BE

(' , Information Society
Technoligies

— L - —
SeReNicY
System Engineering
for Security & Dependability

A4.D5.2 — 2" Version of Diagnosis Prototype

G. Spanoudakis, T. Tsigkritis, C. Kloukinas

Document Number A4.D5.2

Document Title 2" Version of Diagnosis Prototype
Version 11

Status Final

Work Package WP 4.5

Deliverable Type Prototype

Contractual Date of Delivery 30 June 2008

Actual Date of Delivery 12 August 2008

Responsible Unit CUL

Contributors

Keyword List

S&D violations diagnosis prototype

Dissemination level

PU




AEVERICY

A4.D5.2 — 2%Version of Diagnosis Prototype

N
Change History
Version Date Status Author (Unit) Description
0.1 15/07/2008| Draft T. Tsigkritis (CUL) First dtaf
0.2 09/08/2008| Draft G. Spanoudakis (CUL Editions
0.3 11/08/2008| Draft C. Kloukinas (CUL) Editing
1.0 12/08/2008| Final T. Tsigkritis (CUL) Editingrfoinal version
11 08/09/2008| Final T. Tsigkritis (CUL) Editingrfquality check
SERENITY - 027587 Version 1.1 Page 2 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype
AEVERITY

Executive Summary

This report is part of the deliverable A4.D5.2pttbvides a description of the second version of the
S&D violations diagnosis prototype that has beewettged in SERENITY as part of the A4
activity. The code that implements the 2nd versibmnhis prototype is also part of A4.D5.2. The
report describes the extensions of the first varsiothe S&D violations diagnosis prototype, which
has been implemented in version 2, and other amemni$nof the original prototype that were
implemented in the second version.

In summary, the new version of the diagnosis pypiet realises some modifications in the way in
which the belief in the genuineness of runtime &veésm assessed and an application programming
interface (API) that enables the retrieval of diasfic results from external clients of the tool and
in particular, the SERENITY runtime framework. Thew version of the diagnosis prototype
provides also a representation of the monitoring) diagnosis results according to a representation
schema that has been agreed with the A5, A6 analcfvities.

The main modification in the computation of beligfghe new version of the diagnosis prototype is
that when it computes the belief in the genuinergdsa runtime event that is involved in the
violation of an S&D monitoring rule, it takes insxcount not only the number of other runtime
events that are consequences of the possible etas of this event but also the belief in the
genuineness of the runtime events that match twssequences. Furthermore, it takes into account
beliefs in the genuineness of events that match ity preconditions that the identified
explanations have. The report provides the ratof@ the amendments in the event genuineness
belief estimation process and gives examples thaiothstrate the new approach. It also provides a
description of the API of the new version of thagtiosis prototype, and instructions for using
them.

SERENITY - 027587 Version 1.1 Page 3 of 51



> | I A4.D5.2 — 2*Version of Diagnosis Prototype
1]
Table of Contents
SR 11 o o 11T (o) o 5
2. Overview of the SERENITY diagNOSiS PrOCESS cceuee . iiviiieiiiiiieeeeiiiieeeeeii e e e e arieeaeeaeeeeens 6
3. Modifications in the ' Version of DIagNOSIS .............c.c.cevivieeeeeeseeeeeeeeee e en e, 8
3.1.  Overview of MOIfICALIONS ........uureiiii e 8
3.2.  Modifications in the computation of beliefsement genuineness .............cccooeeeeeeveees 8.
3.3.  Example of computation of genuineness beliefs............oiiiiiiiiiiiiiiiin e, 15
3.4. Schema for presentation of diagnosis reSults............ccooeevviiiiiiiiiiii e, 18
3.5, APITOr diagnosis 00N ......ccoiiiiiiiiiee et 26
4. Implementation and Usage GUIAE...........cceuuuiiiiiiiiiiii e e e e 28
4.1, RequIred SOMWAIE .......ooouiiii ettt e e e e e et e e e e e eennnes 28
4.2, InStallation INSLIUCHIONS ..o e e e e e e e e e e e e e e eeee s 28
4.3, USAQE INSITUCTIONS......ciiiieiiitiii e eeeeeeee e e ettt e e et e ettt e e e et e mam e e e e e e eeanan e e eeeas 28
4.3. 1. TRE MONITOT ...t s e e e e e e e e e e e e e e e e e e eeee e 28
4.3.2. The Monitoring Manager and Diagnosis Module.............cccooviieiiiiiiiiiiiinnneene 29
ST 7] o [od (U1 [0 o KPP P TP TRTPPP PP 36
Appendix A.  F'Version AIGOTtAMS .........couiiieee et e et 37
Appendix B.  Proofs of TNEOIEMS ...........uiiiiiiiiie e 40
Appendix C.  New Schema for Monitoring RESUIS .............cooevviiii i, 43
Appendix D.  WSDL of the new API of the MONITOr wee...veeiiiiiiiiii e 50

SERENITY - 027587 Version 1.1 Page 4 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype
AEVERITY

1. Introduction

This report is part of the SERENITY A4.D5.2 deligble and its purpose is to describe the
implementation of the 2nd version of the diagn@stotype of SERENITY (referred to shortly as
“diagnosis tool” in the following). In addition tthis report, A4.D5.2 includes the source code of
the 2% version of the diagnosis tool.

The second version of the diagnosis tool extendditkt version of the prototype by introducing a

new approach for assessing beliefs in the genusseokevents which are involved in violations of

S&D monitoring rules. The basic characteristic lné new approach is that, whilst assessing the
genuineness of events, it takes into considerataronly the number of the consequences of the
possible explanations of the relevant events whjgbear in the event log of the monitor but also
the genuineness of these events. The second ves§itime diagnosis tool also implements an

application programming interface for initiatingetdiagnosis capabilities of the tool and retrieving

the results of the diagnostic analysis performed.by

The rest of this report is structured as followsSkection 2, we give an overview of the diagnosis
process that was introduced originally in [6] irder to enable the reader understand the overall
context and the nature of the modifications intitlin the 2 version of the prototype. In Section
3, we discuss the modifications made in the newiwarof the diagnosis prototype, introduce an
application programming interface (API) giving ass¢o its functionality, and present the amended
version of the schema for reporting monitoring hesswhich enables the notification of diagnostic
results to clients of the SERENITY diagnosis framéw In Section 4, we provide installation and
usage instructions for the new version of the disghprototype. Finally, in Section 5, we provide
some concluding remarks. The report has also fpperdices. The first appendix (Appendix A)
includes the abductive and deductive reasoningrigthges presented in A4.D5.1 deliverable. The
second appendix (Appendix B) gives the proof f@& filnctional form of the new basic probability
assignment function for the calculation of basichability measures in the genuineness of events.
The third appendix (Appendix C) lists the new XS&hama for the presentation of monitoring
results along with diagnostic information. The fibuappendix (Appendix D) lists the WSDL of the
new application programming interface of the manitehich includes operations for initiating the
diagnosis capabilities of the tool and retrievihg tesults of the diagnostic analysis performed by
it.

SERENITY - 027587 Version 1.1 Page 5 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype
AEVERITY

2. Overview of the SERENITY diagnosis process

The overall process of diagnosing the causes of $8dhitoring rule violations has four main
stages, as were presented in [6]. As shown in Eiguthese stages are:

0 Explanation generation

0 Explanation effect identification

O Explanation plausibility assessment
0 Diagnosis generation

In the first of these stages (i.e., explanationegation), the diagnosis process generates all the
possible explanationsfor the individual events which have caused an S#&initoring rule
violation (aka “violation observations”). The pddsi explanations of violation observations are
generated fromassumptionghat have been given to the monitor regarding dperation of the
system that is being monitored using abductiveariag.

system
assumptions

Violation
observations

event log
final Diagnosis
diagnosis Generation (4)

Figure 1 — The SERENITY diagnosis process

/ v
] [ Explanat|on }

Effect

Explanation
Identification (2)

Generation (1)

A 4

Effects of
explanations

> Plausibility
Assessment (3)

explanation
beliefs

After generating explanations for the individuablation observations, the diagnosis process enters
its second stage, namely the stagexgilanation effect identificatiomhis stage is concerned with
the identification of all the possible consequenctshe explanations of the individual violation
observations if these explanations were valid. ¥hile generation of individual explanations from
the observation violations are generated by abdectieasoning, the effects of individual
explanations are derived by deduction using theraptions specified in S&D patterns.

SERENITY - 027587 Version 1.1 Page 6 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype
AEVERITY

Following the identification of the effects of imtlual explanations, the diagnosis process enters i
third stage. At this stage, the process assesediéihood of the validity of the individual even
explanations. To do so, the expected effects ofrttiwidual explanations are checked against the
event log of the SERENITY monitoring framework tod if there are events in the log that match
the expected effects. Every match that is foundvéen an expected effect and an event in the log
casts confirming evidence to the explanation assediwith the effect. On the other hand, the
absence of a matching event for an effect casfawdiaring evidence to the explanation. Based on
the confirming and disconfirming elements of evicenvhich are identified during this stage, the
diagnosis process estimates a belief and a pléitisibieasure for each individual explanation.

Finally, at the fourth stage of the diagnosis psscea.e., the stage afiagnosis generatignthe
diagnosis framework constructs alternative aggesjakplanations for the S&D rule violation from
the explanations of the individual violation obs®iens and computes beliefs in the validity of
these aggregate explanations. Using these beliefsramework also identifies the most plausible
aggregate explanation for the violation.

SERENITY - 027587 Version 1.1 Page 7 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype
AEVERITY

3. Modifications in the 2" Version of Diagnosis

3.1. Overview of modifications

The changes of the diagnosis process that have ipé®aluced in the second version of the
diagnosis prototype pertain to the generation esgssment of the validity of explanations. More
specifically, in the ? version of the prototype, the belief in the geemiess of a violation
observation is computed by taking into consideratit only the number of the confirming or
disconfirming evidence of its valid explanations,ia the i' version, but also the genuineness of
the gathered evidence itself. Note that the gatheredence that can confirm or disconfirm the
validity of an explanation of a violation obsereatj and therefore the genuineness of a violation
observation, consists of other recorded eventsdaatbe found in the event log of the monitor.
Thus, the basic characteristic of tH¥ gersion is that the belief in the genuinenessiofation
observations depends on the belief in the genusseng other recorded events that are correlated
with the violation observations.

3.2. Madifications in the computation of beliefs in evehgenuineness

As aforementioned, one of the main amendmentsitae¢ been made in thé®2ersion of the
diagnosis prototype is related to the computatibthe belief in the genuineness of events. In the
first version of the prototype, the computationtieé belief in event genuineness was based on the
identification of at least one explanation for theent which had additional expected consequences
matching with runtime events. This process had taain limitations: (1) it did not take into
account the genuineness of the runtime eventsrihathed with the expected consequences of the
explanations of the event of interest, and (2)idt bt take into account the genuineness of the
runtime events that matched with the preconditibhsny) of the explanations of the event of
interest. To demonstrate these cases, considextraple of Figure 2. The figure shows an extract
of an event log with three events, (e and g) which have occurred in the chronological order
indicated by their subscripts. Let us consider thatevent which is involved in the violation of an
S&D monitoring rule and whose genuineness neebls ssessed in this examplesis e

According to the process defined in [6], the comafion of the belief in the genuineness ofi®
based on first identifying the explanatidnas a possible explanation of the evahtig in fact the
only possible explanation o & this example), then identifying all the expect®nsequences that
® has in addition tog and finally counting how many of these conseqasmoatch with runtime
events in the event log. In this examplehas only one more consequence matching with taetev
e in the log. Thus, according to the belief compataprocess that was introduced in A4.D5.1, the
belief in the validity of® would be 1 (i.e., the ratio of the consequence® dghat match with
runtime events) and, therefore, the belief in tbeujneness ofsavould also be 1.

SERENITY - 027587 Version 1.1 Page 8 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype
AEVERITY

Event Log: e e, | - e;3

entails entails entails

Figure 2 - Events and explanations

The first limitation of the above assessment schiantkat it does not consider the genuineness of
the event ¢ If e;is the result of a fault or an attack, then thelence that it casts for the validity of
® and, consequently, the genuineness; eheuld be disregarded. Furthermabeis an explanation

of the event gbut can logically entail it only if the event i the event log is also genuine. The
abductive reasoning process that thé version of the diagnosis prototype uses to geeerat
explanations would have identified the evenaig an event that is required for the entailmerg; of
by ®. However, the computation of the belief in the jaaness of £did not attempt to estimate
the belief in the genuineness efaand take it into account.

To overcome the above these limitations, tHfev@rsion of the diagnosis prototype uses a differen
function for the computation of the belief in thengineness of an event. This function also enables
the configuration of the computation of event geeuess beliefs by the use of an additional
parameter. This parameter is called “diagnosis awidand is used to restrict the part of the event
log that can be used during the assessment ofaheimeness of a given event. In particular, the
diagnosis window is defined as a period of time Wd avhen it is used, only events that have
occurred up to W time units prior to the event whgenuineness is assessed can by taken into
account in the assessment of this genuinenessprirhary role of this parameter is to limit the cost
of the computational process required for estinggtiite event genuineness beliefs.

Given the above considerations, the genuineneas efent has been re-defined as follows:

Definition 1: The genuineness of an eventithin a diagnosis timewindow [, Tmad and given
a set of explanations,Ehat may have already been generated is defined as

GenUine(E[Tmin,TmaX]a Eo) = {EXP % D} D
{Ew. EvOEVeNtLog [Tuin, Tmad) L] mgu(E,Ew) 20 O (¢ B<ty< tVB) O

[, wiozexe: Valid(®[Trmin Tmads EdC{ i1}
where,

0 EXPis the set of the alternative explanations thatlmgenerated for the event Ee.,EXR
= {( @1, @), ..., @n, @\O)}, with the explanations which are already inr&moved, .e.:
EXP = EXR- E,.

O EventLog[Tin, Tmay IS @ subset of the events in the log of the momitioich includes only
events which have occurred in the time ranggn[Tmax

SERENITY - 027587 Version 1.1 Page 9 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype
AEVERITY

O mgu(E,Ey)is the function that returns the most general anibif two atomic formulas;E&nd
Ew [2]

O B and {“® are the lower and upper boundary of the time rawghin which E has
occurred

O Valid(®},[Tmin, Tmad,Eo/f @;}) denotes that the explanatidy) is valid within the diagnosis
range [Tin, Tmay and is formally defined as

Valid(®;, [Tmin, Tmads Eo0{®i}) = Ueyaconditions (i, rmin, Tmax))
Genuine(&, [Tmin, Tmad, EOD{(Dij})} O

{DEWDConsequences(jj, [Tmin, Tmax])
Genuine(& [Tmin, Tmax, EOD{(Dij})})

O Conditions(E @;,[Tmin, Tmay) is the set of recorded events that are precomditio the
deductive path fron®; to E;, and have occurred within the diagnosis raifge, Tmad. This
set is defined as:

Conditions(E P, [ Tmin, Tmax]) = {Ew | ExOEveNntLog[Tin, Tmad [

[k,f.(fODeductivePatt;,E)) LI (cOBody(f)) [
mgu(c,E) z0 }2

O Consequences(;,[Tmin, Tmay) iS the set of the expected consequences of tharetpn
@; that have occurred within the diagnosis rafiggn, Tma . This set is defined as:

Consequences(Bi,[Tmin, Tmad) ={Ex| & O CD”-C L] E.OEventLog[Tin Tmad }

According to the above definition, an evéithat has occurred or is expected to occur at tjinse
genuine, given a diagnosis rang@kl Tmay, if

O It exists in the part of the event log of the monitg framework that falls within the
diagnosis range, and

O There is at least one valid explanati®nof it, i.e., an explanatio®; for which: (i) all the
preconditions in the deductive path frebj to E match with genuine runtime events that
have occurred before; Bnd within the diagnosis rangen{d, Tmad, and (ii) at least one of
the expected consequencesdnf which fall into the diagnosis rangefil, Tmay (if any)
matches with another genuine runtime event thabhesrred within the same period.

The above definition of genuineness is recursitvshbuld also be noted that in Definition 1, the
time period over which the genuineness of an exemssessed is defined by the absolute time range
[Tmin Tmad- This range is determined by the length of thegdosis window W that is required in a
particular monitoring setting and the timestamghef original event Ewhose genuineness is to be

!t and {*® are both equal to the timestampftE; if E;is an evenin the log of the monitor.

2 The setConditions(Eigij,[Tmin,Tmax]) is determined during the abductive reasoning m®dhat

determines the explanatidp; (see step 20 in tHexplainalgorithm in Appendix A).

SERENITY - 027587 Version 1.1 Page 10 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype
AEVERITY

assessed using the formuldg;ax = ti + W/2 and Tnin = ti — W/2 Furthermore, since during the
recursive assessment of event genuineness thergdassibility of reaching an event having an
explanation which has already been taken into atdctar another event, Definition 1 excludes
from the possible explanations of a given eventaiy explanations which might have been
generated earlier in the assessment process (sdg)sén the example shown in Figure 2, for
instance, the assessment of the genuineness advir@ g will require the assessment of the
genuineness of the event@nce the latter event is an expected consequahite explanatiord

of e;. When assessing the genuineness;pthe explanatior®p should not be taken into account
despite being an explanation af since® is the explanation which led to the assessmemt of
the whole process. In this case, only the secomtbeation of ¢ i.e., ®’, should be taken into
account according to Definition 1. It should, howevbe appreciated that for the initial events
which are involved in the violations of S&D moniitay rules, the setHs empty, hence setting no
initial restrictions as to the explanations thatyrba taken into account in the assessment of event
genuineness.

Based on the above definition of event genuinentss,basic probability assignméno it is
defined as follows:

Definition 2: The basic probability assignment to the genuissmd an event;Ewithin a diagnosis
range [Tin, Tmay, given a set of explanations, Ehat may have already been generated, is defined
as:

meN(Genuine(E [Tmin, Tmad, Eo)) = m-Om™ (InLog(E) LI Explainable(E [Tmin, Tmad, Eo))

meN (= Genuine(E[Tmin, Tmal, Eo)) = M-Om™ (=InLog(E) L1- Explainable(E [Tmin, Tmads Eo))
where

O m*-/m™ denotes the combination of the basic probabilitsigienents rh; and nt™,
according to the DS theory [3]

O Explainable(E [Tminn Tmad, Eo) iS a proposition, which denotes whether IE
explainable and is defined as:

Explainable(E [Tmin, Tmads Eo) = Llaij, aijoynexpValid(®y, [ Tmin, Tmad, EsO{ Pii})

where
0 EXP=EXR-E, if EXP; — E,2 0
EXP = {ExuLL} if EXP; — E,=0O

According to Definition 2, the basic probabilitysignmentm®" in the genuineness of an evéhis
defined as a combination of two other distinct bgsbbability assignments, namely the assignment
m'; which computes the basic probability of the existenr potential existence of the ev&in

the event log of the monitoring framework, and #ssignmenim™ which computes the basic

Basic probability assignments have a special nmgaim the context of the Dempster Shafer theory of
evidence DS theory which underpins the diagnosis framework of SERENIANn overview of this
theory and its axiomatic foundation has been pexbith [6] and is not repeated in this report. A ful
description of DS theory is also available in [4].

SERENITY - 027587 Version 1.1 Page 11 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype
AEVERITY

probability of the existence of a valid explanatitor E (i.e., an explanation with genuine
consequences and preconditions).

It should be noted that the definition of°™ allows the assignment of a basic probability of
genuineness to events that have no explanatioe sirecpropositiofexplainable(E [Tmin, Tmad) IS
defined as a disjunction over the validity of adisgible explanations that can be generated by the
abductive reasoning process in [6] (i.e., the engti@ns which are members of the set EXP) and a
special explanation calleaull explanationthat is denoted byng.. in the abovealefinition.This is
because an eveht that has no explanations of its own should stilabé to cast some evidence for
another evenE; as either a precondition or a consequence of orntbeoéxplanations d;. Thus,

the assignment of a zero basic probability to tk@anability of E; in such cases would result in
zero basic probability for its genuineness and)d;aerefore, reduce or even make equal to zero
the basic probability in the genuinenes€p(the latter effect would happenkf is a precondition

of the only explanation thd; may have). Note also that during the assessmegegs an event
may end up having no explanations because its aypaations may have been already considered
as explanations of previous events in the reasquatly. The probability that is assigned to events
with no explanations is discussed below followihg introduction of the basic probabilitg™.
Also the formula that results from the combinatisrihe basic probability assignmem andm™

is established by Theorem 1 below, following therfal definitions of these assignments which are
given next.

Definition 3: The basic probability assignmemt”™ in the existence of a valid explanation for an
eventE; is defined as:

m=*(Explainable(E [Tmin, Tmad, Eo)) = 1 if E = Rww

m=*(Explainable(E [Tmin, Tmad, Eo)) = a1 if Ei = GuuLL

m=*(Explainable(E [Tmin, Tmad, Eo)) = 02 if Ei # PauL, B # Cauwe, and
EXP = {ExuLL}

mEx(Explainable(E [Tmin, Tmaﬂ’ Eo)) =
Z I0 EXP and #0 ('1)“|+1{ |_| EthtondS(Ei,l)mG’\l(G‘enUine(EH [Tmin Tmaxl, EolI1)) X

{ZSDConseq (Ei,l) and&J ('1)|S|+]{ |_| EwOS mGN(GenUine(E% [Tmin, Tma>;|1 E0D|))}}
where
0 EXPis the explanation set of that has been defined in Definition 2

O  Conds(E @;,[Tmin Tma]) is a set that includes the preconditions in theudtde path from an
explanation; to the eveng; or a special elememyy., calledNULL preconditionwhich
denotes the absence of any precondition in the adis@upath.Conds(E @;,[Tmin, Tma{) IS
defined as:

Conds(E @;,[Tmin, Tmad) = {PnuLl} if Conditions(E @;,[Tmin, Tmay) = U
COI’]dS(E a’ljv[Tmin1Tma>J) = COﬂditiOﬂS(E, d)ljl [Tmin,Tma>;|) if COﬂditiOI’]S(E d)lja[Tmianmaﬂ) #z 0

0 Conseq(E®;, [Tmin, Tmad) is the set of the recorded events which are camsexgs of the
explanation®d; of E; and have occurred within the diagnosis ranggn[TTmay. If no such
events exist, the@onseq (E®@;,[Tmin, Tmay) cONtains a single special evey.,, callednull

SERENITY - 027587 Version 1.1 Page 12 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype
AEVERITY

consequencewhich denotes the absence of any consequenck; o the relevant time
period. The se€ons (E @, [Tmin, Tmad) Is defined as:

COI’]S(E, d)lja [Tmin;Tmag) = {CNULL} if ExconS(Ed)lja[Tmin;Tmag) =0
Cons(E @, [Tmin Tmad) = EXCons(E @;,[Tmin, Tmay) if EXCons(E @;,[Tmin, Tmad) # 0

The basic probability assignmemt”; is used to calculate the basic probability ofekistence of at
least one explanation with genuine precondition$ genuine consequences for the ev&niThe
definition of m™is recursive as it is based on the basic probgkissignment functions®", of all

the eventss, which are preconditions of the different explanasiof E; or consequences of these
explanations. It should be noted, however, thatgfeition of M= relaxes the logical definition of
explanation validity. In particular, whilst the liegl definition of event genuineness requires the
event to have at least one valid explanation fimggenuinem™ assigns a small probability to the
explainability of events even if they have no explidon. This is because, as we discussed earlier,
an event; with no explanations may be a precondition of thiy @xplanation of another evek
and if this is the case, the assignment of a zasichprobability to its explainability would also
reduce to zero the basic probability in the gemuss ofE. The probability that is assigned to
events with no explanations Iy is determined by the parameter The value of this parameter
should be set very close to zero, in order to pl®wa close approximation of the logical definition
of explainability (see Definition 1) in cases whareevent does not have any explanation.

It should also be noted that™ assigns pre-determined basic probability meastwesull
preconditions and consequences. These measurésadei;, respectively. The former assignment
reflects the fact when a NULL precondition dendtest an explanation has no preconditions and
therefore its validity should not be affected by tbriterion of precondition genuineness. The
assignment of a basic probability measure thagisgktoa; to a NULL consequence reflects a
different consideration. More specifically, whitee reasoning principle underpinning the diagnosis
framework of SERENITY favours explanations whicte aonfirmed by the fact that they have
genuine consequences other than the events tlyah#ive been generated for, it would be unfair to
disregard entirely explanations which have no otfueh consequences. Cases of such explanations
are more likely to arise given that in the new imrsof the diagnosis framework, the diagnosis
range is restricted and, therefore, it may be ptessp end up with explanations with no further
consequences, merely because these consequen@spond to events outside the given diagnosis
range. Thus, it is important to assign some basubability measure in the validity of such
explanations but at the same time keep this medswrio reflect the absence of consequences. The
framework introduces the parameter to define the probability measure that should beduin
such cases and leaves the choice of the valuesopainameter to the user of the framework with an
expectation that this value will be a small numtlese to zero to ensure that explanations with no
consequences cannot affect significantly the keliethe genuineness of events. Howeugmust

be greater thao, to ensure that explanations with no consequentest anore the beliefs in the
genuineness of events than null explanations do.

The basic probability assignment that is used in the definition ai®Vis itself defined as follows:

Definition 4: m"is the basic probability assignment in the existeoc potential existence of an
event Ein the event log of the monitoring framework, defi as:

m'“(InLog(E)) = 1 if E O EventlLog or
EiisaHoldsAt By or Gy predicate

SERENITY - 027587 Version 1.1 Page 13 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype
AEVERITY

m'“ (-~ InLog(E)) = 1 if E O EventlLog,
E isnot aHoldsAt Pyu. or GuuiL
predicate, and
lastTimestamp(captor(p > t"®
m'“(InLog(E) O-InLog(E)) = 1 if E O EventLog,
E isnot aHoldsAt Pyu. or GuuiL
predicate, and
lastTimestamp(captor(f < t;”®

The functionm'™ assigns a basic probability of 1 boLog(E) for any eventE; that has been
recorded in the log or denotes a null precondiffya,. ) or a null consequenc€yu.L). This basic
probability reflects the complete certainty abdwé existence of the event in the log (note that, by
virtue of the axiomatic foundation of the DS thedhe basic probability assigned-ionLog(E) is

in this case zero)m" assigns also a basic probability measure of Untog(Gyu) and
InLog(PvuLL) as these are special events denoting the abséreseplanation consequences and
preconditions for particular explanations and whiexy are established by the reasoning processes
of the diagnosis framework they can be assumee t@ays trué

m't assigns a basic probability of 14dnLog(E) for any eveng; (other tharPyy. or Cyury) that
has not been recorded in the log wheh is invoked and, at the time of the invocation, the
timestamp of the latest event which has been gty the captor that is expected to prodice
and recorded in the log (i.dgstTimestamp(captor(p) is greater than or equal to the maximum
time boundary until wherE; should have occurred (i.e;”®). If, however, at the time of the
invocation ofm", the event in questiorE{) is not in the log and the timestamp of the la@ant
that has been received from the captor that is@&geto producé; is less thar;°®, m'" assigns a
basic probability of 1 ténLog(E) /7~ InLog(E) and, as a consequence of the axiomatic foundation
of the DS theory, a basic probability of 0 to eathnLog(E) and ~InLog(E). The assignment of
basic probabilities, in the latter case repres#r@ssomplete uncertainty about the occurrence or no
of E; within the time period that it is expected to agc@s we have discussed in [7][8].

Given the logical definitions om®™, m", andmf the basic probability measures wf"; are
computed according to the following theorem:

Theorem 1: The basic probability assignments to the genuiseimé events are calculated by the
formulas:

mNGenuine(E [Tmin Tmad, Eo)) = m"(InLog(E)) x m=(Explainable(& [Tmin, Tmad, Eo))
m®N(=Genuine(E [Tmin Tmad: Eo)) =
m*(=InLog(E)) + mF*(= Explainable(E [Tmin Tmad, Eo)) —
(m*(=1InLog(E)) x m~(~Explainable(E [Tmin Tmad, Eo))

The functional form ofm®Nis derived from the definitions af®N, m", andm* andthe axiomatic
foundation of the DS theory, as we prove in Apperili

* The need to provide am"- basic probability measure of such events may atise to the recursive

definition of mF*in terms ofm®N andm'.

SERENITY - 027587 Version 1.1 Page 14 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype
AEVERITY

3.3. Example of computation of genuineness beliefs

In the following, we give an example of the compiota of the belief in event genuineness based on
the basic probability assignments®™, m", and m™. Our example is based on the diagnosis
example that was used in [6] in order to enableracd comparison with the belief measures
generated by the first version of the diagnosidgtype for the example. This example is related to
an air traffic management system (ATMS) that uséerdnt radars to monitor the trajectories of
airplanes in different air spaces. The operatidn8TMS may be monitored at runtime to ensure
the integrity of its components and the informatgemerated by them. One of the rules monitored
for ATMS checks the integrity of the informatioraths provided by the different radars that cover
an airspace. More specifically, the rule statesith@ne of the radars used by the ATMS first sends
a signal indicating that an airplane is in a patéc airspace, every other radar that covers theesa
space should also send a signal indicating theepoesof the plane in the given space within a
certain time period of time after the receipt oé timitial signal. This rule is specified in the
monitoring language of the SERENITY monitoring franwork as follows:

Rul e 1:
Happens(signal(_rl, al, s1),t1,R(t1,t1) O Hol dsAt (covers( _rl1, s1),tl) O
(O0_r2) (_r2 #_rl) O Hol dsAt (covers(_r2,_sl), t1) =

Happens(signal(_r2,_al, sl), t2 ,R(t1+1, t1+5))

In the same example, let us also assume that:

O The following assumptions are valid for ATMS.

(AO) Initiates(_el, f),t1,R(t1,t1)) 0 -0 e2,t2:
Ter m nat es(_e2, f),t2,R(t1,t2)) = Hol dsAt (_f,t2)

(Al) Initially(f) 0O-0Oe2t2: Term nates( e2, f),t1,R(0,t2) =
Hol dsAt (_f,t2)

(A2) Happens(inspace(_a,_s),t1,R(t1,t1)) O Hol dsAt (covers(_r,_s),t1) =
Happens(signal(_r,_a,_s),t2, R(t1,t1+5))

(A3) Happens(inspace(_a,_s),t1, R(t1,t1)) =
Happens (permissionRequest(_a,_s), t2, R(t1-20,t1-1))

(A4) Happens(inspace(_a,_s),t1,R(t1,t1)) =
I ni tiates(inspace(_a,_s), inairspace(_a,_s),t1)

(A5) Initiates(inspace(_a,_s), inairspace(_a,_s),t1) ad
Hol dsAt (landing_airspace_for(_s,_airportX),t1) =

Happens(landingRequest(_a, _airportX), t2, R(t1-10,t1))

(A6) Happens(changeOfLandingApproach(_airportX,_s),t1,R(t1,t1)) =
I ni ti at es(changeOfLandingApproach(_airportX,_s),
landing_airspace_for(_s,_airportX),t1)

O The following events have been recorded in theofdpe monitor:

(E1) Initially(covers(R1,51),0) [captor-0]
(E2) Initially(covers(R2,S1),0) [captor-0]
(E3) Happens(changeOfLandingApproach(AR-a,S2),0,R(0,0)) [captor -AR-a]
(E4) Happens(signal(R2,A2,S2),1, R(1,1)) [captor-R2]

SERENITY - 027587 Version 1.1 Page 15 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype

AEVERICY

[N
(E5) Happens(changeOfLandingApproach(AR-a,S1),2,R(2,2)) [captor -AR-a]
(E6) Happens(permissionRequest(Al,S1),3,R(3,3)) [captor-0]
(E7) Happens(signal(R1,A1,S1),7,R(7,7)) [captor-R1]
(E8) Happens(signal(R2,A5,S1),13,R(13,13)) [captor-R2]

Given the above event Ilog, Rule-1 would be violated when the event
E7:Happens(signal(R1,A1,S1),7,R(7,@)yives at the monitor. This is because at thimtpadhe
monitor can deduce that the time of the clock @& #@vent captocaptor-R1is at least 7 and,
therefore, it has not received a signal from r&eiarto notify the presence of the aircraft Al in S1
within the period from t=2 to t=6 or, equivalentlythe negated predicate
- Happens(signal(R2,A2,S2),t, R(2,6%) true. The expectation for receiving such a signal is
established by Rule-1 following the receipt of #wentE4:Happens(signal(R2,A2,S2),1, R(1,h))
the logwhich can be unified with Rule-1. At the point whitre violation of Rule-1 is confirmed,
the eventE4 is identified as being involved in an S&D rule ftion and the diagnosis process for
computing a belief in its genuineness can stare Tf@sults of this process are described below
assuming that the diagnosis range is determingtidoyime boundaries.J,=0 and Fa=7. Tmax in
this case is the timestamp of the evEftthat triggered the detection of the violation anhgh is
determined by the parameter W which in this instas@ssumed to take the value 7.

The set of possible explanations that can be derive E4:Happens(signal(R2,A2,S2),1, R(1,1))
includes the predicate9:Happens(inspace(A1,S1),t1,R(2, Thiat is:

Peq, = {E9}

This explanation is generated by an amended impi&atien of theExplain algorithm in [6] using
the assumption (A2) and the preconditions that rbasmet for the explanation to be valid include
the predicatéi1:HoldsAt(covers(R1,S1),t19r t1 taking values in the time range R(2,7). Thus,

Conditions(E4,@41,[0,7]) = { H1/t1/]2,7]} and
Conds(E4,@:4,(0,7]) ={ H1/t12,7]}

Also, the set of the expected consequences of thexplaretion
E9:Happens(inspace(Al,S1),t1,R(2,7)) includes the atomic formulas
E10:Happens(landingRequest(Al,AR-a), t2, R(Ca®)d E11:Happens(permissionRequest(Al,S1),
t2, R(0,7)) Thus:

g4 1~ = Conseq(E4Pe4 1,[0,7]) = {E10, E11}

The atomic formuld&10is derived from the explanatid®:Happens(inspace(A1,S1),t1,R(2 &0
the assumptions (A4) and (A5), whilst the atomicrnfola E11 is derived from
E9:Happens(inspace(A1,S1),t1,R(2and the assumption (A3).

Thus, the computation of the basic probability inhet genuineness of
E4:Happens(signal(R2,A2,S52),1, R(1 M)l be based on the formula:

m®N(Genuine(E4, [0, 7)) =
m'-(InLog(E4) x m=(Explainable(g, [0, 7],0)) =

m'" (InLog(E4) x Z{(¢E4,1- PE4, 1} { [ EulConds(E4,1) m>(Genuine(E, [0, 7], {Pes ) X

{ZSDConseq (E4PE4,1[0,7]) and S0 {1 ewos m*NGenuine (&, [0, 7], {Pea)) }}} =

SERENITY - 027587 Version 1.1 Page 16 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype

AEVERICY

1 x { m®N(GenuineH1/t1/72,7]), [0, 7], {Peas}) x
{ Xsewease

{1 &wes m™(Genuine(&, [0, 71, @) }} =
1x m*N(Genuined1/t1/]2,7], [0, 7], {Pes 1)) ¥
{m®N(GenuineE10)[0,7].{®e4 1)) +
n*N(GenuineE11)[0,7].{®es 1)) -
n*N(GenuineE10)[0,7] {®e4 1)) X
n*N(GenuineE11)[0,7]{®e4 1))}

The individual basic probability measures in thexabformula can then be computed as follows:

O Form®MGenuine(H1/t1]2,7], [0, 7], { @4.1})) We have:
mN(GenuineH1/t1]2,7], [0, 7], {®Pes ) =
m'-(InLog(H1/t1]2,7])) x
m=(ExplainableH1/t1/12,7], [0, 7], {Pes ) =
1 x m=(ExplainableH1/t1/02,7], [0, 7], {®e4.1}))
H1:HoldsAt(covers(R1,S1),t4}1/[2,7] has the conjunction
Initially(covers(R1,S1),0)/-/7 e,t1:Terminates(_e,covers(R1,S1)),t1,R(0,7))

as its single explanation (this explanation isagated by the assumption (Al) and this
explanation has no preconditions and further cqursieces. Thus,

X (ExplainableH1/t1/7]2,7], [0, 7], {®Pes 1)) =
m®N(Genuine(RuLL)) x m*"(Genuine(GuL)) =
(" (InLog(PyurL)) x m™(Explainable(RutL))) x
(" (InLog(Cuu)) x m™(Explainable(Rutr))) =
Ax1)x(Axay) =0ay
Thus, ntN(GenuineH1/t1/]2,7], [0, 7])) =01 (1)

O Form®™(Genuine(E10,[0,7]{ @41})) we have:
m®N(GenuineE10,[0,7],{Pes ) =
m*(InLog(Happens(E10,[0,7) x
m*(ExplainableE10,[0,7], { P4 1}))

Since, however, there is no event in the log matekie formula
E10:Happens(landingRequest(A1,AR-a), t2, R(OrB¥XInLog(E10,[0,7]) will be equal to
zero and, consequently N{GenuineE10,[0,7],{®es 1)) =0  (I)

SERENITY - 027587 Version 1.1 Page 17 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype

AEVERICY

0 Form®™Genuine(E110,7], {®e4.1})) we have:
mN(GenuineE11[0,7], {Pes 1)) =
m*(InLog(E11[0,7])) X
m™(ExplainableE11,[0,7], {®es.1))

In this case, the evelt6:Happens(permissionRequest(Al1,S1),3,R(3B)he log matches
El11:Happens(permissionRequest(Al,S1),t2,R(@M)) thus:

m'*(InLog(E11[0,7])) = 1

Note, however, that Ell:Happens(permissionRequest(Al,S1),t2,R(0hg3 no other
explanation than the explanati@®:Happens(inspace(A1,S1),t1,R(2,#9m which it was
identified as an expected consequence. Thus, thef #8 possible explanations will include
only the NULL explanation f, . and, therefore, by virtue of Definition 2,

m=*(ExplainableE11[0,7], {Pe4 1)) = a>.
Thus, nfN(Genuine(HappenBL1[0,7],{®es})) = a2 (Il

Given (1), (1) and (11),
m®N(Genuine(E4, [0, 7], Pes ) = 1 x 1% a3

3.4. Schema for presentation of diagnosis results

Following the introduction of diagnostic and thredtection capabilities in the SERENITY
monitoring framework, it has become necessary ttatgpthe XML schema for reporting the results
of the monitoring process to the clients of the iavimg framework so as to include diagnostic and
threat related information.

SERENITY - 027587 Version 1.1 Page 18 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype
AEVERITY

@D resultsdescType

s [E] datatypes: anyURI

€D resultsType
€D formulaType

1 [E] quantification : quantificationType
.-EE '-E e body : bodyHeadType
head : bodyHeadType

formulald : string

[E] resultsdesc: resultsdescType z

[E] results : resultsType type  : string
'E 1 [E] formula : formulaType

forChecking : boolean
instanceld: string

status : string

New attributes representing the 1 minThreatLikelihood: double
belief and plausibility threat for the :

Rule IhStance' used only in threat I maxThreatLikelihood: double
detection results 1

Figure 3 - Additions toresultType in the new schema for monitoring results

The original schema that the monitoring framewoskdiin order to return its results back to the
SRF was the same as the schema used for spedhgnmonitoring rules. The upper level part of
this schema is shown in Figure 3. As shown in igeré, the schema enables the recording of
information about rule instances which are creddldwing the unification of rules with specific
events during the monitoring process.

In particular, a rule instance is described by élementformulain the schema which is of type
formulaType The basic monitoring result that was returnediéssions 1 and 2 of the monitoring
framework was recorded as the value of the atwilstatusof the elemenformula This value
could be one of the following:

O Satisfied This value indicates that the particular rulganse is satisfied.

[ Inconsistency  WRT_Recorded_Behaviotlihis value indicates that the particular rule
instance has been violated by runtime events amy (ithout taking into consideration
any events which are derived by assumptions)

O Inconsistency WRT_Expected_Behaviolihis value indicates that the particular rule
instance has been violated by runtime and derivedts.

O No_Decision: This value indicates that no decision can be made rggarding the
satisfiability of the particular rule instance.

Following the incorporation of diagnostic and threletection capabilities into the SERENITY

monitoring framework, in addition to the above imf@tion, the monitoring results should return
the minimum and maximum threat likelihood measumesrule instances in all cases where the
S&D rules are monitored with activated diagnosid/anthreat detection capabilities. To enable the

SERENITY - 027587 Version 1.1 Page 19 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype
-..'ll'lll'H-l'r

recording of this information, the original scheinas been extended by two attributes, namely
minThreatLikelihood and maxThreatLikelihood These attributes represent the belief and
plausibility of a potential violation of the rulagtance, respectively, as shown in Figure 3.

Furthermore, the diagnosis and threat analysiswtam be carried out by the extended monitoring
framework of SERENITY, generate belief and plaugibimeasures for the genuineness of the
individual events that have been unified with spegredicates in a rule instance and belief and
plausibility measures for the possibility of ocance of events that could be unified with such
predicates in the future. To record these measanmdsenable their return back to the clients of the
monitoring framework, the results schema of the iworhas been extended by adding two new
attributes to the typpredicateTypewhich is used in the schema to represent thetgvbhat have
been unified or could be unified with the rule.

The new attributes (see Figure 4) are caffedThreatLikelihoocdandmaxThreatLikelihoo&nd are
used to record the belief and plausibility of tregineness of the event unified with the predicate
in the case of diagnostic results. In the casdwafat detection results, these attributes are tesed
record the belief and plausibility of the genuinenef events that have already been unified with
the particular predicate in the rule instance erliblief and plausibility of a potential occurrerate

an event that could be unified with the particydezdicate in the rule instance if no such event has
occurred yet, respectively. To represent diagnasfiermation, we have also extended the type
predicateTypein the results schema with one more Boolean atgibcalledconfirmed This
attribute represents whether, given the belief pladisibility measures calculated for a particular
event that has been unified with the predicatéénrule, it is possible to treat the event as aigen
event. The value of this attribute is sefliwe in cases where the belief in the genuineness of an
event exceeds the belief in the non genuinenessit,ofie., when Bel(Genuine(E)) >
Bel(-=Genuine(E)) as we discuss in [6].

SERENITY - 027587 Version 1.1 Page 20 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype
AEVERITY

[E] happens: happensType
[E] initiates : initiatesType
[E] holdsat : holdsAtType
O-I_E [E] initially : holdsAtType
[E] terminates: terminatesType

[E] clipped : clippedType

Fae
:.@ DrEdiEatET"j[E’}j [E] declipped : declippedType

negated : boolean
unconsktrained : boolean

recordable: boolean

1. New attribute indicating whether the

1
: confirmed : boolean :event_ urnﬂed with the_ predlcate is
: , genuine; used only in diagnosis

SISISIIDIoIIDIoIoDIDIoIoor results
minLikelihood : double | ] )

1 New attribures representing the

1 predicate belief range; used both

! for diagnostic and threat detection
matlLikelihood : double ! resultsg

Figure 4 - Additions to predicateType in the new schema of monitoring results

The full new XSD result schema is given in Appen@ixand the new elements in it have been
highlighted.

Table 1 presents an example of monitoring reselisesented according to the new XML schema.
The example presents a violation of Rule-1. As vgeu$sed earlier, this rule specifies an integrity
condition about théir Trafic Control Management Systems (ATM&ting that when the ATMS
gets an signal event from a radar that covers eifgpairspace (signified by the variabledariD1

in the rule) that an airplanaifplanelD1) is in a particular airspacaifspacelD) at some time
point t, it should also get a signal event from atlger radar radarlD2) that covers the same
airspace within 5 time units. The XML results do@amnthat is listed in Table 1 shows the violation
caused by an instantiation of this rule where #arr1001 has sent a signal indicating that the
airplaneBA.1001.1001s in the airspac&lRW.2002.200at the time point 1000001 but the radar
r1002 which covers the same airspace did not send dasisignal in the time range from 1000001
to 1005001 as required by the rule.

SERENITY - 027587 Version 1.1 Page 21 of 51



) A4.D5.2 — 2°Version of Diagnosis Prototype
AEVERITY

The results file also includes the minimum and nmmaxn likelihood measures that have been
calculated by the diagnosis tool of SERENITY foe thenuineness of the two signal events which
have caused the violation. In particular the mimmand maximum likelihood measure for

eventID1(i.e. the event representing the signatamfarl) are recorded as 0.7 and 0.9, respectively.

Also, the minimum and maximum likelihood measure tfte absence of an event representing a

signal that should have been sent froaaar2 which covers the same airspaceradarl are
recorded as 0.1 and 0.2, respectiel. the absent event is deduced by the princpleegation as
failure as we have discussed in A4.D3.1 and ismedeto aeventlD2in the results file).

<?xml version="1.0" encoding="utf-8" ?>
<!-- Created with Liquid XML Studio 1.0.8.0 (http:/ /www.liquid-technologies.com) -->
<resultsdesc xmins:xsi  ="http://www.w3.0rg/2001/XMLSchema-instance" ">

<datatypes >http://www.liquid-technologies.com </ datatypes >

<results >

<formula status ="Inconsistency Wrt_Runtime_events" forChecking  ="true"
formulald ="Rule-1" type ="Future_Formula" instanceld  ="Rule-1_100">
<quantification >

<quantifier >forall </ quantifier >
<timeVariable >

<varName >tl </ varName >

<varType >TimeVariable </varType >
</ timeVariable >

</ quantification >
<quantification >
<quantifier >existential </ quantifier >

<timeVariable >

<varName >t2 </ varName >

<varType >TimeVariable </varType >
</ timeVariable >

</ quantification >
<body >
<predicate negated ="false" unconstrained ="true" recordable  ="true"
m nLi kel i hood="0. 7" maxLi kel i hood="0. 9" >
<happens >
<ic_term >

<operationName >signal </ operationName >
<partnerName >127.0.0.1 </ partnerName >

<id >event | D1</id >

<variable persistent  ="false" forMatching  ="true">
<varName >status </ varName >

<varType >OpStatus </ varType >

<value >REQ/ value >

</ variable >

<variable persistent  ="false" forMatching  ="true">
<varName >sender </ varName >

<varType >Entity </varType >

<value >127.0.0.1 </value >

</ variable >

<variable persistent ~ ="false" forMatching  ="true">
<varName >receiver </ varName >

<varType >Entity </varType >

<value >0.0.0.0 </value >

</ variable >

<variable persistent  ="false" forMatching  ="true">
<varName >source </ varName>

<varType >Entity </varType >

<value >0.0.0.0 </value >

</ variable >

<variable persistent  ="false" forMatching  ="true">
<varName >radarlD1 </ varName>

<varType >string </varType >

<value >r 1001</ value >

</ variable >

SERENITY - 027587 Version 1.1 Page 22 of 51



A4.D5.2 — 2%Version of Diagnosis Prototype

-.llilm'l‘
<variable persistent  ="false" forMatching  ="true">
<varName >airplanelD1 </ varName>
<varType >string </varType >
<value >BA. 1001. 1001</ value >
</ variable >
<variable persistent  ="false" forMatching  ="true">
<varName >airspacelD1 </ varName>
<varType >string </varType >
<value >HRW 2002. 2002</ value >
</ variable >
<variable persistent  ="false" forMatching  ="true">
<varName >senderID1 </ varName >
<varType >string </varType >
<value >127.0.0.1 </value >
</ variable >
<variable persistent  ="false" forMatching  ="true">
<varName >receiverID1 </ varName >
<varType >string </varType >
<value >0.0.0.0 </value >
</ variable >
<variable persistent  ="false" forMatching  ="true">
<varName >evSourcelD1 </ varName>
<varType >string </varType >
<value >0.0.0.0 </value >
</ variable >
</ic_term >
<timeVar >
<varName>tl </ varName >
<varType >TimeVariable </ varType >
<value >1000001</ value >
</ timeVar >
<fromTime >
<time >
<varName >t1 </ varName >
<varType >TimeVariable </varType >
<value >1000001</ value >
</ time >
</ fromTime >
<toTime >
<time >
<varName >tl </ varName >
<varType >TimeVariable </varType >
<value >1000001</ value >
</ time >
</ toTime >
</ happens >
</ predicate >
<operator >and</ operator >
<predicate negated ="false" unconstrained ="false" recordable  ="true">
<holdsAt >
<fluent  name="CoversFluent">
<variable persistent  ="false" forMatching  ="true">
<varName >radarlD1 </ varName>
<varType >string </varType >
<value >r 1001</ value >
</ variable >
<variable persistent  ="false" forMatching  ="true">
<varName >airspacelD1 </ varName>
<varType >string </varType >
<value >HRW 2002. 2002</ value >
</ variable >
</ fluent >
<timeVar >
<varName>tl </ varName >
<varType >TimeVariable </ varType >
SERENITY - 027587 Version 1.1 Page 23 of 51



A4.D5.2 — 2%Version of Diagnosis Prototype
AEVERITY

<value >1000001</ value >
</ timeVar >

</ holdsAt >

</ predicate >

<operator >and</ operator >

<predicate negated ="false" unconstrained ="false" recordable  ="true">
<holdsAt >

<fluent  name="CoversFluent">

<variable persistent  ="false" forMatching  ="true">

<varName >radarlD2 </ varName >
<varType >string </varType >
<value >r 1002</ value >
</ variable >
<variable persistent  ="false" forMatching  ="true">
<varName >airspacelD1 </ varName>
<varType >string </varType >
<value >HRW 2002. 2002</ value >
</ variable >
</ fluent >
<timeVar >
<varName>tl </ varName >
<varType >TimeVariable </ varType >
<value >1000001</ value >
</ timeVar >
</ holdsAt >
</ predicate >
</ body >
<head >
<predicate negated ="false" unconstrained ="false" recordable  ="true"
m nLi kel i hood="0. 1" nmaxLi kel i hood="0. 3">
<happens >
<ic_term >
<operationName >signal </ operationName >
<partnerName >127.0.0.2 </ partnerName >
<id >event | D2</id >
<variable persistent ~ ="false" forMatching  ="true">
<varName >status2 </ varName >
<varType >OpStatus </ varType >
<value >REQ/ value >
</ variable >
<variable persistent  ="false" forMatching  ="true">
<varName >sender2 </ varName >
<varType >Entity </varType >
<value >127.0.0.2 </value >
</ variable >
<variable persistent  ="false" forMatching  ="true">
<varName >receiverl </ varName >
<varType >Entity </varType >
<value >0.0.0.0 </value >
</ variable >
<variable persistent  ="false" forMatching  ="true">
<varName >sourcel </varName>
<varType >Entity </varType >
<value >0.0.0.0 </value >
</ variable >
<variable persistent  ="false" forMatching  ="true">
<varName >radarlD2 </ varName>
<varType >string </varType >
<value >r1002 </ value >
</ variable >
<variable persistent  ="false" forMatching  ="true">
<varName >airplanelD1 </ varName>
<varType >string </varType >
<value >BA.1001.1001 </ value >
</ variable >

SERENITY - 027587 Version 1.1 Page 24 of 51



A4.D5.2 — 2%Version of Diagnosis Prototype
AEVERITY

<variable persistent  ="false" forMatching  ="true">
<varName >airspacelD1 </ varName>
<varType >string </varType >
<value >HRW.2002.2002 </ value >

</ variable >

<variable persistent  ="false" forMatching  ="true">
<varName >senderlD2 </ varName >
<varType >string </varType >
<value >127.0.0.2 </value >

</ variable >

<variable persistent  ="false" forMatching  ="true">
<varName >receiverID1 </ varName >
<varType >string </varType >
<value >0.0.0.0 </value >

</ variable >

<variable persistent  ="false" forMatching  ="true">
<varName >evSourcelD1 </ varName>
<varType >string </varType >
<value >0.0.0.0 </value >

</ variable >

</ic_term >

<timeVar >

<varName >t2 </ varName >

<varType >TimeVariable </ varType >

</ timeVar >

<fromTime >

<time >
<varName >tl </ varName >
<varType >TimeVariable </varType >
<value >1000001 </ value >

</ time >

</ fromTime >

<toTime >

<time >
<varName >t1 </ varName >
<varType >TimeVariable </varType >
<value >1005001 </ value >

</ time >

</ toTime >

</ happens >
</ predicate >
</ head >
</ formula >
</ results >

</ resultsdesc >

Table 1 — An example of monitoring results for a sgcific rule instance

SERENITY - 027587 Version 1.1 Page 25 of 51



AEVERICY

3.5. API for diagnosis tool

A4.D5.2 — 2*Version of Diagnosis Prototype

The diagnosis tool is an internal module of the nowrcomponent [3] as it is presented in Figure 5.
It should be noted that the monitor is deployedaaseb service .Thus, this report describas

application programming interface (API) that enabilke retrieval of diagnostic results from external
clients of the monitor and, in particular, the SBREY runtime framework. Please note that the
provided diagnosis results follow the representesichema presentedfigure 4

Execution Environment

Event Port

Deviation Port L / \ Event Collector Database |

Database Il

Diagnosis Module

—(/C) Buffer Port NTG
IMonitor
Manages NTG Port Monitor
Event Buffer /O
N/ Monitor Manager Imonitor (with diaanosis operations) /J\

Deviation Port

1
IDeviationDBHandler ?

Deviation Database Handler

Monitoring Console Diagnosis GUI Module

Key: A '—I@_ B

A 2 |B

A exposes the interface |, and B uses the

interface |

A writes to port C that B listens to

Figure 5 - Architecture of monitor and diagnosis pototype

The API for the monitor and the diagnosis toolhie NlewDataAnalyzerEClass that is included in
the code package (code.NewDataAnalyzerEC.java) of the dedid code. More specifically, the

API for the diagnosis tool consists of the follogsimethods:

O public String initialiseDiagnoser(String xmlFaileeffiplate)

Return Value: String
Argument: String xmlFailedTemplate

Description: This operation reads a string reprizgem of the xml format of the
violated rule and notifies the diagnosis tool oé thiolations observations. It
returns a string indicating whether the diagnasis iis notified successfuly.

O public String diagnose()

SERENITY - 027587

Version 1.1

Page 26 of 51



A4.D5.2 — 2%Version of Diagnosis Prototype

AEVERICY

==
Return value: String

Argument: N/A

Description: This operation calls the methods tingplement the explanation
generation algorithm [6], the explanation effearitfication algorithm [6] and

the new belief assessment process as it is desinb&edction 3.2. . The return
value is a string representation of the xml forofathe monitoring and diagnosis
results as presented in Table 1.

The full new API of the monitor is given in ApperdD, where the diagnosis tool elements
(operations, requests, responses) in it have higahdited.

SERENITY - 027587 Version 1.1 Page 27 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype
AEVERITY

4. Implementation and Usage Guide

4.1. Required Software
To use the diagnosis prototype, the user shoulchtt@dl and install on his/her machine:

O Version 5.0.14 of the Tomcat server — This servam cbe downloaded from
http://tomcat.apache.org/. An installation guide floee server is also available at the same
site. Please consult the release note of tomcah#iselection of right XML parserHint:
During installation, the xalan.jar file should bepeéed in the tomcat\common\lib folder. The
xalan.jar file can be found in thié folder of the manager project)

0 Version 1.4 of Axis server — This server can be mloaded from http://ws.apache.org/axis/.
An installation guide for the server is also avalgaat the same siteHint: Attention must be
given in the copy of the appropriate jar files itbh@ Axis installation folders, as well as,in
the classpath setup of Axis server. More detaifs lwa found in the Classpath setup section
of the installation guide for the server that ieypded at the site)

4.2. Installation instructions

The installation of the diagnosis tool is basedttoe same procedure as the one followed for the
monitor. More specifically,

O To install the monitoring manager, extract the sfilen the archive into the folder
C:\Monitor

0 To install the data analyzer, copy the foldénMonitor\analyzer\code in the
classes folder of the axis installation in Tomcat. This fotype assumes that the Tomcat
server is deployed on port number 8080 (i.e. defaurt for tomcat).

4.3. Usage instructions

The functionality of the diagnosis module is aualda only through the dynamic validation
prototype. Thus in the following we give basic mstions on how to start and use the dynamic
validation prototype and, as part of it, how to uke diagnostic capabilities that have been
integrated into it.

4.3.1. Themonitor

To start the monitor (also known as “data analygeifie user has to start the Tomcat server by
executing the startup

file in the TOMCAT_HOME\bin folder.

To use the analyzer with the monitoring managea, @@ammand prompt window give the command
C:\Monitor\analyzer\deploy The data analyzer is up and the wsdl specificatibthe
data analyzer service can be seen at:

http://localhost:8080/axis/services/analyzerService ?wsdl

SERENITY - 027587 Version 1.1 Page 28 of 51



A4.D5.2 — 2%Version of Diagnosis Prototype
IEWEAEEY

and the analyzer service endpoint is
http://localhost:8080/axis/services/analyzerService

Section 4.3.2. describes how to use the monitontagnager, the diagnostic component of the
prototype and the event collector.

4.3.2. The Monitoring Manager and Diagnosis Module

The monitoring manager is used to import and sefleetformulae to be monitored, send the
selected formulae to the data analyzer, start Wieatecollector for a monitoring session, initiate a
polling process that retrieves possible violatiohthe properties and view the result of monitoring
To retrieve violations of properties, the monitgrimanager polls the data analyzer at regular time
intervals that can be specified by the user anavstibe results that it retrieves in a formula viewe

To use the monitor manager, follow the followingpst:

1. To start the monitor manager, in a command promjpidew execute the command
C:\Monitor\manager\RunManager as shown in Figure 6 below. Following this, the
monitor manager window will pop up. Then, to impthr¢ formulae to be monitored, select
the option "Import Formulae” from the "File" menitbe manager.

e CAWINDOWS\system32\cmd.exe

Microsoft Windows X¥P [Uersion 5.1.26001
¢G> Copyright 1785-2081 Microsoft Corp.

RN

C:%2>cd Monitorsmanager

C:~Monitorsmanager *RunManager . hat _

Figure 6 - Command prompt window

2. Then, to import the formulae to be monitored, deflee option "Import Formulae" from the
"File" menu of the manager.

SERENITY - 027587 Version 1.1 Page 29 of 51



A4.D5.2 — 2%Version of Diagnosis Prototype

3. In the file opening dialog box that appears follogihe selection of this option (see Figure
7), choose the XML file that contains the formulhat you want to monitor.

Booen

il

LookIn: |[]examples

rj ATMexampleADd_ir_Veramil rj ATMSexample.xml rj form
B ATMexampleAlterminates.xmil B ATMStheory.xml B form
E‘| ATMexampleA1.xml E‘| ATMStheory1.xml E‘| form

|j| ATMexampleA2.xml

|j| Copy of Sformulas_14_02_08.xami rj form

|__°‘| ATMexampleR1.xml |__°‘| fluents_formula.xmil E‘| form
rj ATMexampleR1v2.xml rj fluents_formula1.oml rj past |
4 | i [ I
File Name:  |[AThStheaniml] |
Files of Type: XML files |
Open Cancel

Ixi

Figure 7 - The file opening dialogue box

4. The monitor manager will then read all the formuiaen the file and display the formulae
in the display panel of the monitoring manageilastrated in Figure 8.

SERENITY - 027587

Version 1.1

Page 30 of 51



A4.D5.2 — 2%Version of Diagnosis Prototype

AEVERICY

! SERENITY Monitoring Framework | = o] x|
File Control

mported Formulas elected Formulas ;Eh'lunituring Decision List

I:11] Instantiation |0 | Decision Time

A1

A2

: Select
Remove
“Formula Instantiation Details
- :fFormula Status

Formula Viewer Dependency List | |

Formula-ID: R3

iable Bindi

farall 11 :time
exists 12 time :
Happensiic.signal{lDvstatus vsenderyreceiver veource vradarl §§
t sai(CoversFluentivradarlDl vairspacelD1),1) ~ -
sa{CoversFluentivradarnlD2 vairspacelD1),t1)

eStamp!TruthValue. 0urce| Confirmed |Min

==

Happensiic:signal{Dystatus2 vsender? vreceiver? wsource2 v

<] Il [ ¥l

Figure 8 - The Monitoring Manager

The monitoring manager lists the identifiers of theported formulae in the "Imported
Formulae" panel. To view a formula in the eventuahls format, the user may select its ID.
Following this selection, the formula with the seéd ID will be shown in the "Formula
Viewer" panel of the manager. If the user wantsetect the formula to be monitored,
he/she may select its ID in the imported formula@g and click on the "Select" button.
Following this, the selected formula will appeattle "Selected Formulae" panel. The user
may repeat the same process to select more formidhen the selection is complete, the
user can click on the "Confirmed" button, to sehe tormulae to the data analyser. If the
submission of formulae to the analyser is succéstfa monitor manager will show the
following message. The user should press the "@Qkbh to continue (see Figure 9).

Information

(D Formulas successfully sent to the analyzer

Figure 9 - Formulas submission message

5. The next step is to provide the analyzer with metievents. From the Start Data Collection
command in the Controls menu of the monitor managecan activate the collection of the
events. The monitor manager can by default accegnts in the port number 12345 and
report them to the analyzer. The format of thosene&vis based in the event XML schema

SERENITY - 027587 Version 1.1 Page 31 of 51



) A4.D5.2 — 2°Version of Diagnosis Prototype

AEVERICY

described in [1]. Any event collection mechanisrattban provide events according to the
defined XML schema can be used to report the eve€oisthe purposes of the demo we can
use the SOAP event collector which can be located:\Monitor\SoapCollector

This application creates a proxy service whiclehistto a user defined port number, accepts
incoming SOAP messages, translates them to thefispeevent format and then forwards
them to the real web service for the executiorhefdervice and to the monitor management
tool. For the execution of the collector the userustn type java -—cp
xerceslmpl.jar, commons-net-1.4.1.jar; code.TcpTunn el followed by
the parameters of the listening port, the IP addeesl port of the real web service and the
IP address and port of the monitoring manager.uincase, where the Tomcat is deployed
locally in the default port (i.e. 8080) and the mger listens for events in the 12345 port,
the execution command should [era —cp xerceslmpl.jar,commons-net-

1.4.1.jar; code.TcpTunnel 8081 localhost 8080 local host 12345

Now that the collector is activated we must infotihe monitor manager to accept any
events are send to it by selecting the Start Datke€or option from the Control menu (see
Figure 11). Any attempt to invoke a web servicehia port 8081 will result to report this
event to the monitor manager tool.

6. To set the diagnosis window, the belief value faflll consequences and the belief value
for NULL explanations, the user should select tharameters" option from the "control"
menu in this window and, in the dialog box that pap (see Figure 10), specify new
values for the aforementioned parameters

i E Monitor Manager Paramekters i = |E|£ﬂ

éData analyzer service end point
Ihttp:filoralhost 8080/axis/senicesianalyzerSerice |
{HTTP reference of the formula file

Absolute location of the formula file

:Pnll Interval (ms)

10000 |
Diagnosis Window (ms)
15000 |
Belief value for NULL consequences {a1)

015 |

| Belief value for NULL explanations (a2)

In.og |

Ok | Cancel |

Figure 10 - Monitor Manager parameters dialogue box

7. The user may stop the data collector by selectiegaption "Stop Data Collector” in the
"Control" menu (see Figure 11)

SERENITY - 027587 Version 1.1 Page 32 of 51



A4.D5.2 — 2%Version of Diagnosis Prototype

AEVERICY

8. To start polling the data analyser in order to vighe violations of the formulae being

File | Control |

mpo| 2 Start Data Collector
Q2 | ® Stop Data Collector

elected Formulas “IMonitoring Decision List
2 gf Instantiation 1D | Decision Time

2 Start Polling
® Stop Polling

Parameters

‘[Formula Instantiation Details
Formula Status

ormula Viewer Dependency List
Formula-1D: @2 : jvariable Bindings

forall 11 - time Signature | Time Stamp | Truthvalue | Source
exists 12 :time :
HappensiicindSubstitudeDoctor(lD, status1,sender! receiver §§
HappensiirindSubstitudeDocton]D status 2, sender2 receiver?
==>» 3
ocselfsubd2 1) = 100"

vstatus1.status = REQ-B *
vstatus2.status = RES-B

q] Il | DE

Figure 11 - Starting and stopping data collector irthe Monitoring Manager

monitored, the user should select the option "spalling” from the control menu.
Following this, the monitor manager will start pofl the data analyser at regular time
intervals (the default time interval is 10 seconds)

The monitoring manager shows the list of instarafdbe violated and satisfied formulae in
the "Monitoring Decision List" panel as shown irgéiie 12. This panel will be updated at
the regular intervals. The Monitoring Decision Ligill show the monitoring summary of
each instance of each formula. The left most columthis list shows the unique formula
instance ID, the middle column shows the decismmtiie formula instance, and the right
most column shows the time when the decision waterbg the data analyzer.

SERENITY - 027587 Version 1.1 Page 33 of 51



kY

A4.D5.2 — 2%Version of Diagnosis Prototype

AEVERITY
I
S[=TEY
File Control
Imported Formulas elected Formulas ;@h‘lunituring Decision List
AD A0 Instantiation 1D Decision Titne
A1 A1 R-R3-1 Satisfied 1218447131774
A2 AZ R-R3-2 Satisfied 1218447131728
[ I R-R3-3 Violated 1218447131697
R-R3-4 Satisfied 1218447131665
IRR3s Violated 1218447131634
Remove i
Confirm
Formula Instantiation Details : R-R3-3
“Formula Status
Formula Viewer “IDependency List
i8R Mariable Bindings| « | | M [»
farall 11 time o} Signature | Time Starnp| Truth Value | Source | Confirmed IMinLikelinood MaxLikelino..| |
Stsil ime ) R HoldsAt Trile Recorde |Yes 1.0 1.0 e
Happensiic:signal{lDvstatus vsender vreceiver vsource,vradarl “HcoversFiu d
- “CoversFluentlyradar D1 vairspacelD 1y 1) » §§ ém(vradarl 12184471
“HCoversFiuenttradad D2 vairspacel D1t i i
s { g ] R yaLh m;::"fra
Happens(ic.signal{Dvstatus2 vsender2 yvreceiver? vsource 2 vy §§ el
1 HoldsAt True Records |Yes 1.0 1.0 =
“} (CoversFlu o
Sl ent(wradarl |12134471. -3
-| D2yvairspa
“f celD1)t1)
Happens False Negation [No 0.0 1.0 =
“| lic:signal(N _As_Fail
- | F_IDvstatu ure
! s2vsender —
4] 1 [ [*] ifa : =

9.

Figure 12 - Monitoring Decision and Formula Instartiation Panels

To view the details of a formula instance, the uskould select the relevant formula
instance in the Monitoring Decision List. Followinlgis, the monitor manager shows the
details of the formula instance in the "Formulatdmsiation Details" panel (see Figure 12).
This panel displays the formula status, other fdamuhat the specific formula may depend
on (see [5] for a definition of formula dependescand how they are used in monitoring),
and the values bound to the variables of the foamiFormula Instantiation Details" panel
also shows the truth values of the individual pratés of the formula, the timestamps of the
establishment of these truth values, and the sanfrtlee information that underpins them
("Recorded" for events generated directly by thetesy under observation and "Derived"
for events generated by deductive reasoning). fineetlast colums of the table refer to
diagnosis results for the events that have beefredniith predicates of the violated rule.
More specifically, given the belief and plausilyilineasures calculated for a particular event
that has been unified with the predicate in the,rtheconfirmedcolumn indicates whether
a predicate is confirmed by the recorded eventeefog of the monitor. Finally, the lower
(belief) and the upper boundary (plausibility) bétbelief range of predicates of the rule are
displayed respectively in thdinLikelihoodandMaxLikelihoodcolumns.

SERENITY - 027587 Version 1.1 Page 34 of 51



A4.D5.2 — 2%Version of Diagnosis Prototype
AEVERITY

10.To change the polling interval, the user shoulécethe option "stop polling” in the main
monitor manager window, then select "parametexghfthe "control" menu in this window
and, in the dialog box that pops up (see Figure 1€pecify a new value for the polling
interval. Subsequently, the user should selectotit®n "restart polling” from the control
window.

11.To stop the manager, the user should first stogléte collector (if it is running), then stop
polling, and finally select the “exit” option frofile menu to exit the monitor manager (see
Figure 11).

SERENITY - 027587 Version 1.1 Page 35 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype
AEVERITY

5. Conclusions

This report is part of the deliverable A4.D5.2 grdvides a description of the second version of
the diagnosis prototype that has been developgmhdsof SERENITY monitoring framework. In
particular, we have described the main amendmaatsatere introduced to the diagnosis approach
advocated in SERENITY and given examples demoistrahe results of the amendments. We
have not, however, provided a full descriptionto$ tapproach as this can be found in [6].

As we have discussed in [6], the diagnosis of Vioies of S&D rules in SERENITY is based on
generating possible explanations for the runtimenes which are involved in violations of S&D
monitoring rules through the useabductive reasoningrhis process deploys tlassumptionshat
have been specified about the system that is beiogitored and the S&D patterns which are
deployed by it. The possible explanations whichgererated by this process are checked against
other runtime events to establish if there is fartbvidence about the validity of the explanations.
The input to this search process includes the eggeonsequencesf the abduced explanations
and- in the new version of the diagnosis teohny preconditions that need to be satisfied for an
explanation to be able to entail the event in doesiThe new version of the SERENITY diagnosis
framework computes beliefs in the validity of thepkanations of the events that are involved in
S&D violations, based on matches that may be fdugtdieen the preconditions and consequences
of these explanations with other runtime events amdcursive assessment of the genuineness of
these events.

It should be noted that the second version of flagrmsis prototype is fully integrated with the

SERENITY monitoring framework described in it [3jdathe code that implements the new version
of the monitoring framework along with the realisatof the diagnostic capabilities described in
this report is also part of A4.D5.2.

Ongoing work focuses on conducting an experimentaluation of the undertaken approach.

SERENITY - 027587 Version 1.1 Page 36 of 51



A4.D5.2 — 2%Version of Diagnosis Prototype
AEVERITY

Appendix A. 1* Version Algorithms

Explain(e, t min(€), tmax(€), finit)

1. ®e=[finrelor /*alist keeping the disjunction of possible explanations of e */

2. IfedABD Then

3. D= append(Pe, (&, tmin(e), tmax(e)))

4. Else /* e is not an abducible atom; find explanations for it */

5.  For all f O AS Do /* try all alternative explanations */

6. u = mgu(head(f), e) /* mgu returns the most general unifier of e and a predicate p if this unifier exists*/
7. If u# 0 and u covers all non time variables in body(f) Then

8. Copy body(f) into CND¢

9. FormulaFailed = False

10. D =[lanp /* ®; is a list keeping a conjunction of elements explaining the conditions of f */
11. While FormulaFailed = False and CNDs # [0 DO /* explain all conditions of f */

12. Remove some condition C from CNDs

13. Compute the minimum and maximum possible values tmin(C), tmax(C) of C

14. based on tmin(e) and tmax(e)

15. If tmin(C) # NULL and tmax(C) # NULL Then /* tmin(C), tmax(C) are not undeterminable */
16. Cu = ApplyUnification(u, C)

17. If C O ABD Then /* C is an abducible so add it to current explanation */

18. @ = append (@, [(f:Cuy, tmin(C), tmax(C))]asp )

19. Else /* C is not an abducible condition */

20. find a derived or recorded event e. that can be unified with C, and

21. tmin(€c) = tmin(C) and tmax(€c) < tmax(C)

22. If ee=NULL Then /* no logged or derived event matching C has been found */
23. ®¢ = Explain(C, tmin(C), tmax(C), f)

24, If dcis empty Then

25. FormulaFailed = True

26. Else

27. @; = append(Ps, Pc)

28. End If

29. End If

30. End If

31. End If

32. End While

33. If FormulaFailed = False Then ®. = append (®e,Ps) End if

34. End if

35. End For

36. EndIf

37. return(®e)
38. END Explain

Figure 13 - Algorithm for generating explanations é atomic events involved in violations

SERENITY - 027587 Version 1.1 Page 37 of 51



A4.D5.2 — 2°Version of Diagnosis Prototype
AEVERITY

Generate_AE_consequences( AF: Set of Grounded Atomic Formulas, TLIST: List of Assumption Templates, CNS: Set
of Consequences)

1. CNS={}
2. TLIST = copy of TLIST

3. For each atomic formula P; O AF Do

4 For each assumption template T in TLIST' Do

5 For each predicate Q U body(T) Do

6. If mgu(P;,Q) 20 and CompatibleTimeRange(P;,Q) Then

7 T :=copyof T

8 Apply mgu(P;,Q) onto T’

9 Set the truth value of Q in T’ to True

10. Update time ranges of other predicates in T’ based on the time range of P
11. If for all predicates R O Body(T’) such that RZQ, R is true Then

12. If head(T") is fully instantiated Then

13. If head(T’) is observable Then

14, CNS = CNS O { (T.id, head(T)) }

15. delete T’

16. Else /*head(T’) is a derived predicate */

17. CNS' ={}

18. Generate_consequences({head(T")}, TLIST’, CNS’)

19. CNS =CNS O CNS’

20. End If

21. End If

22. Else /* there is a predicate R in Body(T’) whose truth value is unknown */
23. If for all predicates R U Body(T’) such that RZQ and R is not true, R is an abducible predicate Then
24, TLIST = append (T', TLIST)

25. End If

26. End If

27. End If

28. End For

29. End For

30. Return (CNS)
31. END Generate_AE_Consequences

Figure 14 - Algorithm for computing the transitive closure of deductions from abduced
predicates

SERENITY - 027587 Version 1.1 Page 38 of 51



A4.D5.2 — 2°Version of Diagnosis Prototype
AEVERITY

Generate_RE_consequences( AF: Set of Grounded Atomic Formulas, TLIST: List of Assumption Templates, CNS: Set
of Consequences)

1. CNS={}

2. For each atomic formula P; O AF Do

3 For each assumption template T in TLIST Do

4 For each predicate Q O body(T) Do

5 If mgu(P;,Q) 20 and CompatibleTimeRange(P;,Q) Then

6. T :=copyof T

7 Apply mgu(P;,Q) onto T’

8 Set the truth value of Q in T’ to True

9 Update time ranges of other predicates in T’ based on the time range of P
10. If for all predicates R O Body(T’) such that RZQ, R is true Then
11. If head(T") is fully instantiated Then

12. If head(T’) is observable Then

13. CNS = CNS U { (T.id, head(T") }

14. delete T’

15. Else /*head(T’) is a derived predicate */

16. CNS'={}

17. Generate_consequences({head(T")}, TLIST, CNS’)
18. CNS =CNS O CNS’

19. End If

20. End If

21. Else /* there is a predicate R in Body(T’) whose truth value is unknown */
22. TLIST = append (T', TLIST)

23. End If

24. End If

25. End For

26. End For

27. Return (CNS)

END Generate_consequences

Figure 15 - Algorithm for computing the transitive closure of deductions from recorded
events

SERENITY - 027587 Version 1.1 Page 39 of 51



A4.D5.2 — 2*Version of Diagnosis Prototype
AEVERITY

Appendix B. Proofs of Theorems

Theorem 1: The basic probability assignment to the genuinerasevents is calculated by the
formulas:

meN(Genuine(E [Tmin, Tmad, Eo))= m"(InLog(E) x m=(Explainable(E [Tmin Tmad, Eo)))
m®N(=Genuine(E [Tmin Tmad: Eo)) =

m'(~InLog(E) + m™(~Explainable(E [Tmin Tmads Eo)) —

(m*(=InLog(E) x m=*(=Explainable(E [Tmin Tmad: Eo)))

Proof: The combination of the basic probability assignmert and nt* requires their mapping
on a common frame of discernment, i.e., a set ofually exclusive propositions representing
exhaustively the properties that-nand nf* cast evidence for. This frame of discernm@man be
defined as a set of vectors consisting of n-paiisspf Boolean variables i(LV)):

[(L1, V1), ..., (Lo, Vi)
where

O nis the total number of events within a given diagjs range
0 each of the pairs (LG) corresponds to an event E

0 the value of the variable;lin a pair denotes whether or not the eventB&tches with an
event that has already or can occur in the log:nMhel E has already occurred or can
occur at some future time point in the log and whet® § has neither occurred nor it may
occur at some future time point in the log.

00 the value of the variable;\denotes whether or not the event€Eexplainable: when ¥1
Ei's can be explained and whefF0 E cannot be explained.

Given this definition o, the propositions that'massigns evidence for (akacalsin the context
of the DS theory) are:

InLog(E) ={[(L1, V), ..., (Li, Vi), ..., (Ln, V)]|Li =1}

mInLog(E) = {[(L1, V1), ..., (L, Vi), ..., (Lo, V)]ILi =0}

Also, the propositions (or, equivalently, focalsit nf* assigns evidence for are:
Explainbable(B = {[(L 1, V1), ..., (L, Vi), ..., (Lo, V)]|Vi=1}

- Explainbable(§ = {[(L 1, V1), ..., (L, Vi), ..., (Ln, Vi)]|Vi=0}

Thus, the intersections of these focals are notysgis:

InLog(E) n Explainbable(B #0

=InLog(E) n Explainbable(B #0

InLog(E) n = Explainbable(B #0

=InLog(E) n = Explainbable(g z0

SERENITY - 027587 Version 1.1 Page 40 of 51



AEVERICY

A4.D5.2 — 2*Version of Diagnosis Prototype

Therefore, according to Theorem 3.1 in [3] (p. @B basic probability assignment$-and nt*
an becombined using the rule of the orthogonal sum;, i.e.

koin the rule will be equal to zero.

my 0 my (P) = &x n v=pmi(X) x my(Y)) / (1 - ko)
where k =2y  w=0 and vo e and wo e M(V) X my(W)
Since, however, the intersections of all the comtiims of the focals of fnand n¥* the parameter

The following matrix shows the different combinatsoof the focals of the assignment$ mnd

mE* for a given event E and the basic probability mess that they assign to the intersections of

these combinations.

I

m
P10 - P1 =6:
PL - P1: (1-m“(P1)-
m'“(P1) m'-(~P1) m'-(-P1))
P1n P2 - P1ln P2 (P10 -P1)n P2 =
P%x 6nP2=P2
mEX(P2) m“(P1)x mF*(P2) m'“(=P1)x m¥(P2)
EX
m (1-m*~(P1)-
1L
m'“(=P1) )x
m=*(P2)
- P2: Pl1n ~P2 - Pln P2 0 n-P2 =-P2
m=(=P2)
m“(P1)x m™(=P2) | m*(=P1)x m¥*(=P2) | (1-m"(P1)-
m'-(~P1) )x
m=(=P2)
P1n (P20 -P2) = -P1n (P20 -P2) = BnB6=0
P20 - P2 P1n6=P1 -P1n 8=-P1
=0 (1-m*(P1)-
(1-m¥P2)- | m-(P1)x (1- m¥(P2) m-(=P1)x m'“(=P1) )x (1-
m=*(~P2) - m¥(~P2) (1 - m¥(P2)- m=*(P2)-
m=(=P2) m~(=P2))
Where
0 P1=InLog(E)
0 P2 = Explainable(E)
O -Piisthe complement set of Pi with respect topbeerset of
Thus, as

meN(Genuine(E [Tmin, Tmad, Eo)) = mM-Om™ (InLog(E) O Explainable(E [Tmin, Tmad, Eo))

we have

SERENITY - 027587

Version 1.1

Page 41 of 51




3 A4.D5.2 — 2%Version of Diagnosis Prototype
-..'ll'lll'HI'r

meN(Genuine(E [Tmin, Tmad, Eo)) = mM-Om™ (P1n P2) = nf(P1)x m¥(P2) (1)

Also,

m®N(=Genuine(E [Tmin, Tmad: Eo)) = m-Om™ (= (InLog(E) 0 Explainable(E [Tmin Tmad, Eo))) =

m'“Om™ (= InLog(E) O-Explainable(E [Tmin Tmads Eo)) = mM-Om™ (-P10 -~ P2)
Due to the rule of the orthogonal sum, howeverhase:

mtOm™ (-P10-P2) = mfOm™(= P1n P2) + FOm™(P1 n -P2) + M-Om™(= P1n
-P2) + M-Om™(® n=P2) + M- Om™(=P1n 6)
= m"(=P1)x m*(P2) + Mt (P1)x m™*(=P2) + M"-(=P1)x m™(=P2) +
1-m"(P1)- m*(=P1) )x m*(=P2) + M- (=P1)x
(1- m¥(P2)- m™(=P2))
m-(=P1) + nfF*(=P2)- m"(=P1) )x m¥(~P2) ()

From (1) and (II), it follows that the theorem hsld

SERENITY - 027587 Version 1.1 Page 42 of 51



) A4.D5.2 — 2°Version of Diagnosis Prototype
AEVERITY

Appendix C. New Schema for Monitoring Results

<?xml version="1.0" encoding="utf-8" ?>
<!-- Created with Liquid XML Studio 1.0.8.0 (http:/ /www.liquid-technologies.com) -->
<xs:schema xmlns:xs ="http://www.w3.0rg/2001/XMLSchema">

<xs:element = name="resultsdesc" type ="resultsdescType" />

<xs:complexType name="resultsdescType">
<xs:sequence >
<xs:element  minOccurs ="0" maxOccurs ="unbounded" name ="datatypes" type ="xs:anyURI"
/>
<xs:element  name="results" type ="resultsType" />
</ xs:sequence >
</ xs:complexType >
<xs:complexType name="resultsType">
<xs:sequence >
<xs:element  minOccurs ="1" maxOccurs ="unbounded" name ="formula" type ="formulaType"
/>
</ xs:sequence >
</ xs:complexType >
<xs:complexType name="formulaType">
<xs:annotation >
<xs:documentation >

*kkk

**** ADDED-END
*kkk
</ xs:documentation >
</ xs:annotation >
<xs:sequence >
<xs:element  minOccurs ="1" maxOccurs ="unbounded" name ="quantification"
type ="quantificationType" />
<xs:element  minOccurs ="0" name ="body" type ="bodyHeadType" />
<xs:element  name="head" type ="bodyHeadType" />
</ xs:sequence >

<xs:attribute name="formulald" type ="xs:string" use ="required" />
<xs:attribute name="type" type ="xs:string" use ="required" />
<xs:attribute default ="true" name ="forChecking" type ="xs:boolean" />
<xs:attribute name="instanceld" type ="xs:string" use ="required">

<xs:annotation >
<xs:documentation >

Kkkk

**** ADDED-BEGIN

Kkkk

The id of the formula instance in the monitor </ xs:documentation >
</ xs:annotation >

</ xs:attribute >

<xs:attribute name="status" type ="xs:string" use ="required">

<xs:annotation >
<xs:documentation >
whether the formula instance has been satisfied or not:
&amp; quot;Satisfied &amp;quot;
&amp;quot;Undefined  &amp;quot;
&amp; quot;Inconsistency_WRT_Recorded_Behaviour &amp;quot;
&amp; quot;Inconsistency_ WRT_Expected_Behaviour &amp;quot;
</ xs:documentation >
</ xs:annotation >
</ xs:attribute >
<xs:attribute name="minThreatLikelihood" type ="xs:double">
<xs:annotation >
<xs:documentation >The current minimum threat likelihood for this
formula </ xs:documentation >
</ xs:annotation >
</ xs:attribute >
<xs:attribute name="maxThreatLikelihood" type ="xs:double">
<xs:annotation >

SERENITY - 027587 Version 1.1 Page 43 of 51



AEVERICY

<xs:documentation
formula </ xs:documentation
</ xs:annotation >
</ xs:attribute
</ xs:complexType
<xs:complexType
<xs:sequence >

>
>

A4.D5.2 — 2%Version of Diagnosis Prototype

>The current maximum threat likelihood for this
>

name="bodyHeadType">

<xs:choice >
<xs:element = name="predicate" type ="predicateType" />
<xs:element  name="relationalPredicate" type ="relationalPredicateType" />
</ xs:choice >
<xs:sequence minOccurs ="0" maxOccurs ="unbounded">
<xs:element  name="operator" type ="logicalOperatorType" />
<xs:.choice >
<xs:element = name="predicate" type ="predicateType" />
<xs:element  name="timePredicate" type ="timePredicateType" />
<xs:element = name="relationalPredicate" type ="relationalPredicateType" />

</ xs:choice >
</ xs:sequence >
</ xs:sequence >
</ xs:complexType
<xs:complexType
<xs:annotation

>

>

name="predicateType">

<xs:documentation >
*kkk
***x ADDED-END
*kkk
</ xs:documentation >
</ xs:annotation >
<xs:choice >
<xs:element = name="happens" type ="happensType" />
<xs:element  name="initiates" type ="initiatesType" />
<xs:element  name="holdsAt" type ="holdsAtType" />
<xs:element  name="initially" type ="holdsAtType" />
<xs:element  name="terminates" type ="terminatesType" />
<xs:element = name="clipped" type ="clippedType" />
<xs:element  name="declipped" type ="declippedType" />
</ xs:choice >
<xs:attribute default ="false" name ="negated" type ="xs:boolean" />
<xs:attribute default ="false" name ="unconstrained" type ="xs:boolean" />
<xs:attribute default ="false" name ="recordable" type ="xs:boolean" />
<xs:attribute default ="false" name ="confirmed" type ="xs:boolean">
<xs:annotation >
<xs:documentation >
*kkk
*ex ADDED-BEGIN
*kkk
Whether this predicate is confirmed by the observ ed events in the
log </ xs:documentation >
</ xs:annotation >
</ xs:attribute >
<xs:attribute name="minLikelihood" type ="xs:double">

<xs:annotation >
<xs:documentation

genuine </ xs:documentation
</ xs:annotation >

</ xs:attribute
<xs:attribute
<xs:annotation >
<xs:documentation

genuine </ xs:documentation

>

</ xs:annotation >
</ xs:attribute >
</ xs:complexType >

<xs:complexType

SERENITY - 027587

name="maxLikelihood"

>The minimum likelihood of this predicate to be
>

type ="xs:double">

>The maximum likelihood of this predicate to be
>

name="timePredicateType">

Version 1.1 Page 44 of 51



A4.D5.2 — 2%Version of Diagnosis Prototype
l.llll'“'l‘

<xs:choice >

<xs:element = name="timeEqualTo" type ="TimeRelation" />

<xs:element  name="timeNotEqualTo" type ="TimeRelation" />
<xs:element  name="timeLessThan" type ="TimeRelation" />
<xs:element  name="timeGreaterThan" type ="TimeRelation" />
<xs:element  name="timeLessThanEqualTo" type ="TimeRelation" />
<xs:element = name="timeGreaterThanEqualTo" type ="TimeRelation" />

</ xs:choice >
</ xs:complexType >
<xs:complexType name="holdsAtType">
<xs:sequence >
<xs:element = name="fluent" type ="fluentType" />
<xs:element  name="timeVar" type ="timeVariableType" />
</ xs:sequence >
</ xs:complexType >
<xs:complexType name="initiatesType">
<xs:sequence >
<xs:choice >
<xs:element  name="ic_term" type ="icTermType" />
<xs:element  name="ir_term" type ="irTermType" />
<xs:element name="rc_term" type ="rcTermType" />
<xs:element name="as_term" type ="asTermType" />
</ xs:choice >
<xs:element = name="fluent" type ="fluentType" />
<xs:element  name="timeVar" type ="timeVariableType" />
</ xs:sequence >
</ xs:complexType >
<xs:complexType name="happensType">
<xs:sequence >
<xs:choice >
<xs:element  name="ic_term" type ="icTermType" />
<xs:element  name="ir_term" type ="irTermType" />
<xs:element  name="rc_term" type ="rcTermType" />
<xs:element  name="re_term" type ="reTermType" />
<xs:element  name="as_term" type ="asTermType" />
</ xs:choice >

<xs:element  name="timeVar" type ="timeVariableType" />
<xs:element  name="fromTime" type ="TimeExpression" />
<xs:element  name="toTime" type ="TimeExpression" />

</ xs:sequence >

</ xs:complexType >

<xs:complexType name="clippedType">
<xs:sequence >

<xs:element  name="timeVarl" type ="timeVariableType" />
<xs:element  name="fluent" type ="fluentType" />
<xs:element = name="timeVar2" type ="timeVariableType" />

</ xs:sequence >

</ xs:complexType >

<xs:complexType name="declippedType">
<xs:sequence >

<xs:element  name="timeVarl" type ="timeVariableType" />
<xs:element  name="fluent" type ="fluentType" />
<xs:element  name="timeVar2" type ="timeVariableType" />

</ xs:sequence >

</ xs:complexType >

<xs:complexType  name="terminatesType">

<xs:sequence >
<xs:choice >
<xs:element  name="ic_term" type ="icTermType" />
<xs:element  name="ir_term" type ="irTermType" />
<xs:element name="rc_term" type ="rcTermType" />
<xs:element name="as_term" type ="asTermType" />
</ xs:choice >
<xs:element  name="fluent" type ="fluentType" />
<xs:element  name="timeVar" type ="timeVariableType" />

SERENITY - 027587 Version 1.1 Page 45 of 51



A4.D5.2 — 3%Version of

AEVERICY

</ xs:sequence >
</ xs:complexType
<xs:complexType
<xs:choice >
<xs:sequence >
<xs:element name="target">
<xs:complexType >
<xs:sequence >

>
name="fluentType">

<xs:element  name="variable" type ="variableType" />
</ xs:sequence >
</ xs:complexType >
</ xs:element >
<xs:element = name="source">
<xs:complexType >
<xs:choice >
<xs:element = name="variable" type ="variableType" />
<xs:element = name="operationCall" type ="operationCallType" />
</ xs:choice >

</ xs:complexType
</ xs:element >
</ xs:sequence >
<xs:sequence >

>

<xs:element  maxOccurs ="unbounded" name ="variable" type ="variableType"
</ xs:sequence >
</ xs:choice >
<xs:attribute name="name" type ="xs:string" use ="required" />
</ xs:complexType >
<xs:complexType name="quantificationType">
<xs:sequence >
<xs:element  name="quantifier">
<xs:simpleType >
<xs:restriction base ="xs:string">
<xs:pattern value ="foralllexistential" />
</ xs:restriction >
</ xs:simpleType >
</ xs:element >
<xs:choice >
<xs:element  name="regularVariable" type ="variableType" />
<xs:element  name="timeVariable" type ="timeVariableType" />
</ xs:choice >

</ xs:sequence >
</ xs:complexType
<xs:complexType

<xs:sequence >

>
name="icTermType">

<xs:element = name="operationName" type ="xs:string" />

<xs:element = name="partnerName" type ="xs:string" />

<xs:element name="id" type ="xs:string" />

<xs:element  minOccurs ="0" maxOccurs ="unbounded" name ="variable" type

/>
</ xs:sequence >
</ xs:complexType
<xs:complexType
<xs:sequence >

>
name="irTermType">

<xs:element = name="operationName" type ="xs:string" />
<xs:element = name="partnerName" type ="xs:string" />
<xs:element  name="id" type ="xs:string" />
</ xs:sequence >
</ xs:complexType >
<xs:complexType name="rcTermType">
<xs:sequence >
<xs:element = name="operationName" type ="xs:string" />
<xs:element = name="partnerName" type ="xs:string" />
<xs:element  name="id" type ="xs:string" />
</ xs:sequence >
</ xs:complexType >
SERENITY - 027587 Version 1.1

Diagnosis Prototype

/>

="variableType"

Page 46 of 51



AEVERICY

<xs:complexType
<xs:sequence >
<xs:element
<xs:element
<xs:element
<xs:element

name="reTermType">

name="operationName"
name="partnerName" type ="xs:string" />
name="id" type ="xs:string" />

minOccurs ="0" maxOccurs ="unbounded"

type ="xs:string" />

name ="variable"
/>

</ xs:sequence >
</ xs:complexType >
<xs:complexType name="asTermType">
<xs:sequence >
<xs:element
<xs:element
</ xs:sequence >
</ xs:complexType >
<xs:complexType name="variableType">
<xs:sequence >
<xs:element
<xs:choice >
<xs:sequence >
<xs:element
<xs:choice

name="operationName"
name="id"

type ="xs:string" />
type ="xs:string" />

name="varName" type ="xs:string" />

name="varType"
minOccurs ="0">
<xs:element  name="value" type ="xs:string" />
<xs:element  name="objectValue">
<xs:complexType >
<xs:sequence >
<xs:any />
</ xs:sequence >
</ xs:complexType >
</ xs:element >
</ xs:choice >
</ xs:sequence >
<xs:element  name="array"
</ xs:choice >
</ xs:sequence >
<xs:attribute default
<xs:attribute default
</ xs:complexType >
<xs:complexType name="expresionType">
<xs:sequence >
<xs:element
<xs:choice >
<xs:sequence >
<xs:element
<xs:choice >
<xs:element
<xs:element
</ xs:choice >
</ xs:sequence >
<xs:element name="array"
</ xs:choice >
</ xs:sequence >
<xs:attribute default
<xs:attribute default
</ xs:complexType >
<xs:complexType name="fieldType">
<xs:sequence >
<xs:element
</ xs:sequence >
</ xs:complexType >
<xs:complexType name="timeVariableType">
<xs:sequence >
<xs:element
<xs:element
<xs:element

type ="xs:string" />

type ="arrayType" />

="false"
="true"

name ="persistent"
name ="forMatching"

="xs:boolean"
="xs:boolean"

type
type

name="varName" type ="xs:string" />

name="varType" type ="xs:string" />

name="value"
name="fields"

type ="xs:string" />
type ="fieldType" />

type ="arrayType" />

="false"
="true"

name ="persistent"
name ="forMatching"

="xs:boolean"
="xs:boolean"

type
type

minOccurs ="1" maxOccurs ="unbounded" name ="field"

name="varName" type ="xs:string" />
fixed ="TimeVariable" name ="varType"

type ="xs:string"
minOccurs ="0" name ="value"

type ="xs:string" />

SERENITY - 027587 Version 1.1

type

/>
/>

/>
/>

/>

A4.D5.2 — 2%Version of Diagnosis Prototype

="variableType"

type ="xs:string" />

Page 47 of 51



A4.D5.2 — 2%Version of Diagnosis Prototype
l.llll'“'l‘

</ xs:sequence >
</ xs:complexType >
<xs:simpleType name="logicalOperatorType">

<xs:restriction base ="xs:string">
<xs:pattern value ="andlor" />
</ xs:restriction >

</ xs:simpleType >
<xs:complexType name="TimeExpression">
<xs:sequence >
<xs:element name="time" type ="timeVariableType" />
<xs:sequence  minOccurs ="0" maxOccurs ="unbounded">
<xs:choice >

<xs:element  name="plusTime" type ="timeVariableType" />
<xs:element  name="minusTime" type ="timeVariableType" />
<xs:element  name="plus" type ="xs:decimal" />
<xs:element  name="minus" type ="xs:decimal" />

</ xs:choice >
</ xs:sequence >
</ xs:sequence >
</ xs:complexType >
<xs:complexType name="TimeRelation">
<xs:sequence >
<xs:element  name="timeVarl" type ="TimeExpression" />
<xs:element  name="timeVar2" type ="TimeExpression" />
</ xs:sequence >
</ xs:complexType >
<xs:complexType name="varRelationType">
<xs:sequence >
<xs:element  name="operandl" type ="operandType" />
<xs:element  name="operand2" type ="operandType" />
</ xs:sequence >
</ xs:complexType >
<xs:complexType name="relationalPredicateType">
<xs:sequence >
<xs:choice >

<xs:element  name="equal" type ="varRelationType" />
<xs:element = name="notEqualTo" type ="varRelationType" />
<xs:element = name="lessThan" type ="varRelationType" />
<xs:element = name="greaterThan" type ="varRelationType" />
<xs:element  name="lessThanEqualTo" type ="varRelationType" />
<xs:element = name="greaterThanEqualTo" type ="varRelationType" />
</ xs:choice >
<xs:element name="timeVar" type ="timeVariableType" />

</ xs:sequence >

</ xs:complexType >

<xs:complexType name="operandType">
<xs:choice >

<xs:element = name="operationCall" type ="operationCallType" />
<xs:element = name="expresion" type ="expresionType" />
<xs:element name="constant" type ="constantType" />

</ xs:choice >

</ xs:complexType >

<xs:complexType  name="operationCallType">
<xs:sequence >

<xs:element  name="name" type ="xs:string" />

<xs:element  minOccurs ="0" name ="partner"  type ="xs:string" />

<xs:element  minOccurs ="0" maxOccurs ="unbounded" name ="expresion"
type ="expresionType" />

<xs:element  minOccurs ="0" maxOccurs ="unbounded" name ="operationCall"
type ="operationCallType" />

</ xs:sequence >
</ xs:complexType >
<xs:complexType name="constantType">
<xs:sequence >
<xs:element = name="name" type ="xs:string" />

SERENITY - 027587 Version 1.1 Page 48 of 51



A4.D5.2 — 2%Version of Diagnosis Prototype
-.l.lllm

<xs:element  name="value" type ="xs:string" />
</ xs:sequence >
</ xs:complexType >
<xs:complexType name="arrayType">
<xs:sequence >
<xs:element  name="type" type ="xs:string" />

<xs:element  minOccurs ="0" maxOccurs ="unbounded" name ="value" type ="arrayValueType"
/>

</ xs:sequence >
</ xs:complexType >
<xs:complexType name="arrayValueType">
<xs:sequence >
<xs:element = name="indexValue" type ="xs:string" />
<xs:element = name="cellValue" type ="xs:string" />
</ xs:sequence >
</ xs:complexType >

</ xs:schema >

SERENITY - 027587 Version 1.1 Page 49 of 51



I+ 1+ I+

1+

I+ 1+ 1+ 1+ 1" 1+ 1+ 1+ 1+ 1+

1+

1+

I+

AEVERICY

A4.D5.2 — 2%Version of Diagnosis Prototype

Appendix D. WSDL of the new API of the Monitor

<?xml version="1.0" encoding="UTF-8" ?>

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmins:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

+ <!-- WSDL created by Apache Axis version: 1.4
Built on Apr 22, 2006 (06:55:48 PDT)

-->
<wsdl:message
<wsdl:message
<wsdl:message
<wsdl:message
<wsdl:message
<wsdl:message
<wsdl:message
<wsdl:message
<wsdl:message
<wsdl:message

<wsdl:portType

<wsdl:operation name="setRules" parameterOrder="xmlRules">

name="checkRuleResponse">
name="recordEventResponse">
name="setRulesResponse">
name="initialiseDiagnoserResponse">
name="diagnoseRequest" />
name="recordEventRequest">
name="setRulesRequest">
name="checkRuleRequest">
name="initialiseDiagnoserRequest">
name="diagnoseResponse">

name="NewDataAnalyzerEC">

<wsdl:definitions
targetNamespace="http://localhost:8080/axis/services/analyzerService"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://localhost:8080/ axis/services/analyzerService"
xmins:intf="http://localhost:8080/axis/services/analyzerService"
xmins:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

<wsdl:operation name="initialiseDiagnoser" parameterOrder="xmlFailedTemplate">

<wsdl:operation name="diagnose" >

<wsdl:operation name="recordEvent" parameterOrder="event">

<wsdl:operation name="checkRule" parameterOrder="formulaID">

</wsdl:portType>

<wsdl:binding name="analyzerServiceSoapBinding" type="impl:NewDataAnalyzerEC">

<wsdl:service name="NewDataAnalyzerECService">

</wsdl:definitions>

SERENITY - 027587 Version 1.1

Page 50 of 51



[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

A4.D5.2 — 2%Version of Diagnosis Prototype

AEVERICY

References

Kloukinas C., Ballas C., Presenza D., Spanoudaki§2@06): “Basic set of Information Collection
Mechanisms for Run-Time S&D Monitoring”, Deliverabl A4.D2.2, SERENITY Project,
http://www.serenity-

forum.org/IMG/pdf/A4.D2.2_informationCollectionMeahism_v0.15 final e.pdf

Knight K. (1989): “Unification: a multidisciplinargurvey”, ACM Computing Surveys, 21(1):93-124.
Available from:http://www.isi.edu/natural-language/people/unificatknight. pdf

Mahbub K., Spanoudakis G., Kloukinas C. (2007): ‘&f2lynamic validation prototype”. Deliverable
A4.D3.3, SERENITY Project, Available fromhttp://www.serenity-forum.org/IMG/pdf/A4.D3.3 -
V2_of Dynamic_validation_Prototype.pdf.

Shafer G. (1975): “A Mathematical Theory of Evideh Princeton University Press.

Shanahan, M. P. (1999): “The Event Calculus Expgldinin Artificial Intelligence Today, LNAI no.
1600:409-430, Springer.

Spanoudakis G., Tsigkritis T. (2008):*‘Mersion of Diagnosis Prototype”. Deliverable A4.D5
SERENITY Project, Available from: http://www.sergpi
forum.org/IMG/pdf/A4.D5.1_first_version_of diagnesprototype_v1.1_final.pdf

Tsigkritis T., Spanoudakis G. (2008): “Diagnosingrfime Violations of Security and Dependability
Properties”, Proceedings of 20nternational Conference in Software Engineering &nowledge
Engineering, SA, USA

Tsigkritis T., Spanoudakis G. (2008): “A temporabactive diagnosis process for runtime properties
violations”, ECAI 2008 Workshop on Explanation AwaZomputing

SERENITY - 027587 Version 1.1 Page 51 of 51



