information are ignored.

The monitor retrieves the events which are recorded in the event buffer during the operation of the
SBS system in the order of their occurrence, derives other possible events that may have happened
without being recorded (based on assumptions set for an SBS system), and checks if the recorded
and derived events are compliant with the properties being monitored. In cases where the recorded
and derived events are not consistent with properties being monitored, the monitor records the
deviation in a deviation database. The monitoring manager polls the deviation database of the
framework at regular time intervals to check if there have been any deviations detected with respect
to the given set of properties and reports them to the monitoring console of the environment.

Finally, the environment incorporates a monitoring console that gives access to the monitoring
service to human users. The console incorporates a deviation viewer that displays the deviations
from the monitored properties. It also supports the selection of the properties to be monitored from
sets of properties that have been predefined in EC-Assertion, enables the user to suspend and re-
initiate monitoring, and gives access to the entire set of events that have been recorded during the
operation of the SBS system.

2.2. Event Calculus
The event calculus (EC) is a first-order temporal formal language that can be used to specify
properties of dynamic systems which change over time. Such properties are specified in terms of
events and fluents.

An event in EC is something that occurs at a specific instance of time (e.g., invocation of an
operation) and may change the state of a system. Fluents are conditions regarding the state of a
system and are initiated and terminated by events. A fluent may, for example, signify that a specific
system variable has a particular value at a specific instance of time.

The occurrence of an event is represented by the predicate Happens(e,t,ℜ(t1,t2)). This predicate
signifies that an instantaneous event e occurs at some time t within the time range ℜ(t1,t2). The
boundaries of ℜ(t1,t2) can be specified by using either time constants or arithmetic expressions over
the time variables of other predicates in an EC formula.

The initiation of a fluent is signified by the EC predicate Initiates(e,f,t) whose meaning is that a
fluent f starts to hold after the event e at time t. The termination of a fluent is signified by the EC
predicate Terminates(e,f,t) whose meaning is that a fluent f ceases to hold after the event e occurs at

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 9 of 55

time t. An EC formula may also use the predicates Initially(f) and HoldsAt(f,t) to signify that a
fluent f holds at the start of the operation of a system and that f holds at time t, respectively.

Event calculus defines a set of axioms that can be used to determine when a fluent holds based on
initiation and termination events which may have occurred regarding this fluent. These axioms are
listed in Table 1.

(EC1) Clipped(t1,f,t2) ⇐ (∃e,t) Happens(e,t,ℜ(t1,t2)) ∧ Terminates(e,f,t)

(EC2) HoldsAt(f,t) ⇐ Initially(f) ∧ ¬Clipped(0,f,t)

(EC3) HoldsAt(f,t) ⇐ (∃e,t1) Happens(e,t,ℜ(t1,t)) ∧ Initiates(e,f,t1) ∧ ¬Clipped(t1,f,t)

(EC4) Happens(e,t,ℜ(t1,t2)) � (t1 ≤ t2) ∧ (t1 ≤ t) ∧ (t ≤ t2)

Table 1 −−−− Axioms of Event Calculus

The axiom EC1 in Table 1 states that a fluent f is clipped (i.e., ceases to hold) within the time range
from t1 to t2, if an event e occurs at some time point t within this range and e terminates f. The
axiom EC2 states that a fluent f holds at time t, if it held at time 0 and has not been terminated
between 0 and t. The axiom EC4 states that a fluent f holds at time t, if an event e has occurred at
some time point t1 before t which initiated f at t1 and f has not been clipped between t1 and t.
Finally, the axiom EC4 states that the time range in a Happens predicate is inclusive of its
boundaries.

2.3. EC-Assertion
The original form of EC-Assertion defined special types of fluents and events that were relevant to
the operation of a service based system. More specifically, fluents were specified by expressions of
the form:

valueOf(fluent_expression, value_expression)

whose meaning was that the fluent identified by fluent_expression had the value value_expression.
Furthermore, events in EC-Assertion represented exchanges of messages between the workflow of
an SBS system and the web services interacting with it. Such messages could either invoke
operations in services or the workflow or return results following the execution of an operation.
Thus, depending on their sender and receiver, events in the original form of EC-Assertion could be:

 Service operation invocation events signifying the invocation of an operation in one of the
partner services of an SBS system by its workflow;

 Service operation reply events signifying the return from the execution of an operation that
has been invoked by the workflow of an SBS in one of its partner services;

 SBS operation invocation events signifying the invocation of an operation in the workflow
of an SBS by one of its partner services; or

 SBS operation reply events signifying the reply following the execution of an operation that
was invoked by a partner service in the composition process of an SBS.

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 10 of 55

In addition to using special types of events and fluents, a formula in the original form of EC-
Assertion that is supported by the monitoring environment is valid only if:

 It specifies boundaries for the time ranges ℜ(LB,UB) which appear in the Happens
predicates

 For any variable t in Happens predicates that is existentially quantified, at least one of LB
and UB must be specified. These boundaries can be specified by using: (i) constant time indicators
or (ii) arithmetic expressions of time variables t' which appear in Happens predicates of the same
formula provided that the latter variables are universally quantified, and that appears in their scope.
If t is a universally quantified variable both LB and UB must be specified. Happens predicates with
unrestricted universally quantified time variables take the form Happens(e,t,ℜ(t,t)). These
predicates express events whose time of occurrence is not constrained.

 The time variables of all the predicates in the formula which include existentially quantified
non-time variables, take values in time ranges with fixed boundaries. These restrictions guarantee
the ability to check the satisfiability of formulae.

Finally formulae in EC-Assertion can use the predicates < and = to express time conditions (the
predicate t1 < t2 is true if t1 is a time instance that occurred before t2, and the predicate t1 = t2 is
true if t1 is a time instance that is equal to t2) and to compare values of different variables.

As an example of a property that could be specified in the original form of EC-Assertion consider
the property specified by the following formula:

∀ _X: String; t1, t2:Time

 Happens(ic:S1:op(_X),t1, ℜ(t1,t1)) � Happens(ir:S1:op(_X),t2, ℜ(t1,t1+100u)

The above formula specifies that if an event ic:S1:op(_X) that signifies the call of the operation
op(_X) in service S1 occurs at some time point t1 then an event ic:S1:op(_X) signifying the
response of S1 back to the caller of op(_X) should occur within 100 time units after t1.

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 11 of 55

3. DVPv1

3.1. Overview
DVPv1 has been developed by extending the monitoring environment we overviewed in Section 2
in order to provide support for:

 The communication with the event captors that we have developed in SERENITY for
observing events from different types of systems and the structure that they use to represent and
communicate these events (see deliverable A4.D2.2 [1])

 The use of object variables in EC-Assertion formulae.

 The use of arbitrary relations between objects of complex types (or parts of such objects) as
fluents.

 The monitoring of past-time EC-Assertion formulae.

 Reasoning about the truth value of HoldsAt predicates in EC-Assertion formulae.

The above extensions were necessary in order to make the original monitoring environment capable
of monitoring: (i) the operations of generic software systems as opposed to service based systems
only that the original environment was able to monitor, and (ii) basic security and dependability
properties such as confidentiality and integrity which as we show in [5] can be expressed by past-
time EC-Assertion formulae.

In implementing DVPv1, we have also altered the architecture of the original monitoring
framework illustrated in Figure 1. The new architecture is illustrated in Figure 2. The most
significant alteration of this architecture is related to the communication of events from event
captors to the framework. The event buffer becomes a subcomponent of the monitor manager
because the event collector is not limited to receiving events from just web services (by making
calls to web services). Instead, the event collector can receive events from more general types of
systems via TCP/IP sockets as well as from web services. Alterations also occur with the internal
components of the monitor, i.e. three additional subcomponents have been implemented. The
Native Type Generator (NTG) is a component that receives the events in XML (as a string) and
creates Java objects for the event and its elements (e.g. operation parameters, source, receiver, etc.)
which can then be used by the monitor to perform the checking (via unification). There are also two
in-memory databases that are used for checking past-time formulae and for supporting the
evaluation of the HoldsAt predicate: Database I that keeps a record of the past-time events; and
Database II that keeps a record of any Initiates and Terminates predicates.

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 12 of 55

Monitor

Deviation Database Handler

Event Collector

Monitor Manager

Monitoring
Console

IMonitor

Manager

Execution Environment

Deviation Port

Deviation Port

Event Port

A Key: B
A exposes the interface I, and B uses the
interface I

C
A B A writes to port C that B listens to

I

C

Event Buffer

IMonitor

IDeviationDBHandler

NTG
Database I

Database II

Buffer Port

NTG Port

Figure 2 – Architecture of New Monitoring Environment

3.2. New Form of EC Assertion Rules

3.2.1. The XML Schema for Monitoring Rules
The structure of a monitoring rule is defined by the complex XML type called formulaType. It has
two attributes: formulaid for identifying the formula, and forChecking, a Boolean used to
distinguish between assumptions and rules. formulaType consists of the following child elements:

1. At least one quantification element, which is used to specify the quantification of variables
in an EC formula. It is of type quantificationType, which is a complex type and consists of a
quantifier element, to represent the quantifier (i.e. existential or universal), and a choice of
variables that can be quantified, i.e. regularVariable (all other variables except for time
variables) or timeVariables.

2. Zero or one body element, which specifies the expression on the RHS of the implication (if
any), i.e. the body of the formula. It is of type bodyHeadType, a complex type that consists
of the following sequence of child elements:

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 13 of 55

a. A predicate element that is used to define the predicate in the formula and whose
type is predicateType. predicateType is a complex type that has two attributes:
negated, a Boolean used to indicate if a predicate is negated and whose default value
is false, and unconstrained, a Boolean that is true if the predicate is unconstrained
and whose default value is false. It also consists of the following child elements:

i. happens, which is of complex type happensType, that consists of the
following sequence of elements:

• event that is of type eventType for representing the event. This type is
a complex type and consists of the following child elements: eventID
of type String for identifying uniquely the event, sender of type
variableType for specifying the agent that sends the message, receiver
of variableType for specifying the agent that receives the message,
status of type String for representing the processing status of an
event, oper of type operationType for representing the operation
signature that the event invokes or reports the result of and source of
type String for specifying the agent that provided information about
the event. The complex type variableType is explain later (b,i, 8th
bullet point). The complex type operationType consists of the
following sequence of child elements: opName of type String for
defining the name of the operation and zero or one op_args of type
String for defining the possible argument of an operation. See Figure
3.

• timeVar is of complex type timevariableType that represents the time
variable. The type timevariableType consists of the following child
elements: varName for specifying the name of the variable, varType
for specifying the type of the variable, and zero or one value element
for specifying the value of the variable.

• fromTime is of type TimeExpression and represents the starting time
of the time range within which the formula should hold.
TimeExpression consists of: a time element that is of type
timevariableType that has been described above; and a choice of time
operators, namely plusTime that is of type timevariableType,
minusTime that is of type timevariableType, plus and minus which are
both of decimal type.

• toTime is of type TimeExpression and represent the finishing time of
the time range within which the formula should hold. TimeExpression
has been described in detail above.

ii. initiates, which is of complex type initiatesType that consists of the following
child elements:

• event that is of type eventType for representing the event, as described
above.

• fluent is of type fluentType and it distinguishes between the different
types of fluents that can be described in the formula. fluentType is a
complex type and it defines one of the following relations:

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 14 of 55

��A generic relation between n objects. In this case the
complex type fluentType consists of a list of
variables and the relation name is specified by the
value of the attribute "name" of the fluent element.

��A predefined relation where a variable that is given
at the target (i.e. the first argument) is updated with
the value or either a variable at the source (i.e. the
second argument) or with the return value of an
operation that is called. The complex type
fluentType, therefore consists of: a target and a
source element. The types of these elements
consequently consist of a variable element, and in
the case of the source, or an operationCall element.
In this case the value of the attribute " name" of the
fluent element must be "valueOf".

• timeVar is of complex type timevariableType that represents the time
variable.

ii. holdsAt is of type holdsatType that consists of the following sequence of
elements:

• fluent that is of type fluentType (as described for the initiated
predicate).

• timeVar that is of type timevariableType(as described for the initiated
predicate).

iii. initially is of type holdsatType, which is described above.

iv. terminates is of type terminatesType that is a complex type that consists of
the following child elements:

• event is of type eventType that has been previously described.

• fluent is of type fluentType that has been previously described.

• timeVar is of type timevariableType that has been previously
described.

b. relationalPredicate is of complex type relationPredicateType that specifies the
possible relations between two variables in the formula. This type has the following
child elements:

v. a choice of the following elements:

• equalto

• notEqualTo

• lessThan

• greaterThan

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 15 of 55

• lessThanEqualTo

• greaterThanEqualTo

which are all of complex type varRelationType that consists of two elements:
operand1 and operand2 of type operandType. The complex type operandType
consists of the following choice of elements (only one of these elements will be
represented):

• operationCall that is of type operationCallType that has a sequence
of child elements: name of type String, zero or one partner of type
String and zero or more (unbounded) variable elements of type
variableType, which is described below.

• variable that is of type variableType. This type is a complex type that
has two attributes: persistent that indicates whether the value of the
variable is the same throughout all instances (like static variables in
Java) and forMatching that distinguishes between internal and
external variables (i.e. its value is false for internal variables). Also,
the type consists of the following child elements: varName that is of
type String, and either a varType and value element, both of type
String, or an array element of type arrayType with elements that
describe the array structure. And,

• constant that is of type constantType for describing constants. This
type consists of two elements: name and value elements which are
both of type String.

• timeVar is of type timevariableType that has been previously
described.

c. a possible sequence of an operator and a choice of either:

i. a predicate that is of type predicateType that has been explained earlier,

ii. a timePredicate that is of type timepredicateType. This element is used to
express a relation between two time variables in the formula. It has a choice
of the following child elements: timeEqualTo, timeNotEqualTo,
timeLessThan, timeGreaterThan, timeLessThanEqualTo,
timeGreaterThanEqualTo, all of complex type TimeRelation that consist of
two elements: timeVar1 and timeVar2 of type TimeExpression that has been
described earlier. Or

iii. a relationPredicate that is of type relationPredicateType that has been
explained earlier.

A head element which is of type bodyHeadType, which is described above.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 16 of 55

 <xs:element name="formulasdesc" type="formulasdescType"/>

 <xs:complexType name="formulasdescType">

 <xs:sequence>

 <xs:element name="datatypes" type="xs:anyURI" minOccurs="0"
maxOccurs="unbounded"/>

 <xs:element name="formulas" type="formulasType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="formulasType">

 <xs:sequence>

 <xs:element name="formula" type="formulaType" minOccurs="1"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="formulaType">

 <xs:sequence>

 <xs:element name="quantification" type="quantificationType" minOccurs="1"

 maxOccurs="unbounded"/>

 <xs:element name="body" type="bodyHeadType" minOccurs="0"/>

 <xs:element name="head" type="bodyHeadType"/>

 </xs:sequence>

 <xs:attribute name="formulaId" type="xs:string" use="required"/>

 <xs:attribute name="forChecking" type="xs:boolean" default="true"/>

 </xs:complexType>

 <xs:complexType name="bodyHeadType">

 <xs:sequence>

 <xs:choice>

 <xs:element name="predicate" type="predicateType"/>

 <xs:element name="relationalPredicate" type="relationalPredicateType"/>

 </xs:choice>

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 17 of 55

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:element name="operator" type="logicalOperatorType"/>

 <xs:choice>

 <xs:element name="predicate" type="predicateType"/>

 <xs:element name="timePredicate" type="timePredicateType"/>

 <xs:element name="relationalPredicate" type="relationalPredicateType"/>

 </xs:choice>

 </xs:sequence>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="predicateType">

 <xs:choice>

 <xs:element name="happens" type="happensType"/>

 <xs:element name="initiates" type="initiatesType"/>

 <xs:element name="holdsAt" type="holdsAtType"/>

 <xs:element name="initially" type="holdsAtType"/>

 <xs:element name="terminates" type="terminatesType"/>

 <xs:element name="clipped" type="clippedType"/>

 <xs:element name="declipped" type="declippedType"/>

 </xs:choice>

 <xs:attribute name="negated" type="xs:boolean" default="false"/>

 <xs:attribute name="unconstrained" type="xs:boolean" default="false"/>

 </xs:complexType>

 <xs:complexType name="timePredicateType">

 <xs:choice>

 <xs:element name="timeEqualTo" type="TimeRelation"/>

 <xs:element name="timeNotEqualTo" type="TimeRelation"/>

 <xs:element name="timeLessThan" type="TimeRelation"/>

 <xs:element name="timeGreaterThan" type="TimeRelation"/>

 <xs:element name="timeLessThanEqualTo" type="TimeRelation"/>

 <xs:element name="timeGreaterThanEqualTo" type="TimeRelation"/>

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 18 of 55

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="holdsAtType">

 <xs:sequence>

 <xs:element name="fluent" type="fluentType"/>

 <xs:element name="timeVar" type="timeVariableType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="initiatesType">

 <xs:sequence>

 <xs:choice>

 <xs:element name="ir_term" type="irTermType"/>

 <xs:element name="rc_term" type="rcTermType"/>

 <xs:element name="as_term" type="asTermType"/>

 </xs:choice>

 <xs:element name="fluent" type="fluentType"/>

 <xs:element name="timeVar" type="timeVariableType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="happensType">

 <xs:sequence>

 <xs:choice>

 <xs:element name="ic_term" type="icTermType"/>

 <xs:element name="ir_term" type="irTermType"/>

 <xs:element name="rc_term" type="rcTermType"/>

 <xs:element name="re_term" type="reTermType"/>

 <xs:element name="as_term" type="asTermType"/>

 </xs:choice>

 <xs:element name="timeVar" type="timeVariableType"/>

 <xs:element name="fromTime" type="TimeExpression"/>

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 19 of 55

 <xs:element name="toTime" type="TimeExpression"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="clippedType">

 <xs:sequence>

 <xs:element name="timeVar1" type="timeVariableType"/>

 <xs:element name="fluent" type="fluentType"/>

 <xs:element name="timeVar2" type="timeVariableType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="declippedType">

 <xs:sequence>

 <xs:element name="timeVar1" type="timeVariableType"/>

 <xs:element name="fluent" type="fluentType"/>

 <xs:element name="timeVar2" type="timeVariableType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="terminatesType">

 <xs:sequence>

 <xs:choice>

 <xs:element name="ir_term" type="irTermType"/>

 <xs:element name="rc_term" type="rcTermType"/>

 <xs:element name="as_term" type="asTermType"/>

 </xs:choice>

 <xs:element name="fluent" type="fluentType"/>

 <xs:element name="timeVar" type="timeVariableType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="fluentType">

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 20 of 55

 <xs:choice>

 <xs:sequence>

 <xs:element name="target">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="variable" type="variableType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="source">

 <xs:complexType>

 <xs:choice>

 <xs:element name="variable" type="variableType"/>

 <xs:element name="operationCall" type="operationCallType"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:sequence>

 <xs:element name="variable" type="variableType" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:choice>

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="quantificationType">

 <xs:sequence>

 <xs:element name="quantifier">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="forall|existential"/>

 </xs:restriction>

 </xs:simpleType>

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 21 of 55

 </xs:element>

 <xs:choice >

 <xs:element name="regularVariable" type="variableType"/>

 <xs:element name="timeVariable" type="timeVariableType"/>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="icTermType">

 <xs:sequence>

 <xs:element name="operationName" type="xs:string"/>

 <xs:element name="partnerName" type="xs:string"/>

 <xs:element name="id" type="xs:string"/>

 <xs:element name="variable" type="variableType" minOccurs="0"
maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="irTermType">

 <xs:sequence>

 <xs:element name="operationName" type="xs:string"/>

 <xs:element name="partnerName" type="xs:string"/>

 <xs:element name="id" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="rcTermType">

 <xs:sequence>

 <xs:element name="operationName" type="xs:string"/>

 <xs:element name="partnerName" type="xs:string"/>

 <xs:element name="id" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 22 of 55

 <xs:complexType name="reTermType">

 <xs:sequence>

 <xs:element name="operationName" type="xs:string"/>

 <xs:element name="partnerName" type="xs:string"/>

 <xs:element name="id" type="xs:string"/>

 <xs:element name="variable" type="variableType" minOccurs="0"
maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="asTermType">

 <xs:sequence>

 <xs:element name="operationName" type="xs:string"/>

 <xs:element name="id" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="variableType">

 <xs:sequence>

 <xs:element name="varName" type="xs:string"/>

 <xs:choice>

 <xs:sequence>

 <xs:element name="varType" type="xs:string"/>

 <xs:element name="value" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 <xs:element name="array" type="arrayType"/>

 </xs:choice>

 </xs:sequence>

 <xs:attribute name="persistent" type="xs:boolean" default="false"/>

 <xs:attribute name="forMatching" type="xs:boolean" default="true"/>

 </xs:complexType>

 <xs:complexType name="expresionType">

 <xs:sequence>

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 23 of 55

 <xs:element name="varName" type="xs:string"/>

 <xs:choice>

 <xs:sequence>

 <xs:element name="varType" type="xs:string"/>

 <xs:choice>

 <xs:element name="value" type="xs:string"/>

 <xs:element name="fields" type="fieldType"/>

 </xs:choice>

 </xs:sequence>

 <xs:element name="array" type="arrayType"/>

 </xs:choice>

 </xs:sequence>

 <xs:attribute name="persistent" type="xs:boolean" default="false"/>

 <xs:attribute name="forMatching" type="xs:boolean" default="true"/>

 </xs:complexType>

 <xs:complexType name="fieldType">

 <xs:sequence>

 <xs:element name="field" type="xs:string" minOccurs="1" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="timeVariableType">

 <xs:sequence>

 <xs:element name="varName" type="xs:string"/>

 <xs:element name="varType" type="xs:string" fixed="TimeVariable"/>

 <xs:element name="value" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="logicalOperatorType">

 <xs:restriction base="xs:string">

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 24 of 55

 <xs:pattern value="and|or"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="TimeExpression">

 <xs:sequence>

 <xs:element name="time" type="timeVariableType"/>

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:choice>

 <xs:element name="plusTime" type="timeVariableType"/>

 <xs:element name="minusTime" type="timeVariableType"/>

 <xs:element name="plus" type="xs:decimal"/>

 <xs:element name="minus" type="xs:decimal"/>

 </xs:choice>

 </xs:sequence>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="TimeRelation">

 <xs:sequence>

 <xs:element name="timeVar1" type="TimeExpression"/>

 <xs:element name="timeVar2" type="TimeExpression"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="varRelationType">

 <xs:sequence>

 <xs:element name="operand1" type="operandType"/>

 <xs:element name="operand2" type="operandType"/>

 </xs:sequence>

 </xs:complexType>

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 25 of 55

 <xs:complexType name="relationalPredicateType">

 <xs:sequence>

 <xs:choice>

 <xs:element name="equal" type="varRelationType"/>

 <xs:element name="notEqualTo" type="varRelationType"/>

 <xs:element name="lessThan" type="varRelationType"/>

 <xs:element name="greaterThan" type="varRelationType"/>

 <xs:element name="lessThanEqualTo" type="varRelationType"/>

 <xs:element name="greaterThanEqualTo" type="varRelationType"/>

 </xs:choice>

 <xs:element name="timeVar" type="timeVariableType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="operandType">

 <xs:choice>

 <xs:element name="operationCall" type="operationCallType"/>

 <xs:element name="expresion" type="expresionType"/>

 <xs:element name="constant" type="constantType"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="operationCallType">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="partner" type="xs:string" minOccurs="0"/>

 <xs:element name="expresion" type="expresionType" minOccurs="0"
maxOccurs="unbounded"/>

 <xs:element name="operationCall" type="operationCallType" minOccurs="0"
maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="constantType">

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 26 of 55

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="value" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="arrayType">

 <xs:sequence>

 <xs:element name="type" type="xs:string"/>

 <xs:element name="value" type="arrayValueType" minOccurs="0"
maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="arrayValueType">

 <xs:sequence>

 <xs:element name="indexValue" type="xs:string"/>

 <xs:element name="cellValue" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

Figure 3 – XML Schema for EC-Assertion

3.2.2. Example of Monitoring Rules Expressed in XML
In this section, we consider the pattern for a Mechanism for Optimistic Fair Exchange with Trusted
Third Party, which is described in section 5.4 of this deliverable, and give an example of a rule that
can be monitored for this pattern. The monitoring rule is derived from the requirement that TTP
must be available. It should consider two cases, i.e. the case when Alice tries to communicate with
TTP and the case when Bob tries to communicate with TTP. Therefore, two rules are required. We
illustrate the second case, more specifically: if Bob sends a “solve” message to TTP, then TTP
should respond with “send_item” message within some time limit (t1+tu where t1 is the time when
Bob sent the “solve” message). In event calculus we express this as follows:

∀ _eID1, _eID2, Bob_ID, _TTP_ID: String; t1, t2:Time

 Happens(e(_eID1,Bob_ID,TTP_ID,REQ-B,solve((Item_A)Ka1,Item_B)),Bob_ID),t1,
ℜ(t1,t1)) �

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 27 of 55

 Happens(e(_eID2,TTP_ID,Bob_ID,RES-A,send_item(((Item_A)Ka1)Ka2),t2, ℜ(t1,t1+tu)

The XML document that describes the above monitoring rule is given in Table 2. Firstly, the
quantification of the variables in the formula is represented in lines 7-32. Two types of variables are
quantified, namely regular variables (any variable except for time variables) and time variables.
Next, the body of the formula is represented in lines 33-78, i.e. the expression on the RHS of the
implication. The body consists of the Happens predicate and its arguments, i.e. an event, a time
variable and a time range. The event is represented in lines 36-55. The time variable has been
specified in lines 56-59 and the time range in lines 60-75. Finally, the head of the formula (i.e. the
expression on the LHS of the implication) is represented in lines 79-120. This also consists of a
Happens predicate with an event, a time variable and a time range, and thus is represented similarly
to the body of the formula.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

<?xml version="1.0" encoding="UTF-8"?>

<formulae xmlns="http://tempuri.org/ec/formula"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://tempuri.org/ec/formula
file:/Z:/Serenity/A5%20contribution%20-%20September06/EC-Assertion6.xsd"
formulaId="">

 <quantification>

 <quantifier>universal</quantifier>

 <regularVariable>

 <varName>Bob_ID</varName>

 <varType>String</varType>

 </regularVariable>

 <regularVariable>

 <varName>TTP_ID</varName>

 <varType>String</varType>

 <regularVariable>

 <varName>_eID1</varName>

 <varType>String</varType>

 </regularVariable>

 <regularVariable>

 <varName>_eID2</varName>

 <varType>String</varType>

 </regularVariable>

 <timeVariable>

 <varName>t1</varName>

 <varType>Time</varType>

 </timeVariable>

 <timeVariable>

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 28 of 55

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

 <varName>t2</varName>

 <varType>Time</varType>

 </timeVariable>

 </quantification>

 <body>

 <predicate>

 <happens>

 <event>

 <eventID>_eID2</eventID>

 <sender>

 <varName>TTP_ID</varName>

 <varType>String</varType>

 </sender>

 <receiver>

 <varName>Bob_ID</varName>

 <varType>String</varType>

 </receiver>

 <status>RES-A</status>

 <oper>

 <opName>send_item</opName>

 <op_args>

 <varName>(((Item_A)Ka1)Ka2)</varName>

 <varType>String</varType>

 </op_args>

 </oper>

 <source>TTP_ID</source>

 </event>

 <timeVar>

 <varName>t2</varName>

 <varType>Time</varType>

 </timeVar>

 <fromTime>

 <time>

 <varName>t1</varName>

 <varType>Time</varType>

 </time>

 </fromTime>

 <toTime>

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 29 of 55

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

 <time>

 <varName>t1</varName>

 <varType>Time</varType>

 </time>

 <plusTime>

 <varName>tu</varName>

 <varType>Time</varType>

 </plusTime>

 </toTime>

 </happens>

 </predicate>

 </body>

 <head>

 <predicate>

 <happens>

 <event>

 <eventID>_eID1</eventID>

 <sender>

 <varName>Bob_ID</varName>

 <varType>String</varType>

 </sender>

 <receiver>

 <varName>TTP_ID</varName>

 <varType>String</varType>

 </receiver>

 <status>REQ-B</status>

 <oper>

 <opName>Solve</opName>

 <op_args>

 <varName>((Item_A)Ka1,Item_B))</varName>

 <varType>String</varType>

 </op_args>

 </oper>

 <source>Bob_ID</source>

 </event>

 <timeVar>

 <varName>t1</varName>

 <varType>Time</varType>

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 30 of 55

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

 </timeVar>

 <fromTime>

 <time>

 <varName>t1</varName>

 <varType>Time</varType>

 </time>

 </fromTime>

 <toTime>

 <time>

 <varName>t1</varName>

 <varType>Time</varType>

 </time>

 </toTime>

 </happens>

 </predicate>

 </head>

</formulae>

Table 2 −−−− XML document representing the rule that checks the availability of TTP

3.3. Communication with Event Collectors

3.3.1. New Event Structure & Event Buffer
Since DVPv1 needs to events which are produced by different types of systems and not only from
web-service based systems as its precursor, we have thoroughly changed the XML schema of the
event structure so as to be able to represent event characteristics which were not present previously,
e.g., process id, group id, mobile identification number, etc. We have also redesigned the event
structure so that it can now hold more information. For example, events representing operation calls
now carry information about the sender and the receiver of the call but also about the source
component where this event has been collected from. We are also now capable of distinguishing
between a request for an operation which has been received but not yet serviced (REQ-B – B for
before) versus a request which has been serviced (REQ-A – A for after), while previously we were
not able to distinguish between these two cases. Similarly for responses, we now have two
characterisations – RES-B & RES-A, for responses which will be sent to the initiator of the
operation and for responses which have already been sent to it.

Since the events are produced inside different types of application systems, DVPv1 can no longer
assume that the event collectors will be communicating with the monitoring infrastructure using
web-service calls. Therefore, we have changed the architecture of the system, as shown in Figure 2,
so that the event collectors can use the much more basic communication framework of TCP/IP
sockets to send the events as strings to the Event Buffer and ask the Monitor Manager to perform
the web-service call itself.

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 31 of 55

3.3.2. Complex Object Types
Parts of the new event structure consist now of complex object types (e.g., the sender field of an
event is now of type entity). The code has been extended so that these complex object types can
be treated like any other EC formula variable type, allowing the user to specify new variables of
these types and also ensuring that relations on these object types (e.g., comparison for equality) will
work seamlessly, making sure that in each case we also consider the relations between the types of
the objects represented by the variables.

In order for this change to be possible we changed a considerable amount of the internal code of the
monitor engine. Up to its previous incarnation, all variables would be represented as a pair of type
and value, where both fields where Java strings. Then, relations over these variables would use their
string representation, thus causing a considerable delay in the evaluation of formulae.

In DVPv1 the code has been changed throughout, so that all variables are represented as normal
Java objects and operations upon them do not need to translate from/to strings anymore, thus
considerable speeding up the execution of the engine.

Along with the existence of these new types, we have also extended the tool to support access to the
member fields of the objects belonging to these types, so that one can write expressions of the form
sender.IPAddress == “www.google.com”, etc. The expressions for accessing object fields are
allowed in all places where a normal variable would be allowed – parameters of operations, left and
right-hand side of relations, etc.

3.3.3. User-Defined Complex Object Types
Along with the predefined complex object types which we have introduced, we are now allowing
users to specify their own application-domain specific object types, to be used with their formulae.
In order to do so, users must precede their formulae with the definitions of their types in the normal
XML schema. These types then become available for use in the formulae, in exactly the same way
that primitive types (e.g., integer, string) and predefined complex types (e.g., entity which is
the type of the sender of an operation) are been used. So users can now specify new variables using
their own types, specify relations over them, etc.

3.3.4. Support for Type Inheritance
The types that users are defining can also be sub-types of other types (either user-defined or
predefined). So if the underlying system and S&D Pattern has used an object-oriented design, the
users are now capable of representing this in their formulae. As a consequence, if an operation in a
formula has been declared to receive a parameter of type fubar, then the formula will be activated
even if the operation has been called with an argument whose type is a sub-type of fubar.

3.3.5. Native Type Generator (NTG)
The component in DVPv1 which is responsible for identifying user-defined complex object types is
the Native Type Generator, marked as NTG in Figure 2. This component basically reads the XML
file containing the EC formulae and parses the user-specified complex object types using the JAXB
library. By doing so, it produces native Java classes which represent these new types, loads these
classes at run-time and makes them available to the monitor for use as variable types.

As an example, let us consider the XML types personinfo and subscriber (which inherits from
personinfo) as these are defined with the XSD schema presented in Table 3 and graphically shown
in Figure 4. Using the JAXB compiler, we will obtain two Java classes representing these new

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 32 of 55

XML types, Personinfo.java and Subscriber.java, where class Subscriber will be defined as a
subclass of class Personinfo – see Table 4 and Table 5.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
 jaxb:extensionBindingPrefixes="xjc"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb" jaxb:version="1.0">

 <!--
 This uses the additional vendor specific features
 provided by the JAXB RI
 They are defined in the "http://java.sun.com/xml/ns/jaxb/xjc"
namespace -->

 <xs:annotation>
 <xs:appinfo>
 <jaxb:globalBindings>

 <xjc:serializable uid="12343"/>

 </jaxb:globalBindings>
 </xs:appinfo>
 </xs:annotation>

 <!-- <xs:element name="employee" type="subscriber"/> -->

 <xs:complexType name="personinfo">
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="subscriber">
 <xs:complexContent>
 <xs:extension base="personinfo">

 <xs:sequence>
 <xs:element name="address" type="xs:string"/>
 <xs:element name="city" type="xs:string"/>
 <xs:element name="country" type="xs:string"/>
 </xs:sequence>
 </xs:extension>

 </xs:complexContent>
 </xs:complexType>

</xs:schema>

Table 3 −−−− XSD schema for two types – personinfo and subscriber

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 33 of 55

Figure 4 – Graphical depiction of two XML types – personinfo and subscriber

//

// This file was generated by the JavaTM Architecture for XML Binding(JAXB) Reference
Implementation, v2.0.4-b01-fcs

// See http://java.sun.com/xml/jaxb

// Any modifications to this file will be lost upon recompilation of the source schema.

// Generated on: 2007.02.08 at 06:27:50 PM GMT

//

package ps;

import java.io.Serializable;

import javax.xml.bind.annotation.XmlAccessType;

import javax.xml.bind.annotation.XmlAccessorType;

import javax.xml.bind.annotation.XmlElement;

import javax.xml.bind.annotation.XmlType;

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 34 of 55

/**

 * <p>Java class for personinfo complex type.

 *

 * <p>The following schema fragment specifies the expected content contained within this class.

 *

 * <pre>

 * <complexType name="personinfo">

 * <complexContent>

 * <restriction base="{http://www.w3.org/2001/XMLSchema}anyType">

 * <sequence>

 * <element name="firstname" type="{http://www.w3.org/2001/XMLSchema}string"/>

 * <element name="lastname" type="{http://www.w3.org/2001/XMLSchema}string"/>

 * </sequence>

 * </restriction>

 * </complexContent>

 * </complexType>

 * </pre>

 *

 *

 */

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(name = "personinfo", propOrder = {

 "firstname",

 "lastname"

})

public class Personinfo

 implements Serializable

{

 private final static long serialVersionUID = 12343L;

 @XmlElement(required = true)

 protected String firstname;

 @XmlElement(required = true)

 protected String lastname;

 /**

 * Gets the value of the firstname property.

 *

 * @return

 * possible object is

 * {@link String }

 *

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 35 of 55

 */

 public String getFirstname() {

 return firstname;

 }

 /**

 * Sets the value of the firstname property.

 *

 * @param value

 * allowed object is

 * {@link String }

 *

 */

 public void setFirstname(String value) {

 this.firstname = value;

 }

 /**

 * Gets the value of the lastname property.

 *

 * @return

 * possible object is

 * {@link String }

 *

 */

 public String getLastname() {

 return lastname;

 }

 /**

 * Sets the value of the lastname property.

 *

 * @param value

 * allowed object is

 * {@link String }

 *

 */

 public void setLastname(String value) {

 this.lastname = value;

 }

}

Table 4 −−−− Java class representing personinfo

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 36 of 55

//

// This file was generated by the JavaTM Architecture for XML Binding(JAXB) Reference
Implementation, v2.0.4-b01-fcs

// See http://java.sun.com/xml/jaxb

// Any modifications to this file will be lost upon recompilation of the source schema.

// Generated on: 2007.02.08 at 06:27:50 PM GMT

//

package ps;

import java.io.Serializable;

import javax.xml.bind.annotation.XmlAccessType;

import javax.xml.bind.annotation.XmlAccessorType;

import javax.xml.bind.annotation.XmlElement;

import javax.xml.bind.annotation.XmlType;

/**

 * <p>Java class for subscriber complex type.

 *

 * <p>The following schema fragment specifies the expected content contained within this class.

 *

 * <pre>

 * <complexType name="subscriber">

 * <complexContent>

 * <extension base="{}personinfo">

 * <sequence>

 * <element name="address" type="{http://www.w3.org/2001/XMLSchema}string"/>

 * <element name="city" type="{http://www.w3.org/2001/XMLSchema}string"/>

 * <element name="country" type="{http://www.w3.org/2001/XMLSchema}string"/>

 * </sequence>

 * </extension>

 * </complexContent>

 * </complexType>

 * </pre>

 *

 *

 */

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(name = "subscriber", propOrder = {

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 37 of 55

 "address",

 "city",

 "country"

})

public class Subscriber

 extends Personinfo

 implements Serializable

{

 private final static long serialVersionUID = 12343L;

 @XmlElement(required = true)

 protected String address;

 @XmlElement(required = true)

 protected String city;

 @XmlElement(required = true)

 protected String country;

 /**

 * Gets the value of the address property.

 *

 * @return

 * possible object is

 * {@link String }

 *

 */

 public String getAddress() {

 return address;

 }

 /**

 * Sets the value of the address property.

 *

 * @param value

 * allowed object is

 * {@link String }

 *

 */

 public void setAddress(String value) {

 this.address = value;

 }

 /**

 * Gets the value of the city property.

 *

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 38 of 55

 * @return

 * possible object is

 * {@link String }

 *

 */

 public String getCity() {

 return city;

 }

 /**

 * Sets the value of the city property.

 *

 * @param value

 * allowed object is

 * {@link String }

 *

 */

 public void setCity(String value) {

 this.city = value;

 }

 /**

 * Gets the value of the country property.

 *

 * @return

 * possible object is

 * {@link String }

 *

 */

 public String getCountry() {

 return country;

 }

 /**

 * Sets the value of the country property.

 *

 * @param value

 * allowed object is

 * {@link String }

 *

 */

 public void setCountry(String value) {

 this.country = value;

 }

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 39 of 55

}

Table 5 −−−− Java class representing subscriber

3.4. Fluent Modelling
In the original form of EC-Assertion, fluents were specified by expressions of the form:

valueOf(fluent_expression, value_expression)

whose meaning was that the fluent identified by fluent_expression had the value value_expression
(see Section 2.3). But in the new EC-Assertion language fluents are modelled as relations between
objects. More specifically fluents can be defined as relations between objects of the following
general form:

relation(Object1,…,Objectn)

where, relation is the name of the relation that takes as arguments n variable objects (see Section
3.6.1 for example).

3.5. Unification/Relations of objects
In its previous incarnation, where all variables were of basic types, the engine would unify event
parameters with formula variables by comparing their types and names, which were both
represented as strings.

Currently, DVPv1 represents everything as Java objects internally. Therefore, the unification of
event parameters with variables now compares the real Java types of these objects, to make sure
that the type of the parameter is either the same as that of the variable or it is a sub-type of the latter.

Similarly, in the initial version of the tool, the equality/inequality relations between variables (or
between a variable and a constant) would compare the types of the relation arguments and their
values, which were again represented as strings.

Now, the DVPv1 checks that their types are the exact same Java type and, if that comparison was
successful, it checks that none of the objects are null. If at least one of them is null then the relation
is evaluated to false. Otherwise, the objects’ fields need to be compared one by one, recursively. To
avoid this recursion, which would need to be implemented with the Java reflection API given that
the object types are unknown in general, we have opted to serialise the two objects, that is produce
a representation of them as a string of characters, and then compare the two strings for equality
(respectively for inequality).

3.6. Support for Past-Time Formulae

3.6.1. Overview
A past-time formula in EC is a formula that has at least one predicate which occurs before the
triggering predicate of the formula. The following formula, for example, is a past-time EC formula:
∀ _eID1, _eID2:String; t1, t2:Time

 Happens(e(_eID1, …), t1, ℜ(t1,t1)) �

 Happens(e(_eID2, …), t2, ℜ(t2,t1))

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 40 of 55

The above formula has a triggering event which is the e(_eID1, …) – this event is not time-
constrained, so whenever it occurs, it will cause the above formula to be activated. The formula
however also has an event e(_eID2, …) which should occur at a time point t2 which is before t1.
Therefore, this is a past-time formula and the event e(_eID2, …) is a past-time event. In LTL for
example, we would have to use the past-time operator previously P to specify the aforementioned
formula: e(_eID1, …) � P[e(_eID2, …)].

Past-time formulae are important for monitoring and especially so for monitoring security and
dependability properties, since as we have indicated in [5], the specification of two basic types of
such properties in EC, namely confidentiality and integrity, is most naturally done with the use of
such formulae. In the following, we give examples of each of these property types.

Example 1: Our first example is based on the smart items scenario that has been identified by the
industrial partners of SERENITY in [1]. In this scenario, a patient who had suffered from a cardiac
arrest, feels unwell and sends through his EHT a request for assistance to ERC. To establish the
cause of the problem, ERC retrieves the patient’s medical record through the EHT. From this
record, ERC establishes that the patient’s doctor is on vacation and broadcasts a message to a group
of doctors known to be able to substitute the patient’s doctor. A doctor D receives this message on
his own EHT and replies immediately. ERC verifies D’s ability to substitute for the patient’s doctor
for the specific assistance request. Following this, D’s EHT interrogates ERC to receive the
patient’s medical data. D analyses all these data, identifies the most appropriate treatment, and
writes the electronic prescription on his/her EHT which subsequently sends the prescription to ERC
which forwards it to the patient’s EHT after registering it. In this scenario, Campadello et al. [1]
have identified the following confidentiality requirement:

“A patient’s substitute doctor can access the patient’s medical data if and only if he is the selected
doctor” (i.e., Req. 2.2.1.7 in [1])

Assuming the following operations of ERC,

1. fetchPatientData(docID:String, request:String, patInfo:MedicalRecord) − This operation
retrieves the medical record of a patient (patInfo) given (as input) a medical assistance
request associated with the patient (request) and the identifier of a requesting doctor
(docID).

2. verifyDoctor(docID:String, request:String, verified: Boolean) − This operation verifies if a
doctor (docID) can deal with a given request (request)

the above requirement can be monitored using the following EC-Assertion rule and assumptions:

Rule CR1:
∀ _eID1,_ercID,_docEhtID,_request:String; _patInfo: MedicalRecord; t1,t2:Time

 Happens(

 e(_eID1,_ercID,_docEhtID, RES-B, fetchPatientData(_docID,_request,_patInfo), _ercID),

 t1,ℜ(t1,t1))

 ∧ HoldsAt(exposes("fetchPatientData",_docID,_request,_patInfo, _patInfo), t1)

 � HoldsAt(authorised(_ercID,_docEhtID,

 ercID,_"fetchPatientData"_docID,_request,_patInfo), t1)

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 41 of 55

Assumption CA1:
Initially(exposes("fetchPatientData",_docEhtID,_request,_patInfo))

Assumption CA2:
_eID1, _eID2,_ercID,_docEhtID:String; _verified: Boolean; t:Time

 Happens(

 e(_eID2,_ercID,_ercID, RES-A, verifyDoctor(_docID,_request,_verified), _ercID), t,ℜ(t,t))

 ∧ _verified == True

 � Initiates(

 e(_eID2,_ercID,_ercID, RES-A, verifyDoctor(_docID,_request,_verified), _ercID),

 authorised(_ercID,_docEhtID,

 _ercID, "fetchPatientData",_docID,_request,_patInfo,) t),

 t)

According to CR1, following a request for the execution of the operation fetchPatientData by a
doctor’s EHT to the ERC it should be checked if the requesting doctor’s EHT has been authorised
to receive the information that is to be disclosed to him/her. Then, according to CA2 this
authorisation can be obtained through the execution of verifyDoctor. Finally, CA1 specifies that the
operation fetchPatientData discloses patInfo.

CR1 is a past-time EC formula since the truth value of the predicate
HoldsAt(authorised(_ercID,_docEhtID,

 _ercID, "fetchPatientData",_docID,_request,_patInfo)), t1)

in the formula should be established at the same time as the truth value of the unconstrained
predicate
Happens(e(_eID1,_ercID,_docEhtID, RES-B, fetchPatientData(_docID,_request,_patInfo),_ercID),

 t1,ℜ(t1,t1))

To see why this is a past-time formula, it suffices to consider the definition of the HoldsAt
predicate, according to the rules (EC1)-(EC3) of Table 1 on page 9. As we can see there, the
HoldsAt predicate effectively demands to find predicates Initially or Initiates in the past which have
not been followed by a Terminates predicate (again in the past with respect to the current moment).

Example 2: In the smart items scenario of SERENITY, the following integrity requirement has also
been identified:

“Electronic prescriptions shall be issued only by doctors by means of an e-health terminal.” (i.e.,
Req. 2.2.1.15 in [1])

This requirement can be monitored by a rule stating that if an ERC receives an electronic
prescription by a doctor then this doctor must be authorised to issue the prescription. The rule can
be created by instantiating the destination party integrity monitoring pattern assuming that:

1. ERC provides an operation to create new electronic prescriptions (presc) for a medical
assistance request (request):

createPrescription(docID:String, request:String, presc: Prescription)

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 42 of 55

2. Doctors are authorised through the execution of the operation verifyDoctor of ERC.

The above requirement can be monitored at runtime using the following EC rule and assumptions as
we have discussed in :

Rule IR1:
∀ _eID1,_ercID,_docEhtID:String; t:Time

 Happens(

 e(_eID1,_docEhtID,_ercID,REQ-B,createPrescription(_docID,_request,_presc), _ercID),

 t, ℜ(t,t))

 ∧ HoldsAt(transforms("createPrescription",_docID,_ request,_presc, _ercID), t)

 � HoldsAt(authorised(_ercID, _docID, _ercID,

 "createPrescription",_docID,_ request,_presc)), t)

Assumption IA1:
Initially(transforms("createPrescription", _docID,_ request,_presc, _ercID))

Assumption IA2:
∀ _eID2,_ercID,_docEhtID:String; t:Time;

 _request: String, _verified: Boolean

 Happens(

 e(_eID2,_ercID,_ercID, RES-A, verifyDoctor(_docID, _request,_verified),_ercID), t,ℜ(t,t))

 ∧ _verified == True

 � Initiates(e(_eID2,_ercID,_ercID, RES-A, verifyDoctor(_docID,_request,_verified), _ercID),

 authorised(_ercID, _docEhtID, _ercID,createPrescription",_docID,_ request,_presc)), t)

The rule IR1 checks whether a doctor (_docID) who invokes the operation createPrescription in
ERC (_ercID) is authorised to do so. It is interesting to note, due to the mapping of the pattern
variables of Table 2, IR1 effectively describes a delegation of the doctor’s right to create
prescriptions to his/her EHT, since it is the latter which is the sender in this interaction
(_docEhtID), while it is the doctor who is being authorised (_docID) for the action in reality.

The assumption IA2 above states that a doctor is authorised to call the operation createPrescription
in ERC only if it is verified by the operation verifyDoctor. In this case, an appropriate authorisation
fluent will be generated by IA2 and by virtue of the EC axioms shown in Table 1 we can derive that
the HoldsAt predicate in the head of the rule IR1 is satisfied.

3.6.2. Method for Checking Past-Time Predicates
The method for checking past-time predicates works in the following manner – if while observing
the trace of events in the system we obtain an event which could be unified with a part of a formula
instantiation but its time constraints cannot yet be evaluated (because it is constrained by a future
event), then we store this event in the database of past-time events, which is depicted as “Database

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 43 of 55

I” in Figure 2. If later on we observe an event which can be unified with that formula instantiation
and which fixes some of the up to that point unspecified time instances mentioned in the formula,
then we search in the database of past-time events for any event which could currently be unified.

3.7. Support for HoldsAt Predicates
A similar problem with the past-time formulae exists for the HoldsAt predicate, since its definition
is based on the existance of past-time Initiates and Terminates predicates. These predicates are
derived from the assumptions of a theory which state what events initiate and terminate a particular
fluent respectively.

3.7.1. Fluent Initiates and Terminates Database
In order to be able to support the HoldsAt predicate we need to store the predicates Initiates and
Terminates when these are derived, for use at a later time in the evaluation of future HoldsAt
predicates, just like we did for the support of past-time formulae. We therefore store the predicates
Initiates and Terminates into the database depicted as “Database II” in Figure 2. When later on we
need to evaluate a HoldsAt at some future time instance t1, we search this database for the most
recent Initiates and Terminates predicates which precede t1 and we use the EC axioms shown in
Table 1 to derive the truth value of the HoldsAt predicate in the head of the rule IR1 is satisfied.

3.7.2. Query Generation for HoldsAt
The truth value of HoldsAt predicates in formulae is established by querying the fluents initiation
and termination database that is maintained by the engine. The query to determine this status is
derived from the axioms of Event Calculus. More specifically, given the following axioms for the
HoldsAt predicate:
EC1: Clipped(t1,f,t2) ⇐ (∃e,t) Happens(e,t,ℜ(t1,t2)) ∧ Terminates(e,f,t)

EC2: HoldsAt(f,t) ⇐ Initially(f) ∧ ¬Clipped(0,f,t)

EC3: HoldsAt(f,t2) ⇐ (∃e,t) Happens(e,t,ℜ(t1,t2)) ∧ Initiates(e,f,t) ∧ ¬Clipped(t,f,t2)

We can derive the following formula for HoldsAt by taking the disjunction of EC3 and EC4 and
substituting EC1 for the predicate Clipped in the formula:
(Q1) HoldsAt(f,t2) ⇐

 (Initially(f)

 ∧ ¬∃ e1, t3: (Happens(e1,t3) ∧ (0 < t2) ∧ (t3 < t2) ∧ Terminates(e1,f,t3)))

 ∨ (Happens(e2,t1) ∧ Initiates(e2,f,t1) ∧ (t1 < t2)

 ∧ ¬∃ e3, t4: (Happens(e2,t4) ∧ (t1 < t4) ∧ (t4 < t2) ∧ Terminates(e3,f,t4))

The formula (Q1) constitutes the basis of querying the status of the fluent initiation and termination
database of the monitoring engine to establish the truth value of HoldsAt predicates.

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 44 of 55

4. Limitations
In this section we will discuss a number of limitations of DVPv1. We expect to address most of
these in the second version of the prototype, which is to be delivered in the deliverable A4.D3.3.

4.1. Support for Future-Time HoldsAt Predicates
It is always possible that one specifies a formula where a HoldsAt predicate needs to be evaluated
in the future, for example, Happens(e, t1) � HoldsAt(f, t2) ∧ t1 ≤ t2. In the current state of the
prototype, the query for the aforementioned formula will be performed in the time instance t1 and
therefore the truth value of the HoldsAt predicate will be computed with respect to the Initiates and
Terminates predicates which have occurred up to the time instance t1.

It is evidently the case that this way of treating future-time HoldsAt predicates is incorrect, since
there can be more Initiates and Terminates predicates between the current time instance (t1) and the
future time instance (t2) at which we are interested in computing the value of the HoldsAt predicate.

This limitation will be corrected in the second version of the prototype.

4.2. Lack of Multiple Inheritance
The object types which can be defined by the user can unfortunately only make use of single
inheritance, not multiple one. This is a direct consequence of the fact that the XML schema does not
allow one to describe a data structure which extends (i.e., inherits from) more than one data
structure.

As such, if multiple inheritance is needed, say type Z to inherit from types A, B & C, then one will
have to simulate it somehow, either by declaring that Z inherits from A and contains sub-
objects/fields of type B & C, or by declaring three different types: ZA which inherits from A, ZB
which inherits from B and ZC which inherits from C and making as many copies of the formulae
which should contain a Z object to cover all cases. Unfortunately, none of these workarounds are
universally applicable. We do not currently plan to attack this limitation due to the fact that we do
not wish to abandon the representation of events and the EC language through XML.

4.3. Support for Logical Clocks
As it is, DVPv1 assumes the existence of a global clock which is used to timestamp all the events it
receives. It also assumes that the events received are received in order.

Clearly, these assumptions do not hold in a distributed system, since the local clocks of the various
event collectors cannot be easily synchronised in such a setting. Therefore, it would be desirable to
extend the DVP so that it can deal with a vector of clocks, similarly to the concept of logical clocks.
We will investigate this possibility for DVPv2 but there is also the possibility that this will require
considerable support from the general SERENITY Framework and the event collectors.

To see why, consider the case where we are capturing events at a component both at the SOAP
level and at the system call level. Then the logical clocks reported by these two captors will need to
be related – each component will have to keep a single representation of a (local) logical clock,
containing the clocks of all the other components it is communicating with. Then all event
collectors will need to use the value of that logical clock when reporting events.

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 45 of 55

4.4. Support for Non-Determinism
DVPv1 has no support for non-determinism – all its fluents have a specific value always.
Nevertheless, it would be interesting to examine the possibility of offering support for non-
determinism, so that we can describe systems whose internal behaviour is not known. To do so we
will need to provide support for the Releases predicate of EC. We will also have to examine how
this predicate behaves in the presence of our complex, object-based fluents.

4.5. Support for a Full Object-Oriented Database
The databases used in DVPv1 for storing past-time events and Initiates/Terminates predicates are
currently simple, in-memory database. We are planning to replace that with a full-fledged Object-
Oriented database, namely db4objects1.

4.6. Minimisation of Past-Time Predicates in the DB
DVPv1 stores all past-time predicates in the DB and never deletes them from it. Given that the
system may run forever, this will eventually lead to a situation where the DB is full and no more
predicates can be stored in it. We will therefore examine ways to minimise the number of past-time
predicates held at each time instance in the database.

4.7. Calling External Functions
In order to be able to support control and recovery, DVPv2 will need to be able to perform calls to
external functions, so as to actively poll for specific events at particular instances, to be able to
respond to the events it receives for informing the SERENITY Framework of what the correct
action should be at the particular circumstances. However, DVPv1 can only call a restricted set of
internal functions, used mainly for keeping statistical information.

4.8. Supporting Internal Alarms
Again, in order to be able to support control and recovery, we will need to provide support for
internal alarms and alarm handlers in the DVP. This will allow it to poll for a particular event at
regular intervals, to perform some control action at specific time instances, etc.

1 http://www.db4objects.com/community/

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 46 of 55

5. Installation and Usage Guide

5.1. Required Software
To use the city monitoring tool, the user should download and install on his/her machine:

 Version 5.0.14 of the Tomcat server – This server can be downloaded from

http://tomcat.apache.org/. An installation guide for the server is also available at

the same site. Please consult the release note of tomcat for the selection of right XML parser.

 Version 1.4 of Axis server – This server can be downloaded from

http://ws.apache.org/axis/. An installation guide for the server is also available at the
same site.

5.2. Installation
 To install the monitoring manager, extract the files in the archive into the folder

C:\Monitor

 To install the data analyzer copy the folder C:\Monitor\analyzer\code in the
classes folder of the axis installation in Tomcat. This prototype assumes that the Tomcat server
is deployed on port number 8080 (i.e. default port for tomcat) .

5.3. How to Use the DVP

5.3.1. The Data Analyzer
To start the data analyzer, the user has to start the tomcat server by executing the startup

file in the TOMCAT_HOME\bin folder.

 To use the analyzer with the City monitoring manager, in a command prompt window give
the command C:\Monitor\analyzer\deploy The data analyzer is up and the wsdl
specification of the data analyzer service can be seen at:

http://localhost:8080/axis/services/analyzerService?wsdl

and the analyzer service endpoint is

http://localhost:8080/axis/services/analyzerService

Section 5.3.2describes how to use City monitoring manager and data collector.

5.3.2. The Monitoring Manager
The monitoring manager is used to import and select the formulae to be monitored, send the

selected formulae to the data analyzer, start the data collector for a monitoring session,

initiate a polling process that retrieves possible violations of the properties and view the result

of monitoring. To retrieve violations of properties, the monitoring manager polls the data

analyzer at regular time intervals that can be specified by the user and shows the results that

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 47 of 55

it retrieves in a formula viewer.

To use the monitor manager, follow the following steps:

1. To start the monitor manager, in a command prompt window execute the command
C:\Monitor\manager\RunManager as shown in the figure below. Following this,
the monitor manager window will pop up.

Figure 5 – Command prompt window

2. Then, to import the formulae to be monitored, select the option "Import Formulae" from the
"File" menu of the manager, as shown in the figure below.

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 48 of 55

Figure 6 – How to import the formulas in the Monitoring Manager

3. In the file opening dialog box that appears following, choose the XML file that contains the
formulae that you want to monitor.

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 49 of 55

Figure 7 – The file opening dialogue box

4. The monitor manager will then read all the formulae from the file and display the formulae
in the display panel of the monitoring manager as illustrated in Figure 8.

Figure 8 – The Monitoring Manager

The monitoring manager lists the identifiers of the imported formulae in the "Imported
Formulae" panel. To view a formula in the event calculus format, the user may select its ID.
Following this selection, the formula with the selected ID will be shown in the "Formula
Viewer" panel of the manager. If the user wants to select the formula to be monitored,
he/she may select its ID in the imported formulae panel and click on the "Select" button.
Following this, the selected formula will appear in the "Selected Formulae" panel. The user
may repeat the same process to select more formulae. When the selection is complete, the
user can click on the "Confirmed" button, to send the formulae to the data analyser. If the
submission of formulae to the analyser is successful, the monitor manager will show the
following message. The user should press the "Ok" button to continue.

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 50 of 55

Figure 9 - Information dialogue box

5. The next step is to provide the analyzer with runtime events. From the Start Data Collection
command in the Controls menu of the monitor manager we can activate the collection of the
events. The monitor manager can by default accept events in the port number 12345 and
report them to the analyzer. The format of those events is based in the event XML schema
described in [1]. Any event collection mechanism that can provide events according to the
defined XML schema can be used to report the events. For the purposes of the demo we can
use the SOAP event collector which can be located in C:\Monitor\SoapCollector.
This application creates a proxy service which listens to a user defined port number, accepts
incoming SOAP messages, translates them to a Serenity event format and then forwards
them to the real web service for the execution of the service and to the monitor management
tool. For the execution of the collector the user must type java –cp xercesImpl.jar
code.TcpTunnel followed by the parameters of the listening port, the IP address and
port of the real web service and the IP address and port of the monitoring manager. In our
case, where the Tomcat is deployed locally in the default port (i.e. 8080) and the manager
listens for events in the 12345 port, the execution command should be java –cp
xercesImpl.jar code.TcpTunnel 8081 localhost 8080 localhost
12345. Now that the collector is activated we must inform the monitor manager to accept
any events are send to it by selecting the Start Data Collector from the Control menu. Any
attempt to invoke a web service in the port 8081 will result to report this event to the
monitor manager tool.

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 51 of 55

Figure 10 – How to stop data collector in the Monitoring Manager

6. The user may stop the data collector by selecting the option "Stop Data Collector" in the
"Control" menu

7. To start polling the data analyser in order to view the violations of the formulae being
monitored, the user should select the option "start polling" from the control menu.
Following this, the monitor manager will start polling the data analyser at regular time
intervals (the default time interval is 10 seconds).

The monitoring manager shows the list of instances of the violated and satisfied formulae in
the "Monitoring Decision List" panel as shown in Figure 11. This panel will be updated at
the regular intervals. The Monitoring Decision List will show the monitoring summary of
each instance of each formula. The left most column in this list shows the unique formula
instance ID, the middle column shows the decision for the formula instance, and the right
most column shows the time when the decision was made by the data analyzer.

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 52 of 55

Figure 11 – The Monitoring Manager showing a list of violations detected

To view the details of a formula instance, the user should select the relevant formula
instance in the Monitoring Decision List. Following this, the monitor manager shows the
details of the formula instance in the "Formula Instantiation Details" panel. This panel
displays the formula status, other formulae that the specific formula may depend on (see [4]
for a definition of formula dependencies and how they are used in monitoring), and the
values bound to the variables of the formula. "Formula Instantiation Details" panel also
shows the truth values of the individual predicates of the formula, the timestamps of the
establishment of these truth values, and the source of the information that underpins them
("Recorded" for events generated directly by the system under observation and "Derived"
for events generated by deductive reasoning as described in [4]).

8. To change the polling interval, the user should select the option "stop polling" in the main
monitor manager window, then select "parameters" from the "control" menu in this window
and, in the dialog box that pops up, specify a new value for the polling interval.
Subsequently, the user should select the option "restart polling" from the control window.

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 53 of 55

Figure 12 – Monitor Manager parameters dialoge box

9. To stop the manager, first stop the data collector (if it is running), stop polling, then select
exit from file menu.

5.4. Example of Using the DVP Together With an Event Collector
In this section we will demonstrate a simple example of the usage of the analyzer and the
monitoring tool. To make use of this example you must follow the following steps.

 Install Tomcat and Axis.

 Start Tomcat using the default port number(i.e. 8080).

 Deploy the analyzer service as described in 5.2 .

 In the same way as in the previous step deploy the service located in
C:\Monitor\examples\findSubstitudeDoctor, only this time copy the dri folder in
the classes folder of axis.

 Check that both analyzerService and DoctorRegistryInquiryPT web services have been
deployed correctly by pointing your browser at
http://localhost:8080/axis/servlet/AxisServlet.

 Start the monitor manager.

 Import the formulae located in the aegean_formula.xml file in the
C:\Monitor\examples folder. Select the Q2 formulae and press Confirm to report the selected
formulae to the analyzer service.

 Start the SOAP Collector by executing the RunCollector.bat file from the
C:\Monitor\SoapCollector folder.

 Activate the Data Collection and the Polling from the Controls menu of the monitor
manager.

 Execute the RunTestDRI.bat file from the
C:\Monitor\examples\findSubstitudeDoctor folder which invokes the
DoctorRegistryInquiryPT web service.

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 54 of 55

6. Conclusion
This document has presented the version of the Dynamic Validation Prototype (DVP) which had
been developed at City University prior to the SERENITY project and then described how the new
version of the prototype which we have delivered as part of deliverable A4.D3.1 differs from it. It
has presented the architectural differences between the two prototypes as well as all the extensions
which have been developed for the DVP, namely:

 New EC Assertion Language

 New structure of events

 Support for complex object types in the EC Assertion Language

 Support for user-defined complex object types

 Support for inheritance in object types

 Modelling of complex fluents

 Support for past-time EC formulae

 Support for HoldsAt predicates

The document has also identified a number of limitations of the current version of the DVP,
namely:

 Support for multiple inheritance in types

 Support for future-time HoldsAt predicates

 Support for logical clocks

 Support for non-determinism

 Support for a full object-oriented database

 Minimisation of past-time predicates stored at any time

 Ability to call external functions

 Support for internal alarms

Finally, this report contains a guide for the installation and usage of the software which has been
delivered as part of A4.D3.1.

A4.D3.1 – V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.2 Page 55 of 55

References
[1] Campadello S., Compagna L., Gidoin D., Giorgini P., Holtmanns S., Latanicki J., Meduri V.,

Pazzaglia J.-C., Seguran M., Thomas R., Zanone N. (2006): S&D Requirements specification,
Deliverable A7.D2.1, SERENITY Project

[2] Kloukinas C., Ballas C., Presenza D., and Spanoudakis G. (2006): Basic set of Information Collection
Mechanisms for Run-Time S&D Monitoring, Deliverable A4.D2.2, SERENITY Project

[3] Mahbub K. (2006): Runtime Monitoring of Service Based Systems, Ph.D. Thesis, Department of
Computing, School of Informatics, City University, London, U.K.

[4] Mahbub K., Spanoudakis G. (2004): A Framework for Requirements Monitoring of Service Based
Systems , 2nd International Conference on Service Oriented Computing, November, New York,
U.S.A.

[5] Shanahan, M. P. (1999): The Event Calculus Explained, in Artificial Intelligence Today, LNAI no.
1600:409-430, Springer

[6] Spanoudakis G., Kloukinas C., Androutsopoulos K. (2006): Towards Security Monitoring Patterns,
22nd Annual ACM Symposium on Applied Computing, Technical Track on Software Verification (to
appear)

[7] Spanoudakis G., Mahbub K. (2006): Non Intrusive Monitoring of Service Based Systems,
International Journal of Cooperative Information Systems, Vol. 15, No. 3, pages 325-358

