
 

 

 

 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

G. Spanoudakis, T. Tsigkritis, C. Kloukinas 

 

 

 

Document Number A4.D5.2 

Document Title  2nd Version of Diagnosis Prototype 

Version 1.1 

Status Final 

Work Package WP 4.5 

Deliverable Type  Prototype 

Contractual Date of Delivery  30 June 2008 

Actual Date of Delivery  12 August 2008 

Responsible Unit  CUL 

Contributors  

Keyword List  S&D violations diagnosis prototype 

Dissemination level PU 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 2 of 51  

 

Change History 

Version Date Status Author (Unit) Description 

0.1 15/07/2008 Draft T. Tsigkritis (CUL) First draft  

0.2 09/08/2008 Draft G. Spanoudakis (CUL) Editions 

0.3 11/08/2008 Draft C. Kloukinas (CUL) Editing 

1.0 12/08/2008 Final T. Tsigkritis (CUL) Editing for final version 

1.1 08/09/2008 Final T. Tsigkritis (CUL) Editing for quality check 

 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 3 of 51  

 

Executive Summary 

This report is part of the deliverable A4.D5.2 .It provides a description of the second version of the 
S&D violations diagnosis prototype that has been developed in SERENITY as part of the A4 
activity. The code that implements the 2nd version of this prototype is also part of A4.D5.2. The 
report describes the extensions of the first version of the S&D violations diagnosis prototype, which 
has been implemented in version 2, and other amendments of the original prototype that were 
implemented in the second version. 

In summary, the new version of the diagnosis prototype  realises some modifications in the way in 
which the belief in the genuineness of runtime events is assessed and an application programming 
interface (API) that enables the retrieval of diagnostic results from external clients of the tool and, 
in particular, the SERENITY runtime framework. The new version of the diagnosis prototype 
provides also a representation of the monitoring and diagnosis results according to a representation 
schema that has been agreed with the A5, A6 and A7 activities.  

The main modification in the computation of beliefs in the new version of the diagnosis prototype is 
that when it computes the belief in the genuineness of a runtime event that is involved in the 
violation of an S&D monitoring rule, it takes into account not only the number of other runtime 
events that are consequences of the possible explanations of this event but also the belief in the 
genuineness of the runtime events that match these consequences. Furthermore, it takes into account 
beliefs in the genuineness of events that match with any preconditions that the identified 
explanations have. The report provides the rationale for the amendments in the event genuineness 
belief estimation process and gives examples that demonstrate the new approach. It also provides a 
description of the API of the new version of the diagnosis prototype, and instructions for using 
them.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 4 of 51  

 

 

Table of Contents 

1. Introduction ............................................................................................................................. 5 

2. Overview of the SERENITY diagnosis process........................................................................ 6 

3. Modifications in the 2nd Version of Diagnosis .......................................................................... 8 

3.1. Overview of modifications................................................................................................ 8 

3.2. Modifications in the computation of beliefs in event genuineness ..................................... 8 

3.3. Example of computation of genuineness beliefs .............................................................. 15 

3.4. Schema for presentation of diagnosis results ................................................................... 18 

3.5. API for diagnosis tool ..................................................................................................... 26 

4. Implementation and Usage Guide........................................................................................... 28 

4.1. Required Software .......................................................................................................... 28 

4.2. Installation instructions ................................................................................................... 28 

4.3. Usage instructions........................................................................................................... 28 

4.3.1. The monitor ............................................................................................................. 28 

4.3.2. The Monitoring Manager and Diagnosis Module ..................................................... 29 

5. Conclusions ........................................................................................................................... 36 

Appendix A. 1st Version Algorithms ......................................................................................... 37 

Appendix B. Proofs of Theorems .............................................................................................. 40 

Appendix C. New Schema for Monitoring Results .................................................................... 43 

Appendix D. WSDL of the new API of the Monitor .................................................................. 50 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 5 of 51  

 

1.  Introduction 
This report is part of the SERENITY A4.D5.2 deliverable and its purpose is to describe the 
implementation of the 2nd version of the diagnosis prototype of SERENITY (referred to shortly as 
“diagnosis tool” in the following). In addition to this report, A4.D5.2 includes the source code of 
the 2nd version of the diagnosis tool. 

The second version of the diagnosis tool extends the first version of the prototype by introducing a 
new approach for assessing beliefs in the genuineness of events which are involved in violations of 
S&D monitoring rules. The basic characteristic of the new approach is that, whilst assessing the 
genuineness of events, it takes into consideration not only the number of the consequences of the 
possible explanations of the relevant events which appear in the event log of the monitor but also 
the genuineness of these events. The second version of the diagnosis tool also implements an 
application programming interface for initiating the diagnosis capabilities of the tool and retrieving 
the results of the diagnostic analysis performed by it. 

The rest of this report is structured as follows. In Section 2, we give an overview of the diagnosis 
process that was introduced originally in [6] in order to enable the reader understand the overall 
context and the nature of the modifications introduced in the 2nd version of the prototype. In Section 
3, we discuss the modifications made in the new version of the diagnosis prototype, introduce an 
application programming interface (API) giving access to its functionality, and present the amended 
version of the schema for reporting monitoring results which enables the notification of diagnostic 
results to clients of the SERENITY diagnosis framework. In Section 4, we provide installation and 
usage instructions for the new version of the diagnosis prototype. Finally, in Section 5, we provide 
some concluding remarks. The report has also four appendices. The first appendix (Appendix A) 
includes the abductive and deductive reasoning algorithms presented in A4.D5.1 deliverable. The 
second appendix (Appendix B) gives the proof for the functional form of the new basic probability 
assignment function for the calculation of basic probability measures in the genuineness of events. 
The third appendix (Appendix C) lists the new XSD schema for the presentation of monitoring 
results along with diagnostic information. The fourth appendix (Appendix D) lists the WSDL of the 
new application programming interface of the monitor, which includes operations for initiating the 
diagnosis capabilities of the tool and retrieving the results of the diagnostic analysis performed by 
it. 

  



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 6 of 51  

 

2.  Overview of the SERENITY diagnosis process 
The overall process of diagnosing the causes of S&D monitoring rule violations has four main 
stages, as were presented in [6]. As shown in Figure 1, these stages are: 

 Explanation generation 

 Explanation effect identification  

 Explanation plausibility assessment 

 Diagnosis generation 

In the first of these stages (i.e., explanation generation), the diagnosis process generates all the 
possible explanations for the individual events which have caused an S&D monitoring rule 
violation (aka “violation observations”). The possible explanations of violation observations are 
generated from assumptions that have been given to the monitor regarding the operation of the 
system that is being monitored using abductive reasoning. 

 

 

 Figure 1 – The SERENITY diagnosis process 

After generating explanations for the individual violation observations, the diagnosis process enters 
its second stage, namely the stage of explanation effect identification. This stage is concerned with 
the identification of all the possible consequences of the explanations of the individual violation 
observations if these explanations were valid. Whilst the generation of individual explanations from 
the observation violations are generated by abductive reasoning, the effects of individual 
explanations are derived by deduction using the assumptions specified in S&D patterns. 

event log 

Violation 
observations 

explanations 

Effects of 
explanations 

Explanation 
Generation (1)  

Explanation  
Effect 

Identification (2)  

Plausibility  
Assessment (3)  

explanation 
beliefs 

Diagnosis  
Generation (4)  

 

final 
diagnosis 

system 
assumptions 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 7 of 51  

 

Following the identification of the effects of individual explanations, the diagnosis process enters its 
third stage. At this stage, the process assesses the likelihood of the validity of the individual event 
explanations. To do so, the expected effects of the individual explanations are checked against the 
event log of the SERENITY monitoring framework to find if there are events in the log that match 
the expected effects. Every match that is found between an expected effect and an event in the log 
casts confirming evidence to the explanation associated with the effect. On the other hand, the 
absence of a matching event for an effect casts disfavouring evidence to the explanation. Based on 
the confirming and disconfirming elements of evidence which are identified during this stage, the 
diagnosis process estimates a belief and a plausibility measure for each individual explanation. 

Finally, at the fourth stage of the diagnosis process, i.e., the stage of diagnosis generation, the 
diagnosis framework constructs alternative aggregated explanations for the S&D rule violation from 
the explanations of the individual violation observations and computes beliefs in the validity of 
these aggregate explanations. Using these beliefs the framework also identifies the most plausible 
aggregate explanation for the violation. 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 8 of 51  

 

3.  Modifications in the 2nd Version of Diagnosis 

3.1.  Overview of modifications 
The changes of the diagnosis process that have been introduced in the second version of the 
diagnosis prototype pertain to the generation and assessment of the validity of explanations. More 
specifically, in the 2nd version of the prototype, the belief in the genuineness of a violation 
observation is computed by taking into consideration not only the number of the confirming or 
disconfirming evidence of its valid explanations, as in the 1st version, but also the genuineness of 
the gathered evidence itself. Note that the gathered evidence that can confirm or disconfirm the 
validity of an explanation of a violation observation, and therefore the genuineness of a violation 
observation, consists of other recorded events that can be found in the event log of the monitor. 
Thus, the basic characteristic of the 2nd version is that the belief in the genuineness of violation 
observations depends on the belief in the genuineness of other recorded events that are correlated 
with the violation observations. 

3.2.  Modifications in the computation of beliefs in event genuineness  
As aforementioned, one of the main amendments that have been made in the 2nd version of the 
diagnosis prototype is related to the computation of the belief in the genuineness of events. In the 
first version of the prototype, the computation of the belief in event genuineness was based on the 
identification of at least one explanation for the event which had additional expected consequences 
matching with runtime events. This process had two main limitations: (1) it did not take into 
account the genuineness of the runtime events that matched with the expected consequences of the 
explanations of the event of interest, and (2) it did not take into account the genuineness of the 
runtime events that matched with the preconditions (if any) of the explanations of the event of 
interest. To demonstrate these cases, consider the example of Figure 2. The figure shows an extract 
of an event log with three events (e1, e2 and e3) which have occurred in the chronological order 
indicated by their subscripts. Let us consider that the event which is involved in the violation of an 
S&D monitoring rule and whose genuineness needs to be assessed in this example is e3. 

According to the process defined in [6], the computation of the belief in the genuineness of e3 is 
based on first identifying the explanation Φ as a possible explanation of the event (Φ is in fact the 
only possible explanation of e3 in this example), then identifying all the expected consequences that 
Φ has in addition to e3, and finally counting how many of these consequences match with runtime 
events in the event log. In this example, Φ has only one more consequence matching with the event 
e1 in the log. Thus, according to the belief computation process that was introduced in A4.D5.1, the 
belief in the validity of Φ would be 1 (i.e., the ratio of the consequences of Φ that match with 
runtime events) and, therefore, the belief in the genuineness of e3 would also be 1. 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 9 of 51  

 

 

Figure 2 - Events and explanations 

The first limitation of the above assessment scheme is that it does not consider the genuineness of 
the event e1. If e1 is the result of a fault or an attack, then the evidence that it casts for the validity of 
Φ and, consequently, the genuineness of e1 should be disregarded. Furthermore, Φ is an explanation 
of the event e3 but can logically entail it only if the event e2 in the event log is also genuine. The 
abductive reasoning process that the 1st version of the diagnosis prototype uses to generate 
explanations would have identified the event e2 as an event that is required for the entailment of e3 
by Φ. However, the computation of the belief in the genuineness of e3 did not attempt to estimate 
the belief in the genuineness of e2 and take it into account. 

To overcome the above these limitations, the 2nd version of the diagnosis prototype uses a different 
function for the computation of the belief in the genuineness of an event. This function also enables 
the configuration of the computation of event genuineness beliefs by the use of an additional 
parameter. This parameter is called “diagnosis window” and is used to restrict the part of the event 
log that can be used during the assessment of the genuineness of a given event. In particular, the 
diagnosis window is defined as a period of time W and when it is used, only events that have 
occurred up to W time units prior to the event whose genuineness is assessed can by taken into 
account in the assessment of this genuineness. The primary role of this parameter is to limit the cost 
of the computational process required for estimating the event genuineness beliefs. 

Given the above considerations, the genuineness of an event has been re-defined as follows: 

Definition 1:  The genuineness of an event Ei within a diagnosis timewindow [Tmin, Tmax] and given 
a set of explanations Eo that may have already been generated is defined as 

Genuine(Ei,[Tmin,Tmax], Eo) = {EXP ≠  ∅}∧      

                               {(∃Ew. Ew∈EventLog [Tmin, Tmax]) ∧ mgu(Ei,Ew) ≠∅ ∧ (tiLB
≤tw≤ ti

UB)}  ∧  

                               {∨(Φij, Φijc)∈EXPi Valid(Φij,[Tmin,Tmax], Eo∪{Φij})}   

where,  

 EXP is the set of the alternative explanations that can be generated for the event Ei, i.e., EXPi 
= {(Φi1, Φi1

C), …, (ΦiN, ΦiN
C)}, with the explanations which are already in Eo removed, I.e.: 

EXP = EXPi − Eo. 

 EventLog[Tmin,Tmax]   is a subset of the events in the log of the monitor which includes only 
events which have occurred in the time range [Tmin,Tmax] 

ΦΦΦΦ 

e3 Event Log: ... ... e2 e1 

entails entails 
ΦΦΦΦ’ 

entails 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 10 of 51  

 

 mgu(Ei,Ew) is the function that returns the most general unifier of two atomic formulas Ei and 
Ew  [2]  

 ti
LB and ti

UB are the lower and upper boundary of the time range within which Ei has 
occurred1  

 Valid(Φij,[Tmin, Tmax],Eo∪{Φij}) denotes that the explanation Φij is valid within the diagnosis 
range [Tmin, Tmax] and is formally defined as 

 Valid(Φij, [Tmin, Tmax], Eo∪{Φij}) = ∧ Eu∈Conditions(Ei,Φij, [Tmin, Tmax]) 

    Genuine(Eu, [Tmin,Tmax], Eo∪{ Φij})} ∧ 
    {∨ Ew∈Consequences(Ei,Φij, [Tmin, Tmax]) 
     Genuine(Ew, [Tmin, Tmax], Eo∪{Φij})}) 

 Conditions(Ei,Φij,[Tmin,Tmax])  is the set of recorded events that are preconditions in the 
deductive path from Φij  to Ei, and have occurred within the diagnosis range [Tmin,Tmax] .  This 
set is defined as: 

      Conditions(Ei,Φij,[Tmin,Tmax]) = {Ew | Ew∈EventLog[Tmin,Tmax] ∧   

                                                            ∃c,f.(f∈DeductivePath(Φij,Ei)) ∧ (c∈Body(f)) ∧  

   mgu(c,Ew) ≠∅ }2 

 Consequences(Ei,Φij,[Tmin,Tmax])  is the set of the expected consequences of the explanation 
Φij  that have occurred within the diagnosis range [Tmin,Tmax] .  This set is defined as: 

 Consequences(Ei,Φij,[Tmin,Tmax])  = { Ek | Ek ∈ Φij
C ∧ Ek∈EventLog[Tmin,Tmax] } 

According to the above definition, an event Ei that has occurred or is expected to occur at time ti is 
genuine, given a diagnosis range [Tmin, Tmax], if 

 It exists in the part of the event log of the monitoring framework that falls within the 
diagnosis range, and 

 There is at least one valid explanation Φij of it, i.e., an explanation Φij for which: (i) all the 
preconditions in the deductive path from Φij to Ei match with genuine runtime events that 
have occurred before Ei and within the diagnosis range [Tmin, Tmax], and (ii) at least one of 
the expected consequences of Φij which fall into the diagnosis range [Tmin, Tmax] (if any) 
matches with another genuine runtime event that has occurred within the same period. 

The above definition of genuineness is recursive. It should also be noted that in Definition 1, the 
time period over which the genuineness of an event is assessed is defined by the absolute time range 
[Tmin,Tmax]. This range is determined by the length of the diagnosis window W that is required in a 
particular monitoring setting and the timestamp of the original event Ei whose genuineness is to be 

                                                

1   ti
LB and ti

UB are both equal to the timestamp ti of Ei if Ei is an event in the log of the monitor. 

 
2   The set Conditions(Ei,Φij,[Tmin,Tmax]) is determined during the abductive reasoning process that 

determines the explanation Φij (see step 20 in the Explain algorithm in Appendix A). 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 11 of 51  

 

assessed using the formulas: Tmax = ti + W/2 and Tmin = ti − W/2. Furthermore, since during the 
recursive assessment of event genuineness there is a possibility of reaching an event having an 
explanation which has already been taken into account for another event, Definition 1 excludes 
from the possible explanations of a given event Ei any explanations which might have been 
generated earlier in the assessment process (see set Eo). In the example shown in Figure 2, for 
instance, the assessment of the genuineness of the event e3 will require the assessment of the 
genuineness of the event e1 since the latter event is an expected consequence of the explanation Φ 
of e3. When assessing the genuineness of e1, the explanation Φ should not be taken into account 
despite being an explanation of e1, since Φ is the explanation which led to the assessment of e1 in 
the whole process. In this case, only the second explanation of e1, i.e., Φ’, should be taken into 
account according to Definition 1. It should, however, be appreciated that for the initial events 
which are involved in the violations of S&D monitoring rules, the set Eo is empty, hence setting no 
initial restrictions as to the explanations that may be taken into account in the assessment of event 
genuineness. 

Based on the above definition of event genuineness, the basic probability assignment3 to it is 
defined as follows:  

Definition 2: The basic probability assignment to the genuineness of an event Ei, within a diagnosis 
range [Tmin, Tmax], given a set of explanations Eo that may have already been generated, is defined 
as: 

mGN(Genuine(Ei, [Tmin,Tmax], Eo)) = mIL⊕mEX (InLog(Ei) ∧ Explainable(Ei, [Tmin, Tmax], Eo)) 

mGN (¬Genuine(Ei,[Tmin,Tmax], Eo)) = mIL⊕mEX (¬InLog(Ei) ∨ ¬ Explainable(Ei, [Tmin, Tmax], Eo)) 

where 

 mIL⊕mEX denotes the combination of the basic probability assignments mILi and mEX
i 

according to the DS theory [3] 

 Explainable(Ei, [Tmin, Tmax], Eo) is a proposition, which denotes whether Ei is 
explainable and is defined as: 

 Explainable(Ei, [Tmin, Tmax], Eo) = ∨(Φij, Φij c)∈EXPValid(Φij,[Tmin,Tmax], Eo∪{ Φij}) 

 where 

 EXP = EXPi − Eo  if EXPi − Eo ≠ ∅ 

 EXP = {ENULL}  if EXP i − Eo = ∅ 

 

According to Definition 2, the basic probability assignment mGN in the genuineness of an event Ei is 
defined as a combination of two other distinct basic probability assignments, namely the assignment 
mIL

i  which computes the basic probability of the existence or potential existence of the event Ei in 
the event log of the monitoring framework, and the assignment mEX

 which computes the basic 

                                                
3 Basic probability assignments have a special meaning in the context of the Dempster Shafer theory of 

evidence (DS theory) which underpins the diagnosis framework of SERENITY. An overview of this 
theory and its axiomatic foundation has been provided in [6] and is not repeated in this report. A full 
description of DS theory is also available in [4]. 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 12 of 51  

 

probability of the existence of a valid explanation for Ei (i.e., an explanation with genuine 
consequences and preconditions).  

It should be noted that the definition of mGN
 allows the assignment of a basic probability of 

genuineness to events that have no explanation since the proposition Explainable(Ei, [Tmin, Tmax])  is 
defined as a disjunction over the validity of all possible explanations that can be generated by the 
abductive reasoning process in [6] (i.e., the explanations which are members of the set EXP) and a 
special explanation called null explanation that is denoted by ENULL in the above definition.This is 
because an event Ei that has no explanations of its own should still be able to cast some evidence for 
another event Ej as either a precondition or a consequence of one of the explanations of Ej. Thus, 
the assignment of a zero basic probability to the explainability of Ei in such cases would result in 
zero basic probability for its genuineness and, could, therefore, reduce or even make equal to zero 
the basic probability in the genuineness of Ej (the latter effect would happen if Ei is a precondition 
of the only explanation that Ej may have). Note also that during the assessment process an event 
may end up having no explanations because its own explanations may have been already considered 
as explanations of previous events in the reasoning path. The probability that is assigned to events 
with no explanations is discussed below following the introduction of the basic probability mEX

i. 
Also the formula that results from the combination of the basic probability assignments mIL and mEX 
is established by Theorem 1 below, following the formal definitions of these assignments which are 
given next. 

Definition 3: The basic probability assignment mEX in the existence of a valid explanation for an 
event Ei is defined as: 

mEX(Explainable(Ei, [Tmin, Tmax], Eo)) = 1 if  Ei = PNULL 

mEX(Explainable(Ei, [Tmin, Tmax], Eo)) = α1 if Ei = CNULL 

mEX(Explainable(Ei, [Tmin, Tmax], Eo)) = α2 if Ei ≠ PNULL, Ei ≠ CNULL, and  
   EXP = {ENULL} 

mEX(Explainable(Ei, [Tmin, Tmax], Eo)) = 

∑ I⊆ EXP and I≠∅ (-1)|I|+1{ ∏ Eu∈Conds(Ei,I) m
GN(Genuine(Eu, [Tmin, Tmax], Eo∪I)) × 

{∑S⊆Conseq (Ei,I) and S≠∅ (-1)|S|+1{ ∏ Ew∈S m
GN(Genuine(Ew, [Tmin, Tmax], Eo∪I))}} 

where 

 EXP is the explanation set of Ei that has been defined in Definition 2 

 Conds(Ei,Φij,[Tmin,Tmax]) is a set that includes the preconditions in the deductive path from an 
explanation Φij to the event Ei or a special element PNULL, called NULL precondition which 
denotes the absence of any precondition in the deductive path. Conds(Ei,Φij,[Tmin,Tmax])  is 
defined as: 

 Conds(Ei,Φij,[Tmin,Tmax]) = {PNULL}  if Conditions(Ei,Φij,[Tmin,Tmax]) = ∅ 

 Conds(Ei,Φij,[Tmin,Tmax]) = Conditions(Ei,Φij, [Tmin,Tmax]) if Conditions(Ei,Φij,[Tmin,Tmax]) ≠  ∅ 

 Conseq(Ei,Φij, [Tmin, Tmax])  is the set of the recorded events which are consequences of the 
explanation Φij of Ei and have occurred within the diagnosis range [Tmin, Tmax].  If no such 
events exist, then Conseq (Ei,Φij, [Tmin, Tmax]) contains a single special event CNULL, called null 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 13 of 51  

 

consequence, which denotes the absence of any consequence of Φij  in the relevant time 
period. The set Cons (Ei,Φij, [Tmin, Tmax])   is defined as: 

 Cons(Ei,Φij, [Tmin,Tmax])  = {CNULL}     if ExCons(Ei,Φij,[Tmin,Tmax])  = ∅ 

 Cons(Ei,Φij, [Tmin,Tmax])  = ExCons(Ei,Φij,[Tmin,Tmax])   if ExCons(Ei,Φij,[Tmin,Tmax])  ≠ ∅ 

The basic probability assignment mEX
i is used to calculate the basic probability of the existence of at 

least one explanation with genuine preconditions and genuine consequences for the event Ei. The 
definition of mEX

i is recursive as it is based on the basic probability assignment functions mGN
u of all 

the events Eu which are preconditions of the different explanations of Ei or consequences of these 
explanations. It should be noted, however, that the definition of mEX relaxes the logical definition of 
explanation validity. In particular, whilst the logical definition of event genuineness requires the 
event to have at least one valid explanation for being genuine, mEX assigns a small probability to the 
explainability of events even if they have no explanation. This is because, as we discussed earlier, 
an event Ei with no explanations may be a precondition of the only explanation of another event Ej 
and if this is the case, the assignment of a zero basic probability to its explainability would also 
reduce to zero the basic probability in the genuineness of Ej. The probability that is assigned to 
events with no explanations by mEX is determined by the parameter α2. The value of this parameter 
should be set very close to zero, in order to provide a close approximation of the logical definition 
of explainability (see Definition 1) in cases where an event does not have any explanation. 

It should also be noted that mEX assigns pre-determined basic probability measures to null 
preconditions and consequences. These measures are 1 and α1, respectively. The former assignment 
reflects the fact when a NULL precondition denotes that an explanation has no preconditions and 
therefore its validity should not be affected by the criterion of precondition genuineness. The 
assignment of a basic probability measure that is equal to α1 to a NULL consequence reflects a 
different consideration. More specifically, whilst the reasoning principle underpinning the diagnosis 
framework of SERENITY favours explanations which are confirmed by the fact that they have 
genuine consequences other than the events that they have been generated for, it would be unfair to 
disregard entirely explanations which have no other such consequences. Cases of such explanations 
are more likely to arise given that in the new version of the diagnosis framework, the diagnosis 
range is restricted and, therefore, it may be possible to end up with explanations with no further 
consequences, merely because these consequences correspond to events outside the given diagnosis 
range. Thus, it is important to assign some basic probability measure in the validity of such 
explanations but at the same time keep this measure low to reflect the absence of consequences. The 
framework introduces the parameter α1 to define the probability measure that should be used in 
such cases and leaves the choice of the value of this parameter to the user of the framework with an 
expectation that this value will be a small number close to zero to ensure that explanations with no 
consequences cannot affect significantly the beliefs in the genuineness of events. However, α1 must 
be greater than α2 to ensure that explanations with no consequences affect more the beliefs in the 
genuineness of events than null explanations do. 

The basic probability assignment mIL
 that is used in the definition of mGN

 is itself defined as follows: 

 

Definition 4: mIL
 is the basic probability assignment in the existence or potential existence of an 

event Ei in the event log of the monitoring framework, defined as: 

mIL(InLog(Ei)) = 1 if Ei ∈ EventLog or 
   Ei is a HoldsAt, PNULL or CNULL predicate 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 14 of 51  

 

mIL(¬InLog(Ei)) = 1 if Ei ∉ EventLog,  
    Ei is not a HoldsAt, PNULL or CNULL  
    predicate, and 
    lastTimestamp(captor(Ei)) ≥ ti

UB 
mIL(InLog(Ei) ∨ ¬InLog(Ei)) = 1 if Ei ∉ EventLog,  
    Ei is not a HoldsAt, PNULL or CNULL  
    predicate, and 
    lastTimestamp(captor(Ei)) < ti

UB 
 

The function mIL assigns a basic probability of 1 to InLog(Ei) for any event Ei that has been 
recorded in the log or denotes a null precondition (PNULL) or a null consequence (CNULL). This basic 
probability reflects the complete certainty about the existence of the event in the log (note that, by 
virtue of the axiomatic foundation of the DS theory, the basic probability assigned to ¬InLog(Ei) is 
in this case zero). mIL assigns also a basic probability measure of 1 to InLog(CNULL) and 
InLog(PNULL) as these are special events denoting the absence of explanation consequences and 
preconditions for particular explanations and when they are established by the reasoning processes 
of the diagnosis framework they can be assumed to be always true4.  

mIL assigns a basic probability of 1 to ¬InLog(Ei)  for any event Ei (other than PNULL or CNULL) that 
has not been recorded in the log when mIL is invoked and, at the time of the invocation, the 
timestamp of the latest event which has been generated by the captor that is expected to produce Ei 
and recorded in the log (i.e., lastTimestamp(captor(Ei))) is greater than or equal to the maximum 
time boundary until when Ei should have occurred (i.e., ti

UB). If, however, at the time of the 
invocation of mIL, the event in question (Ei) is not in the log and the timestamp of the latest event 
that has been received from the captor that is expected to produce Ei is less than ti

UB, mIL assigns a 
basic probability of 1 to InLog(Ei) ∨ ¬ InLog(Ei) and, as a consequence of the axiomatic foundation 
of the DS theory, a basic probability of 0 to each of InLog(Ei) and ¬InLog(Ei). The assignment of 
basic probabilities, in the latter case represents the complete uncertainty about the occurrence or not 
of Ei within the time period that it is expected to occur, as we have discussed in [7][8].  

Given the logical definitions of mGN
i, mIL

i, and mEX
i the basic probability measures of mGN

i are 
computed according to the following theorem: 

Theorem 1: The basic probability assignments to the genuineness of events are calculated by the 
formulas: 

mGN(Genuine(Ei, [Tmin,Tmax], Eo))  = mIL(InLog(Ei)) × mEX(Explainable(Ei, [Tmin,Tmax], Eo)) 

mGN(¬Genuine(Ei, [Tmin,Tmax], Eo)) = 

  mIL(¬InLog(Ei)) + mEX(¬Explainable(Ei, [Tmin,Tmax], Eo)) − 

  (mIL(¬InLog(Ei)) × mEX(¬Explainable(Ei, [Tmin,Tmax], Eo)) 

 

The functional form of mGN
 is derived from the definitions of mGN

 , m
IL

 , and mEX
  and the axiomatic 

foundation of the DS theory, as we prove in Appendix B. 

                                                
4 The need to provide an mIL basic probability measure of such events may arise due to the recursive 

definition of mEX in terms of mGN and mIL. 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 15 of 51  

 

3.3.  Example of computation of genuineness beliefs 
In the following, we give an example of the computation of the belief in event genuineness based on 
the basic probability assignments mGN, mIL, and mEX. Our example is based on the diagnosis 
example that was used in [6] in order to enable a direct comparison with the belief measures 
generated by the first version of the diagnosis prototype for the example. This example is related to 
an air traffic management system (ATMS) that uses different radars to monitor the trajectories of 
airplanes in different air spaces. The operations of ATMS may be monitored at runtime to ensure 
the integrity of its components and the information generated by them. One of the rules monitored 
for ATMS checks the integrity of the information that is provided by the different radars that cover 
an airspace. More specifically, the rule states that if one of the radars used by the ATMS first sends 
a signal indicating that an airplane is in a particular airspace, every other radar that covers the same 
space should also send a signal indicating the presence of the plane in the given space within a 
certain time period of time after the receipt of the initial signal. This rule is specified in the 
monitoring language of the SERENITY monitoring framework as follows: 

 
Rule 1: 

Happens(signal(_r1, _a1, _s1),t1,R(t1,t1) ∧ HoldsAt(covers( _r1,_s1),t1) ∧ 

( ∃ _r2) (_r2 ≠≠≠≠ _r1) ∧ HoldsAt(covers(_r2,_s1), t1) ⇒ 
Happens(signal(_r2,_a1,_s1), t2 ,R(t1+1, t1+5)) 

 

In the same example, let us also assume that: 

 The following assumptions are valid for ATMS. 

(A0)  Initiates(_e1,_f),t1,R(t1,t1)) ∧ ¬∃_e2,t2: 

Terminates(_e2,_f),t2,R(t1,t2)) ⇒ HoldsAt(_f,t2) 

(A1)  Initially(_f) ∧ ¬∃_e2,t2: Terminates(_e2,_f),t1,R(0,t2)) ⇒ 
HoldsAt(_f,t2)   

(A2)  Happens(inspace(_a,_s),t1,R(t1,t1)) ∧ HoldsAt(covers(_r,_s),t1) ⇒    
Happens(signal(_r,_a,_s),t2, R(t1,t1+5)) 

(A3)  Happens(inspace(_a,_s),t1, R(t1,t1)) ⇒ 
Happens(permissionRequest(_a,_s), t2, R(t1-20,t1-1)) 

(A4)  Happens(inspace(_a,_s),t1,R(t1,t1)) ⇒ 

   Initiates(inspace(_a,_s), inairspace(_a,_s),t1) 

(A5)  Initiates(inspace(_a,_s), inairspace(_a,_s),t1) ∧ 
HoldsAt(landing_airspace_for(_s,_airportX),t1) ⇒ 
Happens(landingRequest(_a, _airportX), t2, R(t1-10,t1)) 

(A6)  Happens(changeOfLandingApproach(_airportX,_s),t1,R(t1,t1)) ⇒ 
Initiates(changeOfLandingApproach(_airportX,_s), 
landing_airspace_for(_s,_airportX),t1) 

 The following events have been recorded in the log of the monitor: 

(E1)  Initially(covers(R1,S1),0)          [captor-0] 

(E2)  Initially(covers(R2,S1),0)         [captor-0] 

(E3)  Happens(changeOfLandingApproach(AR-a,S2),0,R(0,0)) [captor -AR-a] 

(E4)  Happens(signal(R2,A2,S2),1, R(1,1))      [captor-R2] 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 16 of 51  

 

(E5)  Happens(changeOfLandingApproach(AR-a,S1),2,R(2,2)) [captor -AR-a] 

(E6)  Happens(permissionRequest(A1,S1),3,R(3,3))  [captor-0] 

(E7)  Happens(signal(R1,A1,S1),7,R(7,7))      [captor-R1] 

(E8)  Happens(signal(R2,A5,S1),13,R(13,13))     [captor-R2] 

 

Given the above event log, Rule-1 would be violated when the event 
E7:Happens(signal(R1,A1,S1),7,R(7,7)) arrives at the monitor. This is because at this point, the 
monitor can deduce that the time of the clock of the event captor captor-R1 is at least 7 and, 
therefore, it has not received a signal from radar R1 to notify the presence of the aircraft A1 in S1 
within the period from t=2 to t=6 or, equivalently the negated predicate 
¬Happens(signal(R2,A2,S2),t, R(2,6)) is true. The expectation for receiving such a signal is 
established by Rule-1 following the receipt of the event E4:Happens(signal(R2,A2,S2),1, R(1,1)) in 
the log which can be unified with Rule-1. At the point when the violation of Rule-1 is confirmed, 
the event E4 is identified as being involved in an S&D rule violation and the diagnosis process for 
computing a belief in its genuineness can start. The results of this process are described below 
assuming that the diagnosis range is determined by the time boundaries Tmin=0 and Tmax=7. Tmax in 
this case is the timestamp of the event E7 that triggered the detection of the violation and Tmin is 
determined by the parameter W which in this instance is assumed to take the value 7. 

The set of possible explanations that can be derived for E4:Happens(signal(R2,A2,S2),1, R(1,1)) 
includes the predicate E9:Happens(inspace(A1,S1),t1,R(2,7)), that is: 

ΦE4, 1= {E9} 

This explanation is generated by an amended implementation of the Explain algorithm in [6] using 
the assumption (A2) and the preconditions that must be met for the explanation to be valid include 
the predicate H1:HoldsAt(covers(R1,S1),t1) for t1 taking values in the time range R(2,7). Thus, 

Conditions(E4, ΦE4,1,[0,7]) = { H1/t1∈[2,7] } and 

Conds(E4, ΦE4,1[0,7])  = { H1/t1∈[2,7] } 

Also, the set of the expected consequences of the explanation 
E9:Happens(inspace(A1,S1),t1,R(2,7)) includes the atomic formulas 
E10:Happens(landingRequest(A1,AR-a), t2, R(0,6)) and E11:Happens(permissionRequest(A1,S1), 
t2, R(0,7)). Thus: 

ΦE4, 1
C = Conseq(E4, ΦE4,1,[0,7]) = { E10, E11} 

The atomic formula E10 is derived from the explanation E9:Happens(inspace(A1,S1),t1,R(2,7)) and 
the assumptions (A4) and (A5), whilst the atomic formula E11 is derived from 
E9:Happens(inspace(A1,S1),t1,R(2,7)) and the assumption (A3). 

Thus, the computation of the basic probability in the genuineness of 
E4:Happens(signal(R2,A2,S2),1, R(1,1)) will be based on the formula: 

mGN(Genuine(E4, [0, 7],∅)) = 

 mIL(InLog(E4) × mEX(Explainable(E4, [0, 7], ∅)) = 

 mIL(InLog(E4) × ∑{( ΦE4,1, ΦE4,1c)}  { ∏ Eu∈Conds(ΦE4,1) m
GN(Genuine(Eu, [0, 7], {ΦE4,1})) × 

 {∑S⊆Conseq (E4, ΦE4,1,[0,7]) and S≠∅ { ∏ Ew∈S m
GN(Genuine(Ew, [0, 7], {ΦE4,1})) }}} = 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 17 of 51  

 

 1 × { mGN(Genuine(H1/t1∈[2,7] ), [0, 7], {ΦE4,1}) × 

 {{ ∑S⊆{ E10,E11} & S≠∅ 

   {∏ Ew∈S m
GN(Genuine(Ew, [0, 7], {ΦE4,1})) }} = 

     1 × mGN(Genuine(H1/t1∈[2,7] , [0, 7], {ΦE4,1})) ×  

     {mGN(Genuine(E10),[0,7],{ΦE4,1})) + 

     mGN(Genuine(E11),[0,7],{ΦE4,1})) − 

     mGN(Genuine(E10),[0,7],{ΦE4,1})) × 

     mGN(Genuine(E11),[0,7],{ΦE4,1}))} 

  

The individual basic probability measures in the above formula can then be computed as follows: 

 For mGN(Genuine(H1/t1∈[2,7], [0, 7], {ΦE4,1})) we have: 

mGN(Genuine(H1/t1∈[2,7] , [0, 7], {ΦE4,1})) = 

mIL(InLog(H1/t1∈[2,7] )) × 

mEX(Explainable(H1/t1∈[2,7] , [0, 7], {ΦE4,1})) = 

1 × mEX(Explainable(H1/t1∈[2,7] , [0, 7], {ΦE4,1})) 

 H1:HoldsAt(covers(R1,S1),t1) /t1∈[2,7]  has the conjunction 

 Initially(covers(R1,S1),0) ∧ ¬∃ _e,t1:Terminates(_e,covers(R1,S1)),t1,R(0,7)) 

  as its single explanation (this explanation is generated by the assumption (A1) and this 
 explanation has no preconditions and further consequences. Thus, 

   mEX(Explainable(H1/t1∈[2,7] , [0, 7], {ΦE4,1})) =  

    mGN(Genuine(PNULL)) × mGN(Genuine(CNULL)) = 

    (mIL(InLog(PNULL)) × mEX(Explainable(PNULL)))  × 

    (mIL(InLog(CNULL)) × mEX(Explainable(PNULL)))  =  

    (1 × 1) × (1 × α1) = α1 

 Thus, mGN(Genuine(H1/t1∈[2,7] , [0, 7])) = α1    (I) 

 For mGN(Genuine(E10,[0,7], {ΦE4,1})) we have: 

mGN(Genuine(E10,[0,7], {ΦE4,1})) = 

   mIL(InLog(Happens(E10,[0,7])) × 

   mEX(Explainable(E10,[0,7], {ΦE4,1})) 

Since, however, there is no event in the log matching the formula 
E10:Happens(landingRequest(A1,AR-a), t2, R(0,6)), mIL(InLog(E10,[0,7])) will be equal to 
zero and, consequently, mGN(Genuine(E10,[0,7], {ΦE4,1})) = 0 (II) 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 18 of 51  

 

 For mGN(Genuine(E11,[0,7], {ΦE4,1} )) we have: 

mGN(Genuine(E11,[0,7], {ΦE4,1})) = 

  mIL(InLog(E11,[0,7] )) × 

  mEX(Explainable(E11,[0,7], {ΦE4,1})) 

 In this case, the event E6:Happens(permissionRequest(A1,S1),3,R(3,3)) in the log matches 
 E11:Happens(permissionRequest(A1,S1),t2,R(0,7)) and, thus: 

 mIL(InLog(E11,[0,7] )) = 1 

Note, however, that  E11:Happens(permissionRequest(A1,S1),t2,R(0,7)) has no other 
explanation than the explanation E9:Happens(inspace(A1,S1),t1,R(2,7)) from which it was 
identified as an expected consequence. Thus, the set of its possible explanations will include 
only the NULL explanation ENULL and, therefore, by virtue of Definition 2, 

mEX(Explainable(E11,[0,7], {ΦE4,1})) = α2. 

Thus, mGN(Genuine(Happens(E11,[0,7],{ΦE4,1})) =  α2 (III) 

Given (I), (II) and (II), 

mGN(Genuine(E4, [0, 7], {ΦE4,1})) =  1 × α1× α2  

3.4.  Schema for presentation of diagnosis results 
Following the introduction of diagnostic and threat detection capabilities in the SERENITY 
monitoring framework, it has become necessary to update the XML schema for reporting the results 
of the monitoring process to the clients of the monitoring framework so as to include diagnostic and 
threat related information. 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 19 of 51  

 

 

Figure 3 - Additions to resultType in the new schema for monitoring results 

The original schema that the monitoring framework used in order to return its results back to the 
SRF was the same as the schema used for specifying the monitoring rules. The upper level part of 
this schema is shown in Figure 3. As shown in the figure, the schema enables the recording of 
information about rule instances which are created following the unification of rules with specific 
events during the monitoring process. 

In particular, a rule instance is described by the element formula in the schema which is of type 
formulaType. The basic monitoring result that was returned by versions 1 and 2 of the monitoring 
framework was recorded as the value of the attribute status of the element formula. This value 
could be one of the following: 

 Satisfied: This value indicates that the particular rule instance is satisfied. 

 Inconsistency_WRT_Recorded_Behaviour: This value indicates that the particular rule 
instance has been violated by runtime events only (i.e., without taking into consideration 
any events which are derived by assumptions) 

 Inconsistency_WRT_Expected_Behaviour: This value indicates that the particular rule 
instance has been violated by runtime and derived events. 

 No_Decision: This value indicates that no decision can be made yet regarding the 
satisfiability of the particular rule instance. 

Following the incorporation of diagnostic and threat detection capabilities into the SERENITY 
monitoring framework, in addition to the above information, the monitoring results should return 
the minimum and maximum threat likelihood measures for rule instances in all cases where the 
S&D rules are monitored with activated diagnosis and/or threat detection capabilities. To enable the 

New attributes representing the 
belief and plausibility threat for the 
Rule instance; used only in threat 
detection results 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 20 of 51  

 

recording of this information, the original schema has been extended by two attributes, namely 
minThreatLikelihood and maxThreatLikelihood. These attributes represent the belief and 
plausibility of a potential violation of the rule instance, respectively, as shown in Figure 3. 

Furthermore, the diagnosis and threat analysis which can be carried out by the extended monitoring 
framework of SERENITY, generate belief and plausibility measures for the genuineness of the 
individual events that have been unified with specific predicates in a rule instance and belief and 
plausibility measures for the possibility of occurrence of events that could be unified with such 
predicates in the future. To record these measures and enable their return back to the clients of the 
monitoring framework, the results schema of the monitor has been extended by adding two new 
attributes to the type predicateType, which is used in the schema to represent the events that have 
been unified or could be unified with the rule. 

The new attributes (see Figure 4) are called minThreatLikelihood and maxThreatLikelihood and are 
used to record the belief and plausibility of the genuineness of the event unified with the predicate 
in the case of diagnostic results. In the case of threat detection results, these attributes are used to 
record the belief and plausibility of the genuineness of events that have already been unified with 
the particular predicate in the rule instance or the belief and plausibility of a potential occurrence of 
an event that could be unified with the particular predicate in the rule instance if no such event has 
occurred yet, respectively. To represent diagnostic information, we have also extended the type 
predicateType in the results schema with one more Boolean attribute, called confirmed. This 
attribute represents whether, given the belief and plausibility measures calculated for a particular 
event that has been unified with the predicate in the rule, it is possible to treat the event as a genuine 
event. The value of this attribute is set to True in cases where the belief in the genuineness of an 
event exceeds the belief in the non genuineness of it, i.e., when Bel(Genuine(E)) > 
Bel(¬Genuine(E)) as we discuss in [6]. 

 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 21 of 51  

 

 

Figure 4 - Additions to predicateType in the new schema of monitoring results 

The full new XSD result schema is given in Appendix C and the new elements in it have been 
highlighted. 

Table 1 presents an example of monitoring results represented according to the new XML schema. 
The example presents a violation of Rule-1. As we discussed earlier, this rule specifies an integrity 
condition about the Air Trafic Control Management Systems (ATMS) stating that when the ATMS 
gets an signal event from a radar that covers a specific airspace (signified by the variable radarID1 
in the rule) that an airplane (airplaneID1) is in a particular airspace (airspaceID1) at some time 
point t, it should also get a signal event from any other radar (radarID2) that covers the same 
airspace within 5 time units. The XML results document that is listed in Table 1 shows the violation 
caused by an instantiation of this rule where the radar r1001 has sent a signal indicating that the 
airplane BA.1001.1001 is in the airspace HRW.2002.2002 at the time point 1000001 but the radar 
r1002 which covers the same airspace did not send a similar signal in the time range from 1000001 
to 1005001 as required by the rule. 

New attribute indicating whether the 
event unified with the predicate is 
genuine; used only in diagnosis 
results  

New attribures representing the 
predicate belief range; used both 
for diagnostic and threat detection 
results 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 22 of 51  

 

The results file also includes the minimum and maximum likelihood measures that have been 
calculated by the diagnosis tool of SERENITY for the genuineness of the two signal events which 
have caused the violation. In particular the minimum and maximum likelihood measure for 
eventID1 (i.e. the event representing the signal of radar1) are recorded as 0.7 and 0.9, respectively. 
Also, the minimum and maximum likelihood measure for the absence of an event representing a 
signal that should have been sent from radar2 which covers the same airspace as radar1 are 
recorded as 0.1 and 0.2, respectively (i.e. the absent event is deduced by the principle of negation as 
failure as we have discussed in A4.D3.1 and is referred to as eventID2 in the results file). 

<?xml version="1.0" encoding="utf-8" ?> 
<!-- Created with Liquid XML Studio 1.0.8.0 (http:/ /www.liquid-technologies.com) -->  
<resultsdesc xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance"  ">  
 <datatypes >http://www.liquid-technologies.com </ datatypes > 
 <results > 
  <formula status ="Inconsistency_Wrt_Runtime_events"  forChecking ="true"  
formulaId ="Rule-1"  type ="Future_Formula"  instanceId ="Rule-1_100">  
   <quantification > 
    <quantifier >forall </ quantifier > 
    <timeVariable > 
     <varName >t1 </ varName > 
     <varType >TimeVariable </ varType > 
    </ timeVariable > 
   </ quantification > 
   <quantification > 
    <quantifier >existential </ quantifier > 
    <timeVariable > 
     <varName >t2 </ varName > 
     <varType >TimeVariable </ varType > 
    </ timeVariable > 
   </ quantification > 
   <body > 
    <predicate negated ="false"  unconstrained ="true"  recordable ="true"  
               minLikelihood="0.7" maxLikelihood="0.9"> 
     <happens > 
      <ic_term > 
       <operationName >signal </ operationName > 
       <partnerName >127.0.0.1 </ partnerName > 
       <id >eventID1</ id > 
       <variable persistent ="false"  forMatching ="true">  
        <varName >status </ varName > 
        <varType >OpStatus </ varType > 
        <value >REQ</ value > 
       </ variable > 
       <variable persistent ="false"  forMatching ="true">  
        <varName >sender </ varName > 
        <varType >Entity </ varType > 
        <value >127.0.0.1 </ value > 
       </ variable > 
       <variable persistent ="false"  forMatching ="true">  
        <varName >receiver </ varName > 
        <varType >Entity </ varType > 
        <value >0.0.0.0 </ value > 
       </ variable > 
       <variable persistent ="false"  forMatching ="true">  
        <varName >source </ varName > 
        <varType >Entity </ varType > 
        <value >0.0.0.0 </ value > 
       </ variable > 
       <variable persistent ="false"  forMatching ="true">  
        <varName >radarID1 </ varName > 
        <varType >string </ varType > 
        <value >r1001</ value > 
       </ variable > 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 23 of 51  

 

       <variable persistent ="false"  forMatching ="true">  
        <varName >airplaneID1 </ varName > 
        <varType >string </ varType > 
        <value >BA.1001.1001</ value > 
       </ variable > 
       <variable persistent ="false"  forMatching ="true">  
        <varName >airspaceID1 </ varName > 
        <varType >string </ varType > 
        <value >HRW.2002.2002</ value > 
       </ variable > 
       <variable persistent ="false"  forMatching ="true">  
        <varName >senderID1 </ varName > 
        <varType >string </ varType > 
        <value >127.0.0.1 </ value > 
       </ variable > 
       <variable persistent ="false"  forMatching ="true">  
        <varName >receiverID1 </ varName > 
        <varType >string </ varType > 
        <value >0.0.0.0 </ value > 
       </ variable > 
       <variable persistent ="false"  forMatching ="true">  
        <varName >evSourceID1 </ varName > 
        <varType >string </ varType > 
        <value >0.0.0.0 </ value > 
       </ variable > 
      </ ic_term > 
      <timeVar > 
       <varName >t1 </ varName > 
       <varType >TimeVariable </ varType > 
       <value >1000001</ value > 
      </ timeVar > 
      <fromTime > 
       <time > 
        <varName >t1 </ varName > 
        <varType >TimeVariable </ varType > 
        <value >1000001</ value > 
       </ time > 
      </ fromTime > 
      <toTime > 
       <time > 
        <varName >t1 </ varName > 
        <varType >TimeVariable </ varType > 
        <value >1000001</ value > 
       </ time > 
      </ toTime > 
     </ happens > 
    </ predicate > 
    <operator >and</ operator > 
    <predicate negated ="false"  unconstrained ="false"  recordable ="true">  
     <holdsAt > 
      <fluent name="CoversFluent">  
       <variable persistent ="false"  forMatching ="true">  
        <varName >radarID1 </ varName > 
        <varType >string </ varType > 
        <value >r1001</ value > 
       </ variable > 
       <variable persistent ="false"  forMatching ="true">  
        <varName >airspaceID1 </ varName > 
        <varType >string </ varType > 
        <value >HRW.2002.2002</ value > 
       </ variable > 
      </ fluent > 
      <timeVar > 
       <varName >t1 </ varName > 
       <varType >TimeVariable </ varType > 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 24 of 51  

 

       <value >1000001</ value > 
      </ timeVar > 
     </ holdsAt > 
    </ predicate > 
    <operator >and</ operator > 
    <predicate negated ="false"  unconstrained ="false"  recordable ="true">  
     <holdsAt > 
      <fluent name="CoversFluent">  
       <variable persistent ="false"  forMatching ="true">  
        <varName >radarID2 </ varName > 
        <varType >string </ varType > 
        <value >r1002</ value > 
       </ variable > 
       <variable persistent ="false"  forMatching ="true">  
        <varName >airspaceID1 </ varName > 
        <varType >string </ varType > 
        <value >HRW.2002.2002</ value > 
       </ variable > 
      </ fluent > 
      <timeVar > 
       <varName >t1 </ varName > 
       <varType >TimeVariable </ varType > 
       <value >1000001</ value > 
      </ timeVar > 
     </ holdsAt > 
    </ predicate > 
   </ body > 
   <head > 
    <predicate negated ="false"  unconstrained ="false"  recordable ="true"  
 minLikelihood="0.1" maxLikelihood="0.3"> 
     <happens > 
      <ic_term > 
       <operationName >signal </ operationName > 
       <partnerName >127.0.0.2 </ partnerName > 
       <id >eventID2</ id > 
       <variable persistent ="false"  forMatching ="true">  
        <varName >status2 </ varName > 
        <varType >OpStatus </ varType > 
        <value >REQ</ value > 
       </ variable > 
       <variable persistent ="false"  forMatching ="true">  
        <varName >sender2 </ varName > 
        <varType >Entity </ varType > 
        <value >127.0.0.2 </ value > 
       </ variable > 
       <variable persistent ="false"  forMatching ="true">  
        <varName >receiver1 </ varName > 
        <varType >Entity </ varType > 
        <value >0.0.0.0 </ value > 
       </ variable > 
       <variable persistent ="false"  forMatching ="true">  
        <varName >source1 </ varName > 
        <varType >Entity </ varType > 
        <value >0.0.0.0 </ value > 
       </ variable > 
       <variable persistent ="false"  forMatching ="true">  
        <varName >radarID2 </ varName > 
        <varType >string </ varType > 
        <value >r1002 </ value > 
       </ variable > 
       <variable persistent ="false"  forMatching ="true">  
        <varName >airplaneID1 </ varName > 
        <varType >string </ varType > 
        <value >BA.1001.1001 </ value > 
       </ variable > 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 25 of 51  

 

       <variable persistent ="false"  forMatching ="true">  
        <varName >airspaceID1 </ varName > 
        <varType >string </ varType > 
        <value >HRW.2002.2002 </ value > 
       </ variable > 
       <variable persistent ="false"  forMatching ="true">  
        <varName >senderID2 </ varName > 
        <varType >string </ varType > 
        <value >127.0.0.2 </ value > 
       </ variable > 
       <variable persistent ="false"  forMatching ="true">  
        <varName >receiverID1 </ varName > 
        <varType >string </ varType > 
        <value >0.0.0.0 </ value > 
       </ variable > 
       <variable persistent ="false"  forMatching ="true">  
        <varName >evSourceID1 </ varName > 
        <varType >string </ varType > 
        <value >0.0.0.0 </ value > 
       </ variable > 
      </ ic_term > 
      <timeVar > 
       <varName >t2 </ varName > 
       <varType >TimeVariable </ varType > 
      </ timeVar > 
      <fromTime > 
       <time > 
        <varName >t1 </ varName > 
        <varType >TimeVariable </ varType > 
        <value >1000001 </ value > 
       </ time > 
      </ fromTime > 
      <toTime > 
       <time > 
        <varName >t1 </ varName > 
        <varType >TimeVariable </ varType > 
        <value >1005001 </ value > 
       </ time > 
      </ toTime > 
     </ happens > 
    </ predicate > 
   </ head > 
  </ formula > 
 </ results > 

</ resultsdesc > 

Table 1 – An example of monitoring results for a specific rule instance 

 

 

 

 

 

 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 26 of 51  

 

3.5.  API for diagnosis tool 
The diagnosis tool is an internal module of the monitor component [3] as it is presented in Figure 5. 
It should be noted that the monitor is deployed as a web service .Thus, this report describes an 
application programming interface (API) that enables the retrieval of diagnostic results from external 
clients of the monitor and, in particular, the SERENITY runtime framework. Please note that the 
provided diagnosis results follow the representation schema presented in Figure 4. 

 

 

 

 

 

 

 

 

 

Monitor 

Deviation Database Handler 

Event Collector 

 

 

Monitor Manager 

Monitoring Console 

IMonitor 

Manager 

Execution Environment 

Deviation Port 

Deviation Port 

Event Port 

A Key: B 
A exposes the interface I, and B uses the 
interface I 

C 
A B A writes to port C that B listens to 

I 

C 

Event Buffer 

Imonitor (with diagnosis operations) 

IDeviationDBHandler 

NTG 

Database I 

Database II 

Buffer Port 

NTG Port 

Diagnosis Module 

Diagnosis GUI Module 

 

Figure 5 - Architecture of monitor and diagnosis prototype 

The API for the monitor and the diagnosis tool is the NewDataAnalyzerEC class that is included in 
the code package (code.NewDataAnalyzerEC.java) of the delivered code. More specifically, the 
API for the diagnosis tool consists of the following methods: 

 public String initialiseDiagnoser(String xmlFailedTemplate) 

 Return Value: String 

 Argument: String xmlFailedTemplate 

 Description: This operation reads a string representation of the xml format of the 
violated rule and notifies the diagnosis tool of the violations observations. It 
returns a string indicating whether the diagnosis tool is notified successfuly.  

 

 public String diagnose() 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 27 of 51  

 

 Return value: String 

 Argument: N/A 

 Description: This operation calls the methods that implement the explanation 
generation algorithm [6], the explanation effect identification algorithm [6] and 
the new belief assessment process as it is desribed in Section 3.2. . The return 
value is a string representation of the xml format of the monitoring and diagnosis 
results as presented in Table 1. 

The full new API of the monitor is given in Appendix D, where the diagnosis tool elements 
(operations, requests, responses) in it have been highlighted. 

 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 28 of 51  

 

4.  Implementation and Usage Guide 

4.1.  Required Software 
To use the diagnosis prototype, the user should download and install on his/her machine: 

 Version 5.0.14 of the Tomcat server – This server can be downloaded from 
http://tomcat.apache.org/. An installation guide for the server is also available at the same 
site. Please consult the release note of tomcat for the selection of right XML parser. (Hint: 
During installation, the xalan.jar file should be copied in the tomcat\common\lib folder. The 
xalan.jar file can be found in the lib folder of the manager project)  

 Version 1.4 of Axis server – This server can be downloaded from http://ws.apache.org/axis/. 
An installation guide for the server is also available at the same site. (Hint: Attention must be 
given in the copy of the appropriate jar files into the Axis installation folders, as well as,in 
the classpath setup of Axis server. More details can be found in the Classpath setup section 
of the installation guide for the server that is provided at the site) 

 

4.2.  Installation instructions 
The installation of the diagnosis tool is based on the same procedure as the one followed for the 
monitor. More specifically, 

 To install the monitoring manager, extract the files in the archive into the folder 
C:\Monitor  

 To install the data analyzer, copy the folder C:\Monitor\analyzer\code in the 
classes folder of the axis installation in Tomcat. This prototype assumes that the Tomcat 
server is deployed on port number 8080 (i.e. default port for tomcat). 

 

4.3.  Usage instructions 
The functionality of the diagnosis module is available only through the dynamic validation 
prototype. Thus in the following we give basic instructions on how to start and use the dynamic 
validation prototype and, as part of it, how to use the diagnostic capabilities that have been 
integrated into it. 

4.3.1.  The monitor 
To start the monitor (also known as “data analyzer”), the user has to start the Tomcat server by 
executing the startup 

file in the TOMCAT_HOME\bin folder. 

To use the analyzer with the monitoring manager, in a command prompt window give the command 
C:\Monitor\analyzer\deploy  The data analyzer is up and the wsdl specification of the 
data analyzer service can be seen at: 

http://localhost:8080/axis/services/analyzerService ?wsdl 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 29 of 51  

 

and the analyzer service endpoint is 

http://localhost:8080/axis/services/analyzerService  

Section 4.3.2.  describes how to use the monitoring manager, the diagnostic component of the 
prototype and the event collector. 

4.3.2.  The Monitoring Manager and Diagnosis Module 
The monitoring manager is used to import and select the formulae to be monitored, send the 
selected formulae to the data analyzer, start the event collector for a monitoring session, initiate a 
polling process that retrieves possible violations of the properties and view the result of monitoring. 
To retrieve violations of properties, the monitoring manager polls the data analyzer at regular time 
intervals that can be specified by the user and shows the results that it retrieves in a formula viewer. 

To use the monitor manager, follow the following steps: 

1. To start the monitor manager, in a command prompt window execute the command 
C:\Monitor\manager\RunManager as shown in Figure 6 below. Following this, the 
monitor manager window will pop up. Then, to import the formulae to be monitored, select 
the option "Import Formulae" from the "File" menu of the manager.  

 

Figure 6 - Command prompt window 

 

2. Then, to import the formulae to be monitored, select the option "Import Formulae" from the 
"File" menu of the manager.  

 

 

 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 30 of 51  

 

3. In the file opening dialog box that appears following the selection of this option (see Figure 
7), choose the XML file that contains the formulae that you want to monitor. 

 

Figure 7 - The file opening dialogue box 

 

4. The monitor manager will then read all the formulae from the file and display the formulae 
in the display panel of the monitoring manager as illustrated in Figure 8. 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 31 of 51  

 

 

Figure 8 - The Monitoring Manager  

The monitoring manager lists the identifiers of the imported formulae in the "Imported 
Formulae" panel. To view a formula in the event calculus format, the user may select its ID. 
Following this selection, the formula with the selected ID will be shown in the "Formula 
Viewer" panel of the manager. If the user wants to select the formula to be monitored, 
he/she may select its ID in the imported formulae panel and click on the "Select" button. 
Following this, the selected formula will appear in the "Selected Formulae" panel. The user 
may repeat the same process to select more formulae. When the selection is complete, the 
user can click on the "Confirmed" button, to send the formulae to the data analyser. If the 
submission of formulae to the analyser is successful, the monitor manager will show the 
following message. The user should press the "Ok" button to continue (see Figure 9). 

 

Figure 9 - Formulas submission message 

 

5. The next step is to provide the analyzer with runtime events. From the Start Data Collection 
command in the Controls menu of the monitor manager we can activate the collection of the 
events. The monitor manager can by default accept events in the port number 12345 and 
report them to the analyzer. The format of those events is based in the event XML schema 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 32 of 51  

 

described in [1]. Any event collection mechanism that can provide events according to the 
defined XML schema can be used to report the events. For the purposes of the demo we can 
use the SOAP event collector which can be located in C:\Monitor\SoapCollector . 
This application creates a proxy service which listens to a user defined port number, accepts 
incoming SOAP messages, translates them to the specified event format and then forwards 
them to the real web service for the execution of the service and to the monitor management 
tool. For the execution of the collector the user must type java –cp 
xercesImpl.jar; commons-net-1.4.1.jar; code.TcpTunn el  followed by 
the parameters of the listening port, the IP address and port of the real web service and the 
IP address and port of the monitoring manager. In our case, where the Tomcat is deployed 
locally in the default port (i.e. 8080) and the manager listens for events in the 12345 port, 
the execution command should be java –cp xercesImpl.jar;commons-net-
1.4.1.jar; code.TcpTunnel 8081 localhost 8080 local host 12345 . 
Now that the collector is activated we must inform the monitor manager to accept any 
events are send to it by selecting the Start Data Collector option from the Control menu (see 
Figure 11). Any attempt to invoke a web service in the port 8081 will result to report this 
event to the monitor manager tool.  

6. To set the diagnosis window, the belief value for NULL consequences and the belief value 
for NULL explanations, the user should select the "parameters" option from the "control" 
menu in this window and, in the dialog box that pops up (see Figure 10),  specify new 
values for the aforementioned parameters 

 

Figure 10 - Monitor Manager parameters dialogue box 

 

 

7. The user may stop the data collector by selecting the option "Stop Data Collector" in the 
"Control" menu (see Figure 11) 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 33 of 51  

 

8. To start polling the data analyser in order to view the violations of the formulae being 

monitored, the user should select the option "start polling" from the control menu. 
Following this, the monitor manager will start polling the data analyser at regular time 
intervals (the default time interval is 10 seconds).  

The monitoring manager shows the list of instances of the violated and satisfied formulae in 
the "Monitoring Decision List" panel as shown in Figure 12. This panel will be updated at 
the regular intervals. The Monitoring Decision List will show the monitoring summary of 
each instance of each formula. The left most column in this list shows the unique formula 
instance ID, the middle column shows the decision for the formula instance, and the right 
most column shows the time when the decision was made by the data analyzer. 

 

 

 

 

Figure 11 - Starting and stopping data collector in the Monitoring Manager  



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 34 of 51  

 

 

 Figure 12 - Monitoring Decision and Formula Instantiation Panels 

 

9. To view the details of a formula instance, the user should select the relevant formula 
instance in the Monitoring Decision List. Following this, the monitor manager shows the 
details of the formula instance in the "Formula Instantiation Details" panel (see Figure 12). 
This panel displays the formula status, other formulae that the specific formula may depend 
on (see [5] for a definition of formula dependencies and how they are used in monitoring), 
and the values bound to the variables of the formula. "Formula Instantiation Details" panel 
also shows the truth values of the individual predicates of the formula, the timestamps of the 
establishment of these truth values, and the source of the information that underpins them 
("Recorded" for events generated directly by the system under observation and "Derived" 
for events generated by deductive reasoning). The three last colums of the table refer to 
diagnosis results for the events that have been unified with predicates of the violated rule. 
More specifically, given the belief and plausibility measures calculated for a particular event 
that has been unified with the predicate in the rule, the confirmed column indicates whether 
a predicate is confirmed by the recorded events of the log of the monitor. Finally, the lower 
(belief) and the upper boundary (plausibility) of the belief range of predicates of the rule are 
displayed respectively in the MinLikelihood and MaxLikelihood columns. 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 35 of 51  

 

10. To change the polling interval, the user should select the option "stop polling" in the main 
monitor manager window, then select "parameters" from the "control" menu in this window 
and, in the dialog box that pops up (see Figure 10),  specify a new value for the polling 
interval. Subsequently, the user should select the option "restart polling" from the control 
window. 

11. To stop the manager, the user should first stop the data collector (if it is running), then stop 
polling, and finally select the “exit” option from file menu to exit the monitor manager (see 
Figure 11). 

 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 36 of 51  

 

5.  Conclusions 
This report is part of the deliverable A4.D5.2 and provides a description of the second version of 
the diagnosis prototype that has been developed as part of SERENITY monitoring framework. In 
particular, we have described the main amendments that were introduced to the diagnosis approach 
advocated in SERENITY and given examples demonstrating the results of the amendments. We 
have not, however, provided a full description of this approach as this can be found in [6].  

As we have discussed in [6], the diagnosis of violations of S&D rules in SERENITY is based on 
generating possible explanations for the runtime events which are involved in violations of S&D 
monitoring rules through the use of abductive reasoning. This process deploys the assumptions that 
have been specified about the system that is being monitored and the S&D patterns which are 
deployed by it. The possible explanations which are generated by this process are checked against 
other runtime events to establish if there is further evidence about the validity of the explanations. 
The input to this search process includes the expected consequences of the abduced explanations 
and − in the new version of the diagnosis tool − any preconditions that need to be satisfied for an 
explanation to be able to entail the event in question. The new version of the SERENITY diagnosis 
framework computes beliefs in the validity of the explanations of the events that are involved in 
S&D violations, based on matches that may be found between the preconditions and consequences 
of these explanations with other runtime events and a recursive assessment of the genuineness of 
these events.  

It should be noted that the second version of the diagnosis prototype is fully integrated with the 
SERENITY monitoring framework described in it [3] and the code that implements the new version 
of the monitoring framework along with the realisation of the diagnostic capabilities described in 
this report is also part of A4.D5.2. 

Ongoing work focuses on conducting an experimental evaluation of the undertaken approach. 

 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 37 of 51  

 

Appendix A. 1st Version Algorithms  

Explain(e, t min (e), tmax(e), f init ) 

1.  Φe = [ finit:e ]OR  /* a list keeping the disjunction of possible explanations of e  */ 

2.  If e ∈ ABD Then  

3.   Φe = append(Φe , (e, tmin(e), tmax(e))) 

4.  Else  /* e is not an abducible atom; find explanations for it */ 

5.   For  all f ∈ AS Do /* try all alternative explanations */ 

6.    u = mgu(head(f), e) /* mgu returns the most general unifier of e and a predicate p if this unifier exists*/ 

7.    If u ≠ ∅ and  u covers all non time variables in body(f) Then 

8.     Copy body(f) into CNDf 

9.     FormulaFailed = False 

10.     Φf  = []AND /* Φf  is a list keeping a conjunction of elements explaining the conditions of f */ 

11.     While FormulaFailed = False and CNDf ≠ ∅ DO /* explain all conditions of f */ 

12.      Remove some condition C from CNDf   

13.      Compute the minimum and maximum possible values tmin(C), tmax(C) of C 

14.       based on tmin(e) and tmax(e) 

15.      If tmin(C) ≠ NULL and  tmax(C) ≠ NULL Then /* tmin(C), tmax(C) are not undeterminable */ 

16.       Cu = ApplyUnification(u, C) 

17.       If C ∈ ABD Then  /* C is an abducible so add it to current explanation */ 

18.        Φf  = append (Φf , [(f:Cu, tmin(C), tmax(C))]ABD ) 

19.       Else /* C is not an abducible condition */ 

20.        find a derived or recorded event ec that can be unified with Cu and 

21.        tmin(ec) ≥ tmin(C) and tmax(ec) ≤ tmax(C) 

22.        If ec = NULL Then /* no logged or derived event matching C has been found */ 

23.         ΦC = Explain(C, tmin(C), tmax(C), f) 

24.         If ΦC is empty Then  

25.          FormulaFailed = True 

26.         Else 

27.          Φf = append(Φf , ΦC) 

28.         End If 
29.        End If 

30.       End If 
31.      End If 

32.     End While  

33.     If FormulaFailed = False Then Φe = append (Φe,Φf)  End if 

34.    End if 
35.   End For 
36.  End If 

37.  return(Φe) 

38. END Explain 

Figure 13 - Algorithm for generating explanations of atomic events involved in violations 

 

 

 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 38 of 51  

 

Generate_AE_consequences( AF: Set of Grounded Atomic Formulas, TLIST: List of Assumption Templates, CNS: Set 
of Consequences) 

1. CNS = { } 

2. TLIST’ = copy of TLIST 

3.  For  each atomic formula Pi ∈  AF Do 

4.   For  each assumption template T in TLIST’ Do 

5.    For each predicate Q ∈ body(T) Do 

6.     If mgu(Pi,Q) ≠∅ and CompatibleTimeRange(Pi,Q) Then  

7.      T’ := copy of T 

8.      Apply mgu(Pi,Q) onto T’ 

9.      Set the truth value of Q in T’ to True 

10.     Update time ranges of other predicates in T’ based on the time range of Pi 

11.     If for all predicates R ∈ Body(T’) such that R≠Q, R is true Then  

12.      If head(T’) is fully instantiated Then  

13.       If head(T’) is observable Then  

14.        CNS = CNS ∪ { (T.id, head(T’)) } 

15.        delete T’ 

16.       Else /*head(T’) is a derived predicate */ 

17.        CNS’ = { } 

18.        Generate_consequences({head(T’)}, TLIST’, CNS’) 

19.        CNS = CNS ∪ CNS’ 

20.       End If  

21.      End If  

22.     Else /* there is a predicate R in Body(T’) whose truth value is unknown */ 

23.      If for all predicates R ∈ Body(T’) such that R≠Q and R is not true, R is an abducible predicate Then 

24.       TLIST’ = append (T’, TLIST’) 

25.      End If 

26.     End If  

27.    End If  

28.   End For  

29.  End For  

30.  Return (CNS) 

31. END Generate_AE_Consequences 

Figure 14 - Algorithm for computing the transitive closure of deductions from abduced 
predicates 

 

 

 

 

 

 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 39 of 51  

 

Generate_RE_consequences( AF: Set of Grounded Atomic Formulas, TLIST: List of Assumption Templates, CNS: Set 
of Consequences) 

1. CNS = { } 

2.  For  each atomic formula Pi ∈  AF Do 

3.   For  each assumption template T in TLIST Do 

4.    For each predicate Q ∈ body(T) Do 

5.     If mgu(Pi,Q) ≠∅ and CompatibleTimeRange(Pi,Q) Then  

6.      T’ := copy of T 

7.      Apply mgu(Pi,Q) onto T’ 

8.      Set the truth value of Q in T’ to True 

9.      Update time ranges of other predicates in T’ based on the time range of Pi 

10.     If for all predicates R ∈ Body(T’) such that R≠Q, R is true Then  

11.      If head(T’) is fully instantiated Then  

12.       If head(T’) is observable Then  

13.        CNS = CNS ∪ { (T.id, head(T’)) } 

14.        delete T’ 

15.       Else /*head(T’) is a derived predicate */ 

16.        CNS’ = { } 

17.        Generate_consequences({head(T’)}, TLIST, CNS’) 

18.        CNS = CNS ∪ CNS’ 

19.       End If  

20.      End If  

21.     Else /* there is a predicate R in Body(T’) whose truth value is unknown */ 

22.      TLIST = append (T’, TLIST) 

23.     End If  

24.    End If  

25.   End For  

26.  End For  

27.  Return (CNS) 

END Generate_consequences  

Figure 15 - Algorithm for computing the transitive closure of deductions from recorded 
events 

 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 40 of 51  

 

Appendix B. Proofs of Theorems 
Theorem 1: The basic probability assignment to the genuineness of events is calculated by the 
formulas: 

mGN(Genuine(Ei, [Tmin,Tmax], Eo)) = mIL(InLog(Ei) × mEX(Explainable(Ei, [Tmin,Tmax], Eo))) 

mGN(¬Genuine(Ei, [Tmin,Tmax], Eo)) = 

 mIL(¬InLog(Ei) + mEX(¬Explainable(Ei, [Tmin,Tmax], Eo)) − 

 (mIL(¬InLog(Ei) × mEX(¬Explainable(Ei, [Tmin,Tmax], Eo))) 

 

Proof: The combination of the basic probability assignments mIL and mEX requires their mapping 
on a common frame of discernment, i.e., a set of mutually exclusive propositions representing 
exhaustively the properties that mIL and mEX cast evidence for. This frame of discernment θ can be 
defined as a set of vectors consisting of n-pairs pairs of Boolean variables (Li, Vi): 

[(L1, V1), …, (Ln, Vn)] 

where 

 n is the total number of events within a given diagnosis range 

 each of the pairs (Li, Gi) corresponds to an event Ei. 

 the value of the variable Li in a pair denotes whether or not the event Ei matches with an 
event that has already or can occur in the log: when Li=1 Ei has already occurred or can 
occur at some future time point in the log and when Li=0 Ei has neither occurred nor it may 
occur at some future time point in the log. 

 the value of the variable Vi denotes whether or not the event Ei is explainable: when Vi=1 
Ei’s can be explained and when Vi=0 Ei cannot be explained. 

Given this definition of θ, the propositions that mIL assigns evidence for (aka focals in the context 
of the DS theory) are: 

InLog(Ei) = {[(L 1, V1), …, (Li, Vi), …, (Ln, Vn)]|Li =1} 

¬InLog(Ei) = {[(L 1, V1), …, (Li, Vi), …, (Ln, Vn)]|L i =0} 

Also, the propositions (or, equivalently, focals) that mEX assigns evidence for are: 

Explainbable(Ei) = {[(L 1, V1), …, (Li, Vi), …, (Ln, Vn)]|Vi =1} 

¬ Explainbable(Ei) = {[(L 1, V1), …, (Li, Vi), …, (Ln, Vn)]|V i =0} 

Thus, the intersections of these focals are not empty sets: 

InLog(Ei) ∩ Explainbable(Ei) ≠∅ 

¬InLog(Ei) ∩ Explainbable(Ei) ≠∅ 

InLog(Ei) ∩ ¬Explainbable(Ei) ≠∅ 

¬InLog(Ei) ∩ ¬ Explainbable(Ei) ≠∅ 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 41 of 51  

 

Therefore, according to Theorem 3.1 in [3] (p. 60), the basic probability assignments mIL
 and mEX 

an be combined using the rule of the orthogonal sum, i.e.: 

m1 ⊕ m2 (P) = (ΣX ∩ Y = P m1(X) × m2(Y)) / (1 – k0) 

where k0 = ΣV ∩ W = ∅ and V ⊆ θ and W ⊆  θ m1(V) × m2(W)  

Since, however, the intersections of all the combinations of the focals of mIL and mEX the parameter 
k0 in the rule will be equal to zero. 

The following matrix shows the different combinations of the focals of the assignments mIL and 
mEX for a given event E and the basic probability measures that they assign to the intersections of 
these combinations. 

mIL  

 
P1: 

mIL(P1) 
 

 
¬ P1: 

mIL(¬P1) 
 

P1 ∪ ¬ P1 = θ: 
(1 − mIL(P1) − 

mIL(¬P1) ) 

 
P2: 
mEX(P2)  

P1 ∩ P2 
 

mIL(P1) × mEX(P2) 

¬ P1 ∩ P2 
 

mIL(¬P1) × mEX(P2) 

(P1 ∪ ¬P1) ∩ P2  = 
θ ∩ P2 = P2 

 
(1 − mIL(P1) − 
mIL(¬P1) ) × 

mEX(P2) 
 
¬ P2: 
mEX(¬P2) 
 

 
P1 ∩ ¬P2 

 
mIL(P1) × mEX(¬P2) 

 
¬ P1 ∩ ¬P2 

 
mIL(¬P1) × mEX(¬P2) 

 
θ ∩¬P2   = ¬P2 

 
(1 − mIL(P1) − 
mIL(¬P1) ) × 

mEX(¬P2) 

 
 
 

 
mEX 

 
P2 ∪ ¬ P2 
= θ: 
(1 − mEX(P2) − 
mEX(¬P2) 

P1 ∩ (P2 ∪ ¬P2) =   
P1 ∩ θ = P1 

 
mIL(P1) × (1 − mEX(P2) 

− mEX(¬P2) 

¬P1 ∩ (P2 ∪ ¬P2) =   
¬P1 ∩ θ = ¬P1 

 
mIL(¬P1) × 

(1 − mEX(P2) − 
mEX(¬P2)  

θ ∩ θ = θ 
 

(1 − mIL(P1) − 
mIL(¬P1) ) × (1 − 

mEX(P2) − 
mEX(¬P2) ) 

Where 

 P1 = InLog(E) 

 P2 = Explainable(E) 

 ¬Pi is the complement set of Pi with respect to the powerset of  θ 

 

Thus, as 

mGN(Genuine(Ei, [Tmin,Tmax], Eo)) = mIL⊕mEX (InLog(Ei) ∧ Explainable(Ei, [Tmin, Tmax], Eo)) 

we have 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 42 of 51  

 

mGN(Genuine(Ei, [Tmin,Tmax], Eo)) = mIL⊕mEX (P1 ∩ P2) = mIL(P1) × mEX(P2)   (I) 

 

Also, 

mGN(¬Genuine(Ei, [Tmin,Tmax], Eo)) = mIL⊕mEX (¬(InLog(Ei) ∧ Explainable(Ei, [Tmin, Tmax], Eo))) = 

mIL⊕mEX (¬InLog(Ei) ∨ ¬Explainable(Ei, [Tmin, Tmax], Eo)) = mIL⊕mEX (¬P1 ∪ ¬P2)  

Due to the rule of the orthogonal sum, however, we have: 

mIL⊕mEX (¬P1 ∪ ¬P2) = mIL⊕mEX(¬ P1 ∩ P2) + mIL⊕mEX(P1 ∩ ¬P2) + mIL⊕mEX(¬ P1 ∩ 
¬P2) + mIL⊕mEX(θ ∩¬P2) + mIL⊕mEX(¬P1 ∩ θ)  

  = mIL(¬P1) × mEX(P2) + mIL(P1) × mEX(¬P2) + mIL(¬P1) × mEX(¬P2) + 
   (1 − mIL(P1) − mIL(¬P1) ) × mEX(¬P2) + mIL(¬P1) × 
   (1 − mEX(P2) − mEX(¬P2)) 
  = mIL(¬P1) + mEX(¬P2) − mIL(¬P1) ) × mEX(¬P2)   (II) 

      

From (I) and (II), it follows that the theorem holds. 

 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 43 of 51  

 

Appendix C. New Schema for Monitoring Results 
<?xml version="1.0" encoding="utf-8" ?> 
<!-- Created with Liquid XML Studio 1.0.8.0 (http:/ /www.liquid-technologies.com) -->  
<xs:schema xmlns:xs ="http://www.w3.org/2001/XMLSchema">  
  <xs:element name="resultsdesc"  type ="resultsdescType"  />  
  <xs:complexType name="resultsdescType">  
    <xs:sequence > 
      <xs:element minOccurs ="0"  maxOccurs ="unbounded"  name ="datatypes"  type ="xs:anyURI"  
/>  
      <xs:element name="results"  type ="resultsType"  />  
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="resultsType">  
    <xs:sequence > 
      <xs:element minOccurs ="1"  maxOccurs ="unbounded"  name ="formula"  type ="formulaType"  
/>  
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="formulaType">  
    <xs:annotation > 
      <xs:documentation > 
 **** 
 **** ADDED-END 
 **** 
 </ xs:documentation > 
    </ xs:annotation > 
    <xs:sequence > 
      <xs:element minOccurs ="1"  maxOccurs ="unbounded"  name ="quantification"  
type ="quantificationType"  />  
      <xs:element minOccurs ="0"  name ="body"  type ="bodyHeadType"  />  
      <xs:element name="head"  type ="bodyHeadType"  />  
    </ xs:sequence > 
    <xs:attribute name="formulaId"  type ="xs:string"  use ="required"  />  
    <xs:attribute name="type"  type ="xs:string"  use ="required"  />  
    <xs:attribute default ="true"  name ="forChecking"  type ="xs:boolean"  />  
    <xs:attribute name="instanceId"  type ="xs:string"  use ="required">  
      <xs:annotation > 
        <xs:documentation > 
 **** 
 **** ADDED-BEGIN 
 **** 
  The id of the formula instance in the monitor </ xs:documentation > 
      </ xs:annotation > 
    </ xs:attribute > 
    <xs:attribute name="status"  type ="xs:string"  use ="required">  
      <xs:annotation > 
        <xs:documentation > 
 whether the formula instance has been satisfied or  not: 
 &amp;quot;Satisfied &amp;quot; 
     &amp;quot;Undefined &amp;quot; 
     &amp;quot;Inconsistency_WRT_Recorded_Behaviour &amp;quot; 
     &amp;quot;Inconsistency_WRT_Expected_Behaviour &amp;quot; 
 </ xs:documentation > 
      </ xs:annotation > 
    </ xs:attribute > 
    <xs:attribute name="minThreatLikelihood"  type ="xs:double">  
      <xs:annotation > 
        <xs:documentation >The current minimum threat likelihood for this 
formula </ xs:documentation > 
      </ xs:annotation > 
    </ xs:attribute > 
    <xs:attribute name="maxThreatLikelihood"  type ="xs:double">  
      <xs:annotation > 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 44 of 51  

 

        <xs:documentation >The current maximum threat likelihood for this 
formula </ xs:documentation > 
      </ xs:annotation > 
    </ xs:attribute > 
  </ xs:complexType > 
  <xs:complexType name="bodyHeadType">  
    <xs:sequence > 
      <xs:choice > 
        <xs:element name="predicate"  type ="predicateType"  />  
        <xs:element name="relationalPredicate"  type ="relationalPredicateType"  />  
      </ xs:choice > 
      <xs:sequence minOccurs ="0"  maxOccurs ="unbounded">  
        <xs:element name="operator"  type ="logicalOperatorType"  />  
        <xs:choice > 
          <xs:element name="predicate"  type ="predicateType"  />  
          <xs:element name="timePredicate"  type ="timePredicateType"  />  
          <xs:element name="relationalPredicate"  type ="relationalPredicateType"  />  
        </ xs:choice > 
      </ xs:sequence > 
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="predicateType">  
    <xs:annotation > 
      <xs:documentation > 
 **** 
 **** ADDED-END 
 **** 
 </ xs:documentation > 
    </ xs:annotation > 
    <xs:choice > 
      <xs:element name="happens"  type ="happensType"  />  
      <xs:element name="initiates"  type ="initiatesType"  />  
      <xs:element name="holdsAt"  type ="holdsAtType"  />  
      <xs:element name="initially"  type ="holdsAtType"  />  
      <xs:element name="terminates"  type ="terminatesType"  />  
      <xs:element name="clipped"  type ="clippedType"  />  
      <xs:element name="declipped"  type ="declippedType"  />  
    </ xs:choice > 
    <xs:attribute default ="false"  name ="negated"  type ="xs:boolean"  />  
    <xs:attribute default ="false"  name ="unconstrained"  type ="xs:boolean"  />  
    <xs:attribute default ="false"  name ="recordable"  type ="xs:boolean"  />  
    <xs:attribute default ="false"  name ="confirmed"  type ="xs:boolean">  
      <xs:annotation > 
        <xs:documentation > 
 **** 
 **** ADDED-BEGIN 
 **** 
 Whether this predicate is confirmed  by the observ ed events in the 
log </ xs:documentation > 
      </ xs:annotation > 
    </ xs:attribute > 
    <xs:attribute name="minLikelihood"  type ="xs:double">  
      <xs:annotation > 
        <xs:documentation >The minimum likelihood of this predicate to be 
genuine </ xs:documentation > 
      </ xs:annotation > 
    </ xs:attribute > 
    <xs:attribute name="maxLikelihood"  type ="xs:double">  
      <xs:annotation > 
        <xs:documentation >The maximum likelihood of this predicate to be 
genuine </ xs:documentation > 
      </ xs:annotation > 
    </ xs:attribute > 
  </ xs:complexType > 
  <xs:complexType name="timePredicateType">  



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 45 of 51  

 

    <xs:choice > 
      <xs:element name="timeEqualTo"  type ="TimeRelation"  />  
      <xs:element name="timeNotEqualTo"  type ="TimeRelation"  />  
      <xs:element name="timeLessThan"  type ="TimeRelation"  />  
      <xs:element name="timeGreaterThan"  type ="TimeRelation"  />  
      <xs:element name="timeLessThanEqualTo"  type ="TimeRelation"  />  
      <xs:element name="timeGreaterThanEqualTo"  type ="TimeRelation"  />  
    </ xs:choice > 
  </ xs:complexType > 
  <xs:complexType name="holdsAtType">  
    <xs:sequence > 
      <xs:element name="fluent"  type ="fluentType"  />  
      <xs:element name="timeVar"  type ="timeVariableType"  />  
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="initiatesType">  
    <xs:sequence > 
      <xs:choice > 
        <xs:element name="ic_term"  type ="icTermType"  />  
        <xs:element name="ir_term"  type ="irTermType"  />  
        <xs:element name="rc_term"  type ="rcTermType"  />  
        <xs:element name="as_term"  type ="asTermType"  />  
      </ xs:choice > 
      <xs:element name="fluent"  type ="fluentType"  />  
      <xs:element name="timeVar"  type ="timeVariableType"  />  
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="happensType">  
    <xs:sequence > 
      <xs:choice > 
        <xs:element name="ic_term"  type ="icTermType"  />  
        <xs:element name="ir_term"  type ="irTermType"  />  
        <xs:element name="rc_term"  type ="rcTermType"  />  
        <xs:element name="re_term"  type ="reTermType"  />  
        <xs:element name="as_term"  type ="asTermType"  />  
      </ xs:choice > 
      <xs:element name="timeVar"  type ="timeVariableType"  />  
      <xs:element name="fromTime"  type ="TimeExpression"  />  
      <xs:element name="toTime"  type ="TimeExpression"  />  
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="clippedType">  
    <xs:sequence > 
      <xs:element name="timeVar1"  type ="timeVariableType"  />  
      <xs:element name="fluent"  type ="fluentType"  />  
      <xs:element name="timeVar2"  type ="timeVariableType"  />  
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="declippedType">  
    <xs:sequence > 
      <xs:element name="timeVar1"  type ="timeVariableType"  />  
      <xs:element name="fluent"  type ="fluentType"  />  
      <xs:element name="timeVar2"  type ="timeVariableType"  />  
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="terminatesType">  
    <xs:sequence > 
      <xs:choice > 
        <xs:element name="ic_term"  type ="icTermType"  />  
        <xs:element name="ir_term"  type ="irTermType"  />  
        <xs:element name="rc_term"  type ="rcTermType"  />  
        <xs:element name="as_term"  type ="asTermType"  />  
      </ xs:choice > 
      <xs:element name="fluent"  type ="fluentType"  />  
      <xs:element name="timeVar"  type ="timeVariableType"  />  



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 46 of 51  

 

    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="fluentType">  
    <xs:choice > 
      <xs:sequence > 
        <xs:element name="target">  
          <xs:complexType > 
            <xs:sequence > 
              <xs:element name="variable"  type ="variableType"  />  
            </ xs:sequence > 
          </ xs:complexType > 
        </ xs:element > 
        <xs:element name="source">  
          <xs:complexType > 
            <xs:choice > 
              <xs:element name="variable"  type ="variableType"  />  
              <xs:element name="operationCall"  type ="operationCallType"  />  
            </ xs:choice > 
          </ xs:complexType > 
        </ xs:element > 
      </ xs:sequence > 
      <xs:sequence > 
        <xs:element maxOccurs ="unbounded"  name ="variable"  type ="variableType"  />  
      </ xs:sequence > 
    </ xs:choice > 
    <xs:attribute name="name"  type ="xs:string"  use ="required"  />  
  </ xs:complexType > 
  <xs:complexType name="quantificationType">  
    <xs:sequence > 
      <xs:element name="quantifier">  
        <xs:simpleType > 
          <xs:restriction base ="xs:string">  
            <xs:pattern value ="forall|existential"  />  
          </ xs:restriction > 
        </ xs:simpleType > 
      </ xs:element > 
      <xs:choice > 
        <xs:element name="regularVariable"  type ="variableType"  />  
        <xs:element name="timeVariable"  type ="timeVariableType"  />  
      </ xs:choice > 
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="icTermType">  
    <xs:sequence > 
      <xs:element name="operationName"  type ="xs:string"  />  
      <xs:element name="partnerName"  type ="xs:string"  />  
      <xs:element name="id"  type ="xs:string"  />  
      <xs:element minOccurs ="0"  maxOccurs ="unbounded"  name ="variable"  type ="variableType"  
/>  
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="irTermType">  
    <xs:sequence > 
      <xs:element name="operationName"  type ="xs:string"  />  
      <xs:element name="partnerName"  type ="xs:string"  />  
      <xs:element name="id"  type ="xs:string"  />  
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="rcTermType">  
    <xs:sequence > 
      <xs:element name="operationName"  type ="xs:string"  />  
      <xs:element name="partnerName"  type ="xs:string"  />  
      <xs:element name="id"  type ="xs:string"  />  
    </ xs:sequence > 
  </ xs:complexType > 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 47 of 51  

 

  <xs:complexType name="reTermType">  
    <xs:sequence > 
      <xs:element name="operationName"  type ="xs:string"  />  
      <xs:element name="partnerName"  type ="xs:string"  />  
      <xs:element name="id"  type ="xs:string"  />  
      <xs:element minOccurs ="0"  maxOccurs ="unbounded"  name ="variable"  type ="variableType"  
/>  
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="asTermType">  
    <xs:sequence > 
      <xs:element name="operationName"  type ="xs:string"  />  
      <xs:element name="id"  type ="xs:string"  />  
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="variableType">  
    <xs:sequence > 
      <xs:element name="varName"  type ="xs:string"  />  
      <xs:choice > 
        <xs:sequence > 
          <xs:element name="varType"  type ="xs:string"  />  
          <xs:choice minOccurs ="0">  
            <xs:element name="value"  type ="xs:string"  />  
            <xs:element name="objectValue">  
              <xs:complexType > 
                <xs:sequence > 
                  <xs:any />  
                </ xs:sequence > 
              </ xs:complexType > 
            </ xs:element > 
          </ xs:choice > 
        </ xs:sequence > 
        <xs:element name="array"  type ="arrayType"  />  
      </ xs:choice > 
    </ xs:sequence > 
    <xs:attribute default ="false"  name ="persistent"  type ="xs:boolean"  />  
    <xs:attribute default ="true"  name ="forMatching"  type ="xs:boolean"  />  
  </ xs:complexType > 
  <xs:complexType name="expresionType">  
    <xs:sequence > 
      <xs:element name="varName"  type ="xs:string"  />  
      <xs:choice > 
        <xs:sequence > 
          <xs:element name="varType"  type ="xs:string"  />  
          <xs:choice > 
            <xs:element name="value"  type ="xs:string"  />  
            <xs:element name="fields"  type ="fieldType"  />  
          </ xs:choice > 
        </ xs:sequence > 
        <xs:element name="array"  type ="arrayType"  />  
      </ xs:choice > 
    </ xs:sequence > 
    <xs:attribute default ="false"  name ="persistent"  type ="xs:boolean"  />  
    <xs:attribute default ="true"  name ="forMatching"  type ="xs:boolean"  />  
  </ xs:complexType > 
  <xs:complexType name="fieldType">  
    <xs:sequence > 
      <xs:element minOccurs ="1"  maxOccurs ="unbounded"  name ="field"  type ="xs:string"  />  
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="timeVariableType">  
    <xs:sequence > 
      <xs:element name="varName"  type ="xs:string"  />  
      <xs:element fixed ="TimeVariable"  name ="varType"  type ="xs:string"  />  
      <xs:element minOccurs ="0"  name ="value"  type ="xs:string"  />  



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 48 of 51  

 

    </ xs:sequence > 
  </ xs:complexType > 
  <xs:simpleType name="logicalOperatorType">  
    <xs:restriction base ="xs:string">  
      <xs:pattern value ="and|or"  />  
    </ xs:restriction > 
  </ xs:simpleType > 
  <xs:complexType name="TimeExpression">  
    <xs:sequence > 
      <xs:element name="time"  type ="timeVariableType"  />  
      <xs:sequence minOccurs ="0"  maxOccurs ="unbounded">  
        <xs:choice > 
          <xs:element name="plusTime"  type ="timeVariableType"  />  
          <xs:element name="minusTime"  type ="timeVariableType"  />  
          <xs:element name="plus"  type ="xs:decimal"  />  
          <xs:element name="minus"  type ="xs:decimal"  />  
        </ xs:choice > 
      </ xs:sequence > 
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="TimeRelation">  
    <xs:sequence > 
      <xs:element name="timeVar1"  type ="TimeExpression"  />  
      <xs:element name="timeVar2"  type ="TimeExpression"  />  
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="varRelationType">  
    <xs:sequence > 
      <xs:element name="operand1"  type ="operandType"  />  
      <xs:element name="operand2"  type ="operandType"  />  
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="relationalPredicateType">  
    <xs:sequence > 
      <xs:choice > 
        <xs:element name="equal"  type ="varRelationType"  />  
        <xs:element name="notEqualTo"  type ="varRelationType"  />  
        <xs:element name="lessThan"  type ="varRelationType"  />  
        <xs:element name="greaterThan"  type ="varRelationType"  />  
        <xs:element name="lessThanEqualTo"  type ="varRelationType"  />  
        <xs:element name="greaterThanEqualTo"  type ="varRelationType"  />  
      </ xs:choice > 
      <xs:element name="timeVar"  type ="timeVariableType"  />  
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="operandType">  
    <xs:choice > 
      <xs:element name="operationCall"  type ="operationCallType"  />  
      <xs:element name="expresion"  type ="expresionType"  />  
      <xs:element name="constant"  type ="constantType"  />  
    </ xs:choice > 
  </ xs:complexType > 
  <xs:complexType name="operationCallType">  
    <xs:sequence > 
      <xs:element name="name"  type ="xs:string"  />  
      <xs:element minOccurs ="0"  name ="partner"  type ="xs:string"  />  
      <xs:element minOccurs ="0"  maxOccurs ="unbounded"  name ="expresion"  
type ="expresionType"  />  
      <xs:element minOccurs ="0"  maxOccurs ="unbounded"  name ="operationCall"  
type ="operationCallType"  />  
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="constantType">  
    <xs:sequence > 
      <xs:element name="name"  type ="xs:string"  />  



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 49 of 51  

 

      <xs:element name="value"  type ="xs:string"  />  
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="arrayType">  
    <xs:sequence > 
      <xs:element name="type"  type ="xs:string"  />  
      <xs:element minOccurs ="0"  maxOccurs ="unbounded"  name ="value"  type ="arrayValueType"  
/>  
    </ xs:sequence > 
  </ xs:complexType > 
  <xs:complexType name="arrayValueType">  
    <xs:sequence > 
      <xs:element name="indexValue"  type ="xs:string"  />  
      <xs:element name="cellValue"  type ="xs:string"  />  
    </ xs:sequence > 
  </ xs:complexType > 

</ xs:schema > 

 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 50 of 51  

 

Appendix D. WSDL of the new API of the Monitor 
 <?xml version="1.0" encoding="UTF-8" ?>  

- <wsdl:definitions 

targetNamespace="http://localhost:8080/axis/services/analyzerService" 

xmlns:apachesoap="http://xml.apache.org/xml-soap" 

xmlns:impl="http://localhost:8080/axis/services/analyzerService" 

xmlns:intf="http://localhost:8080/axis/services/analyzerService" 

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" 

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

+ <!-- WSDL created by Apache Axis version: 1.4 
Built on Apr 22, 2006 (06:55:48 PDT)  

  -->  

+ <wsdl:message name="checkRuleResponse"> 

+ <wsdl:message name="recordEventResponse"> 

+ <wsdl:message name="setRulesResponse"> 

+ <wsdl:message name="initialiseDiagnoserResponse"> 

  <wsdl:message name="diagnoseRequest" />  

+ <wsdl:message name="recordEventRequest"> 

+ <wsdl:message name="setRulesRequest"> 

+ <wsdl:message name="checkRuleRequest"> 

+ <wsdl:message name="initialiseDiagnoserRequest"> 

+ <wsdl:message name="diagnoseResponse"> 

- <wsdl:portType name="NewDataAnalyzerEC"> 

+ <wsdl:operation name="setRules" parameterOrder="xmlRules"> 

+ <wsdl:operation name="initialiseDiagnoser" parameterOrder="xmlFailedTemplate"> 

+ <wsdl:operation name="diagnose"> 

+ <wsdl:operation name="recordEvent" parameterOrder="event"> 

+ <wsdl:operation name="checkRule" parameterOrder="formulaID"> 

  </wsdl:portType> 

+ <wsdl:binding name="analyzerServiceSoapBinding" type="impl:NewDataAnalyzerEC"> 

+ <wsdl:service name="NewDataAnalyzerECService"> 

  </wsdl:definitions> 



 
A4.D5.2 – 2nd Version of Diagnosis Prototype 

 

SERENITY - 027587 Version 1.1 Page 51 of 51  

 

References 

[1] Kloukinas C., Ballas C., Presenza D., Spanoudakis G. (2006): “Basic set of Information Collection 
Mechanisms for Run-Time S&D Monitoring”, Deliverable A4.D2.2, SERENITY Project, 
http://www.serenity-
forum.org/IMG/pdf/A4.D2.2_informationCollectionMechanism_v0.15_final_e.pdf.  

[2] Knight K. (1989): “Unification: a multidisciplinary survey”, ACM Computing Surveys, 21(1):93-124. 
Available from: http://www.isi.edu/natural-language/people/unification-knight.pdf 

[3] Mahbub K., Spanoudakis G., Kloukinas C. (2007): “V2 of dynamic validation prototype”. Deliverable 
A4.D3.3, SERENITY Project, Available from: http://www.serenity-forum.org/IMG/pdf/A4.D3.3_-
_V2_of_Dynamic_validation_Prototype.pdf. 

[4]  Shafer G. (1975): “A Mathematical Theory of Evidence”, Princeton University Press. 

[5] Shanahan, M. P. (1999): “The Event Calculus Explained”, In Artificial Intelligence Today, LNAI no. 
1600:409-430, Springer. 

[6] Spanoudakis G., Tsigkritis T. (2008): “1st Version of Diagnosis Prototype”. Deliverable A4.D5.1, 
SERENITY Project, Available from: http://www.serenity-
forum.org/IMG/pdf/A4.D5.1_first_version_of_diagnosis_prototype_v1.1_final.pdf 

[7] Tsigkritis T., Spanoudakis G. (2008): “Diagnosing Runtime Violations of Security and Dependability 
Properties”, Proceedings of 20th International Conference in Software Engineering and Knowledge 
Engineering, SA, USA 

[8] Tsigkritis T., Spanoudakis G. (2008): “A temporal abductive diagnosis process for runtime properties 
violations”, ECAI 2008 Workshop on Explanation Aware Computing 


