

A4.D3.2 – Evaluation of V1 of Dynamic Validation
Prototype

C. Kloukinas, K. Mahbub, G. Spanoudakis

Document Number A4.D3.2

Document Title Evaluation of V1 of Dynamic Validation Prototype

Version 1.1

Status Final

Work Package WP 4.3

Deliverable Type Report

Contractual Date of Delivery 30 April 2007

Actual Date of Delivery 19 June 2007

Responsible Unit CUL

Contributors CUL

Keyword List Evaluation, dynamic validation

Dissemination level PU

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 2 of 49

Change History

Version Date Status Author (Unit) Description

0.1 15 April 2007 Draft K. Mahbub (CUL) Table of contents, indicative
section contents

0.2 30 April 2007 Draft K. Mahbub (CUL) Initial Evaluation Results

0.3 30 May 2007 Draft K. Mahbub (CUL) Results for violation detection
delay

0.4 4 June 2007 Draft K. Mahbub (CUL) Results for event transmission
delay

0.5 8 June 2007 Draft K. Mahbub (CUL) Results for event capturing
effect on monitored systems

1.0 15 June 2007 Final
submitted
to the
consortium
for review

G. Spanoudakis
(CUL)

Review and editing

1.1 18 June 2007 Final K.Androutsopoulos
(CUL)

Changes to make the document
compliant with the quality plan

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 3 of 49

Executive Summary

This deliverable presents the results of an initial evaluation of V1 of the dynamic validation tool
that has been developed in SERENITY. The evaluation has focused on the performance of
monitoring and event capturing and the effect of the latter on the systems which are being
monitored. The evaluation was based on a series of simulations which generated random event
sequences representing executions of a service based system that had been developed at City
University. The experiments showed that on average the detection of a violation is timely with the
maximum average delay that was observed for typical S&D properties being in the order of
seconds. They also indicated that the number of formulas which are being monitored affects
performance but not the size of the domain of the variables in the formulas (at least for the main
type of security properties that we expect to monitor at runtime). Experiments have also shown that
the incorporation of assumptions in the monitoring process and past formulas did not have a
significant effect on performance. The evaluation has also been concerned with the communication
costs of transmitting events from event captors to the dynamic validation tool and has indicated that
when both these components are running on the same machine the relevant cost is low. Event
capturing, however, has been found to have a significant effect on the performance of the system
that is being monitored. As part of the initial evaluation that we carried out we introduced certain
optimisations in the monitoring engine of the dynamic validation tool. These optimisations will be
released with the second version of the tool. Further optimisations are also under investigation for
incorporation in the next version of the tool including the implementation of index-based searches
of monitoring formula templates during the monitoring process and the development of a
distributed version of the dynamic validation tool.

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 4 of 49

Table of Contents

1. Introduction ... 5

1.1. Overview .. 5

1.2. Report Structure.. 6

2. Experimental Setup.. 7

2.1. Criteria of Evaluation & Relevant Measures ... 7

2.2. The Monitored System and Formulas.. 10

2.3. The Simulator ... 13

2.4. The Deployed Machines ... 17

3. Results ... 18

3.1. Violation Detection Delay... 18

3.2. Event Transmission Time.. 29

3.3. Effect of Event Capturing on Monitored Applications... 31

4. Discussion and Possible Improvements .. 33

5. Conclusions ... 34

Appendix A. Specification of the Car Rental System (CRS).. 35

A.1. BPEL Specification of the CRS... 35

A.2. WSDL Specification of the CRS ... 42

A.3. WSDL Specification of the Car Information System (IS) .. 45

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 5 of 49

1. Introduction

1.1. Overview
In this deliverable, we describe the results of an initial evaluation of the dynamic validation
prototype of SERENITY (see deliverable A4.D3.1). The main purpose of this evaluation was to
inform the further development of the dynamic validation prototype and the mechanisms supporting
it (e.g. the supporting information collection mechanisms).

As it had been identified in the deliverable A7.D5.1 [3], the evaluation of the dynamic validation
prototype of SERENITY would be concerned on:

 the effectiveness of event capturing mechanisms

 the effectiveness of the monitoring engine

The evaluation of the effectiveness of the monitoring engine focused on assessing the delay in the
detection of violations of monitoring rules as the main indicator of the performance of the
monitoring engine and investigating different factors that may affect this indicator. These factors
included:

 the types of events that should be taken into account for the monitoring of different types of
formulas (i.e. events which are captured during the operation of the system that is being
monitored and events which are generated by the engine through deduction)

 the effect of the number of the monitored formulas on the delay in the detection of violation,
the effect of the size of the domains of the variables used in formulas in the detection delay
and

 the effect of interdependencies between the monitored formulas on monitoring performance.

The delay in the detection of violations of monitoring rules was studied in average terms as
analytical results that have been reported in [5] have demonstrated that the algorithm which is
implemented by the dynamic validation tool developed in SERENITY has an exponential worst
case time complexity.

The evaluation of the event capturing mechanisms of SERENITY focused on two areas:

 The effect of event capturing on the performance of the system that is being monitored.

 The delay in the communication of events to the dynamic validation tool.

The initial evaluation activity that we have carried out and is reported in this deliverable has not
been concerned with other possible criteria of evaluation that had been identified in [3], including
tool usability, the expressiveness of the monitoring language and usability of the monitoring
language for specifying monitorable properties. The assessment of these indicators is to be based on
input from the specifiers of the patterns in the project and therefore would have to be delayed until
the main part of the pattern specification activity is completed in the project in order to have a more
thorough basis for assessing the ability of the language that the monitoring offers for specifying
monitoring rules. Furthermore, the expressive power of event calculus that underpins the
monitoring language of the dynamic validation tool has been demonstrated in the literature and,
therefore, reassessing it in the context of SERENITY was not a priority. Also the general usability
of the dynamic validation prototype should be based on the more advanced second version of the
tool.

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 6 of 49

To enable a controlled study of the factors that were the focus of our initial evaluation, our
experimental evaluation was based on simulation of the operation of a service based system and the
monitoring of specific forms of security properties during it, namely availability and integrity
properties. The focus on these types of properties was due to the fact that they constitute 2 of the 3
basic types of security properties. Confidentiality, which is the third type of the basic security
properties, was not used in our experiments. This however does not affect the generality of our
results since, as we have discussed in [7], confidentiality properties can be expressed in the
language of the dynamic validation prototype by monitoring rules and assumptions which have the
same general form as the monitoring rules and assumptions that express integrity properties.

1.2. Report Structure
The rest of this report is structured as follows.

In Section 2, we give an overview of the setting of our experiments describing the criteria that we
used during the evaluation, the system that subjected to monitoring during the evaluation, the way
in which we simulated the operation of this system to perform monitoring, and the different sets of
rules that we used during the monitoring process.

In Section 3, we present and discuss the main results of our evaluation and give an overview of
some optimisations that we introduced to the dynamic validation prototype in order to address some
issues that were identified early in the evaluation process.

In Section 4, we present an overview of the main findings of our experiments and the identified
needs for improvements in the dynamic validation prototype.

Finally, in Section 5, we provide some concluding remarks for our evaluation.

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 7 of 49

2. Experimental Setup

2.1. Criteria of Evaluation & Relevant Measures
As we discussed in Section 1, the main aim of our experiments was to evaluate the performance of
the monitor an event captors.

The evaluation of the performance of the monitor was based on the following criteria:

 The average time delay in detecting a formula violation and the effects on this measure of
the following factors:

 The use of formulas with interdependencies (i.e., monitoring rules and assumptions that can
generate information required by the rules) as the monitoring of these formulas requires both
recorded and derived events and therefore it engages the deductive reasoning capabilities of the
monitor.

 The number of monitored formulas (rules and assumptions).

 The size of the domains of the non time variables of monitored formulas.

 The average time that elapses before an event that is received by the monitor is processed by
it.

The evaluation of event captors was based on the following criteria:

 The delay in the transmission of events from event captors to the monitor

 The effect of event capturing in the performance of the system that is being monitored

Also, as we discussed in Section 1, to enable a controlled study of the above factors, our
experimental evaluation was based on simulation of the operation of a service based system This
simulation generated events that were used in the monitoring sessions that we executed during the
evaluation.

The basic measures that we used in order to evaluate the performance of the dynamic validation tool
against the above criteria are defined below. It should be noted that in general the dynamic
validation tool and the system that is being monitored by it (regardless of whether it is based on a
really executed or a simulated BPEL process) are two different processes and therefore they have
different clocks. Consequently, it is necessary to translate the timeline of the two processes into a
common timeline and take measurements from it. To achieve this, in our experiments we
transformed the timestamps of the events of the system that is being monitored into the time line of
the monitor. Given this time translation principle, Table 1 shows the definitions of the basic time
measures that we used in our experiments.

Time Meaning/Calculation

ti
e

This is the time of occurrence of an event i. This is the time when the event
is captured from the system that is being monitored or is generated by the
simulator.

ts
m

This is the starting time of the monitor.

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 8 of 49

Time Meaning/Calculation

tc
m

This is the current time of the monitor.

ti
e(d)

This is the time when an event i is recorded in the monitor's event database.
ti

e(d) is computed by the formula

ti
e(d) = (ti

e − t0e) + ts
m

where t0
e is the time of the occurrence of the first event that is used in a

monitoring session.

ti
m

This is the time when the monitor retrieves an event i from its event
database to process it.

ts
Fj

Starting time of the decision procedure that the monitor executes to check
for violations given the truth values of the predicates in the template j of a
formula F

te
Fj

This is the completion time of the decision procedure that the monitor
executes to check for violations given the truth values of the predicates in
the template j of a formula F

Table 1 – Basic Time Measures

Given the basic time measures shown in Table 1, we define the following performance measures:

 Average waiting time of an event (e-delay):

The waiting time of an event is the difference between the time when the event is stored in the event
database of the dynamic validation tool and the time when the event is retrieved from this database
by the monitor to be processed.

The average waiting time of events, called e-delay, is measured using the following formula,

e-delay = �i=1,…,K where ti
m − ti

e(d) > 0 (ti
m

 − ti
e(d)

) / K

where K is the total number of events. Figure 1 illustrates the waiting time of an event.

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 9 of 49

Event time Line

(Original)

Event time Line

(Translated to

monitor time line)

Monitor time line

ti
e t0

e

ts
m ti

m

ti
e (d)

ti
e
 – t0

e

event waiting time

ti
e
 – t0

e

Figure 1 −−−− Event waiting time

 Average decision delay:

The delay in making a decision about a possible violation (or satisfaction) of a rule instance is
measured as the difference between the time when the monitor makes a decision for the rule
instance and the time when the last event ei that makes it possible to make this decision was
recorded in the event database (or the time when the monitor picks up the event ei from the event
database, in cases where the monitor is idle). The event that makes it possible to decide about the
satisfaction/violation of a rule instance is the event that is used to update the truth-value of the last
predicate in the template.

The average delay in making a decision for a template is measured according to the following
formula,

d-delay = �i=1,…,N dj / N

where

 N is the number of templates for which a decision has been made

 dj is the delay in making the decision for template j of the formula F that is computed as

 dj = te
Fj

 – maxi∈Fj (ti
e(d)

) if te
Fj

– maxi∈Fj (ti
e(d)

) > 0 (I)

 dj = te
Fj

 – maxi∈Fj (ti
m

) otherwise (II)

where i ranges over the events used to establish the truth values of the predicates in Fj. Formula (I)
above is used to compute the delay in making a decision about a template in cases where the
monitor starts checking this template after the occurrence of all the events that were used to
instantiate and set the truth values of the predicates in the template. Formula (II) is used in cases
where the monitor is capable of checking a template before the last event that was used to
instantiate one of its predicates really occurred. This case is only possible due to the use of
simulations when the time of the real occurrence of an event could be after its generation by the
simulator and its transmission to the monitor. Figure 2 illustrates the two cases where formulas (I)
and (II) should be used to compute the decision delay for a particular template instance. In Case A,
the monitor completes the decision process after the instantiation of the last predicate in the formula
template at time ti

e(d)
. In Case B, the monitor completes the decision process before the time that

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 10 of 49

instantiation of the last predicate in the formula template took place. In this case the decision delay
is measured as the time that it took the monitor to complete the decision process after retrieving the
event that instantiated the last template in the formula from its event database.

Case A: Use of Formula (I)

Case B: Use of Formula (II)

Figure 2 −−−− Decision delay

2.2. The Monitored System and Formulas
To evaluate the dynamic validation prototype we used a Car Rental System (CRS) as the system to
be monitored. This system acts as a broker offering its customers the ability to rent cars provided by
different car rental companies directly from car parks at different locations. CRS is implemented as
a service composition workflow that is specified in BPEL [1] and orchestrates Car Information

Event time Line

(Original)

Event time Line

(Translated to

monitor time line)

Monitor time line

ti
e t0

e

ts
m ti

m

ti
e (d)

ti
e
 – t0

e

ti
e
 – t0

e

decision delay

te
Fj ts

Fj

Event time Line

(Original)

Event time Line

(Translated to

monitor time line)

Monitor time line

ti
e t0

e

ts
m ti

m

ti
e (d)

ti
e
 – t0

e

ti
e
 – t0

e

decision delay

te
Fj ts

Fj

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 11 of 49

Services (IS), Customer Management Services (CMS), User Interaction Services (UI) and
Sensoring Services (SS). These services realise the following functionalities for CRS:

 Car information services (IS services) maintain registries of cars that can be rented, check
car availability upon car rental requests and allocate cars to customers as requested by CRS. The
design of CRS assumes that IS services are provided by different car rental companies to offer the
above functionalities.

 Sensoring services (SS services) detect movements of cars as they are driven in or out of car
parks and inform CRS accordingly. SS services are provided by different car parks to

 The Customer Management Service (CMS service) maintains the database of the customers
of CRS and authenticates these customers as requested by CRS.

 The User interaction services (UI) provide CRS with different user interfaces that can
handle interactions with the end-users on different devices.

In a typical operational scenario, CRS receives car rental requests from UI services, authorises
customers contacting CMS and checks for the availability of cars by contacting IS services. It also
gets car movement information from SS services. This information is used to track the status of a
car. The BPEL specification of the CRS composition process and the WSDL files of the web
services deployed by it are presented in Appendix A.

Rule ID R1

forall t1 : time, exists t2 : time

Happens(ic:makeAvailable(ID,status1,sender1,receiver1,source1,loc,carId),t1,R(t
1,t1)) ∧

Happens(ir:makeAvailable(ID,status2,sender2,receiver2,source2),t2,R(t1,t2))

� oc:self:sub(t2,t1) < 500

Rule ID R2

forall t1 : time, exists t2 : time

Happens(ic:isAvailable(ID,status1,sender1,receiver1,source1,loc),t1,R(t1,t1)) ^

Happens(ir:isAvailable(ID,status2,sender2,receiver2,source2,carId),t2,R(t1,t2))

� oc:self:sub(t2,t1) < 500

Figure 3 −−−− Set-1 of monitoring rules

In our experiments, we used the BPEL specification of CRS to generate events simulating its actual
behaviour at runtime. This was done with the use of a simulator that we describe in Section 2.3
below. The simulator was used to generate sequences of random events representing the execution
of different complete paths in the workflow of CRS. Further details on the generation of these
sequences are given in Section 2.3. The use of simulation was necessary in order to be able to
generate sets of events with varying characteristics (e.g. varying sizes of the domains of the
variables of monitored rules) and study their effect on the performance of the monitor, something
that would be difficult with a real execution of the CRS workflow.

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 12 of 49

In our experiments we monitored two separate sets of monitoring rules and assumptions which are
shown in Figure 3 and Figure 4.

The first set of rules (referred to as “Set-1” henceforth) consisted of two monitoring rules R1 and
R2, checking a bounded form of the availability of the operations makeAvailable and isAvailable of
the CRS BPEL process, respectively. As shown in Figure 3, these rules express a bounded form of
availability in which availability is defined as the ability of the relevant operations to respond
within 500 milliseconds after they are called following the pattern discussed in [7].

Assumption ID A1

forall t1 : time

Happens(ic:returnKey(ID,status,sender,receiver,source,carId,loc),t1,R(t1,t1))�

Initiates(ic:returnKey(ID,status,sender,receiver,source,carId,loc),
authorised_availability(carId),t1)

Assumption ID A2

forall t1 : time, exists t2 : time

Happens(ic:makeUnAvailable(ID,status,sender,receiver,source,carId,loc,custId),t
1,R(t1,t1)) ∧

HoldsAt(authorised_availability(carId),t1) �

Terminates(

ic:makeUnAvailable(ID,status,sender,receiver,source,carId,loc,custId),

authorised_availability(carId),t2) ^ t2 >= t1+1 ^ t2 <= t1+1

Rule ID R3

forall t1 : time

Happens(ic:makeAvailable(ID,status,sender,receiver,source,carId,loc),t1,R(t1,t1
)) �

HoldsAt(authorised_availability(carId),t1)

Figure 4 −−−− Set-2 of Monitoring Rules

The formulas shown in Figure 4 constituted the second set of monitoring rules (referred to as “Set-
2” in the following). These formulas expressed one monitoring rule (R3) and two assumptions (A1
and A2) that were used to deduce information about the state of CRS during a monitoring session.
More specifically, assumption A1 in Figure 3 specifies the initiation of a fluent that signifies the
authorisation of the availability of a car when the key of this car is returned to a car park (see the
operation ic:returnKey(ID,status,sender,receiver,source,carId,loc)).Assumption A2 is
used to terminate the fluent that signifies the availability of a car whenever the operation
makeUnAvailable of the IS service is invoked to make this car unavailable. Finally, R3 is used to
check whether in the cases where the IS marks a car as available, a fluent that authorises the

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 13 of 49

availability of the car holds (i.e., exists in the fluent database that is maintained by the monitor; see
[2] for more details).

The two sets of formulas presented above were selected in order to introduce certain forms of
variability in the experimentation process to enable the investigation of the performance of the
monitor with respect to some of the criteria introduced in Section 2.1. More specifically, the second
set of rules included formulas with interdependencies. The predicate
HoldsAt(authorised_availability(carId),t1) in R3, for instance, depends on1

 the predicate

Initiates(ic:returnKey(ID,status,sender,receiver,source,carId,loc),
authorised_availability(carId),t1) of assumption A1, and

 the predicate

Terminates(ic:makeUnAvailable(ID,status,sender,receiver,sourc
e,carId,loc,custId), authorised_availability(carId),t2) of
assumption A2.

Thus, checking the formulas in Set-2 requires both recorded events and events that are derived from
recorded events using the assumptions of the set and the deduction process of the monitor. Unlike
it, the formulas in Set-1 can be checked by taking into account only the events which are recorded
and reported to the monitor by event captors.

2.3. The Simulator
In our experimental evaluation we used event sequences that were generated by simulating the
BPEL process described in Section 2.2 using a simulator developed at City University that is
described in [5]. This simulator gets as input

(i) A set of EC-Assertion formulas that represent the different complete execution paths than exist
within the BPEL process that is to be simulated (this set is generated automatically from the BPEL
process by one of the supporting tools of the simulator).

(ii) The size nv of the domain of each of the non time variables v which appear in the formulas in (i)
above. These variables correspond to the input and output parameters of the service operations
which appear in the BPEL process that is to be simulated.

(iii) A function, called distexec, which determines the distribution of the values of the time that
elapses between the executions of two complete consecutive paths of the BPEL process. This
function indicates the time that elapses between the initiations of two different transactions in the
BPEL process.

(iv) A function, called distopen, that determines the distribution of the occurrence time of the
constrained predicates in a formula (i.e. execution path) for which one of the lower boundary (LB)
or the upper boundary (UB) has not been specified.

(v) A number M that indicates the number of events that should be generated by simulating the
process.

1 This dependency arises by virtue of the Event Calculus axioms (see Table 1 in [2]).

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 14 of 49

Given (i)−(v), the simulator generates a set of nv random values for each variable v in the BPEL
process that constitutes the domain of the variable in the simulation (nv is the size of the domain of v
that is passed as input to the simulator) and then generates a set of M events for the process using
the following procedure.

 It selects randomly a formula, Fi, from the set of the EC-Assertion formulas that represent
the different execution paths in the BPEL process and generates random events from the formula.
These events preserve the temporal order which is imposed by the time constraints of the formula
and are generated as follows.

• Initially, the time stamp (STi) of the first event of the formula which always corresponds
to the unconstrained predicate in Fi is determined. STi is computed using the formula

 STi = STi-1 + offseti

where offseti is the random value generated from the distribution function distexec and STi-1 is
the starting time of the formula that had been simulated in the previous step (ST0 is the
starting point of the whole simulation).

• The timestamp of each of the successive events which can be generated from Fi is
computed based on the lower boundary (LB) and upper boundary (UB) of the time variable
of the predicate. More specifically, if the values of both LB and UB of the next predicate in
Fi from which an event is to be generated are known, the simulator generates a random
timestamp in the range [LB, …, UB] using the uniform distribution function distuni in this
range. In cases, however, where LB or UB are not known then the timestamp of the
predicate is determined by the following formulas:

 Timestamp = LB + offset, if LB is known

 Timestamp = UB − offset, if UB is known

where offset is the random number that is generated by applying the distribution function
distopen.

• When the simulator generates an event for a predicate with a time stamp, it also updates
the upper boundary (UB) and lower boundary (LB) of ranges of all the other predicates in
the formula that depend on the time variable of this predicate. Also, for the non time
variables of the predicate used to generate the event that have not been already assigned
some value, the simulator selects randomly a value from the domain of the respective
variable. The selection of a random value from the domain assumes that different values in
the domain have equal probability (i.e. each value has a probability 1/n, where n is the size
of the domain) of being selected.

• The simulator also assigns a unique id to each generated event. All the events which are
generated in a simulation must have unique ids with the exception of the following cases,

 Events that instantiate pairs of predicates in a formula that signify a receive
activity and the corresponding reply activity. Such events must have same id.

 Events that instantiate pairs of predicates in a formula that signify an
invocation of an operation of an external web service and the corresponding
response from that web service. These events are assigned the same id in order
to be able to correlate the invocation with the response.

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 15 of 49

 Events generated as instances of a predicate that signifies a receive activity in
a formula and the predicates in the same formula that signify the initiation of
fluents to represent the value of the input variable of the operation called by
the receive activity. These events must have same id in order to be possible to
correlate them.

 Events generated as instances of a predicate that signifies response from the
execution of an operation in an external web service and all the predicates in
the same formula that signify the initiation of fluents to represent the value of
the output variable of the relevant operation. These events must have same id
in order to be possible to correlate them.

 After generating events from Fi, the simulator selects another formula that represents a
complete execution path in the BPEL process and generates events from it using the above
procedure. This process continues as many times as it is required in order to generate the required
number of events.

Example
As an example of the BPEL simulation process that is described above, consider a simple BPEL
process whose execution paths are represented by the formulas F1 and F2 in Figure 5. Assuming
that, the size of the domains of the variables _x, _y, and _z in these formulas are set to 4, 5, and 5,
respectively, the simulator will generate the following domains for the variables:

 domain of _x : {aqa, yab, vsbac, zpad}

 domain of _y : {348, 9856, 3401, 23, 65923}

 domain of _z : {btma, nfbrc, hbwqd, mbsqe, djbfk}

Then, assuming that

 The mean and variance of the distribution function distexec are 0.8 seconds and 0.2 seconds
respectively.

 The mean and variance of the distribution function distopen are 0.2 seconds and 0.5 seconds
respectively.

the simulator will generate a random initial timestamp ST0= 1135694663208.. Subsequently
assuming that F2 is the first randomly selected formula (execution path), the following events will
be generated from it.

Event 1: The first event to be generated from F2 will correspond to the unconstrained predicate,
Happens(in:p:A(_ID1,_x),t1,R(t1,t1)) in the formula. This event signifies an invocation of
an operation called A in the external web service p. The simulator will randomly pick a value for
variable _x from its domain, say yab, and assign a unique id to the first event. The time stamp for
this event will be ST0. Thus, the first event that will be generated from F2 will be:
Happens(in:p:A(id1,yab), 1135694663208)

(F1) forall t1:time, _z:string

 Happens(rc:s:O(_ID),t1,R(t1,t1)) ∧

 Initiates(rc:s:O(_ID),valueOf(z,_z),t1) ∧ (∃ t2)

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 16 of 49

 Happens(re:s:O(_ID,_z),t2,R(t1,t1 + tu * 100))

(F2) forall t1:time, _x:string, _y:int

 Happens(in:p:A(_ID1,_x),t1,R(t1,t1)) ∧ (∃ t2)

 Happens(ir:p:A(_ID1),t2,R(t1,t2)) ∧

 Initiates(ir:p:A(_ID1),valueOf(y,_y),t2) ∧ (∃ t3)

 Happens(in:q:B(_ID2,_x,_y),t3,R(t2,t2 + tu * 50))

** tu = 1 ms.

Figure 5 −−−− Execution paths of a BPEL process expressed as EC formulas

Event 2: The second event to be generated from F2 corresponds to the second predicate in F2,
Happens(ir:p:A(_ID1),t2,R(t1,t2)) which signifies the response from the execution of the
operation A in the external web service that was invoked by Happens(in:p:A(id1,yab),
1135694663208). The value of the lower boundary t1 of the second event is set to 1135694663208
(i.e., the same as the time stamp of event 1) and the value of the upper boundary t2 is undefined.
The simulator uses the distribution function distopen to compute a random number which it
subsequently adds to t1 to determine the value of t2. Thus, if the computed random number is 0.004
the simulator converts this number into milliseconds (distopen is specified in seconds but the
simulator’s clock operates in milliseconds as tu=1 ms) and adds it to t1 to obtain the value of t2, i.e.
t2 = 1135694663212. Furthermore, the ID of the event generated for this predicate must be the
same as the ID of the event 1.Thus, the second event generated from F2 will be:
Happens(ir:p:A(id1), 1135694663212)

Event 3: The third event to be generated from F2 corresponds to the third predicate in the formula,
i.e. Initiates(ir:p:A(_ID1),valueOf(y,_y),t2). This predicate signifies the initiation of
fluent due to the response from an external web service. The second predicate in F2 signifies the
response from the external web service that initiates this fluent. Therefore the ID of the event
generated for the third predicate must be the same as the ID of the event 2. The value of t2 is
1135694663212 (due to the event 2 time stamp). The simulator randomly picks a value for the
variable _y from its domain, let it picks 3401. The third event generated from F2 will be,
Initiates(ir:p:A(id1),valueOf(y,3401), 1135694663212)

Event 4: The fourth event to be generated from the F2 corresponds to the fourth predicate in the
formula, i.e. Happens(in:q:B(_ID2,_x,_y),t3,R(t2,t2 + tu * 50)). This predicate signifies
the invocation of an operation in an external web service. By virtue of the generation of event 3,
the variable _x has been assigned to the value yab (due to event 1) and the variable _y has been
assigned to the value 3401 (to event 3). The value of the lower boundary of the time variable of the
predicate is 1135694663212 as it must be the same as the time stamp of event 2 and the value of
the upper boundary of the time variable of the predicate is 1135694663262 as it must be equal to
the timestamp of event 2 plus 50 time units tu. After establishing the range of t3 as

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 17 of 49

ℜ(1135694663212, 1135694663262), the simulator creates a random number in this range
according to distuni and assigns it to t3. Assuming that the computed random number is
1135694663236, the fourth event generated from F2 will be:
Happens(in:q:B(id2,yab,3401), 1135694663236)

When the simulator generates the events for all the predicates in F2, it will randomly select another
formula from the formulas of Figure 5, say F1. To determine the time stamp of the first event
generated from F1 the simulator uses the distribution function distexec to compute a random number
and update the value of ST by adding the random number to the previous value of ST. Assuming
that the computed random number is 1.35, the simulator converts this number into milliseconds
(distexec is specified in seconds but the simulator’s clock operates in millisecond as tu=1 ms) and
adds it to the previous value of ST to obtain the new value of ST, i.e. ST = 1135694664558. Hence
the time stamp of the first event generated from F1 (due to the unconstrained predicate) is
1135694664558. The subsequent events from F1 are generated from F1 following the same
mechanisms as in case of F2 described above. The simulator repeats this event generation steps for
as long as the simulation of a BPEL process takes place.

2.4. The Deployed Machines
In our experiments we used two machines:

 A Windows XP machine with an Intel Pentium at 3.00 GHZ and 2GB of RAM

 A Windows XP machine with an Intel Pentium at 3.20 GHZ and 1GB of RAM

The former machine was used in all the experiments regarding the performance of the monitoring
engine of the dynamic validation tool (see Experiments 1-5 below) and the latter was used in the
experiments regarding the event captors (see Experiments 6-8 below).

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 18 of 49

3. Results

3.1. Violation Detection Delay
(i) Experiment 1: Monitoring Set-1 with Initial Version of the Dynamic Validation

Prototype
In the initial experiment, we measured the average and standard deviation of the decision delay
whilst monitoring the formulas in Set-1 of Figure 3. The monitoring session was based on a set of
20,000 events that was generated by simulating the CRS BPEL process shown in Appendix A. The
used set of events corresponded to a total of 2,981 transactions (i.e., executions of complete CRS
process paths) taking place over a period of 16.527 hours. This was the equivalent of 180.37
transactions per hour. The set of events used in this experiment was generated by using the
following random time value distributions:

 distexec had been set to the normal distribution with mean and variance values set at 0.8
seconds and 0.2 seconds, respectively.

 distopen had been set to the normal distribution with mean and variance values set at 0.2
seconds and 0.5 seconds respectively.

Furthermore, in the simulation, domain size of the non time variables of the formulas that take as
values cars (i.e., variable carId) and car parks (i.e., variable loc) was set to 20 cars and 3 car
parks.

#Events
Average

D-Delay (secs)

Standard
Deviation of

D-Delay (secs)
#Templates

Average Event
Waiting Time

(secs)

2000 1.099 0.639 971 0

4000 2.162 1.259 1991 0

6000 3.373 2.195 2988 0

8000 4.682 3.092 3996 0

10000 5.909 3.773 4989 0

12000 7.208 4.649 5967 0

14000 18.887 92.033 6969 10.21

16000 1008.706 2956.387 7982 988.238

18000 3481.446 7618.506 9003 3394.419

20000 7126.057 13214.251 9999 7038.411

Table 2 −−−− Monitoring Statistics for Set-1

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 19 of 49

Table 2 shows the average and standard deviation of the decision delay (d-delay) as measured for
every 2,000 events in the monitoring process, the number of formula templates that had been
created to represent different formula instances, and the average event waiting time at these points
in the monitoring process. Figure 6 shows a graph of the average decision delay and the number of
rule violations that were found during monitoring and Figure 7 shows a graph of the average event
waiting time at the different stages of the monitoring process in the experiment. All time measures
in Table 2 and these figures are given in seconds.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

18
00

0

20
00

0

Events

In

co
ns

is
te

nc
ie

s

-1000
0
1000
2000
3000
4000
5000
6000
7000
8000

0 5000 10000 15000 20000 25000

A
vg

 D
ec

is
io

n
D

el
ay

 (s
ec

)

Inconsistecny wrt Recorded Events Avg decision Delay

Figure 6 −−−− Average decision delay and number of inconsistencies with respect to recorded
events in Set-1

0
1000
2000

3000
4000

5000

6000
7000

8000

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

18
00

0

20
00

0

Events

A
vg

 W
ai

tin
g

Ti
m

e
fo

r
E

ve
nt

(s
ec

)

Avg Waiting Time for Each Event

Figure 7 −−−− Average waiting time for each event for Set-1

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 20 of 49

As shown in the graph in Figure 6, the number of rule violations grew linearly during the simulation
(as expected due to the controlled nature of the experiment) the average decision delay did not
change up to 12,000 events and then it started to rise exponentially.

This is due to the algorithm used in the implementation of the dynamic validation tool (see [5] for a
formal specification and analysis of this algorithm). At runtime, the dynamic validation prototype
maintains templates that represent different instantiations of the formulas to be monitored. In these
templates the variables of the formulas (or a subset of them) are unified with specific values. The
dynamic validation prototype picks events from the event database and checks if there are instances
of templates that should be updated by the events. Updates may be made if the signature, the event
variable bindings and the time of the event comply with the predicate signature, the current
predicate variable bindings, and the time range of the predicate in a template, respectively. If a
predicate is updated, the bindings of the predicate's variables in the template are also updated. New
instances of templates are generated if the event corresponds to an unconstrained predicate of a
template (i.e., a predicate whose time variable is not constrained by the time variable of another
predicate), or the variable bindings of the predicate have values that are different from the event
variable bindings values. The truth-value of a predicate in a template instance may also be updated
by applying the principle negation as failure.

The exponential rise of the average decision delay occurred because for each event the monitor has
to check if it can be unified with each of the template instances. The same effect is reflected in
Figure 7. As shown this figure, the waiting time for each event is negligible (0 milliseconds) up to
12,000 events but after that point it rises sharply.

Although the results of the initial experiment indicated that the support for typed variables in
monitoring rules and the other extensions of the original monitoring engine described in [5] that
were developed in SERENITY did not have a significant effect in the time that is required for the
detection of violations, the exponential rise in the average time that was required to detect a
violation in the SERENITY engine was a concern that prompted an investigation for possible
optimisations.

(ii) Template pruning

The main area that we looked at was how to reduce the increase in the number of active templates
during the monitoring process. This investigation focused at the process of template creation and
the possibility of pruning active templates which do not provide sufficient information for making a
decision about the rule instance that they represent and cannot be possibly updated by further
events. In the monitoring scheme implemented by the monitor, a new instance of a template is
created if a predicate has variables which are bound to values that are different from a not processed
yet event that could be unified with the template. This may create many template instances that are
not needed in monitoring.

For example, consider rule R2 in Figure 3. When an event that represents the invocation of the
operation isAvailable, with unique ID say isAvail120, is encountered the monitor creates a new
template instance and unifies the event with the predicate
Happens(ic:isAvailable(ID,status1,sender1,receiver1,source1,loc),t1,R(t1,t1)) in
the template. Subsequently, when an event that represents the response from the particular
invocation of the operation isAvailable is encountered, the monitor unifies it with the predicate
Happens(ir:isAvailable(ID,status2,sender2,receiver2,source2,carId),t2,R(t1,t2))

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 21 of 49

in the template. However, to cover the possibility of having another response from this operation
with different variable values, the monitor was also creating a copy of this template. Although this
functionality was necessary in order to ensure the completeness of the reasoning process
implemented by the monitor, in this particular example the creation of the template copy was not
necessary. This was due to the fact that due to the semantics of the operation invocation in the
particular example, there could only be one response for the call. To address this issue we amended
the template creation process in the case of unification of templates with events that represent
responses from operation invocations and re-executed the experiment. This optimisation led to
dramatic improvement in the monitoring results which are presented in the following.

(iii) Experiment 2: Monitoring Set-1 with Optimised Implementation (OI)
Following the optimisation in the unification process that we described above we re-executed the
experiment with the formulas in Set-1 of Figure 3 using the same set of events that was used in (i)
of Section 3.1.

Table 3 shows the average and standard deviation of the decision delay (d-delay) as measured for
every 2,000 events in the monitoring process, and the number of formula templates that had been
created to represent different formula instances, and the average event waiting time at these points
in the process. Also, Figure 8 shows a graph of the rule violations (inconsistencies) and the average
decision delay at the different stages of the monitoring process in the experiment. All times
measures in this figure and table are in seconds.

#Events Average
D-Delay (s)

Standard
Deviation of
D-Delay (s)

#Templates Average Event
Waiting Time (s)

2000 0.385 0.189 297 0

4000 0.756 0.431 600 0

6000 1.128 0.657 907 0

8000 1.478 0.865 1202 0

10000 1.841 1.081 1509 0

12000 2.188 1.300 1794 0

14000 2.566 1.555 2084 0

16000 2.916 1.772 2360 0

18000 3.382 2.191 2661 0

20000 3.887 2.651 2955 0

Table 3 −−−− Monitoring Results for Set-1 (OI)

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 22 of 49

As it is evident from these results the template pruning optimization that we discussed in (ii) above
improved the performance of the monitoring process dramatically (a 4-orders of magnitude
decrease in the average decision delay was recorded for 20,000 events). Also, the average decision
delay appeared to be increasing linearly with the number of events indicating a very reasonable
performance over a monitoring session of a significant length and number of executed transactions
(16.527 hours and 2,981 transactions as we discussed in (i) above). These results are certainly
related to the particular form of the monitored formula that enabled the effective pruning of
templates. As we have, however, discussed in [7], the formulas that can be used to monitor basic
security properties such as availability, integrity and confidentiality either have the same basic form
as the one used in this experiment (availability) or have forms which cannot lead to the generation
of unused templates in the monitoring process (confidentiality and integrity). This point about was
confirmed by the results of the experiment with Set-2. In this experiment we used an integrity
formula which has the same general structure as confidentiality formulas (see [7]). The spare
capacity of the monitor is also indicated by the fact that the average event waiting time within the
region of 18,000 to 20,000 events remained at 0 seconds (see Table 3).

0

200

400

600

800

1000

1200

2000
4000

6000
8000

10
000

1200
0

14
000

16000
18000

20000

Events

In

co
ns

is
te

nc
ie

s

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

0 20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

18
00

0

20
00

0

A
vg

 D
ec

is
io

n
D

el
ay

 (s
ec

)

Inconsistecny wrt Recorded Events Avg decision Delay

Figure 8 −−−− Average decision delay and number of inconsistencies for Set-1 (OI)

(iv) Experiment 3: Monitoring Set-2 with Optimised Implementation (OI)
In the third experiment, we used the formulas in Set-2 of Figure 4. The monitoring rule R1 in this
set is used to check the integrity of the execution of the operation makeAvailable in CRS. The
assumptions A1 and A2 in the set are used to generate fluents and store them in the fluent database
of the monitor. The difference between Set-1 and Set-2 is that the monitoring of the formulas in the
latter set does not only depend on the events captured during the operation of the monitored system,
as it is the case with Set-1, but also requires searches in the fluent database of the monitor that keeps
information about the fluent initialisation and termination events. This is necessary in order to

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 23 of 49

establish whether the HoldsAt predicate in rule R3 of Set-2 is true or false at specific time points.
Furthermore, the monitoring of R3 engages the deduction process of the monitor since this process
is necessary in order to generate fluent initiation and termination facts from formulas A1 and A2
and store them in the fluent database of the monitor.

The monitoring of Set-2 was based on the same set of events that was used in the previous
experiments. Table 4 shows the average and standard deviation of the decision delay (d-delay) as
measured for every 2,000 events in the monitoring process of this experiment, and the number of
formula templates that had been created to represent different formula instances and the average
event waiting time at these points in the process. Also, Figure 9 shows a graph of the average
decision delay at the different stages of the monitoring process in the experiment. All times
measures in this figure and table are in seconds.

#Events Average
D-Delay (s)

Standard
Deviation of
D-Delay (s)

#Templates Average Event
Waiting Time (s)

2000 0.0788 0.0248 141 0

4000 0.119 0.0465 296 0

6000 0.161 0.070 445 0

8000 0.204 0.095 596 0

10000 0.254 0.1331 744 0

12000 0.302 0.168 885 0

14000 0.353 0.198 1034 0

16000 0.394 0.216 1175 0

18000 0.437 0.237 1322 0

20000 0.481 0.262 1460 0

Table 4 −−−− Monitoring Results for Set-2 (OI)

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 24 of 49

0

50

100

150

200

250

300

2000
4000

60
00

8000
1000

0
12000

14000
16000

18
000

20000

Events

In

co
ns

is
te

nc
ie

s

0

0.1

0.2

0.3

0.4

0.5

0.6
0 20

00
40

00
60

00
80

00
10

00
0

12
00

0

14
00

0

16
00

0

18
00

0

20
00

0

A
vg

 D
ec

is
io

n
D

el
ay

 (s
ec

)

Inconsistencies Avg decision Delay

Figure 9 −−−− Average decision delay and number of inconsistencies for Set-2 (OI)

The results of this experiment were similar to those of the second experiment with the formulas in
Set-1, as the average decision delay increased linearly with the number of events and remained very
low throughout the monitoring process reaching a maximum value of about 0.48 seconds at 20,000
events. This result demonstrated a good performance of the monitor even in this case where the
deduction and database search capabilities of it were used. Furthermore, as in experiment 2, the
monitor had significant spare capacity as indicated by average waiting time of events that was 0 at
the range of 18,001 to 20,000 events (see relevant column of Table 4).

(v) Experiment 4: Investigation of the Effect of Number of Formulas
To explore the effects of number of formulas in the performance of the monitor, we used two
variants of Set-2. In the first of these variants, referred to as Set-2’ in the following, we added two
more assumptions and one monitoring rule which are listed in Figure 10. These formulas specify
another integrity property for the CRS system regarding the operation departs. The second
variant was created from Set-2’ by adding to it another two assumptions and one more monitoring
rule.

Assumption ID A3

forall t1 : time

Happens(ic:makeUnAvailable(ID,status,sender,receiver,source,carId,loc,
custId),t1,R(t1,t1))�

Initiates(ic: makeUnAvailable
(ID,status,sender,receiver,source,carId,loc,custId),
authorised_depart(carId),t1)

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 25 of 49

Assumption ID A4

forall t1 : time, exists t2 : time

Happens(ic:makeAvailable(ID,status,sender,receiver,source,carId,loc),t1,R(t1,t1)
) ∧
HoldsAt(authorised_depart(carId),t1)

�
Terminates(ic:makeAvailable(ID,status,sender,receiver,source,carId,loc),authoris
ed_depart(carId),t2) ^ t2 >= t1+1 ^ t2 <= t1+1

Rule ID R4

forall t1 : time

Happens(ic:depart(ID,status,sender,receiver,source,carId,loc),t1,R(t1,t1))

�

HoldsAt(authorised_depart(carId),t1)

Figure 10 −−−− New formulas in Set-2’

In the experiment, we used the same set of events that was used in Experiments 1-3. Table 5
summarises the measures taken whilst monitoring each of the three sets Set-2, Set-2’ and Set-3’
including the average decision delay, standard deviation of decision delay, number of templates and
average event waiting time. Also Figure 11 shows graphically the average decision delay in each of
three sets (Set-2, Set-2’ and Set-2’’ are identified as case (1), (2) and (3) respectively in Table 5 and
Figure 11).

#Events Average
D-Delay (s)

St. Dev.
of D-Delay (s)

#Templates Avg. Event
Waiting
Time (s)

 (1) (2) (3) (1) (2) (3) (1) (2) (3) (1), (2), (3)

2000 0.079 0.105 0.171 0.025 0.054 0.107 141 281 517 0

4000 0.120 0.169 0.307 0.047 0.113 0.231 296 569 1029 0

6000 0.161 0.249 0.458 0.070 0.203 0.365 445 839 1541 0

8000 0.204 0.336 0.608 0.095 0.287 0.494 596 1127 2069 0

10000 0.254 0.411 0.761 0.133 0.357 0.635 744 1401 2574 0

12000 0.303 0.492 0.921 0.168 0.434 0.776 885 1680 3090 0

14000 0.353 0.570 1.073 0.198 0.495 0.913 1034 1983 3627 0

16000 0.394 0.646 1.235 0.216 0.565 1.057 1175 2267 4147 0

18000 0.437 0.722 1.421 0.237 0.639 1.254 1322 2553 4673 0

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 26 of 49

#Events Average
D-Delay (s)

St. Dev.
of D-Delay (s)

#Templates Avg. Event
Waiting
Time (s)

20000 0.481 0.792 1.611 0.262 0.697 1.470 1460 2841 5181 0

Table 5 −−−− Monitoring Measures for Set-2, Set-2’ and Set-2’’

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
20

00
0

Events

A
vg

 D
ec

is
io

n
D

el
ay

 (s
ec

)

Avg Decision Delay (1) Avg Decision Delay (2)

Avg Decision Delay (3)

Figure 11 −−−− Graph of Average Decision Delay in Set-2, Set-2’ and Set-2’’

As the results of Experiment 5 indicated the average decision delay increased linearly in the case of
Set-2’ and Set-2’’ as it had in the case of Set-2 (see Figure 11) and even in the case of the larger set
(Set-2’’) it remained at a relatively low level even in the region of 18,000 to 20,000 events (1.611
seconds). The increase in the number of formulas, however, led to an exponential increase in the
average decision delay in all event regions. Figure 11 shows this effect for all the event regions as
the distance between line (3) and line (2) is larger than the distance between line (2) and line (1) for
all event regions and increases along with the number of events. This result indicates that there is a
limit of the number of rules/assumptions that can be allocated to a single monitor to check beyond
which the average delay in the detection of a violation won’t be acceptable, and a distribution of
different formulas to different monitors will be required to achieve an acceptable average
performance. This issue is further discussed in Section 4.

(vi) Experiment 5: Investigation of the Effect of Size of Variable Domains
In our fifth experiment, we investigated the effect of the size of the domains of the non time
variables in the monitored rules on the performance of the dynamic validation prototype. For this
experiment we generated a new set of 20000 events for the CRS system and monitored the formulas

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 27 of 49

in Set-2’. This set of events was generated by increasing the size of the domains of the non time
variables of the monitored formulas 4 times. More specifically, the domain size of the non time
variables of the formulas that take as values customers (i.e., variable custID), cars (i.e., variable
carID) and car parks (i.e., variable loc) were set to 200 customers, 80 cars and 12 car parks in this
case. The random time value distribution functions distexec and distopen that were used in this
simulation were the same as the ones used in the simulation of experiments 1-4 and the generated
set of events corresponded to a total of 2,971 transactions taking place over a period of 16.46 hours
(i.e., 180.498 transactions per hour).

The results of this experiment are summarised in Table 6 and Figure 12. Table 6 shows the average
and standard deviation of the decision delay (d-delay) as measured for every 2,000 events in the
monitoring process, and the number of formula templates that had been created to represent
different formula instances, and the average event waiting time at these points for this experiment.
Figure 12 shows the average decision delay that was measured in this experiment along with results
of Experiment 3 in which we had also monitored the formulas in Set-2 against a set of events with
smaller domain sizes.

#Events Average
D-Delay (s)

St. Dev. Of
D-Delay (s)

#Templates Average Event
Waiting Time (s)

 SD LD SD LD SD LD SD LD

2000 0.102 0.105 0.052 0.054 263 281 0 0

4000 0.176 0.169 0.131 0.113 559 569 0 0

6000 0.250 0.249 0.200 0.203 851 839 0 0

8000 0.326 0.336 0.270 0.287 1148 1127 0 0

10000 0.404 0.411 0.348 0.357 1438 1401 0 0

12000 0.481 0.492 0.424 0.434 1714 1680 0 0

14000 0.556 0.570 0.490 0.495 2004 1983 0 0

16000 0.637 0.646 0.570 0.565 2279 2267 0 0

18000 0.716 0.722 0.646 0.639 2564 2553 0 0

20000 0.788 0.792 0.712 0.697 2837 2841 0 0

Table 6 −−−− Monitoring Results for Set-2 Using Larger Non Time Variable Domains (OI)

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 28 of 49

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

18
00

0

20
00

0

Events

A
vg

 d
ec

is
io

n
de

la
y

(s
)

Avg decision delay (SD) Avg decision delay (LD)

Figure 12 −−−− Average decision delay in Set-2

As indicated by these results the increase in the size of the domains of the non time variables did
not affect the performance of the dynamic validation tool. The absence of an effect of the size of the
domains of the non time variable of the formulas that were monitored in our experiment was due to
the structure of these formulas.

More specifically, the predicates in the formulas with constrained time variables had only non time
variables which also appeared in the predicates with the unconstrained time variables. In rule R3 of
Figure 4, for instance, the variable carID which is the only non time variable of the constrained
predicate HoldsAt(authorised_availability(carId),t1) appears also in the
unconstrained predicate of the formula
Happens(ic:makeAvailable(ID,status,sender,receiver,source,carId,loc),t1,
R(t1,t1)). In cases like this, when the unconstrained predicate in the formula is unified with the
event, the variable binding that will result covers the variables of the constrained predicates as well
and leaves no possibility for additional unification of the constrained predicates with subsequent
events. Therefore, increments in the size of the domains of non time variables cannot lead to a
proliferation in the number of the active templates of the formulas during the monitoring process.
This phenomenon may be further explained through the example of the following monitoring rule2:

2 The event structure in this rule does not include the sender, receiver, source and status variables of normal

SERENITY events in order to simplify the discussion.

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 29 of 49

Happens(event(ID1, X), t1, R(t1,t1)) ∧

Happens(event(ID2, X,Y), t2, R(t1,t2) �

Happens(event(ID3, Y), ct3, R(t2, t2+10)

In this example, when the predicate Happens(event(ID1, X), t1, R(t1,t1)) is unified with an event
say, event(1,a,1) , the non time variable X of the predicate will take the value a and a template will
be created to represent the partially unified formula. Subsequently, as the constrained predicate
Happens(event(ID2, X,Y) in the rule has one more non time variable, namely Y, the partially
instantiated template can be potentially unified with any events that have a value for X that is equal
to a and any value for the variable Y. In this case, the maximum number of the complete
instantiations of the partially instantiated template of the formula will depend on the size of the
domain of Y. In the case of the main S&D properties that we have discussed in [7], however, we do
not have any formulas with the same structure as the formula in the above example and, therefore,
the size of the domain of the non-time variables of the formulas will not affect the performance of
the monitor as the results of our 5th experiment that have been presented above confirmed.

3.2. Event Transmission Time
To investigate the time that it takes to transmit events from event captors to the dynamic validation
prototype, we carried two experiments with varying event rates. For these experiments we
developed a web service and a client for it. The client calls the web service at random time
intervals. All the messages exchanged between the web service and the client are collected by the
event captor which generates events to represent the messages and transmits them to the dynamic
validation prototype (see [4] for more details). In these experiments, we measure the
communication delay (td) using the following formula,

td = tr – tc

where tc is the time point when a message is collected by the event captor and tr is the time point
when the corresponding event is received by the monitor manager. This formula was used as in the
experiment both the event captor and the monitor manager were running on the same machine, and
thus tr and tc were measures taken from the same machine clock.

In the first of the experiments, the client called the web service at time intervals that were generated
randomly following the uniform distribution from 0 to 3 seconds. In the second experiment, the
client called the web service at time intervals that are generated randomly following the uniform
distribution from 0 to 5 seconds. In both experiments, the client to the web service was regulated to
generated 10,000 events, and for each 1000 events we measured the average transmission delay and
standard deviation. The results of these experiments are summarised below in Table 7 and Figure
13.

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 30 of 49

Experiment 6
(Event Transmission 1)

Experiment 7
(Event Transmission 2)

#Events Average Event
Transmission Delay

(ms)

St.
Dev

Average Event
Transmission Delay

(ms)

St.
Dev

1000 23.057 52.323 22.806 33.664

2000 21.669 37.761 12.819 26.459

3000 15.013 32.394 12.934 22.709

4000 11.513 28.772 12.065 20.696

5000 9.422 26.139 9.838 19.127

6000 8.060 24.143 10.717 18.206

7000 7.145 22.558 10.469 17.458

8000 6.443 21.250 9.357 16.693

9000 5.885 20.155 8.450 16.061

10000 5.432 19.219 7.704 15.457

Table 7 −−−− Average event transmission delay and standard deviation

0

5

10

15

20

25

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Events

A
vg

 T
ra

ns
m

is
si

on
 D

el
ay

 (m
s)

Event
Transmission 1

Event
Transmission 2

Figure 13 −−−− Average event transmission delay

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 31 of 49

As it can be seen from Table 7 and Figure 13, the average event transmission delay was initially
high (about 23 milliseconds) and then it felt steadily down to about 5-7 milliseconds. It should also
be noted that the variability of the transmission delay also decreased steadily during the operation of
the simple system used in our experiments (the initial standard deviation of the transmission delay
for the first 1000 events in our experiments was 52.323 and 33.664 in the two experiments and went
down by more than 50% to 19.219 and 15.457 at 10,000 events). Our explanation of this behaviour
is that the initial relatively high delay was due to cost of establishing the initial socket connection
which the captor used to communicate events to the dynamic validation prototype. Also it should be
noted that the communication cost of events captured on the same machine where the dynamic
validation tool runs is relatively low with respect to processing delays occurring during monitoring
and, therefore, it is not expected to be a significant performance obstacle for the applicability of the
dynamic validation prototype. Note, however, that the event transmission cost can be relatively high
with respect to the cost of monitoring (delay in violation detection) if the captors and dynamic
validation prototype are deployed on different machines. This scenario was not explored further in
our experiment since the evaluated version of the dynamic validation tool does not support the
processing of events whose timestamps have been generated by clocks other than the clock of the
tool itself.

3.3. Effect of Event Capturing on Monitored Applications
In our final experiment (Experiment 8), we measured the effect of event capturing onto the response
time of a monitored system implemented as a simple web service. In this experiment, we used a
client which made 10,000 calls to the web service at random time intervals and measured the
average and the standard deviation of the response time of the service when an event captor was
deployed and when no event captor was deployed in every 1000 events. The event captor that was
used in the experiment was SOAP message event captor that we had implemented based on the
AXIS TCP Monitor utility that is described in [4].

Table 4 shows the average and standard deviation of the response time of the web service used in
the experiment when an event captor was deployed (see With Event Captor column) and when no
event captor was deployed (see Without Event Captor column). These statistics were measured for
every 1000 calls in the experiment. Figure 14 shows a graph with the average response times in the
same two cases.

As indicated by these results, the use of an event captor had a very significant effect on the response
time of the service increasing it between 8.5 (in the range of 1-1,000 calls) and 19.9 times (in the
range of 9001-10,000 calls). This effect appears to be very dramatic due to the fact that web-service
deployed in the experiment had negligible processing time of its own. The type of the event captor
that was deployed in the experiment was also partly responsible for the magnitude of the effect.
More specifically, the SOAP message event captor that used is a general filtering mechanism that
can be used to capture SOAP messages for all the services which are deployed in a server. To this
end, extra processing is required to identify the service that a SOAP message is directed to and
report it appropriately. Other types of event captors, such as workflow engine event captors, as the
one that Mahbub and Spanoudakis have deployed in [6], have been reported to have a much less
significant effect on the performance of the monitored system (an 18% increase in the response time
of a workflow based system was reported in [6]). It should, however, be appreciated that the type of
captor which was deployed in this experiment provides a general mechanism for applying different
forms of controls onto the monitored system which other types of captors cannot support and,

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 32 of 49

therefore, the effect on the performance of the monitored system that we identified in this
experiment might be necessary a necessary price to pay in cases where control is required.

Without Event Captor With Event Captor
Number of

Calls
Avg

Response
Time (ms)

Standard
Deviation

Avg
Response
Time (ms)

Standard
Deviation

1000 15.907 354.150 136.569 398.054

2000 10.073 250.602 123.646 282.233

3000 8.0263 204.714 115.005 230.908

4000 6.990 177.374 110.628 200.235

5000 6.332 158.721 108.001 179.2423

6000 5.935 144.963 105.975 163.729

7000 5.649 134.267 104.515 151.664

8000 5.447 125.651 103.463 141.950

9000 5.289 118.517 102.655 133.893

10000 5.134 112.483 102.072 127.110

Table 4 −−−− Results of Experiment 8 −−−− Average response time of web service

0
20
40
60
80

100
120
140
160

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Calls

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
s)

Without Event Captor With Event Captor

Figure 14 −−−− Average response time with and without event captors in Experiment 8

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 33 of 49

4. Discussion and Possible Improvements
The results of the experiments, following the amendment of the dynamic validation prototype in
order to prune templates during the monitoring process that we discussed in Section 3.1,
demonstrated a very good average performance in the detection of violations of S&D properties. As
indicated by the results of the experiments, the main factor that could have a significant adverse
effect on the performance of the tool is the number of monitored formulas (this number appeared to
affect the average decision delay exponentially).

To address this issue, we are investigating the possibility of creating a distributed version of the
dynamic validation tool in which the monitor manager of the tool (see Figure 2 in [2]) will deploy
different monitors distributed on separate machines and re-allocate monitoring formulas to them
when the performance of a single monitor reaches a certain delay threshold. We are aware that in
distributed monitoring, there will be additional costs arising from the communication between the
distributed monitors and the monitor manager. Furthermore, the reallocation of monitoring formulas
to distributed monitors will need also to be based on an analysis of dependencies between formulas
as formulas which depend on each other will need to be allocated to a single monitor (a dependency
between two formulas exist if the formulas share a common predicate as defined in [7]). The
identification of such dependencies in a given set of monitoring formulas can be done offline and
would need to be supported by a new tool integrated with the dynamic validation prototype.

To further improve the performance of the monitoring process we are also looking at the possibility
of indexing templates over the predicates that they incorporate in order to make the process of
searching through them in order to identify possible unifications with new events more efficient.

Also, we are looking into ways of minimising the fluent initiation and termination events (past time
predicates) which are stored in the past predicate database of the dynamic validation tool. Deleting
such events when they can no longer lead to the deduction of further information that is useful in
the monitoring process can improve the performance of the monitor in certain cases (e.g. when it
checks the validity of HoldsAt predicates as in rule R3 in our experiments).

Finally, we will need to investigate further the cost of transmitting events from event captors to
monitors when these components are distributed to different machines. Apart from the normal
communication costs which will arise in this case, we expect that there will be additional costs
related to the need to order events which are captured by different captors operating with different
clocks. This process will require additional processing that will increase the time between the
capturing of events and the detection of violations from them. The ordering of different clock time
stamps is a matter that the SERENITY team at City University is currently investigating.

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 34 of 49

5. Conclusions
In this deliverable, we have presented the results of an initial evaluation of V1 of the dynamic
validation tool that was developed in SERENITY. The evaluation has focused on the performance
of monitoring and event capturing and the effect of the latter on the systems which are being
monitored.

More specifically, the main objective of our evaluation was to investigate the delay in the detection
of a property violation by the dynamic validation tool and the ways in which this measure is
affected by factors including the number and type of formulas which are being checked in a
monitoring session (i.e. monitoring rules and/or assumptions) and the size of the domains of the
variables of these formulas. The evaluation focused on the investigation of the average delay in
detecting violations of S&D properties as earlier analysis has identified that the worst case
computational complexity of the monitoring process is exponential.

Our evaluation was based on a series of simulations which generated random event sequences
representing executions of a service based system that had been developed at City University. Using
these event sequences we carried out experiments which showed that on average the detection of a
violation is timely with the maximum average delay that was observed for typical S&D properties
being in the order of seconds (the maximum observed average delay was 3.8 seconds). The
experiments also indicated that the number of formulas which are being monitored affects
performance but that the size of the domains of the variables did not have an effect. This was the
case when the formulas used in monitoring had a form where the constrained predicates did not
have any non time variables other than those appearing in the unconstrained predicates. The carried
out experiments also showed that the incorporation of assumptions in the monitoring process did
not have a significant effect on performance.

Finally, the experiments have indicated that the communication costs of transmitting events from
event captors to the dynamic validation tool when both these components are running on the same
machine are low and that event capturing has a significant effect on the performance of the system
that is being monitored. The latter observation relates to captors which act as filters to the process
that is being monitored and therefore are capable of applying certain forms of control to them.

The different rule and event sets that we used in the experiments which have been presented in this
report are available in the file A4.D3.2_RulesAndEvents.zip that is available from:

https://bscw.sit.fraunhofer.de/bscw/bscw.cgi/911075

As part of the initial evaluation that we carried out we introduced certain optimisations in the
monitoring engine of the dynamic validation tool. These optimisations will be released with the
second version of the tool. Further optimisations are also under investigation for incorporation in
the next version of the tool including the implementation of index-based searches of monitoring
formula templates during the monitoring process and the development of a distributed version of
the dynamic validation tool.

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 35 of 49

Appendix A. Specification of the Car Rental System
(CRS)

A.1. BPEL Specification of the CRS
<process name="carServiceProcess"

 targetNamespace="http://carservice.org/carserviceprocessing"

 suppressJoinFailure="yes"

 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

 xmlns:sns="http://carservice.org/wsdl/OnlineRenter"

 xmlns:crns="http://tempuri.org/services/CarReg"

 xmlns:csns="http://tempuri.org/services/CustomerReg">

 <variables>

 <variable name="authRes"

 messageType="csns:authenticateResponse"/>

 <variable name="authReq"

 messageType="csns:authenticateRequest"/>

 <variable name="isAvailReq"

 messageType="crns:isAvailableRequest"/>

 <variable name="isAvailRes"

 messageType="crns:isAvailableResponse"/>

 <variable name="depReq" messageType="sns:departRequest"/>

 <variable name="depRes" messageType="sns:departResponse"/>

 <variable name="entReq" messageType="sns:enterRequest"/>

 <variable name="entRes" messageType="sns:enterResponse"/>

 <variable name="retKeyReq" messageType="sns:retKeyRequest"/>

 <variable name="retKeyRes" messageType="sns:retKeyResponse"/>

 <variable name="mkUnAvailReq"

 messageType="crns:makeUnAvailableRequest"/>

 <variable name="mkUnAvailRes"

 messageType="crns:makeUnAvailableResponse"/>

 <variable name="mkAvailReq"

 messageType="crns:makeAvailableRequest"/>

 <variable name="mkAvailRes"

 messageType="crns:makeAvailableResponse"/>

 <variable name="bpelReq" messageType="sns:request"/>

 <variable name="bpelRes" messageType="sns:response"/>

 </variables>

 <partners>

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 36 of 49

 <partner name="CRS" serviceLinkType="sns:CarRenterLT"

 myRole="RentManager"/>

 <partner name="CMS" serviceLinkType="sns:CustomerManagerLT"

 partnerRole="CustomerManager"/>

 <partner name="CRMS" serviceLinkType="sns:CarManagerLT"

 partnerRole="CarManager"/>

 </partners>

 <correlationSets>

 <correlationSet name="locInfo" properties="sns:locs"/>

 <correlationSet name="carInfo" properties="sns:car_id"/>

 <correlationSet name="custInfo" properties="sns:cust_id"/>

 <correlationSet name="locAndCarInfo" properties="sns:locs

 sns:car_id"/>

 </correlationSets>

 <flow>

 <links>

 <link name="receive-to-auth"/>

 <link name="auth-to-check"/>

 <link name="check-to-car"/>

 <link name="car-to-reply"/>

 <link name="check-to-noCar"/>

 <link name="noCar-to-reply"/>

 <link name="auth-to-no"/>

 <link name="no-to-reply"/>

 <link name="enter-to-retKey"/>

 <link name="release-to-depNotDep"/>

 </links>

 <receive name="receive1" partner="CRS" portType="sns:CarRenter"

 operation="receiveRequest" variable="bpelReq"

 createInstance="yes">

 <source name="rToa" linkName="receive-to-auth"/>

 <correlations>

 <correlation set="locInfo" initiate="yes"/>

 <correlation set="custInfo" initiate="yes"/>

 <correlation set="locAndCarInfo" initiate="yes"/>

 </correlations>

 </receive>

 <assign name="assign1">

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 37 of 49

 <target linkName="auth-to-no"/>

 <source linkName="no-to-reply"/>

 <copy>

 <from expression="'Customer Not Authenticated'"/>

 <to variable="bpelRes" part="carId"/>

 </copy>

 </assign>

 <sequence>

 <target linkName="auth-to-check"/>

 <assign name="assign2">

 <copy>

 <from variable="bpelReq" part="loc"/>

 <to variable="isAvailReq" part="loc"/>

 </copy>

 </assign>

 <invoke name="invokeIsAvail" partner="CRMS"

 portType="crns:CarReg" operation="isAvailable"

 inputVariable="isAvailReq"

 outputVariable="isAvailRes">

 <source linkName="check-to-noCar"

 transitionCondition="bpws:getVariableData

 ('isAvailRes','carId') = 'null'"/>

 <source linkName="check-to-car"

 transitionCondition="bpws:getVariableData

 ('isAvailRes' , 'carId') != 'null'"/>

 <correlations>

 <correlation set="carInfo" initiate="yes"

 pattern="in"/>

 <correlation set="locAndCarInfo"

 initiate="yes" pattern="in"/>

 </correlations>

 </invoke>

 </sequence>

 <assign name="assign3">

 <target linkName="check-to-car"/>

 <source linkName="car-to-reply"/>

 <copy>

 <from variable="isAvailRes" part="carId"/>

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 38 of 49

 <to variable="bpelRes" part="carId"/>

 </copy>

 </assign>

 <assign name="assign4">

 <target linkName="check-to-noCar"/>

 <source linkName="noCar-to-reply"/>

 <copy>

 <from expression="'Car Not Available'"/>

 <to variable="bpelRes" part="carId"/>

 </copy>

 </assign>

 <sequence>

 <target linkName="receive-to-auth"/>

 <assign name="assign5">

 <copy>

 <from variable="bpelReq" part="custId"/>

 <to variable="authReq" part="custId"/>

 </copy>

 </assign>

 <invoke name="invokeAuth" partner="CMS"

 portType="csns:CustomerReg" operation="authenticate"

 inputVariable="authReq" outputVariable="authRes">

 <source name="aToc" linkName="auth-to-check"

 transitionCondition="(bpws:getVariableData

 ('authRes' , 'authenticateReturn') = true())"/>

 <source name="aTon" linkName="auth-to-no"

 transitionCondition="bpws:getVariableData

 ('authRes' , 'authenticateReturn') = false()"/>

 </invoke>

 </sequence>

 <reply name="reply" partner="CRS" portType="sns:CarRenter"

 operation="receiveRequest" variable="bpelRes">

 <target linkName="car-to-reply"/>

 <source linkName="release-to-depNotDep"/>

 <correlations>

 <correlation set="carInfo"/>

 </correlations>

 </reply>

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 39 of 49

 <reply name="reply" partner="CRS" portType="sns:CarRenter"

 operation="receiveRequest" variable="bpelRes">

 <target linkName="noCar-to-reply"/>

 <target linkName="no-to-reply"/>

 <correlations>

 <correlation set="carInfo"/>

 </correlations>

 </reply>

 <sequence>

 <receive name="receive2" partner="CRS"

 portType="sns:CarRenter" operation="enter"

 variable="entReq">

 <correlations>

 <correlation set="locInfo" initiate="yes"/>

 <correlation set="carInfo" initiate="no"/>

 </correlations>

 </receive>

 <reply partner="CRS" portType="sns:CarRenter"

 operation="enter" variable="entRes"/>

 <source linkName="enter-to-retKey"/>

 </sequence>

 <pick>

 <target linkName="enter-to-retKey"/>

 <onMessage partner="CRS" portType="sns:CarRenter"

 operation="returnKey" variable="retKeyReq">

 <correlations>

 <correlation set="locInfo"/>

 <correlation set="carInfo"/>

 </correlations>

 <sequence>

 <assign name="assign6">

 <copy>

 <from variable="retKeyReq" part="carId"/>

 <to variable="mkAvailReq" part="carId"/>

 </copy>

 </assign>

 <assign name="assign7">

 <copy>

 <from variable="retKeyReq" part="loc"/>

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 40 of 49

 <to variable="mkAvailReq" part="loc"/>

 </copy>

 </assign>

 <invoke name="mkAvail1" partner="CRMS"

 portType="crns:CarReg" operation="makeAvailable"

 inputVariable="mkAvailReq"

 outputVariable="mkAvailRes">

 <correlations>

 <correlation set="locInfo" pattern="out"/>

 <correlation set="carInfo" pattern="out"/>

 </correlations>

 </invoke>

 <reply partner="CRS" portType="sns:CarRenter"

 operation="returnKey" variable="retKeyRes"/>

 </sequence>

 </onMessage>

 <onAlarm for="'PT90S'">

 <empty/>

 </onAlarm>

 </pick>

 <pick>

 <target linkName="release-to-depNotDep"/>

 <onMessage partner="CRS" portType="sns:CarRenter"

 operation="depart" variable="depReq">

 <correlations>

 <correlation set="locAndCarInfo" initiate="no"/>

 </correlations>

 <sequence>

 <assign name="assign8">

 <copy>

 <from variable="depReq" part="carId"/>

 <to variable="mkUnAvailReq" part="carId"/>

 </copy>

 </assign>

 <assign name="assign9">

 <copy>

 <from variable="depReq" part="loc"/>

 <to variable="mkUnAvailReq" part="loc"/>

 </copy>

 </assign>

 <assign name="assign10">

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 41 of 49

 <copy>

 <from variable="bpelReq" part="custId"/>

 <to variable="mkUnAvailReq" part="custId"/>

 </copy>

 </assign>

 <invoke name="mkUnAvail" partner="CRMS"

 portType="crns:CarReg" operation="makeUnAvailable"

 inputVariable="mkUnAvailReq"

 outputVariable="mkUnAvailRes">

 <correlations>

 <correlation set="locInfo" pattern="out"/>

 <correlation set="carInfo" pattern="out"/>

 <correlation set="custInfo" pattern="out"/>

 </correlations>

 </invoke>

 <reply partner="CRS" portType="sns:CarRenter"

 operation="depart" variable="depRes"/>

 </sequence>

 </onMessage>

 <onAlarm for="'PT30S'">

 <sequence>

 <assign name="assign11">

 <copy>

 <from variable="isAvailRes" part="carId"/>

 <to variable="mkAvailReq" part="carId"/>

 </copy>

 </assign>

 <assign name="assign12">

 <copy>

 <from variable="bpelReq" part="loc"/>

 <to variable="mkAvailReq" part="loc"/>

 </copy>

 </assign>

 <invoke name="mkAvail2" partner="CRMS"

 portType="crns:CarReg" operation="makeAvailable"

 inputVariable="mkAvailReq"

 outputVariable="mkAvailRes">

 <correlations>

 <correlation set="locInfo" pattern="out"/>

 <correlation set="carInfo" pattern="out"/>

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 42 of 49

 </correlations>

 </invoke>

 </sequence>

 </onAlarm>

 </pick>

 </flow>

</process>

A.2. WSDL Specification of the CRS
<definitions

 targetNamespace="http://carservice.org/wsdl/OnlineRenter"

 xmlns:tns="http://carservice.org/wsdl/OnlineRenter"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:slnk="http://schemas.xmlsoap.org/ws/2003/03/service-link/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:crns="http://tempuri.org/services/CarReg"

 xmlns:csns="http://tempuri.org/services/CustomerReg">

 <import namespace="http://tempuri.org/services/CustomerReg"

 location=

 "http://138.40.91.72:8080/wstk/CustomerReg/CustomerReg.wsdl"/>

 <import namespace="http://tempuri.org/services/CarReg"

 location="http://138.40.91.72:8080/wstk/CarReg/CarReg.wsdl"/>

 <message name="request">

 <part name="custId" type="xsd:string"/>

 <part name="loc" type="xsd:string"/>

 </message>

 <message name="response">

 <part name="carId" type="xsd:string"/>

 </message>

 <message name="departRequest">

 <part name="carId" type="xsd:string"/>

 <part name="loc" type="xsd:string"/>

 </message>

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 43 of 49

 <message name="departResponse">

 </message>

 <message name="enterRequest">

 <part name="carId" type="xsd:string"/>

 <part name="loc" type="xsd:string"/>

 </message>

 <message name="enterResponse">

 </message>

 <message name="retKeyRequest">

 <part name="carId" type="xsd:string"/>

 <part name="loc" type="xsd:string"/>

 </message>

 <message name="retKeyResponse">

 </message>

 <portType name="CarRenter">

 <operation name="receiveRequest">

 <input message="tns:request"/>

 <output message="tns:response"/>

 </operation>

 <operation name="depart">

 <input message="tns:departRequest"/>

 <output message="tns:departResponse"/>

 </operation>

 <operation name="enter">

 <input message="tns:enterRequest"/>

 <output message="tns:enterResponse"/>

 </operation>

 <operation name="returnKey">

 <input message="tns:retKeyRequest"/>

 <output message="tns:retKeyResponse"/>

 </operation>

 </portType>

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 44 of 49

 <slnk:serviceLinkType name="CarRenterLT">

 <slnk:role name="RentManager">

 <portType name="tns:CarRenter"/>

 </slnk:role>

 </slnk:serviceLinkType>

 <slnk:serviceLinkType name="CustomerManagerLT">

 <slnk:role name="CustomerManager">

 <portType name="csns:CustomerReg"/>

 </slnk:role>

 </slnk:serviceLinkType>

 <slnk:serviceLinkType name="CarManagerLT">

 <slnk:role name="CarManager">

 <portType name="crns:CarReg"/>

 </slnk:role>

 </slnk:serviceLinkType>

 <property name="car_id" type="xsd:string"/>

 <property name="locs" type="xsd:string"/>

 <property name="cust_id" type="xsd:string"/>

 <propertyAlias propertyName="tns:cust_id"

 messageType="tns:request"

 part="custId"

 query="/custId"/>

 <propertyAlias propertyName="tns:cust_id"

 messageType="csns:authenticateRequest"

 part="custId"

 query="/custId"/>

 <propertyAlias propertyName="tns:locs"

 messageType="tns:departRequest"

 part="loc"

 query="/loc"/>

 <propertyAlias propertyName="tns:locs"

 messageType="tns:request"

 part="loc"

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 45 of 49

 query="/loc"/>

 <propertyAlias propertyName="tns:locs"

 messageType="crns:isAvailableRequest"

 part="loc"

 query="/loc"/>

 <propertyAlias propertyName="tns:car_id"

 messageType="crns:isAvailableResponse"

 part="isAvailableReturn"

 query="/isAvailableReturn"/>

 <propertyAlias propertyName="tns:car_id"

 messageType="tns:departRequest"

 part="carId"

 query="/carId"/>

 <!-- The service name and the TNS represent my service ID QName -->

 <service name="carServiceBP"/>

</definitions>

A.3. WSDL Specification of the Car Information System (IS)
<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions

 targetNamespace="http://tempuri.org/services/CarReg"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:apachesoap="http://xml.apache.org/xml-soap"

xmlns:impl=http://tempuri.org/services/CarReg xmlns:intf="http://tempuri.org/services/CarReg"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <wsdl:message name="makeAvailableResponse">

 </wsdl:message>

 <wsdl:message name="makeUnAvailableRequest">

 <wsdl:part name="carId" type="xsd:string"/>

 <wsdl:part name="custId" type="xsd:string"/>

 <wsdl:part name="loc" type="xsd:string"/>

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 46 of 49

 </wsdl:message>

 <wsdl:message name="isAvailableResponse">

 <wsdl:part name="carId" type="xsd:string"/>

 </wsdl:message>

 <wsdl:message name="makeAvailableRequest">

 <wsdl:part name="carId" type="xsd:string"/>

 <wsdl:part name="loc" type="xsd:string"/>

 </wsdl:message>

 <wsdl:message name="isAvailableRequest">

 <wsdl:part name="loc" type="xsd:string"/>

 </wsdl:message>

 <wsdl:message name="makeUnAvailableResponse">

 </wsdl:message>

 <wsdl:portType name="CarReg">

 <wsdl:operation name="isAvailable" parameterOrder="loc">

 <wsdl:input message="impl:isAvailableRequest"

 name="isAvailableRequest"/>

 <wsdl:output message="impl:isAvailableResponse"

 name="isAvailableResponse"/>

 </wsdl:operation>

 <wsdl:operation name="makeUnAvailable" parameterOrder="carId

 custId loc">

 <wsdl:input message="impl:makeUnAvailableRequest"

 name="makeUnAvailableRequest"/>

 <wsdl:output message="impl:makeUnAvailableResponse"

 name="makeUnAvailableResponse"/>

 </wsdl:operation>

 <wsdl:operation name="makeAvailable" parameterOrder="carId

 loc">

 <wsdl:input message="impl:makeAvailableRequest"

 name="makeAvailableRequest"/>

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 47 of 49

 <wsdl:output message="impl:makeAvailableResponse"

 name="makeAvailableResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="CarRegServiceSoapBinding" type="impl:CarReg">

 <wsdlsoap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="isAvailable">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="isAvailableRequest">

 <wsdlsoap:body

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="http://tempuri.org/services/CarReg"

 use="encoded"/>

 </wsdl:input>

 <wsdl:output name="isAvailableResponse">

 <wsdlsoap:body

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="http://tempuri.org/services/CarReg"

 use="encoded"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="makeUnAvailable">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="makeUnAvailableRequest">

 <wsdlsoap:body

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="http://tempuri.org/services/CarReg"

 use="encoded"/>

 </wsdl:input>

 <wsdl:output name="makeUnAvailableResponse">

 <wsdlsoap:body

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="http://tempuri.org/services/CarReg"

 use="encoded"/>

 </wsdl:output>

 </wsdl:operation>

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 48 of 49

 <wsdl:operation name="makeAvailable">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="makeAvailableRequest">

 <wsdlsoap:body

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="http://tempuri.org/services/CarReg"

 use="encoded"/>

 </wsdl:input>

 <wsdl:output name="makeAvailableResponse">

 <wsdlsoap:body

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="http://tempuri.org/services/CarReg"

 use="encoded"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="CarRegService">

 <wsdl:port binding="impl:CarRegServiceSoapBinding"

 name="CarRegService">

 <wsdlsoap:address location=

 "http://138.40.91.72:8080/wstk/services/CarRegService"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

A4.D3.2 – Evaluation of V1 of Dynamic Validation Prototype

SERENITY - 027587 Version 1.1 Page 49 of 49

References

[1] Andrews T. et al. (2003), Business Process Execution Language for Web Services, v1.1,
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf (as last
seen on 15/6/07)

[2] Androutsopoulos K., Ballas C., Kloukinas C., Mahbub K., Spanoudakis G (2007), V1 of
Dynamic Validation Prototype, SERENITY Deliverable A4.D3.1, February 2007.

[3] Bonato R., et al., (2007), Evaluation Criteria, SERENITY Deliverable A47.D5.1, February
2007.

[4] Kloukinas C., Ballas C., Presenza D., Spanoudakis G. (2007), Basic Set of Information
Collection Mechanisms for S&D Monitoring, SERENITY Deliverable A4.D2.2, October
2006.

[5] Mahbub K. (2007), Requirements Monitoring of Service Based Systems, PhD Dissertation,
Department of Computing, City University.

[6] Mahbub K. Spanoudakis G. (2007), Monitoring WS Agreements: An Event Calculus Based
Approach, In Test and Analysis of Service Oriented Systems, (eds) L. Baresi, E. diNitto,
Springer Verlang (to appear)

[7] Spanoudakis G., Kloukinas C., Androutsopoulos K. (2007), Towards Security Monitoring Patterns,
Proceedings of the 22nd Annual ACM Symposium on Applied Computing, Technical Track on
Software Verification, March 2007

[8] Spanoudakis G., Mahbub K. (2006), Non Intrusive Monitoring of Service Based Systems,
International Journal of Cooperative Information Systems, Vol. 15, No. 3 (2006), 325-358

