

A5.D2.3 – Patterns and Integration Schemes Language s

(Second Version)
A. Botella, L. Compagna, P. El Khoury, C. Kloukinas , K. Li, A. Maña, A. Muñoz, G.

Pujol, A. Saidane, F. Sanchez-Cid, J. Salvador, D. Serrano, G. Spanoudakis, S. Sinha

Document Number A5.D2.3

Document Title Patterns and Integration Schemes Languages (Second
Version)

Version 1.0

Status Final

Work Package WP 5.2

Deliverable Type Report

Contractual Date of Delivery 31 December 2007

Actual Date of Delivery 15 February 2008

Responsible Unit UMA

Contributors SAP, CUL, UTN

Keyword List

Dissemination level PU

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 2 of 94

Change History

Version Date Status Author (Unit) Description

0.1 09/02/08 Draft Francisco Sanchez-Cid
(UMA)

Added new sections. Document
revised

1.0 13/02/08 Final Francisco Sanchez-Cid

(UMA)

Revised from Quality Check

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 3 of 94

Executive Summary

This document is a precise description of the modelling artefacts used in the description of S&D
Solutions. These artefacts range from S&D Patterns (and Integration Schemes) and S&D Classes to
S&D Implementations. This document describes their conceptual meanings and proposes a
structured language for expressing them, along with an XML-based representation for this
language. The second version of the language, presented in this document, provide the readers with
guidance on how to correctly use the modelling artefacts to describe generic S&D Solutions. Thus,
every field in the artefacts is concisely described, in some cases coming with an example of use.
Finally, with the aim of building an illustrative guide for those novels to the Serenity approach, the
document also introduces some basic concepts of the Serenity Architecture.

This particular release contains some important changes from the Initial Version of the Language. A
briefing of the major additions is listed below:

 There is a new proposal for the analysis and specification of “Pre-conditions”: Section 4.1.2.
presents the structure and the syntax of the preconditions as well as the guidelines for their
creation and later evaluation.

 For the S&D Patterns, it was necessary to formally define the structure and syntax for (i) the
declaration of Operations and (ii) the Class Adaptor. After studying several approaches,
ASL has been selected as the most suitable one. Action Specification Language (ASL) is a
pseudo-language independent of (i) the target platform and (ii) the implementation language.
It is strongly related to xUML, but it can be used independently. It provides a simple way to
define the operations inside the patterns. There is literature about it [2], but nevertheless, a
short description of ASL including the minimum knowledge necessary to codify the
Pattern’s has been created and made available for internal use [1]. Sections 4.3. and 4.3.1.
cover this issue.

 We have introduced the concept of “role” in the S&D Class definition: Two Patterns
belonging to the same Class, can play “different roles” in the application. E.g. Server/Client
role. Section 4.2. deals with this issue.

Some of the concepts already presented in First Version have been clarified:

 The “timestamp” field has been formally defined for the three S&D Artefacts (sections 4.2. ,
4.3. and 4.4.).

 The “Naming Scheme” for the identification of S&D Classes, Patterns and Implementation
is now formalized and standardized (section 4.1.1.).

 The “Creator” field (common to all the three Artefacts) now contains the “Name” of the
creator and the “Date” of creation.

 A “Comments” field has been added to the S&D Artefacts.

 “System Patterns” are now known as “Event Observer Patterns”.

Some elements of the language had a vague definition. New and more detailed descriptions have
been included and, in some cases, new names had been used to avoid confusion:

 There is no “Executable Implementation” now, but “Executable Component”.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 4 of 94

 “Components” of the S&D Patterns are now named as “Parts”.

 Initial Version of the language did not provide a clear distinction between Parameters and
Components (“Parts” from now on). This issue has been addressed in the revision.

 The “Interface Adaptor” is now a “Class Adaptor”, meant to adapt from Class’ Calls to
Patterns’ Operations.

And finally, and as a consequence of the previous changes:

 Section 5. has been carefully revised to include the newly defined fields, to update the name
of some elements here and there, etc… This includes: (i) revising figures/tables containing
XML Schemes and (ii) revising S&D Artefacts defined in XML language.

 The same applies to section 6. , where (i) all tables representing the structure of the S&D
Artefacts have been revised and (ii) the appendix (section Appendix A) now includes full-
revised XML Schemes expressed in XML.

Upcoming versions of the language will include detailed descriptions of the following issues:

 Final definition of Integration Schemes: how to create them. Examples of use.

 Final definition of S&D Implementations: references to the Executable Components.

 Study of possible Post-Conditions.

 Key Features: structure, representation, and use.

 Definition of Global IDs for S&D Artefacts.

 Parameters: specification, data structure, and use.

 Static Tests Performed: evidences, formal proofs, verification of S&D Artefacts Threat
Models considered.

 Trust Mechanisms.

 System Configuration.

 Define a version control system for S&D Artefacts.

 Update of monitoring fields.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 5 of 94

Table of Contents

1. Introduction...7

1.1. Modelling context..7

1.2. Artefacts for modelling S&D Solutions ..8

1.3. SERENITY Runtime Model ...12

1.4. SERENITY Development Time Model ..13

1.5. S&D Patterns and Integration Schemes ..16

1.6. S&D Classes..19

1.7. S&D Implementations...20

2. Conceptual Model...21

3. Architectural Model..23

3.1. SERENITY Library...23

3.2. Architecture Description ...25

3.2.1. Internal Elements ...26

3.2.2. External Elements ..27

4. A Language for Describing S&D Solutions ...28

4.1. Common Considerations ...28

4.1.1. Naming scheme..28

4.1.2. Study of Preconditions ...29

4.1.2.1. Structure and Sintaxis of Preconditions..30

4.1.2.2. Creation and Evaluation of Preconditions ..33

4.2. Detailed description of S&D Classes ..35

4.3. Detailed description of S&D Patterns ...36

4.3.1. Rationale for ASL Adoption..39

4.4. Detailed description of S&D Implementations ...40

4.5. Specifying Monitoring Rules in S&D Patterns ...42

4.5.1 Specification of Monitoring Rules in Event Calculus ...42

5. XML Representation of the language...44

5.1.1. XML Schema for S&D Classes ...44

5.1.2. XML Schema for S&D Patterns ..47

5.1.3. XML Schema for S&D Implementations ..51

5.1.4. XML Schema for Monitoring Rules ..54

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 6 of 94

6. Examples of descriptions..61

6.1.1. Confidential Transmission ...62

6.1.1.1. S&D Class: SimpleTransmissionConfidentiality.iso.org62

6.1.1.2. S&D Pattern: TransmissionConfidentialityByDES_Encryption.iso.org..............63

6.1.1.3. S&D Implementation: UMA_Crypt.gisum.uma.es..66

6.1.1.4. S&D Implementation: TPMDES.infineon.com..66

6.1.2. Confidentiality by DES..68

6.1.2.1. S&D Pattern: ConfidentialityByDES_Encryption.rsa-labs.com68

6.1.2.2. S&D Implementation: CryptoJ_BSafeDES.RSA.com...72

6.2. S&D Patterns expressed in XML: an example..73

6.3. Monitoring rules expressed in XML: an example...75

7. Applying the language..79

7.1. A Pattern for Fair Exchange..79

7.2. Pattern Description Example...82

Appendix A. XML Schemas..84

A.1. XML Schema of S&D Classes..84

A.2. XML Schema of S&D Patterns ...86

A.3. XML Schema of S&D Implementations...89

A.4. XML Schema of EC-Assertion ...90

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 7 of 94

1. Introduction
The modelling and representation of security and dependability solutions (S&D Solutions) is one of
the biggest challenges in SERENITY. This representation is strongly related to the SERENITY
Conceptual Model [3], to the design of the Runtime Architecture and to the Runtime Monitoring
activity. This introduction tries to put it all together by first, presenting the main concepts the user
should get familiar with, then introducing the Serenity modelling artefacts, eventually showing how
these artefacts fit in the Serenity Runtime and Development time architecture.

1.1. Modelling context
Before we start dealing with the artefacts that we will use for modelling S&D Solutions, we must
describe our envisaged scenario and define some basic terms. We must emphasize that our work is
focused on the modelling of S&D Solutions for Ambient Intelligence (AmI) scenarios. In fact, the
new scenarios of Ambient Intelligence, their underlying pervasive technology, and their notion of
mobile services –where the IT environment moulds itself around the user’s needs, raise the bar for
what is a satisfactory security and dependability solution well beyond standard IT security
technology. For this reason we expect our results to be applicable in many other (probably less
demanding) scenarios.

The scenarios of Ambient Intelligence introduce a new computing paradigm and set new challenges
for the design and engineering of secure and dependable systems. In these scenarios the concepts of
system and application as we know them today will disappear, evolving from static architectures
with well-defined pieces of hardware, software, communication links, limits and owners, to
architectures that will be sensitive, adaptive, context-aware and responsive to users’ needs and
habits. We will refer to these architectures as AmI ecosystems. These AmI ecosystems will offer highly
distributed dynamic services in environments that will be heterogeneous, large scale and nomadic,
where computing nodes will be omnipresent and communication infrastructures will be dynamically
assembled. This is the scenario where our work on modelling security and dependability solutions
will be applied. The most important aspects to take into account in this scenario are the highly
distributed nature of the computing model and the combination of heterogeneity, dynamism and
large number of computing and communication elements, controlled by different entities. All these
characteristics make matters worse when it comes to designing and operating the necessary security
mechanisms. For this reason, it is essential that these security mechanisms can adapt themselves to
the ever-changing AmI context. Consequently, our main goal in the modelling of security and
dependability solutions becomes the ability to use the models for automated selection and
adaptation of the security and dependability mechanisms by automated means.

Before we proceed, some terms are defined in order to facilitate subsequent explanations.

 AmI ecosystem: We define an AmI ecosystem as the composition of multiple systems
controlled by multiple authorities (usually the system owner). In particular, this means that
for every system that is part of the ecosystem there is an authority that is responsible for its
security and dependability.

 S&D Authority: Entity that is responsible for the security and dependability of a
system or set of related systems.

 S&D Realm: A set of systems controlled by one S&D Authority is called an S&D Realm.
In practice it is frequent for an authority to control more than one system. This happens for

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 8 of 94

instance in the case of a corporate network composed of multiple computing and
communication devices. We call SERENITY Realm to a SERENITY-enabled S&D Realm.
It is possible for a realm to have nested realms.

 S&D Property: An S&D Property is a quality of a system that enhances its security or
dependability in some way.

 S&D Requirement: An S&D Requirement is the expression of the need for an S&D
Property to hold on a system or part of it.

 S&D Solution: An S&D Solution is defined as a mechanism that is used to realize
some S&D Requirement.

Figure 1 shows a graphical representation of the concepts defined above. It depicts a fictional AmI
environment composed by six realms. S&D Realm 1 is composed by four systems––managed by
S&D Authority 1, and other two realms: S&D Realm 4 and 5 –managed by different authorities.
Considering “Computing Department” as S&D Realm 1, we can think of S&D Realm 4 as a laptop
owned by a lecturer. Although the laptop remains inside the Computing Department, the lecturer is
the one with administrative privileges on his own laptop and, consequently, the lecturer is also the
S&D Authority for what concerns the laptop (i.e. S&D Realm 4). The lecturer –as S&D Authority–,
must comply with the policies imposed by S&D Authority 1, but to any extent the lecturer is the
unique authority with capacity to manage the SERENITY Runtime Framework (SRF) of the S&D
Realm 4.

Figure 1 – Relations between the modelling artefacts

1.2. Artefacts for modelling S&D Solutions
The representation of S&D Solutions in SERENITY is supported by three main artefacts: S&D
Classes, S&D Patterns and S&D Implementations. In this section we will define them, describe
them in detail, and justify their structure and usefulness. Before continuing, the three main concepts
must be introduced:

 S&D Patterns represent abstract S&D solutions. These solutions are well-defined
mechanisms that provide one or more S&D Properties. There is a special type of S&D Pattern
that represents the combination of several S&D Patterns. This type of S&D Patterns is called

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 9 of 94

Integration Schemes. The popular Needham-Schroeder public key protocol is an example of an
S&D solution that can be represented as an S&D Pattern. One important aspect of the
solutions represented as S&D Patterns and Integration Schemes is that they can be statically
analysed using S&D Engineering Tools (in particular, Activities 1, 2 and 3 of the SERENITY
project will produce such tools). However, the limitations of the static analysis tools introduce
the need to support the dynamic validation of the behaviour of the described solutions by
means of monitoring mechanisms.

 S&D Classes represent abstractions of a set of S&D Patterns characterized for providing
the same S&D Properties and complying with a common interface. This artefact is mainly used
at development time by the SERENITY Development Tools, as will be described in section 2. of
this document. An example of an S&D Pattern Class is the Confidentiality Class1, which
defines an interface that includes the SendConfidential(Data, Recipient) abstract method. S&D
Patterns and Integration Schemes that belong to an S&D Class can have different interfaces,
but they must describe how these specific interfaces map into the S&D Class interface. The
way to express this correspondence is sections 4.3. and 4.3.1. later in this document. The main
purpose of introducing this artefact is to facilitate the dynamic substitution of the S&D
mechanisms at runtime. This is a basic pillar behind the idea of the Artefacts: first, select an
abstract definition at development time (i.e. abstract methods from Classes); second, have
several patterns complying to this definition (by means of their Class Adaptor); and third, at
runtime, the patterns will be selectable and interchangeable because (though having different
interfaces) they all comply with the same abstract one. Given that interoperability is a key issue
at this level, with this approach it is possible to create an application bound to S&D Class, as
this artefact defines the high-level interface (i.e. the set of functions, calls, or methods that form
the functionality offered by an artefact).

Thus, given that artefacts in an S&D Library have a reference to the higher level artefact they
belong to, it is always possible to track back from an Executable Component to its S&D Class
in three backward steps maximum. In conclusion, all S&D Patterns (and their respective S&D
Implementations) belonging to an S&D Class will be selectable by the framework at runtime.

 S&D Implementations represent working S&D Solutions. It is important to note that the
expression “working solutions” refers here to any final solution (e.g. component, web service,
library, etc.) that has been implemented and tested. These solutions are made accessible to
applications thanks to the SERENITY Runtime Framework (SRF). The description of either a
specific dynamic library providing encryption services or a web service providing
timestamping services (both including a reference to its corresponding Executable Component),
are examples of S&D Implementations. At this stage, it is important to note that the physical
implementation (either software or hardware) of an S&D Patterns corresponds to an Executable
Component pointed by an S&D Implementation, and not to the S&D Implementation itself. In
fact, an S&D Implementation describes not just an implementation of the S&D Solution, but
describes an implementation of an S&D Pattern. This means that all S&D Implementations of
an S&D Pattern must conform directly to the interface, monitoring capabilities, and any other
characteristic described in the S&D Pattern. However, they may have differences, such as the
specific context conditions that must be met before applying one specific S&D Implementation,

1 This class is described in detail in section 0of this document

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 10 of 94

their performance, target platform, programming language or any other feature not fixed at
pattern’s level.

cmp M odelling artefacts

«speci fication»
S&DImplementation

«speci fication»
S&DPattern

M onitoringRules

InterfaceDefini tion

Parameters

Preconditions

ProvidedPropertyReferencePatternClass

InterfaceAdaptorS&DClassReference

«specification»
S&DClass

ProvidedPropertyReferenceInterfaceDefinition

«speci fication»
S&DProperty

«speci fication»
S&DPropertyRelation

EventCapturing SolutionDescription

S&DPatternReference

Precondi tions ImplementationReference

Implem entationDescription

ExecutableComponent

ImplementationInterface

«real ize»

Target

Source

«real ize»

Figure 2 – Relations between the modelling artefacts

All these artefacts are represented in Figure 2, along with their composing elements and their
interrelations. The rationale for introducing these three artefacts is based on the following reasons:

 S&D Patterns can be verified using the SERENITY S&D Engineering Tools, while S&D
Classes and S&D Implementations cannot. Therefore it is wise to separate their definitions,
since all information referring to the provided properties and the available proofs concern only
the abstract solution (i.e. the S&D Pattern) and not the interface (i.e. S&D Class) or the specific
implementation (i.e. S&D Implementation).

 S&D Patterns are verified by S&D experts (usually by means of formal methods) while the
S&D Implementations are tested by their producers. In opposition to the case of S&D Patterns,

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 11 of 94

which will be frequently produced by people who did not created the S&D Solutions described
in such S&D Patterns, the creators of S&D Implementations will frequently be the creators of
the corresponding Executable Components. Finally, S&D Classes are mainly interface
definitions that are meant to facilitate application development.

 S&D Classes will be defined by entities mainly interested in interoperability (e.g. industry
associations, standardization bodies). S&D Patterns will be produced by independent entities
interested in security and dependability (e.g. S&D Companies and Experts, but maybe
standardization bodies as well). However, patterns will not only enhance security and
dependability, but also interoperability, as all implementations of an S&D Pattern will be
required to conform to the pattern specification. Finally S&D Implementations will be
produced by entities interested in the creation of working solutions (commercial solution
providers, open source communities, etc).

All these definitions, concepts and characteristics of modelling artefacts are revised and extended
from sections 1.5. to 1.7.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 12 of 94

1.3. SERENITY Runtime Model
SERENITY covers all aspects of the lifecycle of S&D Solutions. It addresses both (i) the creation
of new solutions and their characterization as S&D Patterns; and (ii) the description of their real
executable implementations (i.e. Executable Components) as S&D Implementations. In addition,
SERENITY supports the development process of the application assisting developers in the
selection and use the most appropriate solution (pattern) fulfilling their requirements (making it
clear that is their responsibility to take the final decision).

The dynamic selection and use of S&D Implementations according to the requirements and the
context conditions is also part of this model. Thanks to the elicitation of S&D Requirements, S&D
Classes can be found that fulfil them. From S&D Classes, the next step is to make a selection from
the pool of all available Patterns that belong to these Classes. The purpose of this selection is to
discard those Patterns that (despite they belong to a valid Class) are not valid given the
requirements specified by developer. This process is based on the features made explicit in the
Patterns: the developer specifies the key features he is looking for, so the last remaining artefacts
will be those that fulfil both (i) the S&D Requirements and (ii) the features specified by the
developer. From this refined list of artefacts, only those whose preconditions hold can be eventually
selected and in turn, only the S&D Implementations whose preconditions hold can be eventually
deployed. To end with, SERENITY model provides means for monitoring the correct execution of
these implementations, which is necessary because of the interaction with external systems that
might not be under the control of the local S&D Authority. In this section we will concentrate on
the runtime support.

SERENITY anticipates a distributed, dynamic and heterogeneous scenario where systems interact
and collaborate forming spontaneously AmI ecosystems. In our scheme S&D Realms have a
component that is responsible for the enforcement of their security and dependability requirements.
We call these realms SERENITY Realms, and the inner component the SERENITY Runtime
Framework (SRF). To be precise, what SERENITY Realms integrate is an instance of the
SERENITY Runtime Framework. Given the diversity of devices that may have SRF Instances,
these instances must be platform-specific implementations of the generic SRF, some of them
explicitly designed for mobile phones, some others for web servers, and so on. For the sake of
simplification, both the abstract framework and its instances will be referred as SERENITY
Runtime Framework now on.

We must note, however, that it is not mandatory for a system or S&D Realm to contain an SRF
instance. In other words, because the SRF has well-defined interfaces (a Negotiation and a
Monitoring interface, both described in the SERENITY architecture), it is possible for other non
SERENITY-enabled systems to interact with SERENITY Realms. There is at least one SRF
instance in each SERENITY Realm. For simplicity we can work under the assumption that every
SERENITY Realm has one and only one SRF.

Each SRF has an S&D Library composed of the S&D Classes, S&D Patterns and S&D
Implementations that are available in this particular SRF instance. At runtime, the SRF is
responsible for fulfilling S&D Requirements by selecting and using the most appropriate S&D
Implementations. In this sense, we call it activation referring to the complex process of loading,
integrating, initializing and using (including the runtime monitoring of its correct execution) an
S&D Implementation. Once an S&D Implementation is activated, the corresponding Executable
Component is deployed. Thus, the Executable Component must include everything that is needed to
execute the solution, going from the configuration details, to the code for deploying it.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 13 of 94

The S&D Authority of the SERENITY Realm is responsible for defining the S&D Configuration of
the SRF. This configuration includes different aspects, such as preferences, or system-wide S&D
Requirements. This configuration can be considered as the security and dependability policy of the
realm. In any SRF instance, there are two types of active S&D Patterns: on the one hand, “Event
Observer Patterns” are activated as a result of the S&D Configuration; and on the other hand,
“Application Patterns” are activated as a result of the S&D Requirements coming from a specific
application. For a more detailed description of these elements, see Deliverable A6.D3.1.

1.4. SERENITY Development Time Model
SERENITY supports system developers at development time by (i) helping them to express their
S&D Requirements; and (ii) supporting them in the selection and use of S&D Solutions fulfilling
those requirements. Precisely, we have introduced the S&D Class artefact in order to support (ii).

When creating a new system, developers build the models of the system. Later, the analysis of these
models helps them in the elicitation of the S&D Requirements of the system. The most important
questions arise at this point: What are the possible solutions fulfilling the requirements? How
should we deploy them? What are their restrictions and limits? Are they applicable in our
environment? Furthermore, can all the solutions be applied together avoiding the risk of harmful
interactions? These are just a few of the many extremely-hard-to-answer questions they may ask
themselves. By having well-defined and precise descriptions of the possible solutions, especially
covering details such as the applicability, compatibility or the interoperability, developers will be
able to create better systems because they will be able to make informed decisions about the S&D
Solutions that they include in their systems.

But what happens when we do not know the possible problems in advance? What happens if we do
not know in advance how the system will be or will behave? Maybe these questions seem a bit
unrealistic if we focus on traditional systems, but that is precisely the situation in AmI
environments. In this case we need something more. And this something is the ability for
applications developers to delay the decisions about which are the appropriate S&D solutions to use
until the moment when we have enough information to decide correctly. That is, until runtime. Of
course, developers need tools to control and restrict the decisions that will be taken by automated
means at runtime. For the previous reasons SERENITY needs to be extremely flexible in supporting
system developers. The solution we propose is to use three complementary artefacts: S&D Classes,
S&D Patterns, and S&D Implementations.

When system developers identify an S&D Requirement, they can decide to leave the selection of
the actual solution for runtime. In this case they will use a particular S&D Class providing the S&D
Properties that they need in order to fulfil the requirements. S&D Classes fix only the minimum
amount of information for developers in order to proceed with the development of their system. In
particular, S&D Classes contain “the problem” (that is, the S&D Property provided) and a definition
of an interface that must be used by the developers in order to access these services. S&D Classes
do not have a defined behaviour, and therefore they do not need to be proven, validated or verified
by any means.

All S&D Patterns belonging to an S&D Class need to conform to the class interface. However, each
specific S&D Solution, and therefore each specific S&D Pattern, may have a different interface.
This is so because interfaces are strongly related to the details of the solution. Therefore, S&D
Patterns also contain a specification that allows the SRF to map the abstract calls defined in the
S&D Class into the specific calls defined in the S&D Pattern. Thus, the Executable Component can
either rigorously follow this interface when implementing its own functionality, or provide –

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 14 of 94

through its S&D Implementation, a wrapper that maps from the Pattern calls to the Executable
Component functions.

In case developers select an S&D Class to fill the requirements, the SRF will be able to select
among all the S&D Implementations that correspond to all the S&D Patterns that belong to that
class. On the other hand, if developers decide to make the runtime selection process more
restrictive, then they can select an S&D Pattern instead of an S&D Class. This way, although the
S&D Pattern is fixed at development time, developers are still allowing the SRF to dynamically
select among the possible S&D Implementations that point to the selected S&D Pattern. This
selection is based on the information taken from the runtime context. Although not all S&D
Implementations of an S&D Pattern have exactly the same characteristics and applicability, all of
them share exactly the same interface and behaviour.

An S&D Implementation represents a working solution and therefore it contains a reference to the
corresponding Executable Component. While an S&D Implementation is only a formal description
of an implementation, the Executable Component is the actual implementation as an executable
code or entity. There is a one to one relation between S&D Implementations (the descriptions of the
working solutions) and Executable Components (the real working solutions), so that no S&D
Implementation is possible without an Executable Component associated. Therefore, it is also
possible for developers to choose a specific S&D Implementation for their system. In this case the
advantages of dynamism are reduced, but not completely absent. In fact, the SRF will still be able to
monitor the behaviour of the Executable Component corresponding to that S&D Implementation
even if it cannot be changed.

obj ect Object model1

SimpleTransmisionConfidentia lity.iso.org :
S&DClass

ConfidentialityByDES_Encryption.iso.org :S&DPattern
ConfidentialityBySecureChannel.ieee.org :

S&DPattern

NokiaDES :
S&DImplementation

SAPDES :
S&DImplementation

ThalesDES :
S&DImplementation ATCSecureChannel :

S&DImplementation
SetcceSecureChannel :

S&DImplementation

ThalesDES :
ExecutableComponent

SAPDES :
ExecutableComponent

NokiaDES :
ExecutableComponent

ATCSecureChannel :
ExecutableComponent

SetcceSecureChannel :
ExecutableComponent

S&DClass Elements

S&DImplementation Elements

S&DPattern Elements

ExecutableComponent Elements

Figure 3 – Example of related S&D Classes, S&D Patterns and S&D Implementations

Summarizing, the developers have been supported at (i) development time selection of the most
appropriate solution and at (ii) runtime monitoring of the correct operation of the Executable

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 15 of 94

Components. Figure 3 depicts an object diagram showing an example of the relations between S&D
Classes, S&D Patterns, S&D Implementations (and their corresponding Executable Components).

Each SERENITY Framework instance will incorporate an S&D Library composed of different
types of artefacts (S&D Classes, S&D Patterns and S&D Implementations) that will enhance the
correct selection and use of the available working solutions (i.e. Executable Components).

It is important to remark that two S&D Pattern’s instantiating the same S&D Class can play
different roles in a system. For instance, an S&D Pattern for secure transmission over untrusted
networks can play on client or on server sides while the associated functionality is notably different.
Consequently, as the use of the interface depends on the role that an S&D Pattern plays in the
system, it is necessary for each possible role to explicitly describe its functionality. The S&D Class
includes a description of each possible role than can play an S&D Pattern that belongs to that S&D
Class.

The Interface Definition at Class level, clearly distinguish the functionality offered by the different
roles. This info can be extrapolated at Pattern level, using the Class Adaptor. Using it, we know the
Pattern methods that belong to a particular role. As an Executable Components rigorously
implements the interface of the Pattern, the functionality of each the role is perfectly available when
using Executable Components.

id Example of roles' use

Serenity Run-Time Framework 2
(CLIENT ROLE)

Serenity Run-Time Framework 1
(SERVER ROLE)

classA:S&DClass

patternA:S&DPattern

Both SRFs share the same
S&D Pattern, but use
di fferent instances

a1:patternA a2:patternA

ExecutableComponent
A1

ExecutableComponent
A2

implementationA1:
S&DImplementation

implementationA2:
S&DImplementation

Serv er
application

Client application

serverRoleInterface

ServerInterface

cl ientRoleInterface

ClientInterface

The "patternInterface" to
use depends on the role
that patterns plays.

«implements»«implements»

Figure 4 – The S&D Pattern “patternA” plays two different roles in each SRF

Figure 4 shows an example of the S&D Pattern behaviour based on the roles they play in the
system. In our example, two SRFs have their own instance (a1 and a2) of the same S&D Pattern
(patternA). For pattern a1 in SRF 1, the S&D Implementation A1 is applied and the
ExecutableComponent A1 is running under a server role. For pattern a2 in SRF 2, the S&D

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 16 of 94

Implementation A2 is applied and the ExecutableComponent A2 is running under a client role. Thus,
each side in the communication channel is playing a different role: the SRF 1, on the left hand side,
is providing an S&D Solution to a server application while the SRF 2, on the right hand side, is
providing the same S&D Solution to a client application. Following this scheme, both applications
are using the same S&D Solution (represented by the same S&D Pattern), but with sensitively
different functionalities.

Given that each instance of the S&D Pattern is playing a different role, it is necessary to equip the
S&D Pattern with the means to distinguish between the two different functionalities. This feature is
provided by means of the roles’ section. Included in the S&D Class definition and applicable at
development time, it makes it possible the guidance for programmers during the development phase
of Serenity-enabled applications. When an S&D Pattern is selected and then applied, the
appropriate role is selected.

This roles’ section shows explicitly, in the S&D Class definition, what functions are available for
each role identified. For example, the use of certain functionality may not be necessary for one role,
while it may be strictly necessary for another one. Moreover, given two roles that share some
function calls (e.g. both encrypt/descript the information using the same call in the S&D Pattern),
the sequence of those actions depends on the side of the communication channel where the S&D
Pattern is being used.

In absence of an explicit role’s section, developers had to “manually” separate the functionality
associated to the role of interest, and apply the corresponding calls on their own discretion.
Basically, this means that without the roles’ section, we would have to use the pattern’s interface as
we use, for instance, a Java Lib: we read the documentation, and then we learn which Class and
Functions to apply for my “hello world” application.

1.5. S&D Patterns and Integration Schemes
S&D Patterns are detailed descriptions of abstract S&D Solutions. These descriptions must contain
all the information necessary for the selection, instantiation and adaptation, and dynamic application
of the solution represented in the S&D Pattern. Just as one S&D Solution provides one or more
properties, also one S&D Pattern refers to one or more S&D Properties.

A special type of S&D Pattern is called Integration Scheme. An Integration Scheme is an S&D
Pattern that describes a complex S&D Solution. While S&D Patterns are independent or atomic
descriptions of S&D Solutions, Integration Schemes describe solutions for complex S&D
Requirements achieved by the combination of some S&D Solutions.

Note that the difference rests on the description, not on the solution itself. Therefore a complex
S&D Solution can be represented as an S&D Pattern if it is described in an atomic or independent
way (i.e. it does not refer to other descriptions). On the other hand, if we describe the same solution
by making references to the S&D Patterns that are combined to achieve the complex property, or
combination of properties, then we are representing the solution as an Integration Scheme.

In general, Integration Schemes are more difficult to analyse and to model, but in return they are
more flexible and have better properties regarding the dynamic application. Let us consider the
following example: one solution that provides Attestation Identification keys using a TPM. An
S&D Pattern would require a TPM module as a precondition. Otherwise, the solution would be not
applicable. On the other hand, an Integration Scheme representing the same solution would have no
preconditions: it will combine both the Pattern for creating the Attestation Identification Keys and
the Pattern for accessing and managing the TPM module. In this example, the main difference rests

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 17 of 94

in the preconditions: while the S&D Pattern has the TPM as a precondition, the Integration Scheme
has no precondition, given that it provides the TPM by itself.

From the point of view of the SRF, an Integration Schemes plays the role of an application. This is
to say that once the Integration Scheme has been activated and deployed, it acts as an application,
asking the SRF for the activation of the S&D Patterns needed. Figure 5 shows the sequence of
activation of an Integration Scheme:

sd Activating an IS

App_A: App SRF_A: App

IS_A: App

PatternX:App

PatternY:App

req(artefact_1)

set:= select_and_order(artefact_1)

boolean:= eval_precond(set.first())

activate(set.first())

return(IS_A.handler)

IS_A.start

req(artefact_2, artefact 3)

set:= select_and_order(artefact_2)

boolean:= eval_precond(artefact_2)

set:=select_and_order(artefact3)

boolean:= eval_precond(artefact3)

return(artefact_2.handler, artefact3.handler)

function(param)

function1(param1)

function2(param2)

Figure 5 – Activating an Integration Scheme

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 18 of 94

In the example, “App_A” request the SRF “artefact_1”. The SRF creates a list of the possible
Patterns belonging to this artefact, extracts the first of them, and then evaluates its preconditions. At
this point, it is important to remark that the SRF must check the preconditions of the S&D Pattern
and, in case they hold, check the preconditions of the selected S&D Implementation. If both hold,
then, the corresponding Executable Component can be deployed and its handler put at “App_A”
disposal.

In the example, the first Pattern of the list is applicable and it turns to be an Integration Scheme.
The IS is activated (named as “IS_A”) and the SRF returns the IS handler to “App_A” (message
“ return(IS_A.handler)”). As stated before, now that the IS has been activated, it starts acting as an
application, both for being accessed from “App_A” and to access the SRF by its own.

Now that application “App_A” has fully access to the IS functionality, it calls the IS to start
(message “IS_A.start()”). The IS must activate its Patterns, so it asks the SRF for a couple of
artefacts to be activated and deployed: “artefact_2” and “artefact_3”. When the process of selecting
and activating the artefacts is finished, the SRF comes back to “IS_A” with the handlers of the
Executable Components of “artefact_2” and “artefact_3”, respectively. Now the IS accesses these
artefacts using “artefact_2.handler” and “artefact_3.handler”.

Eventually, the definitions for the previous concepts state as follows:

S&D Pattern: A self-contained description of an S&D Solution, meaning that it does not refer to
(or depends on) other S&D Solutions.

Integration Scheme: A description of a composed S&D Solution that refers to (or depends on)
other S&D Solutions. In some cases, Integration Schemes will be used to represent ways of
correctly combining S&D Solutions with the objective of avoiding that they badly interfere.

The description of the S&D Pattern contains many different elements. The most important are:

S&D Pattern: A self-contained description of an S&D Solution, meaning that it does not refer to
(or depends on) other S&D Solutions.

Integration Scheme: A description of a composed S&D Solution that refers to (or depends on)
other S&D Solutions. In some cases, Integration Schemes will be used to represent ways of
correctly combining S&D Solutions with the objective of avoiding that they badly interfere.

The description of the S&D Pattern contains many different elements. The most important are:

 ProvidedProperties. This element is used to point to the descriptions of the S&D Properties
provided by the S&D Pattern. One S&D Pattern can provide one or more properties. It is
natural for one Pattern to provide several Properties, given that the Pattern can belong to
more than one Class.

 Preconditions. Every S&D Pattern represents a specific S&D Solution. For this reason, we
assume that they are not universally applicable. This element contains the specification of
the conditions under which the S&D Pattern is able to provide the mentioned properties.

 MonitoringRules. Because S&D Patterns are not expected to represent perfect solutions, and
because the solutions will frequently depend on the behaviour of external components that
will not be under our control, the solution must be monitored during its execution in order to
guarantee that it works correctly. This element contains instructions for an external
monitoring mechanism to perform this activity. We assume that every solution is
responsible for capturing the events that are necessary for monitoring it. Therefore, this
element declares this events and how to capture them.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 19 of 94

 Parameters. This element allows us to build more generic solutions. Parameters (for
instance, the length of the keys in an encryption algorithm) can change without affecting the
general behaviour of the solution. They can always be represented by a 2-tuple with a name
and a value.

 PartDescription. Sometimes a solution makes use of external elements that can be replaced,
but that need to comply with some conditions. Parts (for instance, a camera in a surveillance
system) are a special type of parameters that represent working parts of the solution. They
can be replaced as long as the new Part conforms to the conditions expressed in this
element. A Part, in contrast to a simple parameter, does not represent a single value, but a
component that: (i) is a piece of the solution and (ii) have an associated behaviour and
specific characteristics.

 Tests Performed. Every S&D Pattern represents a proven solution. Therefore, this element is
used to specify the proofs that have been applied in order to claim that the pattern
description is sound.

 SolutionDescription. This element is used to represent the solution.

 InterfaceDefinition. This element describes the native interface of the S&D Solution
described by the S&D Pattern. More specifically, it allows to: (i) adapt the native interface
coming from the Class to the interface of the S&D Solution and (ii) precisely describing the
interface of the S&D Solution.

 PatternClass. This element represents references to the classes where the pattern belongs. It
is divided into two components: an S&DClassReference is the reference itself; and a Class
Adaptor is the description of the adaptation of the pattern interface in order to conform to
the class interface.

1.6. S&D Classes
S&D Classes are introduced to solve the need of system developers of knowing at development
time the way to access the services related to the desired S&D Property, while maintaining the
maximum flexibility in the dynamic selection of the specific S&D Solution (in this case S&D
Implementation).

An application developer needs a minimum amount of information about the S&D Solutions (in the
form of S&D Implementations) that will be used to fulfil its S&D Requirements. Therefore, this
artefact is designed to provide this minimum amount of information, while maximizing the
flexibility and the number of possible solutions that can be selected and applied at runtime.

The description of an S&D Class contains:

 ProvidedProperties. This element points to the descriptions of the S&D Properties provided
by the S&D Patterns that belong to this S&D Class. Note that the S&D Class does not
provide properties. One S&D Class can point to one or more properties.

 InterfaceDefinition. This element describes the native interface of the S&D Class. This
interface must be designed in order to be simple and generic enough for many solutions to
be able to comply with it.

 Roles’ definition. The previous interface, which defines a set of available operations, is
refined into one or several sequences of operations. Each sequence is defined for the
different roles that an S&D Class can play when refined as an S&D Pattern. The benefit of

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 20 of 94

this distinction is straigthforward. Let us consider a Pattern providing Confidential
Transmision. All functionality is already defined. Now consider a sender and a receptor
using that Pattern. Both are using the same functionality, but in a different way. While one
encrypts, the other decrypts. Each side (that is, each role) must have a clear vision of its
functionality defined first at Class level, and then refined at Pattern level.

1.7. S&D Implementations
S&D Implementations describe executable mechanisms that conform to an S&D Pattern. In other
words, and S&D Implementation precisely depicts an implementation of the S&D Pattern, and not
the abstract S&D Solution represented by the pattern. The description of an S&D Implementation
includes:

 ImplementationDescription. This element is used to represent the implementation details.

 ImplementationReference. This element points to the actual Executable Component.

 Preconditions. Frequently, an implementation will have some specific preconditions that
join the pattern preconditions making more restrictive (but also more precise) the process of
selecting the most suitable implementation.

 S&DPatternReference. This element is a reference to the pattern that the S&D
Implementation implements.

We must highlight that there is no specification of the S&D Implementation interface because all
S&D Implementations of a given S&D Pattern must have exactly the same interface that the pattern
has.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 21 of 94

2. Conceptual Model
The objective of this section is to formally represent the conceptual elements that are used in
SERENITY. For the Use Case view, the reader can refer section 2.2 from the previous version of
the deliverable [4].

The following class diagram shows the different conceptual elements that are used in SERENITY
as well as their relations.

We can observe that S&D Patterns and Integration Schemes (S&DPatterns in Figure 6) refer to
solutions (S&DSolutions) and contain the semantics (S&DSolutionSemantics) that describe such
solution. The semantics are described in terms of the semantics (S&DPropertySemantics) of the
particular properties (S&DProperty) provided by the solution. Solutions (S&DSolutions) can be
monitored by the monitor service (MonitorService). Solutions Semantics provide a monitoring
specification (MonitoringSpecification) that describes politics and events involved in monitoring
tasks. Solutions (S&DSolutions) may have different implementations (S&DImplementations).

class Logical Model

S&DPattern

S&DProperty

S&DPropertySemantics

S&DSolution

S&DSolutionSemantics

S&DConfiguration

MonitoringSpeci fication

S&DConfigurationElement

SystemElement

PartSemantics

S&DImplementation

ExecutableComponent

S&DClass

ClassInterface

PatternInterface

ImplementationInterface

Patterns defini tion related enti ties

Moni toring related enti ties

Implementation enti ties

Semantic elements

SRF Instance enti ties

EventCapturer

MonitorService

Realworld enti ties

S&DLibraryCerti fiedS&DPattern

PatternCerti ficate

Part

EnforcedFor

1..*

RefersT o

Provides

Implements

*

BelongsT o

*

*

DescribedBy

1..*

Provides

* 1..*

*

* RelatedTo

*

*

DescribedBy

*

DescribedInT ermsOf

*

*

DescribedBy

*

1..*

*

Moni tors

1..* *

Certifies

Ful fi l l ledBy

Defines

Com pl ies

Real izes

RefersTo

Provides

0..*

Checks

*

Moni torableBy

*

Figure 6 – Logical model

An S&D Implementation is a description of an implementation that fits a solution. An
ExecutableComponent is a tangible element (e.g. a software application or a cryptography library)
that supplies a particular implementation. Different S&D Implementations for the same solution are
the result of having a number of solutions for the same problem but fitting different context
conditions or requirements. Each ExecutableComponent provides a particular Interface

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 22 of 94

(ImplementationInterface). ImplementationInterfaces must realize the whole PatternInterface.
PatternInterface helps to maintain similar (but not equal) interfaces for all ExecutableComponent.
For monitoring purposes ExecutableComponents provide EventCapturers. Serenity Framework will
use the S&D Implementation in order to choose the correct one among all the possible
implementations of a specific pattern. The description of a pattern should be a more general
definition than implementation description is.

S&D Patterns and Integrations Schemes are certified by a special type of digital certificate
(PatternCertificate). The library of S&D Artefacs (S&DLibrary) is composed of S&D Patterns and
Integration Schemes that hold a certificate, the so-called certified patterns (CertifiedS&DPattern).

S&D Patterns provide interfaces (PatternInterfaces) that are used by Serenity Runtime Framework
in order to establish the criteria for pattern’s use. All implementations (S&DImplementations) of a
pattern must comply with the interface of the implemented pattern. It is possible to have more than
one implementation for each pattern. S&D Classes also provide interfaces, named as
ClassInterfaces. ClassInterfaces are not the same than PatternInterfaces, given that PatternInterfaces
must comply with the ClassInterfaces definition. S&DClasses are used to group a set of
S&DPatterns. All patterns that define the same interface come under the same umbrella: an
S&DClass. At some extent, the concept of S&DClass is close to the concept of class in orient object
programming.

Finally, users define the security and dependability requirements (S&DConfiguration) for their
systems, grouping a set of specific requirements (S&DConfigurationElement). Each specific
requirement is specified by means of a set of properties (S&DProperty) that must be enforced for a
particular element of the system (SystemElement). All this elements are shown in Figure 6.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 23 of 94

3. Architectural Model
The aim of this section is to depict and describe the components of the architectural view of
SERENITY, as well as the relations established among them. As every single SERENITY-aware
device will run this multifaceted architecture, it is important to underline the main components,
their role, and criticalness in the whole process of securing a device. Among all the components,
one of them rises as the core one since it holds the knowledge and the experience of security experts
in form of S&D Patterns: the SERENITY library. This component is described in section 3.1. , just
before the description of the whole picture given in section 3.2. .

3.1. SERENITY Library
SERENITY Library is the result of the effort to represent, in a general and machine-readable
format, the solutions developed by security experts for a wide range of security problems. It
contains patterns that describe, at different levels of abstraction, security solutions that solve
specific security problems. However, the patterns not only hold the description of the solution but
also how to use it, the conditions needed for its application and how to monitor the correctness of
the process.

Obviously, from an AmI point of view, every single device has different security needs and is
surrounded by a different working context that obligates SERENITY to instantiate the library for
every particular situation. Given an instance offering concrete solutions, the correctness for the
concrete device and problems is assured; however, this correctness can not be assured in the event
of a change in the application context. As some of the applied solutions can be no longer valid in
the new context conditions, the library offers the channel for SERENITY Framework to
dynamically react and update/change the existing solutions in order to fit with the new applicability
conditions. For the time being, if some change arises in the context that makes a solution no longer
valid, this solution is deactivated. Then, a search process starts that looks for the most suitable
solution from those available and, if found, activates it.

Today devices offer a variety of internally complex but, on the other hand, easy-to-use applications
coming with different hardware/system requirements. In AmI context, applications will also come
along with security requirements expressed by means of security properties to provide in order to
safely achieve the intended functionality. At this stage we can use the information we usually get
from the manufacturer; for instance, an example of these requirements might go like: “the use of my
brand-new chat application is fully secure when used among ACME devices, but no confidentiality
is assured if any of the parties in chat is not using an ACME device”. This assertion makes clear
that in case you really need confidentiality, some further functionality has to be added to the
original application. However, frequently at this point the developer has not enough information to
select the most appropriate S&D Solution. Therefore, the developer takes the final decision, assisted
by the SDF (Serenity Development Framework) using generic solutions to their requirements,
represented by S&D Classes.

S&D Classes are abstract classes that group several S&D Patterns with one common trait: all of
them offer a solution for the problem specified in an S&D Class. Reasoning the previous example,
the S&D Class to look for is the one talking about the problem of confidentiality when
communicating two principals. Obviously, a number of solutions –each one with some peculiarities,
advantages and drawbacks, have been offered in the literature to provide this property. For each one

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 24 of 94

of these solutions, an S&D Pattern is the appropriate artefact to represent and describe them in a
machine-readable way.

As a solution for a concrete problem, an S&D Pattern refers to an S&D Class. As several solutions
can be proposed for the same problem, several S&D Patterns can refer to the same S&D Class. In
this way we can symbolize SSL and TLS as different but appropriate solutions for the problem of
confidentiality. Apart from the reference to the abstract class, each S&D Pattern includes
information about the context in which it can be applied, a description of the solution, and some
useful information about monitoring that can be used to monitor the execution of the pattern during
its lifetime. Figure 7 represents all the elements described in this section as part of the SERENITY
Library.

SERENITY Library

Library of S&D Implementations

...

S&D Classes

S&D
Class 1

S&D
Class 2

S&D
Class N

...

S&D Patterns

...

S&D Pattern1 S&D Pattern2 S&D Pattern N

inherits inherits

Executable Component

SmartCard

J(.class)

C#
Ada

TPM

(.php)

Implements

Implements

Implements

S&D

Impl 1

S&D

Impl 6

S&D

Impl 4 S&D

Impl 5

S&D

Impl 3

S&D

Impl 2

Legend:

S&D
Class

S&D

Pattern

Implementation

S&D

Implementation

Figure 7 – Representation of SERENITY Library

Not only each problem can have different solutions but also each solution may have different
implementations. As a mere example, SSL or TLS describe a protocol that has different
implementations depending on the provider (e.g. OpenSSL from BSD and JSSE from Java are just
two of the most popular implementations of SSL).

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 25 of 94

For each available implementation, a different S&D Implementation document is included in the
library, describing: the specific system requirements, the necessary interface to use when calling the
implementation, and the location of the Executable Component. Each S&D Implementation refers to
one concrete implementation –its own Executable Component, so that once a solution is selected by
the framework, a handler for that component is made available for the application. A solution can
be not only a software solution but also include hardware elements such as a TPM (Trusted
Platform Module) or a SmartCard. In any case, it makes no difference from the application point of
view. For instance, if the Executable Component works with a TPM, the SRF will return to the
application not a direct link to the TMP, but rather the handler of the driver that manages the TPM.

In our discussion, the path from the problem to the concrete solution is the path that goes through
the library and includes the S&D Class for confidentiality, the S&D Pattern offering SSL for secure
communications, and the S&D Implementation describing the interface and the specific mechanisms
of the concrete Executable Component, such as OpenSSL. Finally, once a pattern is found and
selected as the most suitable one, it is activated (included among the Active Patterns) and used by
the Serenity Framework. From an architectural point of view, a pattern coming from the S&D
Library and subsequently activated is known as an Application Pattern. The concept of Active
Pattern and Application Pattern will be more extendedly described in next section.

3.2. Architecture Description
As the S&D Library represents the static knowledge extracted from security experts, the
architecture as a whole represents the dynamic reasoning that takes the knowledge and makes it
available to the final user/application. Figure 8 depicts the main architectural elements as well as the
interactions among them.

Figure 8 – Main elements of the SERENITY Architecture

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 26 of 94

3.2.1. Internal Elements
Along with the S&D Library –described in the previous section, the Serenity Framework is the
other basic pillar of the architecture embedded inside a Serenity Enabled Device. The framework is
composed of three elements, namely:

 S&D Manager: this is the core of the framework. Among other duties, it has to (i) manage
all the parameters concerning the user configuration; (ii) deal with the patterns specifically
designed for the device (embedded patterns installed independently of the applications
running on top); and (iii) interact with the S&D Library, the applications running on the
device, and the Monitoring Service. Inside the S&D Manager, two artefacts coexist:

• Active Patterns: it contains the set of Patterns already working in the system, along with
data about the date of activation, the foresee date of deactivation, the application that is
using the Pattern, and so on.

• S&D Framework Configuration: in order to grant some flexibility to the user, some
degree of configuration is permitted. For instance, taking into account that the monitoring
service may consume resources from the device (possibly degrading the performance),
the user may prefer to switch off the monitoring of certain rules in specific contexts. E.g.
if the user considers that the office environment is sure enough to trust on the underlying
connection, some monitoring mechanisms can be obviated.

 Serenity Console: this element acts as the man-in-the-middle between the Serenity
Framework and the user. The information that flows between both parties is bidirectional.
On one side, whenever the user has to deal with the framework configuration and specify
some preference or configuration parameter, the information is retrieved through the console
and sent to the S&D Framework Configuration element. On the other side, whenever the
framework has to send some warning or indicate some relevant event to the user, the
information is presented throughout the console. For instance, if one of the solutions is no
longer valid due to an unforeseen change in the context, apart from starting a series of
reactions, the user is alerted of the incident and some of the subsequent decisions will
depend on his elections. All this input/output process is made by means of the Serenity
Console.

 Event Interpreter: it receives all the low level events generated by the patterns (i.e. the
implementation of the patterns). The Monitoring Service should receive these events from
the Framework in order to analyse them and send the monitoring results back. However, the
Monitoring Service is not well suited for low level events, so that the Serenity Framework
offers this interpreter in order to translate them into abstract events, appropriate for the
service to check them against the monitoring rules.

Some devices come with specific security needs that have nothing to do with the application layer
but with the underlying hardware, OS or the environment in which the device is used. We can not
rely on the availability of third party applications to capture and monitor some relevant information
such as the connection to a trusted/untrusted network. For instance, we can not assume the existence
of an application running on every smart phone able to monitor whether the device is connected to a
European GSM network or an American CDMA network. This environment-related information
has some important security implications that can change the assumptions made on the basis of the
external context. These assumptions are basic for the definition and later evaluation of Artefacts’
Preconditions and consequently, if these assumptions vary, the applicability of the existing patterns

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 27 of 94

should be revised. In this sense, the SRF provides a set of Event Observer Patterns to cover these
relevant events that are not covered by the general-purpose, application-specific Patterns.

The S&D Library contains all the artefacts made available for the SRF, while the Active Patterns is
a list of the Patterns already active. For each active Pattern, there is an Executable Component that
has been installed and deployed. In order for the application to use the Executable Components,
they need the handler that points to them. This handler is available in the Active Patterns list, and it
can point either to a web service, a programming module, and applet, and so on, making it
transparent for the application. There is no restriction regarding the implementation mechanism, as
far as it is in accordance with the interface and the functionality described in the corresponding
S&D Implementation document. Consequently, the language and the technology used in each
implementation may be different from the others.

As every implementation has a well-defined interface, applications running in the device make use
of them by means of simple calls, following the same fashion used in Web Services technology.
The Serenity Framework is the one in charge of informing the applications about the interface they
have to use as well as the correct sequence of steps to follow when using the interface. Apart from
that, the Serenity Framework keeps information about the context to ensure the correctness and
validity of the implementations that are in use. If any of the patterns (and thereby the corresponding
implementation) is not valid in a new context, the application is informed and the framework
provides a new solution (if applicable) or a warning message for the user if no solution is available
at the moment. As stated in previous paragraphs, any communication to or from the user is
conducted through the Serenity Console.

3.2.2. External Elements
All the elements described above are integrated in the user device, namely: S&D Library –where
the knowledge in security is stored; Serenity Framework –where this knowledge is analysed and put
at applications’ disposal; the Executable Component –offering the functionality formally described
in the patterns; and finally the applications that takes advantages of the whole infrastructure.

Nevertheless, in order to fully understand the performance of the Serenity Architecture it is
necessary to add one new element, peripheral to the user’s device: the Monitoring Service. When an
S&D Pattern is activated, particular monitoring information included in the pattern specification is
sent to the Monitoring Service. This information, sent from the Active Patterns artefact, includes:
what to monitor –in form of abstract events, and how to monitor it –in form of monitoring rules.

A rule is part of a monitor and is used to detect certain events that relate to the values of a monitor.
In case of a ping monitor, used to test whether a particular host is reachable across an IP network,
the rule states the predefined critical value of the response time. If this critical value is exceeded,
action is required. There are plenty of situations where this can be applied. For instance, a web
server having access problems can be easily detected this way without constant surveillance. When
the critical value for the response time is exceeded, an alert will be displayed.

Without detailed knowledge of how to use a rule, it is quite difficult to specify a rule properly. That
is the reason why all this knowledge is embedded in the pattern specification and sent to the
monitoring service when required. As soon as the rules are triggered, the following actions can be
defined: popup message, e-mail message, pager/SMS, log event, execute command line, SNMP
trap, start/stop services, terminate process, and shutdown the device. In any case all these reactions
are sent from the Monitoring Service and received by the S&D Manager, who redirects the message
to the Serenity Console in order for the user to get informed.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 28 of 94

4. A Language for Describing S&D Solutions
In this section the reader will find a precise description of the elements that internally compose the
different S&D Artefacts, as well as a set of considerations common to all the three S&D Artefacs.

4.1. Common Considerations

4.1.1. Naming scheme
In order to standardize the naming method for the modelling artefacts we define a simple syntax
similar to the URL syntax for Internet protocols. Already described in the document, three are the
artefacts present in SERENITY architecture: S&D Classes, S&D Patterns and S&D
Implementations. In all the three cases, the naming scheme states as follows:

<artefactName>.<issuerName>

,where each element follows Backus Naur Form (BNF[4]) notation, defined as follows (Table 1):

artefactName = alphadigit | alphadigit *[alphadigit | "-" | "_"] alphadigit

issuerName = 1*[domainlabel "."] toplabel

domainlabel = alphadigit | alphadigit *[alphadigit | "-" | "_"] alphadigit

toplabel = alpha | alpha *[alphadigit | "-" | "_"] alphadigit

alpha = lowalpha | hialpha

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |"8" | "9"

alphadigit = alpha | digit

lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" |
 "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" |
 "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" |
 "y" | "z"

hialpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |
 "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |
 "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"

Table 1 – Name Scheme in BNF notation

Note that in this BNF notation the character "|" is used to designate alternatives, and brackets [] are
used to indicate optional or repeated elements. Some other considerations are: literals are quoted
with "" ; optional elements are enclosed in brackets [] , and elements may be preceded with <n>* to
designate n or more repetitions of the element that follows; n defaults to 0 (see RFC 1738 for more
details).
Some examples are defined below (Table 2) in order to facilitate the understanding of the notation:

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 29 of 94

Class Name = SimpleTransmissionConfidentiality.iso.org
<artefactName> = SimpleTransmissionConfidentiality

<issuerName> = iso.org
domainlabel = iso

toplabel = Org

Pattern Name = ConfidentialityByDES_Encryption.rsa-labs.com
<artefactName> = ConfidentialityByDES_Encryption

<issuerName> = rsa-labs.com
domainlabel = rsa-labs

toplabel = com

Implementation Name = CryptoJ_BSafeDES.rsa.com

<artefactName> = CryptoJ_BSafeDES
<issuerName> = rsa.com
domainlabel = rsa

toplabel = com

Table 2 – Examples of use of the naming scheme

4.1.2. Study of Preconditions
Preconditions are classified depending on the check process performed, falling into two different
categories: SRF context preconditions and External preconditions.

SRF context preconditions. This group includes all preconditions related to the information
collected by the Context Manager of the SRF. Therefore, the basic facts and events related with
these preconditions are observed and captured by the SRF. In particular, it deals with
information related to the following elements:

 Pattern History: During the lifetime of an SRF instance, artefacts are deployed, activated
and deactivated as the context and the S&D requirements evolve. The Context Manager
records the information relative to these activations and deactivations of S&D
Implementations, along with additional information like the parameters used, the reason for
deactivation, etc. In particular, it keeps track of S&D Implementations that are currently
active, including the applications that are using it. Thanks to this information we can, for
instance, check the preconditions of a particular artefact that is incompatible with some
specific artefact. In some other case, an artefact is not applicable unless one particular
pattern had been applied before. Both cases require the specification of preconditions that
refer to the Pattern History.

 Event history: This element of the Context Manager stores the list of relevant events
occurred in the past under the supervision of the SRF. These events can refer to a wide
variety of incidents or circumstances, and are of great use when expressing the pattern
preconditions. For instance, a precondition may ask for an implementation of that pattern
not been deactivated in the past as a result of an attack.

 SRF Configuration elements. The SRF Configuration is also stored in the SRF Context
Manager. This is probably the most heterogeneous part of the Context Manager, because it
is highly dependent on the specific characteristics of the SRF instance considered. It stores
information about the Operating System, the type of platform of the device, and so on. In
general, the SRF Configuration is not very relevant at the level of S&D Pattern’s

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 30 of 94

preconditions, but it is of great use when defining the preconditions of S&D
Implementations. One configuration element can be named as “SRF.library.is_dynamic”,
which defines whether it is allowed for the SRF to download and install new S&D Solutions
in the library on demand at runtime.

External preconditions. This group includes all preconditions that refer to aspects that are not
under the direct control of the SRF. The basic facts for these conditions are not known by the
framework; otherwise these would become SRF context preconditions. Typical examples of this
category are those solutions that rely on some hardware element that must be present (or active)
in the system (e.g. “the TMP device must be active”). Other example might be a pattern
requiring a wired connection along with a battery charge not under 30%.

4.1.2.1. Structure and Sintaxis of Preconditions

As suggested in previopus paragraphs, preconditions are expressed both for S&D Patterns and for
S&D Implementations. In the former case, preconditions include queries on the Pattern History, the
Event History and the events recorded for the external preconditions. In the later case, preconditions
are far more focussed on implementation and target system details, so that most of the queries target
the SRF Configuration elements.

In both cases, Xquery [6] is the language proposed to elicit the Preconditions. XQuery is a query
language developed by W3C and used (in short) for XML information retrieval. It relies on XPath
and XML Schema Datatypes for finding and extracting elements and attributes from XML
documents. Under the scope of the language of preconditions, XQuery is used to query the SRF
database and extract the information of the events that must be checked prior to the deployment of
an S&D Artefact.

Let us consider the following example: an S&D Pattern called SecCript is selected to achieve secure
encryption in my system. This solution needs to interact with a TPM. This TMP is controled by a
Pattern called TMPManager, so previous to the application of SecCript, it asks for the
TMPManager to be active. Otherwise, SecCript will not be applicable. As stated before, the SRF
stores the information about the active Patterns inside the Context Manager in a table called Active
Patterns List. The following aims to be an illustrative example of a possible instance of
ActivePatternsList table, filled with fictional data:

Table 3 – Example of ActivePatternList tuple

 <activepatternslist>

 <execComponentId>0</execComponentId>

 <SDpattern>TPMManager</SDpattern>

 <SDImplementation>implementation_sample</SDImplementation>

 <activationDate>2008-01-30</activationDate>

 <activationTime>13:00:00</activationTime>

 <deactivationDate>2008-08-01</deactivationDate>

 <deactivationTime>00:00:00</deactivationTime>

 <handler>http://url_sample.com</handler>

 <isActive>true</isActive>

 </activepatternslist>

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 31 of 94

Important elements in previous example tuple are <SDpattern>TPMManager</SDpattern> where the
Pattern ID is stored, and <isActive>true</isActive> where the value remains true if the Pattern is active
and false otherwise.

The precondition in SecCript would include a simple XQuery like the one below, where the query
accesses the ActivePatternList table and looks for a tuple in which SDPattern column has the value
“TPMManager” and the isActive column containing the value “true”. The XQuery returns whether
a tuple like this exists or not (i.e. true or false):

Table 4 – Xquery example

If the XQuery is executed against the example Context Manager, it would answer “true”, returning
the following structure:

Table 5 – Xquery result example

The previous example was a simple precondition, since it launched a query on a single tuple of the
ActivePatternList table. Thus, all the logic operators for the precondition where located in the “let”
statement.

Now, let us suppose that in addition to the need of having “TPMManager” active, our Pattern is
incompatible with the “SuperSecCript” Pattern, launched by an industry competitor. The
preconditions would go like this:

Table 6 – Xquery example: two simple preconditions

xquery version "1.0" encoding "UTF-8";

for
 $w in //contextmanager
let
 $prec1 := $w/activepatternslist/SDpattern='TPMManager' and $w/activepatternslist/isActive='true'
return
 <result>
 {$prec1}
 </result>

<result>

true

</result>

for
 $w in //contextmanager,
 $r in //contextmanager
let
 $prec1 := $w/activepatternslist/SDpattern='TPMManager' and $w/activepatternslist/isActive='true',
 $prec2 := $w/activepatternslist/SDpattern='SuperSecCript'
return
 <result>
 {$prec1 and not($prec2)}
 </result>

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 32 of 94

In this particular case, some additional logics appear in the “return” statement. That is because the
final precondition is in fact the logical and of two simple preconditions: the first one asking for
“TPMManager”; and the second one asking for the absence of “SuperSecCript”.

We can even go one step futher and make the precondition as logically complex as it is needed. Let
us consider the table “EventsHistory”, in which the SRF stores the events that are being monitored,
such as the availability of network conection, the low battery charge, and so on. This information is
represented as shown below (Table 7):

Table 7– Example of EventsHistory tuple

For instance, the following precondition joins three simple preconditions into a single expression:

Table 8– Xquery example: three preconditions

In the particular case depicted in Table 8, we can appreciate three preconditions expressed as
follows:

$prec1 := $w/eventshistory/eventId= lowBatteryCharge and $w/eventshistory/execComponentId= batteryObserver,

Here, we ask for an event called “lowBatteryCharge” that has been produced by the Executable
Component called “batteryObserver”. Then, we ask for event “2” and event “3” iff it has not been
produced by Executable Component “29”. Finally, we logically join these single preconditions in a
common formula:

{(not($prec1) and $prec3) or not($prec2)}

This formula will be true if precondition 2 does not hold, or if precondition 3 holds and
precondition 1 does not.

To summarize with:

 Each single precondition is expressed in the “let” statement.

 Two or more preconditions can be combined in the “return” statement using the logic
operators considered in XQuery, namely: AND, OR, and NOT, in their usual meaning.

for
$w in //contextmanager,
$t in //contextmanager,
$u in //contextmanager

let
$prec1 := $w/eventshistory/eventId= lowBatteryCharge and $w/eventshistory/execComponentId= batteryObserver,
$prec2 := $u/eventshistory/eventId=2
$prec3 := $t/eventshistory/eventId=3 and not($t/eventshistory/execComponentId=29)

return
<result>

{(not($prec1) and $prec2) or not($prec3)}

</result>

 <eventshistory>
 <eventId>lowBatteryCharge</eventId>
 <execComponentId>batteryMonitor</execComponentId>
 <ruleId>R1</ruleId>
 <violationDate>2008-02-04 15:08:53</violationDate>
 <meaning>The battery charge of the device is below 30%</meaning>

 </eventshistory>

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 33 of 94

Valid examples of combining simple preconditions are:

((Precond. and Precond.) and Precond.)

(Not (Precond.))

((Precond. or Precond.) or (Precond. and Precond.))

(Precond. and ((Precond. and Precond.) or (Precond. and Precond.)))

Table 9 – Examples of Preconditions’ definition

4.1.2.2. Creation and Evaluation of Preconditions

Although the preconditions in previous examples are hand made created, it is obvious that the
process for creating preconditions is much more agile and simple with the assistance of the editing
tools developed in Activity 6, and more specifically PSMT tool.

Regarding the creation of Preconditions, we must emphasize that the field “Preconditions” in both
S&D Patterns and S&D Implementations is composed by zero or several simple preconditions. A
simple precondition queries a single event, and it may ask for any information on that event. As a
matter of fact, this event can refer to virtually any possible situation that can be captured and
monitored using a computing system. Summarizing, each simple precondition relates to one event
of the system, wheter it be about the activation of a pattern, the charge of the battery, or the
presence of an human being in front of the computer.

ad Building Preconditions

Building Pattern Preconditions

Create new precondition

Create Simple Precondition

Add Logic Connector

Artefact
Preconditions

Select Ev ent

New
Artefact

Continue
Building
Pattern

Continue
Building

Integration
Scheme

[eventNotFound]

[noMorePreconditions]

Figure 9 – Building Pattern Preconditions

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 34 of 94

The process for specifying preconditions of a given pattern (see Figure 9), starts with a simple
precondition, continues with the addition of the simple preconditions needed and eventually, it ends
up with the combination of them through logic operators. When the security expert has defined all
the simple preconditions that constitute the Preconditions, the process of building an Artefact
continues to the next step.

There is a special situation that can arise when creating preconditions that is worth mentioning here,
given that it is closely related with the definition of Integration Schemes. When creating a
precondition, a list of all possible events to consider is made available to the security expert. He can
navigate through them and look for the most appropriate given his plan for the precondition. In
some cases, no event is found that fulfils the requirements of the security expert. In these situations,
there is no way out but creating your own event observer that will capture, monitor and trigger the
specific event you need. Once the necessary event observer is created, we can consider it as a brand
new Artefact. Thus, the only way to link the functionality of my artefact with the functionality of
my new event observer is by means of an Integration Scheme. However, the discussion on the
creation and functioning of Integration Schemes is out of the scope of this section, and the reader
will find additional info in subsequent sections of this same document.

Concerning the process of evaluating preconditions, it consists of three steps (see Figure 10). First,
when an S&D Artefact is found to be of interest (given the provided S&D Properties and the
Artefact Features), the system extracts the XQuery expression that holds the specification of the
Preconditions. Once the SRF has extracted the Xquery from the artefact, it launchs the query and
the result is captured. The result coming from the execution of the XQuery must be a Boolean,
taking the value true when the preconditions holds and false in any other case. If the result of the
evaluation is true, then the Artefact is ready for deployment. Otherwise, Preconditions do not hold
and the artefact is discarded.

Processing Preconditions

Evaluate
Preconditions

Extract XQueries

Launch XQueries

Evaluate Preconditions
Rules

Accept Artefact Discard Artefact

[Preconditions Hold]

Figure 10 – Processing Preconditions

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 35 of 94

4.2. Detailed description of S&D Classes
As a first approach for the language, we have chosen to reduce this description as much as possible
limiting it to the essential elements: the specification of the security properties provided and the
definition of the interface to use the solution. Section 6.1.1.1. describes an example with values for
each one of the fields in Table 10:

S&D Class

1 Creator

1.1 Name

1.2 Date

2 Timestamp

3 TrustMechanisms

4 Provided Properties

4.1 Property

4.1.1 ID

4.1.2 Timestamp

5 SolutionFeatures

5.1 Feature

6 Interface

6.1 Calls

6.2 Sequence

7 Roles

7.1 Role

7.1.1 RoleName
7.1.2 Functionality

7.1.2.1 CallName

8 Comments

Table 10 – High-level data structure for an S&D Class

1. Creator: This field identifies the creator/provider of the pattern. It includes Name and Date
fields to specify the creator of the class description and the date of creation, using the
following format: yyyy-mm-dd.

2. Timestamp: this field represents a “digital proof that objectively enables to detect the
creation time of certain data”. The data stored is this field are the milliseconds spent since
January 1, 1970, 00:00:00 GMT. A negative number indicates a date prior to January 1,
1970, 00:00:00 GMT.

One of the requirements is to create a library of artefacts in which you can trust. Together
with signatures, the time-stamp is a valuable proof that gives us some degree of
trustworthiness by proving the time of creation of the S&D Class/Pattern/Implementation.
Thus, the goal of the timestamp is to allow the users of an S&D
Class/Pattern/Implementation to check not only that the document is authentic or has not
been modified since its creation but also that they are working with the correct version of the
document. The same definition for TimeStamp property applies to sections 4.3. and 4.4. .

3. Trust mechanisms: It is a digital signature meant to guarantee that the class description has
been produced indeed by the creator, and that no modification has been done to the original
Class.

4. Provided Properties: The main idea is to offer the user a solution for its security problems
taking as input the security properties that one wants to achieve. Extracted from the
application/device requirements, the security properties reduce the search for an

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 36 of 94

appropriated S&D Class. Once found, the S&D Class provides the interface to use its
functionality (Interface field in S&D Class definition).

5. Solution Features: a list of the main features of the solution chosen to accomplish a security
property. This is a valuable hint for the serenity user to select the most appropriated class to
solve his/her problem at development time.

6. Interface: In this field the class developer can include the operations offered by the class
(i.e. the calls) and the recommended sequence to use these calls.

7. Roles: When applications make use of Patterns, the used functionality is strongly dependent
on the communication side in which they are applied. Then, it is important for the S&D
Classes to provide the S&D Patterns with the guidelines on how to apply the functionality
depending on the role they play (e.g. Server/Client). This information is necessary for
developers when creating Serenity-aware applications. For instance, an IDE would be able
to identify the available operations for an S&D Pattern for each role and thus, show them up
in order to simplify the development process. This proposal takes shape in the roles section
of the S&D Class definition. This section is composed by a set of roles. For each role in the
set, a sequence of the available operations is available. The main goal of this section is to
provide developers guidance to facilitate their work.

Note that this section is included as a part of the S&D Class definition and not as part of the
S&D Pattern. As an S&D Pattern always belongs to (at least) one S&D Class, the relation
between Pattern’s functionality and the role it plays, can be automatically derived from the
S&D Class.

A developer can follow two approaches to apply security solutions in a Serenity-aware
application. On the one hand, the developer can apply an S&D Class to model the solution.
Following this approach the roles are clearly defined in the S&D Class roles section so that
at runtime, the role is selected and applied when the S&D Pattern is instantiated. On the
other hand, if the developer decides to use an S&D Pattern at development time to model the
solution, when it comes to runtime, the information on the role’s functionality will not be
directly available. Instead, as the relation between an S&D Pattern and its S&D Class was
made explicit when creating the S&D Pattern, the necessary information can be easily
derived from the S&D Class.

8. Comments: Here the creator can include any relevant information regarding the Class
definition, the functionality, the expected behaviour, applicability, etc.

4.3. Detailed description of S&D Patterns
The language used in order to describe an S&D Pattern with the objective of being used by
automated means in dynamic environments requires of different aspects to be included. All of them
are enumerated in Table 11, and the most relevant ones are detailed afterwards:

S&D Pattern

1 Creator

1.1 Name

1.2 Date

2 Timestamp

3 TrustMechanisms

4 PatternFeatures

4.1 Feature

5 Provided Properties

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 37 of 94

5.1 Property
5.1.1 ID

5.1.2 Timestamp

6 Interface

6.1 Operations

6.1.1 Operation

7 ClassAdaptors

7.1 Class

7.1.1 Adaptor
7.1.2 Description

8 Parts

8.1 Part

9 Parameters

9.1 Parameter

10 Pre-Conditions

10.1 SRFContext-pre-conditions

10.1.1 SRFContext pre-condition

10.2 External pre-conditions

10.2.1 External pre-condition

11 Static Tests Performed

11.1 Test
11.1.1 Conditions of test

11.1.2 Attack models considered

12 System Configuration

13 Monitoring

13.1 Monitor

13.1.2 Type
13.2 Monitoring Formulae

13.2.1 Rule-1
13.2.1.1 Event

14 Comments

Table 11 – High-level data structure for an S&D Pattern

1. Creator: Identity of the creator/provider of the pattern. It includes Name and Date fields to
specify the creator of the pattern description and the date of creation, using the following
format: yyyy-mm-dd.

2. Timestamp: this field represents a “digital proof that objectively enables to detect the
creation time of certain data”. The data stored is this field are the milliseconds spent since
January 1, 1970, 00:00:00 GMT. A negative number indicates a date prior to January 1,
1970, 00:00:00 GMT.

3. Trust mechanisms: Digital signatures and other mechanisms to guarantee that the pattern
description corresponds to the pattern/solution, that it has been produced by the creator, and
that it has not been modified.

4. Pattern Features: In this field when can find a list of the main features of the pattern. This
is a hint to help to software developers to select a pattern of the library once he has selected
the class to get the needed functionality. Furthermore, it will be very valuable for the SRF to
choose, at runtime, the most appropiated pattern according to the enviroment.

5. Provided Properties: Reference to the properties provided by the pattern. Properties have a
timestamp and refer to descriptions provided by the entity that defines the property (this can
be the creator itself, an independent certification entity or even the SERENITY post-project
organization). For the moment it is important to emphasize that these descriptions contain
formal descriptions given by security experts and describe the relations between different

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 38 of 94

properties, therefore enabling the interoperation of systems referring to properties defined by
different sources.

6. Interface: It includes every operation that integrates the interface of the pattern. This
interface describes the public functionality of the S&D Pattern; in other words, the
functionality made available for the applications to use the S&D Pattern’s Operations
(element 6.1 in Table 11). All the semantics, parameters and types of the S&D Pattern
interface are defined in this element. The syntax used to specify the operations will follow
the one from ASL language, given that it is a platform independent and easy to use
language. Section 4.3.1. exposes the rationale for the adoption of ASL.

7. Class Adaptor. It is also necessary to count on a mechanism to map from the original high-
level interface –coming the S&D Class, to the medium-level interface –used in the S&D
Pattern. The translation is not direct since it is possible for a single operation at S&D Class
level, to be mapped into a sequence of operations at S&D Pattern level, and thus, we have to
provide some mapping from one interface to another. Moreover, as it is feasible for an S&D
Pattern to belong to more than one S&D Class, then it is possible to find several Adaptors
for the same S&D Pattern’s Interface (each adaptor linked to the S&D Class that adapts).
Consequently, each ClassAdaptor includes a set of Class, one for each adapted S&D Class.
Each Class has a reference to the S&D Class adapted; and a couple of elements that define
the interface: (i) the Adaptor, where Class calls are mapped to Pattern’ operations; and (ii)
an optional Description of the adaptor. Summarizing, element 7 describes the adequate
sequence of S&D Pattern level operations for each one of the S&D Class level operations.

8. Parts: in order to achieve its full functionality, some external components may be used by
the Pattern. These components (Parts from now on) are elements that have specific
behaviour and features that complement the S&D Pattern functionality. As a Part provides
its own functionality and has an associated description, the reader may confuse it with an
S&D Pattern. However, there is a crucial distinction between both concepts: while an S&D
Patterns do provide specific S&D Properties, Parts do not. As an example, in the case study
described in the next section, the camera is a Part. The requirements for the application of
the Parts are included in their description.

9. Parameters: An S&D Solution has some variables whose values are assigned when the
solution is instantiated for particular scenario. These instantiable elements are called S&D
Patterns’ parameters. At some extent, they allow S&D Patterns to act as overloaded operator
in a programming language: their precise behaviour is not known before execution time, and
it depends on the types of values given when calling the operator. For instance, the length of
a cryptographic key might be defined as a parameter. Note that Parameters can always be
defined using a simple tuple (name, value) while Parts can not.

Associated to parameters, there must be also a constraints’ field describing the restrictions
that an element must meet in order to be used as actual parameter. One important aspect of
these constraints is that they are internal to the S&D Solution.

10. Pre-Conditions: they describe general conditions that the target system must meet before
applying a pattern. A pattern is not necessarily a universal solution. This means that in order
for the pattern to be successfully used to provide the declared properties, some pre-
conditions must be met. In most cases, these preconditions will be derived from the analysis
of the solutions made by security engineers. Preconditions are classified depending on the
check process performed, falling in two different categories: SRF context preconditions and
External preconditions.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 39 of 94

11. Static Tests Performed: Security engineers will be responsible for the static testing of the
pattern. This section will describe all relevant information regarding the static tests
performed. We foresee that it might be necessary to develop mechanisms for the description
of the tests, in a similar way to the description of the properties. This section will be useful
for the end user because it will facilitate the selection of the appropriate pattern and for the
monitoring mechanism because some monitoring rules can be derived from it. It is important
to note that the monitoring activity might have an impact on the S&D Solution. Therefore,
the static test should explicitly consider this interaction.

12. System Configuration: In addition to the instantiation and integration of the pattern in the
system it will be sometimes necessary to perform some actions prior to the integration of the
pattern in the system. Likewise, when the pattern is to be removed, some actions may also be
necessary. We will use the term activate to refer to the process of instantiating the pattern,
integrating it in the running system and initializing it, so that it is ready to provide the
properties declared. Similarly, the term deactivate will be used to refer to the process of
removing the pattern from the system, which may require some “closing-up” procedure. In
summary, the system configuration section of the description will describe the initialization
and closing up processes, along with any other relevant system-specific information. This
other system-specific information includes, for instance, the type of connections used. An
important aspect to be considered in the system configuration set-up is when the monitor
should be initialized. In this sense, the administrator of the system could set up a monitoring
priority policy. N.B. that in this section we do not include the description of the monitor and
the monitoring rules.

13. Monitoring: This row describes all information necessary for the monitoring of the pattern.
In particular, it must include which monitor to use, and the configuration of such monitor
(events to monitor, rules, reactions, etc.). Section 4.4. of this document gives a complete
study on the monitoring information to be included in this row.

14. Comments: Here the creator can include any relevant information regarding the Pattern
definition, the functionality, the expected behaviour, applicability, etc.

4.3.1. Rationale for ASL Adoption

At S&D Pattern’s level, no information about the software execution platform, hardware or
programming language is available. Consequently, the interface specification may be considered as
a Platform Independent Model (PIM) in the sense of OMG’s Model Driven Architecture, given that:

 The S&D Pattern that specify the S&D Solution behaviour can be ported without change
even if the target platform changes,

 All the solution features that are unique to the target platform must be declared at S&D
Implementation level,

 The translation from the S&D Pattern’s level (PIM) to the S&D Implementation’s level
(Platform Specific Model, or PSM), should be straightforward.

For those not familiar with MDA Models, MDA defines two primary sets of model, the Platform
Independent Model and the Platform Specific Model. Here the term platform is used to refer to
technology and engineering details that are irrelevant to the fundamental functionality of the
software. These model types are a key concept in the MDA architecture; it mandates the separation-
of-concerns of analysis (the PIM) from its realization on a particular computing platform and

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 40 of 94

technology (the PSM) and recognizes that the refinement relationship between the two types of
model should be achieved by applying a mapping. The parallelism with our concepts of S&D
Pattern, S&D Implementation and Executable Component is apparent and reinforced by the need of
a platform independent language to express the functionality of the S&D Pattern (the definition of
the Operations). This brings us to the next element in the Interface definition, which exposes the
need of an implementation independent language for specifying processing within the context of the
S&D Patterns: the Class Adaptor.

At this stage, it is mandatory the selection of an appropriate language for expressing the Interface
Operations definition as well as the Class Adaptor. Following the parallelism with MDA, there is
an emerging technology that merges the Unified Modelling Language and the concepts of PIM and
PSM: eXecutable UML (xUML). The idea was simple; for UML to be executable, we must have
rules that define the dynamic semantics of the specification. That is when xUML snaps into action.
Executable UML is designed to produce a comprehensive and comprehensible model of a solution
without making decisions about the organization of the software implementation. And to do that,
xUML is supported by a UML compliant Action Language: the ASL or Action Specification
Language.

The ASL definition is independent of any particular implementation and can be freely used by
modellers and developers. It provides an unambiguous, concise and readable definition of the
processing to be carried out by an object-oriented system within the context of an Executable UML
(xUML) model, and it is easily applicable to the definition of the S&D Pattern’s Interface and the
Class Adaptors. In addition, different techniques have been developed for mapping the ASL into the
chosen software architecture and implementation language. This means that the translation from an
Class Adaptor definition to the Executable Component that realizes that functionality can be semi-
automatic. The translation techniques range from fully automatic generation to manual coding using
a defined set of rules. Target languages have included c, c++, Objective c, Ada, Java, Fortran, and
SQL.

4.4. Detailed description of S&D Implementations
At this point, we foresee the following components of this description (Table 12):

S&DImplementation

1 Creator

1.1 Name

1.2 Date

2 TimeStamping

3 TrustMechanisms

4 SandDPatternReference

5 Preconditions

5.1 Precondition

6 ImplementationDescription

7 ImplementationReference

7.1 Reference

8 ComplianceProofs
8.1 Proof

9 Comments

Table 12 – High-level data structure for an S&D Implementation

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 41 of 94

1. Creator: Identity of the creator/provider of the S&D Implementation. It includes Name and
Date fields to specify the creator of the pattern description and the date of creation, using the
following format: yyyy-mm-dd.

2. Time-stamp: Analogous to the one used in the S&D Patterns, it stores the milliseconds
spent since January 1, 1970, 00:00:00 GMT. A negative number indicates a date prior to
January 1, 1970, 00:00:00 GMT.

3. Trust mechanisms: These are analogous to the ones used in the S&D Patterns.

4. Reference to the S&D Pattern Implemented: Each implementation references the S&D
Pattern it implements.

5. Particular Preconditions of this implementation: In addition to the preconditions related
to the solution (S&D Pattern), each implementation may have some additional preconditions
derived from the implementation details.

6. Description of the Implementation: This description is meant to be useful for the selection
of a particular implementation.

7. Reference to the actual implementation: There must be a secure (probably cryptographic)
reference to the actual implementation, in order to avoid this description to be erroneously
associated to a different implementation.

8. Compliance Proofs: Opposed to the S&D Patterns, where the formal analysis and other
validation tools are very useful, in the case of implementations, the important aspect is to
have proofs of the compliance of the implementation to the S&D Pattern description.

9. Comments: Here the creator can include any relevant information regarding the
Implementation definition, the functionality, the expected behaviour, applicability, etc.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 42 of 94

4.5. Specifying Monitoring Rules in S&D Patterns
In this section we describe the language used for expressing the monitoring rules within the S&D
Patterns. The exact position within the S&D Patterns where these rules will be described is under
the Monitoring Formulae clause that is part of the more general Monitoring clause (see pattern
description example in section 7.2.). This language is an extension of EC-Assertion – an event
calculus (EC [4]) based language defined by an XML. EC-Assertion has been developed at City
University to support the specification of general functional and quality requirements that should be
monitored during the execution of service based systems as part of the SECSE project [8][9]. For
the purposes of SERENITY, we have introduced certain extensions to this language and generated a
new version of EC-Assertion that we describe below.

The extensions that we have introduced to EC-Assertion in order to support the specification of
security and dependability properties that could be monitored at runtime are:

 The introduction of a generic scheme for specifying different types of monitorable events

 The introduction of a generic scheme for the specification of fluents (i.e. conditions about
the state of a system) including fluents signifying the authentication and authorisation of
agents to issue and accept events requesting the execution of operations or responding to
operation calls

The extended version of EC-Assertion has been defined as an XML schema [5] in order to provide a
standard way of expressing the event calculus (EC) formulas that will be monitored. This schema is
described in Section 1.1. of this report and its full definition is provided in Appendix A. In the
following, we describe the extended form of EC-Assertion and give an example of using it to
express a rule for monitoring a security property. This description follows an overview of Event
Calculus that provides the logic based foundation of our language.

4.5.1 Specification of Monitoring Rules in Event Calculus
Event calculus (EC) is a first-order temporal formal language that can be used to specify properties
of dynamic systems which change over time. Such properties are specified in terms of events and
fluents.

An event in EC is something that occurs at a specific instance of time (e.g., invocation of an
operation) and may change the state of a system. Fluents are conditions regarding the state of a
system which are initiated and terminated by events. A fluent may, for example, signify that a
specific system variable has a particular value at a specific instance of time or that a specific
relation between two objects holds.

The occurrence of an event is represented by the predicate Happens(e,t,ℜ(t1,t2)). This predicate
signifies that an instantaneous event e occurs at some time t within the time range ℜ(t1,t2). The
boundaries of ℜ(t1,t2) can be specified by using either time constants or arithmetic expressions over
the time variables of other predicates in an EC formula. The initiation of a fluent is signified by the
EC predicate Initiates(e,f,t) whose meaning is that a fluent f starts to hold after the event e at time t.
The termination of a fluent is signified by the EC predicate Terminates(e,f,t) whose meaning is that
a fluent f ceases to hold after the event e occurs at time t. An EC formula may also use the
predicates Initially(f) and HoldsAt(f,t) to signify that a fluent f holds at the start of the operation of a
system and that f holds at time t, respectively. An EC formula can also specify additional constraints
about the time variables of predicates using the predicates < and =. For example, t1 < t2 is true if t1
occurred at a time instance before t2; and t1=t2 is true if t1 occurred at the same time instance as t2.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 43 of 94

Our EC based language uses special types of events and fluents to specify monitorable properties of
systems. More specifically, fluents can be defined by the user as relations between objects as
follows:

relation(Object1, …, Objectn) (I)

,where relation is the name of the relation that takes as arguments n objects (Object1, …, Objectn)
that can be fluents or terms. A pre-defined relation for fluents that is commonly used is:

valueOf(variable, value_exp) (II)

whose meaning is variable has the value value_exp. In (II), variable denotes a typed variable or a
list of typed variables which may be:

 System variables − A system variable is a variable of the system that is being monitored
whose value can be captured at any time during the monitoring process, or

 Monitoring variables − A monitoring variable is introduced by the users of the monitoring
framework to represent the deduced states of the system at runtime (i.e. states which the
system itself might not be aware of but the monitor of the system uses in order to reason
about the system).

 value_exp is a term that either represents an EC variable/value or signifies a call to an
operation that returns an object of the same type as the variable. This operation may be a
built-in operation of the monitoring engine (e.g. an operation that computes the average of a
set of values) or an operation that is invoked in an external party. When value_exp is an
operation call, then effectively the return value of the operation becomes the value of
variable.

Events in our framework represent exchanges of messages between the agents that constitute a
system. A message can invoke an operation in an agent or return results following the execution of
an operation. Events are described in EC by terms that have the following generic form:

event(_id, _sender, _receiver, _status, _oper, _source) (III)

where:

 _ID is a unique identifier of the event

 _sender is the identifier of the agent that sends the message.

 _receiver is the identifier of the agent that receives the message.

 _status represents the processing status of an event. The status of the event can be: (i) REQ-
B, that is a request for the invocation of an operation that has been received but whose
processing has not started yet; (ii) REQ-A, that is a request for the invocation of an
operation that has been received and whose processing has started; (iii) RES-B, that is a
response generated upon the completion of an operation that has not been dispatched yet; or
(iv) RES-A, that is a response generated upon the completion of an operation that has been
dispatched.

 _oper is the signature of operation that the event invokes or reports the results of.

 _source is the name of the agent that provided information about the event.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 44 of 94

5. XML Representation of the language

5.1.1. XML Schema for S&D Classes
The structure of an S&D Class is defined by the complex XML type called S_and_DClass.
Graphically represented in Figure 11, S_and_DClass has no attributes but includes the following
child elements:

1. One creator element, which is of type creatorType, a complex type that consists of the
following child elements:

I. Name: String used to specify information about the author of the S&D Class. The
creator can be a person, a software company or organization, etc.

II. Date: String used to store information about the date when the S&D Class was created.
The format used to specify that date will be: yyyy-mm-dd.

2. One timestamping element, stored as proof to detect the creation time of the S&D Class. The
format used will be of type long, where the user can specify the milliseconds spent since
January 1, 1970, 00:00:00 GMT. A negative number indicates a date prior to January 1, 1970,
00:00:00 GMT.

3. One trustMechanisms element. This element is used in order to store digital signatures or
any other trust mechanism well suited to guarantee that the pattern description (i) really
corresponds to the pattern/solution it describes, (ii) has been produced by the defined creator,
and (iii) has not been modified during its lifecycle. It is of type trustMechanismsType, a
complex type that consists of the following sequence of child elements:

I. SignatureType: It is of type String, and it is used to define the sign algorithm, the
parameters necessary to verify it, and any other element related with the type of
signature scheme used.

II. Signer: It is used to define the entity that has signed this Class.

4. One providedProperties element. ProvidedProperties Element is of type propertiesType and
is meant to hold the security properties offered by the adoption of this S&D Class. The type
propertiesType consists of the following elements:

I. Property: This element is of type propertyType. PropertyType is a complex type that
consists of the following sequence of elements:

i.Id: This is the identification for a concrete security property. The user can
map from this ID to the complete description of the security property
provided by the S&D Class.

ii. timestamp: the timestamp for this property.

5. One solutionFeatures element. This element is of type solutionFeaturesType and is meant to
hold the main features to describe the solution proposed for the S&D Class.
SolutionFeaturesType is a complex type that consists of feature elements of string type.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 45 of 94

6. One interface element. This element is used to describe the interface provided by this S&D
Class. All the S&D Patterns have to comply with the interface of the S&D Class from which
they inherit. It is of type interfaceType. The interfaceType type is a complex type that consists
of the following elements:

I. Calls: This element is of type callsType, described later in this paragraph. The aim of
calls element is to provide the way in which the S&D Class should be invoked. In some
sense, is a set of interfaces corresponding to high level functions available to interact
with the S&D Class.

i. callsType: callsType Type consists of one element called call (of type String),
which includes the format (i.e. name, parameters) of a concrete call.

II . Sequence: This element is of type sequenceType. It allows the user to specify the
correct sequence of callings when invoking the S&D Class.

i. SequenceType: It is a complex type that stores sequence elements,
described below.

ii. Sequence: Sequence elements are composed by a set of step Elements. It
allows the creator to specify the sequence to use the calls.

III. Constrains: This element exposes the contraints of the sequence to take on account
when the developer is using the calls at the development time.

7. One roles element. This element is of type rolesType and it is used to describe the sequence
of calls of the interface definition set for each role. This complex type is composed by a
sequence of elements of type roleType. This type contains the two following fields:

I. roleName: It is of type String and it defines the name of the role.

II . funcionality: It is of type functionalityType and represents a sequence of
functionName elements, each one of type String.. These functionName elements refer to
the functions available for the role represented by the roleName field.

8. One comments element. This element can be used to specify any general comment regarding
the S&D Class specification.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 46 of 94

Figure 11 – Representation of XML Schema for S&D Classes

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 47 of 94

5.1.2. XML Schema for S&D Patterns
The structure of an S&D Pattern, as shown in Figure 12, is defined by the complex XML type
called S_and_DPattern. It has one attribute: name, a String used to store the name of the pattern.
The S_and_DPattern is composed of the following child elements:

1. One creator element, whick is of type creatorType, a complex type that consists of the
following child elements:

a. Name: String used to specify information about the author of the S&D Pattern. The
creator can be a person, a software company or organization, etc.

b. Date: String used to store information about the date when the S&D Pattern was created.
The format used to specify that date will be: yyyy-mm-dd.

2. One timestamping element, stored as proof to detect the creation time of the S&D Pattern.
The format used will be of type long, where the user can specify the milliseconds spent since
January 1, 1970, 00:00:00 GMT. A negative number indicates a date prior to January 1,
1970, 00:00:00 GMT.

3. TrustMechanisms elements. Apart from sharing the same name, this element plays the same
role in S&D Patterns that trustMechanisms element plays in S&D Classes. It is of complex
type trustMechanismsType. The trustMechanismsType is a complex type composed of the
following child elements:

a. One or more sign elements. This element is of type signType, that is a complex type
composed by:

i. One signatureType, of type String.

ii. A signer that is used to store, in a String, the signer.

iii. This type will probably have some more elements but this issue stills in
discussion.

4. One patternFeatures element. This element is of type patternFeaturesType and is meant to
hold the main features to describe the S&D Pattern. PatternFeaturesType is a complex type
that consists of feature elements of String type. Each one of this features will be decisive to
select an appropriate S&D Pattern among all the patterns that comply with the S&D
Requirements.

5. One ProvidedProperties element. This element plays the same role that ProvidedProperties
element plays for S&D Classes. Several Properties can be defined. Properties element is of
type propertiesType. The PropertiesType complex type is composed by a set of property
elements, which is an element of type propertyType, composed of:

a. An ID element of type String. It is used to store the identification of the property.

b. A timestamp element. It is of type String.

6. One Parts element suited for describing the Parts that are used by the S&D Pattern. It is of
complex type partsType, which is a set of part elements of complex type partType,
composed of the following attributes and elements.

a. An id attribute of type String to store the identification of the represented Part.

b. A url attribute of type String, used to reference the URL of the Part.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 48 of 94

c. A type attribute. It is a String for defining the type of the Part.

d. A description element of type String. Describes the part element itself.

7. One interface element that describes all the functionality of the S&D Pattern. The interface
element is of the type InterfaceType. The InterfaceType is a complex type composed of the
following child elements:

a. One operations element, of type operationsType. This operationsType is a complex
type that contains one or many operation element, each one of the type
operationType. The operationType, is a complex type that contains:

i. One attribute called name, of the type String, to specify the name of the
operation.

ii. A definition element to describe the operation interface using the ASL
syntax.

b. One classAdaptors element to describe the adaptation from SandD_Class operations
to SandD Pattern operations. This element is of classAdaptorsType type that contains
one or many adaptor elements. This is because a SandD Pattern can offer an adaptor
for different SandD Classes. The adaptor element is of type adaptorType, that
contains:

i. An attribute, classReference, to specify the SandD Class adapted. It is of
type String.

ii. An operation element for describing, using ASL syntax, the adaptation.
The type of the operation is the operationType described above.

8. One Parameters element. This element is used to store data about the parameters of the
pattern. These parameters are especially relevant when the pattern is instantiated, as some
concrete value has to be assigned to them at instantiating time. Several Parameters can be
defined. It is of type parametersType, a complex type that consists of a set of following child
element:

a. Parameter element is of type String.

9. Preconditions element. It is planned to have a Preconditions element for each pattern
precondition. Several Preconditions can be defined. It is of type preconditionsType, a
complex type that consists of a sequence the following elements:

a. ParameterPreconditions is of complex type parameterPreconditionsType that is a
sequence of parameterPrecondition elements. The parameterPrecondition is of type
parameterPreconditionType. This type is not defined yet.

b. SolutionPreconditions is of complex type solutionPreconditionsType that is a
sequence of solutionPrecondition elements. The solutionPrecondition is of type
solutionPreconditionType. This type is not defined yet.

10. StaticTestsPerformed element. This is the element specially suited for representing the static
test performed to probe the solution described by the pattern. The StaticTestsPerformed
element is of complex type staticTestsPerformedType that is a sequence of test elements. A
Test element is of complex type testType that has an attribute called name that is a String.
Test elements consist of a sequence of the following elements:

a. conditionsTest, a String that is used in order to describe test conditions.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 49 of 94

b. attackModels for representing attack models. This element is of type String.

11. SystemConfiguration element is used to describe the system configuration of the target
system. It includes a textual description with the technical details. The reader can consult
section 4.3. (Detailed description of S&D Patterns) for more information about system
configuration issues. It is of type systemConfigurationType. This complex type is not
defined yet in this version of the pattern definition language.

12. Monitoring elements, these elements are intended for monitoring purposes. Section 4.5. of
this document gives a complete study on the monitoring information to be included in this
row.

13. One comments element. This element can be used to specify any general comment regarding
the S&D Pattern specification.

Figure 12 – Partial representation of XML Schema for S&D Patterns (I)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 50 of 94

Figure 13 – Partial representation of XML Schema for S&D Patterns (II)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 51 of 94

Figure 14 – Partial representation of XML Schema for S&D Patterns (and III)

5.1.3. XML Schema for S&D Implementations
The structure of an S&D Implementation is defined by the complex XML type called
S_and_DImplementation and represented in Figure 15. S_and_DImplementation consists of the
following child elements:

1. One creator element, which is of type creatorType, a complex type that consists of the
following child elements:

a. Name: String used to specify information about the author of the S&D
Implementation. The creator can be a person, a software company or organization,
etc.

b. Date: String used to store information about the creation date of the S&D
Implementation. The format used to specify that date is: yyyy-mm-dd.

2. One timestamping element, stored as proof to detect the creation time of the S&D
Implementation. The format used will be of type long, where the user can specify the
milliseconds spent since January 1, 1970, 00:00:00 GMT. A negative number indicates a
date prior to January 1, 1970, 00:00:00 GMT.

3. TrustMechanisms element. Similar TrustMechanisms elements are described in the two
previous sections and incorporated into their XML Schemas.

4. An S_and_DPatternReference element refers to the S&D Pattern implemented by this S&D
Implementation. It is of type S_and_DPatternReferenceType, a complex type that consists of
the following child elements:

a. Id: Identification for the corresponding S&D Pattern.

b. Signature: it includes a signature to verify the authenticity of this reference.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 52 of 94

5. Preconditions, It is planned to have a precondition element for each implementation
precondition. The preconditions element is of a complex type, which consists of a sequence
of one or more precondition elements.

a. The precondition element is of type String and will to store data about preconditions.

6. ImplementationDescription element is used to store the description of the Executable
Component pointed by the S&D Implementation. It is composed by a complex type that has
only one element:

7. Description: a String where the textual description is stored.

8. An implementationReference element that is of type implementationReferenceType. This
element is used to establish a reference to the actual implementation, in order to avoid this
description to be erroneously associated to a different implementation. The
implementationReferenceType is a complex type that consists of a sequence of property
elements. The property complex type consists of the following elements:

a. url: which stores a String

b. signature: to check the validity of this element.

9. One or more complianceProofs elements. They are aimed to store proofs of the compliance
of the implementation to the corresponding S&D Pattern. This element has a complex type
with only one element: proof. This element is of type String.

10. One comments element. This element can be used to specify any general comment regarding
the S&D Implementation specification.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 53 of 94

Figure 15 – Representation of XML Schema for S&D Implementations

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 54 of 94

5.1.4. XML Schema for Monitoring Rules
The structure of a monitoring rule is defined by the complex XML type called formulaType. It has
two attributes: formulaid for identifying the formula, and forChecking, a Boolean used to
distinguish between assumptions and rules. formulaType consists of the following child elements:

1. At least one quantification element, which is used to specify the quantification of variables
in an EC formula. It is of type quantificationType, which is a complex type and consists of a
quantifier element, to represent the quantifier (i.e. existential or universal), and a choice of
variables that can be quantified, i.e. regularVariable (all other variables except for time
variables) or timeVariables.

2. Zero or one body element, which specifies the expression on the Right Hand Side (RHS) of
the implication (if any), i.e. the body of the formula. It is of type bodyHeadType, a complex
type that consists of the following sequence of child elements:

a. A predicate element that is used to define the predicate in the formula and whose type is
predicateType. predicateType is a complex type that has two attributes: negated, a
Boolean used to indicate if a predicate is negated and whose default value is false, and
unconstrained, a Boolean that is true if the predicate is unconstrained and whose default
value is false. It also consists of the following child elements:

i. happens, which is of complex type happensType, that consists of the following
sequence of elements:

• event that is of type eventType for representing the event. This type is a complex
type and consists of the following child elements: eventID of type String for
identifying uniquely the event, sender of type variableType for specifying the
agent that sends the message, receiver of variableType for specifying the agent that
receives the message, status of type String for representing the processing status of
an event, oper of type operationType for representing the operation signature that
the event invokes or reports the result of and source of type String for specifying
the agent that provided information about the event. The complex type
variableType is explained later (see 8th bullet point). The complex type
operationType consists of the following sequence of child elements: opName of
type String for defining the name of the operation and zero or one op_args of type
String for defining the possible argument of an operation. See Figure 16.

• timeVar is of complex type timevariableType that represents the time variable. The
type timevariableType consists of the following child elements: varName for
specifying the name of the variable, varType for specifying the type of the variable,
and zero or one value element for specifying the value of the variable.

• fromTime is of type TimeExpression and represents the starting time of the time
range within which the formula should hold. TimeExpression consists of: a time
element that is of type timevariableType that has been described above; and a
choice of time operators, namely plusTime that is of type timevariableType,
minusTime that is of type timevariableType, plus and minus which are both of
decimal type.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 55 of 94

• toTime is of type TimeExpression and represent the finishing time of the time
range within which the formula should hold. TimeExpression has been described in
detail above.

ii. initiates, which is of complex type initiatesType that consists of the following child
elements:

• event that is of type eventType for representing the event, as described above.

• fluent is of type fluentType and it distinguishes between the different types of
fluents that can be described in the formula. fluentType is a complex type and has
the following child elements:

− author that is of type authorisationFluentType and is used to represent that
an authorised agent (authorisedAgent) has been authorised by an authorising
agent (authorisingAgent) to receive and process an event or to send an event;

− exp that is of type exposesFluentType and is used to represent that the
response generated from the execution of an operation (event) will disclose
an information term (infoTerm) which belongs to the agent owner.

− authen that is of type authenticationFluentType and that is used to represent
that an agent (agent) is authenticated when a specific event (event) has been
processed.

− valueof that is of type valueofType. This represents a predefined relation for
fluents where a variable that is given at the target (i.e. the first argument) is
updated with the value or either a variable at the source (i.e. the second
argument) or with the return value of an operation that is called. The complex
type valueofType, therefore consists of: a target and a source element. The
types of these elements consequently consist of a variable element, and in the
case of the source, or an operationCall element.

• timeVar is of complex type timevariableType that represents the time variable.

iii. holdsAt is of type holdsatType that consists of the following sequence of elements:

• fluent that is of type fluentType (as described for the initiated predicate).

• timeVar that is of type timevariableType(as described for the initiated predicate).

iv. initially is of type holdsatType, which is described above.

v. terminates is of type terminatesType that is a complex type that consists of the
following child elements:

• event is of type eventType that has been previously described.

• fluent is of type fluentType that has been previously described.

• timeVar is of type timevariableType that has been previously described.

b. relationalPredicate is of complex type relationalPredicateType that specifies the
possible relations between two variables in the formula. This type has the following
child elements:

i. a choice of the following elements:

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 56 of 94

• equalto

• notEqualTo

• lessThan

• greaterThan

• lessThanEqualTo

• greaterThanEqualTo

which are all of complex type varRelationType that consists of two elements:
operand1 and operand2 of type operandType. The complex type operandType consists
of the following choice of elements (only one of these elements will be represented):

• operationCall that is of type operationCallType that has a sequence of child
elements: name of type String, zero or one partner of type String and zero or more
(unbounded) variable elements of type variableType, which is described below.

• variable that is of type variableType. This type is a complex type that has two
attributes: persistent that indicates whether the value of the variable is the same
throughout all instances (like static variables in Java) and forMatching that
distinguishes between internal and external variables (i.e. its value is false for
internal variables). Also, the type consists of the following child elements:
varName that is of type String, and either a varType and value element, both of
type String, or an array element of type arrayType with elements that describe the
array structure: a type accompanied by zero or one index, both of type String, and
zero or more value elements of type arrayValueType.

• constant that is of type constantType for describing constants. This type consists of
two elements: name and value elements which are both of type String.

ii. timeVar is of type timevariableType that has been previously described.

c. a possible sequence of an operator and a choice of either:

i. a predicate that is of type predicateType that has been explained earlier,

ii. a timePredicate that is of type timepredicateType. This element is used to express a
relation between two time variables in the formula. It has a choice of the following
child elements: timeEqualTo, timeNotEqualTo, timeLessThan, timeGreaterThan,
timeLessThanEqualTo, timeGreaterThanEqualTo, all of complex type TimeRelation
that consist of two elements: timeVar1 and timeVar2 of type TimeExpression that
has been described earlier. Or

iii. a relationPredicate that is of type relationPredicateType that has been explained
earlier.

3. A head element which is of type bodyHeadType, which is described above.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 57 of 94

Figure 16 – XML Formula Representation Schema (I)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 58 of 94

Figure 17 – XML Formula Representation Schema (II)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 59 of 94

Figure 18 – XML Formula Representation Schema (III)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 60 of 94

Figure 19 – XML Formula Representation Schema (and IV)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 61 of 94

6. Examples of descriptions
In this section we present an example that is designed to provide a global vision of the modelling
artefacts in practice. The example shows some related S&D Classes, S&D Patterns and S&D
Implementations. We also include in a separate subsection an example of monitoring rules.

As shown in Figure 20 below, the example includes only one S&D Class
(SimpleTransmisionConfidentiality.iso.org). Then we propose two patterns called
ConfidentialityByDES_Encryption.iso.org and ConfidentialityByDES_Encryption.rsa-labs.com,
which belong to the mentioned S&D Class. Each S&D Pattern provides a description allowing an
automatic mechanism to make the transformation from the interface declared in the S&D Class to
the native interface provided by the S&D Pattern. The interface declared by an S&D
Implementation must realize (match exactly) the interface provided by the corresponding S&D
Pattern.

In this example, there are three S&D Implementations. Two of them (UMA_Crypt.gisum.uma.es
and TPMDES.infieon.com) are implementations of the ConfidentialityByDES_Encryption.iso.org
pattern, while the last one (CryptoJ_BSafeDES.rsa.com) realizes the
ConfidentialityByDES_Encryption.rsa-labs.com pattern.

cd Object model2

SimpleTransmissionConfidentiality.iso.org :
S&DClass

ConfidentialityByDES_Encryption.iso.org :
S&DPattern

UMA_Crypt.gisum.uma.es :
S&DImplementation

TPMDES.infineon.com :
S&DImplementation

ConfidentialityByDES_Encryption.rsa-labs.com :
S&DPattern

CryptoJ_BSafeDES.RSA.com :
S&DImplementation

S&DClass Elements

S&DImplementation Elements

S&DPattern Elements

Figure 20 – Relation between the elements in the example

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 62 of 94

6.1.1. Confidential Transmission
6.1.1.1. S&D Class: SimpleTransmissionConfidentiality.iso.org

S&D Class: SimpleTransmissionConfidentiality.iso.org

1 Creator

 Name: iso.org
 Date: 2007-05-04

2 Timestamp: 1178307611

3 TrustMechanisms: …signature…
4 Provided Properties

 Property
 ID: TransmissionConfidentiality.iso.org

 Timestamp: 1146771611

5 SolutionFeatures

 Feature: Shared key

6 Interface

 Calls
 SendConfidential(Conf_data:raw; Recipient:raw)

 ReceiveConfidential(Conf_data:raw; Sender: raw)
 Sequence

 Sender.SendConfidential(x1,Receiver)
 Receiver.ReceiveConfidential(x1,Sender)

7 Roles

 Role
 RoleName: Sender

 Functionality
 CallName: SendConfidential

 CallName: ReceiveConfidential
 Role

 RoleName: Receiver
 Functionality

 CallName: SendConfidential
 CallName: ReceiveConfidential

8 Comments
 The sender starts the transmission.,encrypts some data and sends it

 The receiver waits for the sender to send the data. After reception, decrypts the data.

Table 13 – Definition of S&D Class SimpleTransmissionConfidentiality

This is a very simple class that shows the simplest interface for confidential communication,
composed of two calls:

 SendConfidential(Conf_data:raw; Recipient:raw); and

 ReceiveConfidential(Conf_data:raw; Sender: raw);

It also shows that it is possible to specify the correct sequence of calls.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 63 of 94

6.1.1.2. S&D Pattern: TransmissionConfidentialityByDES_Encryption.iso.org

S&D Pattern: TransmissionConfidentialityByDES_Encryption.iso.org

1 Creator

 Name: iso.org
 Date: 2007-05-07

2 Timestamp: 1178521503

3 TrustMechanisms: …signature…
4 PatternFeatures

 Feature: encryption

 Feature: DES

5 Provided Properties

 Property

 ID: TransmissionConfidentiality.iso.org
 Timestamp: 1146985503

6 Interface

 Operations

 Operation: encrypt
 Definition:

 define function encrypt
 input plainData:text, key:text

 output encryptedData:text

 #returns the plainData encrypted with the key
 enddefine

 Operation: decrypt
 Definition:

 define function decrypt
 input encryptedData:text, key:text

 output plainData:text
 #returns the cypheredData decrypted with the key

 enddefine
 Operation: getKey

 Definition:
 define function getKey

 input userID:text,
 output key:text

 #returns the key requested by the user
 enddefine

 Operation: send

 Definition:
 define function send

 input recipient:text, encryptedData:text
 output sentOK:boolean

 #sends some encrypted data to the user
 #“recipient” parameter.

 #returns TRUE if everything goes right. FALSE
 #otherwise

 enddefine
 Operation:receive

 Definition:
 define function receive

 input sender:text, encryptedData:text
 output receiveOK:boolean

 #receives some encrypted data from the user specified in
 #“sender” parameter

 #returns TRUE if everything goes right. FALSE otherwise
 enddefine

Table 14 – Definition of S&D Pattern Confidentiality by DES (I)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 64 of 94

 ClassAdaptors
 Class: SimpleTransmissionConfidentiality.iso.org

 Adaptor:
 define function sendConfidential

 input data:text, recipient:text
 output sentOK:Boolean

 key:text
 encrypted:text

 result:boolean
 key = getKey [recipient]

 encryptedData = encrypt [data, key]

 result = send [encryptedData, recipient]
 If !result then

 #log the event and possible cause
 endif

 return result
 enddefine

 define function receiveConfidential

 input encryptedData:text, sender:text
 output receptionOK:Boolean

 key:text
 plainData:text

 result:boolean
 result = receive [encryptedData, sender]

 If result then
 key = getKey [sender]

 plainData = decrypt [encryptedData, key]
 else

 #log the event and possible cause
 Endif

 return result
 enddefine

7 Parts

 Part: CommunicationNetwork

8 Parameters

 Parameter: User_A
 Parameter: User_B

 Parameter: Key
 Parameter: Data

 Parameter: ClearTextType
 Parameter: CipherTextType

 Parameter: KeyType
 Parameter: UserIDType

9 Pre-Conditions

 Parameter pre-conditions
 Parameter pre-condition: Key is known and confidential for User_A and User_B
 Solution pre-conditions
 Solution pre-condition: …

10 Static Tests Performed

 Test
 Conditions of test: …

 Attack models considered: …

11 System Configuration:
 A description based on BPEL, UML… It should include all necessary initializations of the
parts, framework, initialization of the monitor, etc.

Table 15 – Definition of S&D Pattern Confidentiality by DES (II)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 65 of 94

12 Monitoring

 Monitor: (constraints, or even explicit reference)
 Type: Asynchronous
 Monitoring Formulae:

 Rule-1:

 Event:

13 Comments: ...

Table 16 – Definition of S&D Pattern Confidentiality by DES (and III)

The previous description corresponds to an S&D Pattern that belongs to the previous described
S&D Class (SimpleTransmissionConfidentiality.iso.org). The third field of the S&D Pattern
includes information about the properties that are fulfilled by the solution represented in this
pattern.

Two important fields in Table 16 are the Interface and the Class Adaptor. Interface defines
functions that this pattern provides. The Class Adaptor contains the rules for automatic translation
between calls to S&D Class interface into calls to S&D Pattern interface.

Usually S&D Pattern interfaces are closer to solution details than S&D Class interfaces because this
S&D Patterns interfaces include lower level functions. Field number three of S&D Pattern includes
information about the Properties that fulfils this Pattern. The S&D Pattern shows also information
about the Parts required. In this case, a communication network is required.

Parameters include some variable data from one instance of the pattern to other. This Pattern
requires information about the transmission source and target, the key, the data and the data types
used in the Parameters. At last, preconditions say that the key used in the transmission must be
shared by the two principals and confidential.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 66 of 94

6.1.1.3. S&D Implementation: UMA_Crypt.gisum.uma.es

S&DImplementation: UMA_Crypt.gisum.uma.es

1 Creator

 Name: uma.es
 Date: 2007-05-09

2 TimeStamping: 1178535559
3 Trust mechanisms: signed by rsa.com

4 S&DPatternReference: TransmissionConfidentialityByDES_Encryption.iso.org

5 Preconditions

 Precondition: KeyType = 64_Bit_DES_Key_Type
 Precondition::JDK (Sun) v1.4 or later installed
 Precondition: Valid Platforms (WIN32, Solaris 10, RedHat 7.0)
 Precondition:ConfidentialityByDESEncryption.iso.org/CommunicationNetwork/

 access_method= TCP/IP

6 ImplementationDecription

 Description: Fullfils FIPS140-2
 Description: Software Implemented
 Description: Only suitable for short-term storage keys

7 ImplementationReference

 Reference: uma-crypt.jar + Hash of the code
8 ComplianceProofs
 Proof: validated and signed by cmvp.csrc.nist.gov
9 Comments:...

Table 17 – Definition of S&D Implementation UMA_Crypt.gisum.uma.es

6.1.1.4. S&D Implementation: TPMDES.infineon.com

S&DImplementation: TPMDES.infineon.com

1 Creator

 Name: infineon.com

 Date: 2007-05-09

2 TimeStamping: 1178536658
3 Trust mechanisms: signed by infineon.com

4 S&DPatternReference: TransmissionConfidentialityByDES_Encryption.iso.org

5 Preconditions

 Precondition: KeyType = 64_Bit_DES_Key_Type

 Precondition: TPM v1.1 or newer installed

6 ImplementationDecription

 Description: Fullfils FIPS46-3
 Description: Hardware + Software Implemented

7 ImplementationReference

 Reference: Infineon_TPM_Manager.exe + Hash of the code
8 ComplianceProofs
 Proof: validated and signed by iacs.cesg.gov.uk
9 Comments:...

Table 18 – Definition of S&D Implementation TPMDES.infineon.com

The S&D Implementation of TransmissionConfidentialityByDES_Encryption is shown in Table 18
and named as TPMDES. Concerning preconditions two of them are declared. First precondition
refers to the key needed in DES algorithm. This is a 64 bits length. Second one refers to a TPM v1.1
or higher is needed to be installed. Third point is related to the description of the implementation.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 67 of 94

Two descriptions are declared, first one describes that this S&D Implementation fulfils with
FIPS46-3 description [7]. Second description describes that this Implementation is a combination of
hardware and software solution. The reference of Implementation executable file is
Infineon_TPM_Manager.exe plus a Hash of the code in order to test the integrity of this executable
code. Some Compliance proofs have been performed such as validated and signed by
iacs.cesg.gov.uk [8]. Finally the last element refers to Trust mechanisms and describes that is signed
by infineon.com [9].

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 68 of 94

6.1.2. Confidentiality by DES
6.1.2.1. S&D Pattern: ConfidentialityByDES_Encryption.rsa-labs.com

S&D Pattern: ConfidentialityByDES_Encryption.rsa-labs.com

1 Creator:

 Name: rsa-labs.com
 Date: 2007-05-10

2 Timestamp: 1178537748

3 Trust Mechanisms: signed by rsa-labs.com

4 Pattern Features

 Feature: Confidentiality
 Feature: Encription

 Feature: DES

3 Provided Properties

 Property:
 ID: TransmissionConfidentiality.iso.org

 Timestamp: 20060621100230

4 Interface

Operations

 Operation: Session
 Definition:

 define function Session
 input userId:userIdType

 output session: sessionType
 #The function receives an userId parameter and stablish a session among both

 #users
 enddefine

 Operation: KeyAgree
 Definition:
 define function KeyAgree

 input session: sessionType
 output key: KeyType

 #returns the key that sender and receiver will use to encrypt the communications
 enddefine

 Operation: SymetricCipher

 Definition:
 define function SymetricCipher
 input cleartext:ClearTextType , key: KeyType
 output ciphertext: CipherTextType
 #The function gets a key and a plain text and generates cipher text using that key
 enddefine

 Operation: SymetricDecipher

 Definition:
 define function SymetricDecipher

 input ciphertext: CipherTextType, key: KeyType
 output cleartext:ClearTextType

 # This is the reverse function above, it gets a key and an encrypted text and gets
 #the plain text ciphered before

 enddefine

Table 19 – Definition of S&D Pattern ConfidentialityByDES_Encryption (I)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 69 of 94

 Operation: send
 Definition:

 define function send
 input encryptedData:text, recipient:text

 output sentOK:boolean
 #sends some encrypted data to the user

 #“recipient” parameter.
 #returns TRUE if everything goes right. FALSE

 #otherwise
 enddefine
 Operation:receive
 Definition:

 define function receive
 input sender:text, encryptedData:text

 output receiveOK:boolean

 #receives some encrypted data from the user specified in
 #“sender” parameter

 #returns TRUE if everything goes right. FALSE otherwise
 Enddefine

ClassAdaptors

 Class: SimpleTransmissionConfidentiality.iso.org
 Adaptor:

 define function sendConfidential
 input data:text, recipient:text

 output sentOK:Boolean
 s:long

 key:text
 msg:text

 result:boolean
 s = Session[recipient]

 key = KeyAgree[s]
 msg = SymmetricCipher[data, key]

 result = Send[msg, s]

 If !result then
 #log the event and possible cause

 endif
 return result

enddefine
 define function sendConfidential

 input data:text, sender:text
 output sentOK:Boolean

 s:long
 key: text

 msg: text
 plainText: text

 result: boolean
 s = Session[sender]

 result = receive [msg, sender]
 If !result then

 #log the event and possible cause
 else

 key = KeyAgree [sender]

 plainText = SymetricCipher [msg, k]
 endif

 return result

enddefine

Table 20 – Definition of S&D Pattern ConfidentialityByDES_Encryption (II)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 70 of 94

6 Parts

 Part: CommunicationNetwork

7 Parameters

 Parameter: User_A
 Parameter: User_B

 Parameter: Key
 Parameter: Data

 Parameter: ClearTextType
 Parameter: CipherTextType

 Parameter: KeyType
 Parameter: UserIDType

8 Pre-Conditions

 Parameter pre-conditions
 Parameter pre-condition: Key is agreed once a session is started between the
 principals, User_A and User_B
 Solution pre-conditions

 Solution pre-condition: ...

9 Static Tests Performed

 Test: …

 Conditions of test:
 Attack models considered:

10

System Configuration: A description based on BPEL, UML... It should include all necessary
initializations of the parts, framework, initialization of the monitor, etc.

11 Monitoring

 Monitor: (constraints, or even explicit reference)
 Type: Asynchronous

 Monitoring Formulae:
 Rule-1:

 event:

13 Comments: ...

Table 21 – Definition of S&D Pattern ConfidentialityByDES_Encryption (and III)

The encryption service described by this pattern is aimed to protect data that is sent between hosts
across a network. Encryption services, such as DES [10], use a reversible algorithm to convert
plain-text data into an unintelligible form, thus protecting data from being used by unauthorized
parties, providing confidentiality for hosts.

An acronym for Data Encryption Standard, DES was developed by IBM. The algorithm expands a
single message by up to 8 bytes. DES is a block cipher that encrypts data in blocks of 64 bits by
using a 56-bit key. Using this algorithm, this pattern provides Transmission Confidentiality conform
the ISO standard.

The interface of the pattern provides the following calls:

 JSAFE_Session(userID: UserIDType): it starts a session between the two principals. As
specified in the pattern preconditions, after starting the session a shared key has to be
agreed.

 JSAFE_KeyAgree(key: KeyType, userID: UserIDType): once the session is started, the
principals can agree on the key they will use to encrypt/decrypt the data

 JSAFE_SymetricCipher(in cleartext:ClearTextType; in key: KeyType; out ciphertext:
CipherTextType): it takes the clear text as input and gives the cipher text as output. It uses
the key given by JSAFE_KeyAgree to encrypt/decrypt the data

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 71 of 94

 JSAFE_SymetricCipher(in ciphertext: CipherTextType; in key: KeyType; out
cleartext:ClearTextType): it generates the clear text from the cipher text

Apart from the cryptographic functions, this S&D Pattern includes two calls focused on
communication between two principals. Both send and receive functions are provided by the
Communication Network Part, given that the implementation of the Pattern deals with the
encryption algorithm and not with the underlying network.

 Send(data: CipherTextType; recipient: UserIDType): it sends the cipher text to the specified
recipient

 Receive(data: CipherTextType; Sender: UserIDType): it prepares the recipient to receive the
cipher text from the sender

The Class Adaptor gives the exact sequence of calls to follow in order to correctly execute
SendConfidential and ReceiveConfidential functions. The parameters specified in these calls are:

 User_A: the sender

 User_B: the recipient

 Key: the key used to encrypt/decrypt the data

 Data: the information exchanged between the users

 ClearTextType: data in clear

 CipherTextType: cipher data

 KeyType: the type of the key, including the key length, validity period, etc.

 UserIDType: the format used to identify the user

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 72 of 94

6.1.2.2. S&D Implementation: CryptoJ_BSafeDES.RSA.com

S&DImplementation: CryptoJ_BSafeDES.RSA.com

1 Creator

 Name: RSA.com
 Date: 2007-05-11

2 Timestamping: 1178536658

3 Trust mechanisms: signed by rsa.com

4 S&DPatternReference: ConfidentialityByDES_Encryption.rsa-labs.com

5 Preconditions

 Precondition: KeyType = 64_Bit_DES_Key_Type
 Precondition: JDK (Sun, HP, IBM) v1.1 or later installed
 Precondition: Valid Platforms (WIN,Solaris,HP-UX,RedHat,AIX)
 Precondition: ConfidentialityByDESEncryption.rsa-

 labs.com/CommunicationNetwork/access_method= TCP/IP

6 ImplementationDecription

 Description: Fullfils FIPS140-2
 Description: Software Implemented
 Description: Only suitable for short-term storage keys

7 ImplementationReference

 Reference: jsafeCEFIPS.jar + Hash of the code
 Reference: jsafeFIPS.jar + Hash of the code

8 ComplianceProofs
 Proof: validated and signed by cmvp.csrc.nist.gov
9 Comments:...

Table 22 – Definition of S&D Implementation CryptoJ_BSafeDES.RSA.com

This S&D Implementation refers to the ConfidentialityByDES_Encryption.rsa-labs.com S&D
Pattern. RSA BSAFE cryptography products [6] are designed to allow state-of-the-art privacy and
authentication features to be built into virtually any application for optimized performance. The
RSA BSAFE Crypto J Toolkit Module versions 3.5 and 3.5.2 (Crypto J Module) is a non
proprietary cryptographic module. It includes a wide range of data encryption and signing
algorithms, including DES, Triple-DES, the high-performing RC5, the RSA Public Key
Cryptosystem, and more.

The Crypto J Module is software implemented and meets the security requirements of FIPS 140-2.
The distribution includes two API interfaces, described in Table 22 as ImplementationReference:

 jsafeFIPS.jar JSAFE Application Programmer Interface to the Crypto J Module

 jsafeJCEFIPS.jar JCE Application Programmer Interface to the Crypto J Module.

FIPS 140-22 (Federal Information Processing Standards Publication 140-2 – Security Requirements
for Cryptographic Modules) details the U.S. Government requirements for cryptographic modules.

As preconditions, the Crypto J module requires JDK running on the target device and is only valid
for the platforms described in the table above. The DES algorithm for Crypto J requires at least a 64
bit key and is only valid if TCP/IP is the network communication protocol used on the device.

2 More information about the FIPS 140-2 standard and validation program is available on the NIST website
http://csrc.nist.gov/cryptval/.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 73 of 94

6.2. S&D Patterns expressed in XML: an example
The usage of patterns within the Serenity framework changes the traditional view of “patterns” from
the software engineering perspective. Since Serenity patterns are not directly related with design
patterns but with concrete, ready-to-apply solutions, the connection between Serenity patterns and
both software and hardware components is tight and quite common. For this reason we needed a
new and common syntax, resulting in the definition of a new XML-based language. We chose the
definition of some easy-to-understand tags in order to represent all the information described in
section 4.3. . The selection of XML as the metalanguage for defining the S&D patterns takes
advantage of its ability to perform data migration tasks in an easy and flexible way.

 <?xml version="1.0" encoding="UTF-8"?>
<SandDPattern xmlns:ns1="http://tempuri.org/ec/formula"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="S%26Dpatterns_monitoringRules.xsd"
 name="TransmissionConfidentialityByDES_Encryption.iso.org">
 <creator>
 <name>iso.org</name>
 <date>2007-05-07</date>
 </creator>
 <timestamping>1178521503</timestamping>
 <trustMechanisms>
 <signatureType>http://www.w3.org/2000/09/xmldsig#sha1</signatureType>
 <signer>iso.org</signer>
 <signature>j6lwx3rvEPO0vKtMup4NbeVu8nk=</signature>
 </trustMechanisms>
 <patternFeatures>
 <feature>confidentiality</feature>
 <feature>encryption</feature>
 <feature>DES</feature>
 </patternFeatures>
 <providedProperties>
 <property>
 <id>TransmissionConfidentiality.iso.org</id>
 <timestamp>1146985503</timestamp>
 </property>
 </providedProperties>
 <interface>
 <operations>
 <operation name="encrypt">
 <definition>
 define function encrypt
 input plainData:text, key:text
 output encryptedData:text
 #returns the plainData encrypted with the key
 enddefine
 </definition>
 </operation>
 <operation name="decrypt">
 <definition>
 define function decrypt
 input encryptedData:text, key:text
 output plainData:text
 #returns the cypheredData decrypted with the key
 enddefine
 </definition>
 </operation>

Table 23 – Definition of an S&D Pattern in XML language (I)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 74 of 94

 <?xml version="1.0" encoding="UTF-8"?>
<SandDPattern xmlns:ns1="http://tempuri.org/ec/formula"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="S%26Dpatterns_monitoringRules.xsd"
 name="TransmissionConfidentialityByDES_Encryption.iso.org">
 <creator>
 <name>iso.org</name>
 <date>2007-05-07</date>
 </creator>
 <timestamping>1178521503</timestamping>
 <trustMechanisms>
 <signatureType>http://www.w3.org/2000/09/xmldsig#sha1</signatureType>
 <signer>iso.org</signer>
 <signature>j6lwx3rvEPO0vKtMup4NbeVu8nk=</signature>
 </trustMechanisms>
 <patternFeatures>
 <feature>confidentiality</feature>
 <feature>encryption</feature>
 <feature>DES</feature>
 </patternFeatures>
 <providedProperties>
 <property>
 <id>TransmissionConfidentiality.iso.org</id>
 <timestamp>1146985503</timestamp>
 </property>
 </providedProperties>
 <interface>
 <operations>
 <operation name="encrypt">
 <definition>
 define function encrypt
 input plainData:text, key:text
 output encryptedData:text
 #returns the plainData encrypted with the key
 enddefine
 </definition>
 </operation>
 <operation name="decrypt">
 <definition>
 define function decrypt
 input encryptedData:text, key:text
 output plainData:text
 #returns the cypheredData decrypted with the key
 enddefine
 </definition>
 </operation>

Table 24 – Definition of an S&D Pattern in XML language (II)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 75 of 94

 <parts>
 <part id="id3" url="http://localhost" type="CommunicationNetwork"/>
 </parts>
 <parameters>
 <parameter>User_A</parameter>
 <parameter>User_B</parameter>
 <parameter>Data</parameter>
 <parameter>ClearTextType</parameter>
 <parameter>CipherTextType</parameter>
 <parameter>KeyType</parameter>
 <parameter>UserIDType</parameter>
 </parameters>
 <preconditions>
 <parametersPrecondition>
 <parameterPrecondition>Key is known and confidential for User_A and User_B</parameterPrecondition>
 </parametersPrecondition>
 <solutionsPreconditions>
 <solutionPrecondition> </solutionPrecondition>
 </solutionsPreconditions>
 </preconditions>
 <staticTestsPerformed>
 <test name="TestName">
 <conditionsTest>conditionsTest0</conditionsTest>
 <attackModels>attackModels0</attackModels>
 </test>
 </staticTestsPerformed>
 <systemConfiguration description="description0"/>
 <monitoring>
 <monitor>
 <localization>localization0</localization>
 <type>type3</type>
 <inicialization>inicialization0</inicialization>
 </monitor>
 </monitoring>
 <comments>comments0</comments>
</SandDPattern>

Table 25 – Definition of an S&D Pattern in XML language (and III)

6.3. Monitoring rules expressed in XML: an example
In this section, we consider the pattern for a Mechanism for Optimistic Fair Exchange with Trusted
Third Party (TTP), which is described in section 7. of this deliverable, and give an example of a
rule that can be monitored for this pattern. The monitoring rule is derived from the requirement that
TTP must be available. It should consider two cases, i.e. the case when Alice tries to communicate
with TTP and the case when Bob tries to communicate with TTP. Therefore, two rules are required.
We illustrate the second case, more specifically: if Bob sends a “solve” message to TTP, then TTP
should respond with “send_item” message within some time limit (t1+tu where t1 is the time when
Bob sent the “solve” message). In event calculus we express this as follows:

∀ _eID1, _eID2, Bob_ID, _TTP_ID: String; t1, t2:Time

 Happens(e(_eID1,Bob_ID,TTP_ID,REQ-B,solve((Item_A)Ka1,Item_B)),Bob_ID),t1, ℜ(t1,t1))
⇒

 Happens(e(_eID2,TTP_ID,Bob_ID,RES-A,send_item(((Item_A)Ka1)Ka2),t2, ℜ(t1,t1+tu)

Table 26 – Event Calculus example for the Fair Exchange example

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 76 of 94

The XML document that describes the above mentioned monitoring rule is given in Table 27.
Firstly, the quantification of the variables in the formula is represented in lines 7-32. Two types of
variables are quantified, namely regular variables (any variable except for time variables) and time
variables. Next, the body of the formula is represented in lines 33-78, i.e. the expression on the RHS
of the implication. The body consists of the Happens predicate and its arguments, i.e. an event, a
time variable and a time range. The event is represented in lines 36-55.

The time variable has been specified in lines 56-59 and the time range in lines 60-75. Finally, the
head of the formula (i.e. the expression on the LHS of the implication) is represented in lines 79-
120. This also consists of a Happens predicate with an event, a time variable and a time range, and
thus is represented similarly to the body of the formula.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 77 of 94

<?xml version="1.0" encoding="UTF-8"?>
<formulas xmlns="http://tempuri.org/ec/formula" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://tempuri.org/ec/formula file:/Z:/Serenity/A5%20contribution%20-%20September06/EC-
Assertion6.xsd" formulaId="">
 <quantification>
 <quantifier>universal</quantifier>
 <regularVariable>
 <varName>Bob_ID</varName>
 <varType>String</varType>
 </regularVariable>
 <regularVariable>
 <varName>TTP_ID</varName>
 <varType>String</varType>
 </regularVariable>
 <regularVariable>
 <varName>_eID1</varName>
 <varType>String</varType>
 </regularVariable>
 <regularVariable>
 <varName>_eID2</varName>
 <varType>String</varType>
 </regularVariable>
 <timeVariable>
 <varName>t1</varName>
 <varType>Time</varType>
 </timeVariable>
 <timeVariable>
 <varName>t2</varName>
 <varType>Time</varType>
 </timeVariable>
 </quantification>
 <body>
 <predicate>
 <happens>
 <event>
 <eventID>_eID2</eventID>
 <sender>
 <varName>TTP_ID</varName>
 <varType>String</varType>
 </sender>
 <receiver>
 <varName>Bob_ID</varName>
 <varType>String</varType>
 </receiver>
 <status>RES-A</status>
 <oper>
 <opName>send_item</opName>
 <op_args>
 <varName>(((Item_A)Ka1)Ka2)</varName>
 <varType>String</varType>
 </op_args>
 </oper>
 <source>TTP_ID</source>
 </event>
 <timeVar>
 <varName>t2</varName>
 <varType>Time</varType>

 </timeVar>

 <fromTime>
 <time>
 <varName>t1</varName>
 <varType>Time</varType>
 </time>
 </fromTime>

Table 27 – XML document representing the rule that checks the availability of TTP (I)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 78 of 94

 <toTime>
 <time>
 <varName>t1</varName>
 <varType>Time</varType>
 </time>
 <plusTime>
 <varName>tu</varName>
 <varType>Time</varType>
 </plusTime>
 </toTime>
 </happens>
 </predicate>
 </body>
 <head>
 <predicate>
 <happens>
 <event>
 <eventID>_eID1</eventID>
 <sender>
 <varName>Bob_ID</varName>
 <varType>String</varType>
 </sender>
 <receiver>
 <varName>TTP_ID</varName>
 <varType>String</varType>
 </receiver>
 <status>REQ-B</status>
 <oper>
 <opName>Solve</opName>
 <op_args>
 <varName>((Item_A)Ka1,Item_B))</varName>
 <varType>String</varType>
 </op_args>
 </oper>
 <source>Bob_ID</source>
 </event>
 <timeVar>
 <varName>t1</varName>
 <varType>Time</varType>
 </timeVar>
 <fromTime>
 <time>
 <varName>t1</varName>
 <varType>Time</varType>
 </time>
 </fromTime>
 <toTime>
 <time>
 <varName>t1</varName>
 <varType>Time</varType>
 </time>
 </toTime>
 </happens>
 </predicate>
 </head>

</formulas>

Table 28 – XML document representing the rule that checks the availability of TTP (and II)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 79 of 94

7. Applying the language

7.1. A Pattern for Fair Exchange
A complete scenario with the guidelines for specifying of S&D Solutions and the construction of
Artefacts using this can be found in section 7 in [17]. Based on this scenario, what follows is a
revision of the previous work.

Intuitively, a fair exchange mechanism allows two parties to exchange items in a fair way, so that
either each party gets the other’s item, or neither party does. A typical way to solve the fair
exchange problem is to introduce a semi-trusted arbitrator (Charlie) to the model. Alice will first
register her key with Charlie. This registration is performed only once and, as a result, Charlie may
possibly learn some part of Alice’s secret. Upon the completion of the one-time registration process,
Alice can perform many fair exchanges with different merchants.

In any such exchange, Alice and Bob want to exchange two pieces of information σ and τ.

Alice first issues some verifiable “partial signature” σ' to Bob. Bob verifies the validity of this
partial signature and fulfils his obligation by sending Alice the required information τ, after which
Alice sends her “full signature” σ to complete the transaction. Thus, if no problem occurs, Charlie
does not participate in the protocol (such protocols are called optimistic). However, if Alice refuses
to send her full signature σ at the end, Bob will send σ' to Charlie (and a proof of fulfilling his
obligation, including the information I that should be sent to Alice), and Charlie will convert σ' into
σ, sending σ to Bob and I to Alice. Informally, we wish to achieve the following security
guarantees:

 Alice should not be able to produce a valid partial signature σ' which Charlie cannot convert
into a full signature σ.

 Bob should not be able to produce a valid partial signature σ' which he did not get from
Alice.

 Bob should not be able to produce a valid full signature σ which he did not get from Alice
(or Charlie provided Bob possesses σ').

 Charlie should not be able to produce a valid full signature σ without seeing a valid partial
signature σ' computed by Alice.

While the first three properties are clearly important to prevent parties from cheating, the last
property is equally crucial: we do not want the arbitrator Charlie to make signatures without Alice’s
consent. Indeed, otherwise Charlie would have to be completely trusted. Moreover, if one is willing
to have a completely trusted arbitrator, then the problem becomes technically trivial, and no
elaborate protocols are needed at all: Alice may use any signature scheme and simply give Charlie
her entire secret key during registration. Figure 21 represents the whole process as a collaboration
diagram.

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 80 of 94

cd Colaboracion (Main scenario)

Bob

(from Interactions)

Charlie

(from Interactions)

Alice

(from Interactions)

1: start_Transaction((Item_A)Ka1, contract)

2: send_item((Item_A)Ka1, contract)

3: send_Item(Item_B)

4: send_Item(((Item_A)Ka1)Ka2)

Figure 21 – Collaboration diagram of Fair Exchange protocol

Next Sequence Diagram (Figure 22) is an extension of the previous collaboration diagram. It
represents the case in which Alice tries to cheat Bob. Bob is waiting the reception of the item until a
timeout exception is triggered. Bob sends a request to the arbitrator (solve request), and Charlie (as
arbitrator) sends back the Item to Bob, after checking Bob’s request.

sd Interactions (Extension Alice try to cheat)

Alice BobCharlie

1:start_Transaction((Item_A)Ka1, contract)

2:send_Item((Item_A)Ka1, contract)

3:send_Item(Item_B)

4A:TimeOut

4A.1:solve((Item_A)Ka1,Item_B)

4A.2:send_Item(((Item_A)Ka1)Ka2)

Figure 22 – Sequence diagram of Fair Exchange: Alice tries to cheat

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 81 of 94

Figure 23 represents Bob trying to cheat Alice. Bob receives Alice’s item but he does not sent his
item in response. Alice asks Charlie (Trusted Third Party) to solve the situation so that Charlie ends
up sending Alice the un-received item.

sd Interactions (Extension Bob try to cheat)

Alice BobCharlie

1:start_Transaction((Item_A)Ka1, contract)

2:send_Item((Item_A)Ka1, contract)

3A:solve((Item_A)Ka1,Item_B)

3A.1:send_Item(((Item_A)Ka1)Ka2)

3A.2:TimeOut

3A.3:solve((Item_A)Ka1)

3A.4:send_Item(Item_B)

Figure 23 – Sequence diagram of Fair Exchange: Bob tries to cheat

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 82 of 94

7.2. Pattern Description Example
In this section an example of pattern description is presented. This example consists on a
Mechanism for Optimistic Fair Exchange with Trusted Third Party, expressed as an S&D Pattern.
This means that for instance, the digital signature operations are embedded into the fair exchange
mechanism. Note that it does provide fair exchange but not confidentiality.

S&D Pattern: TTPOptimisticFairExchange.acme.com

1 Creator:

 Name: acme.com

 Date:2007-05-20

2 TimeStamp: 1178676437

3 Trust Mechanisms: signed by acme.com

4 Pattern Features

 Feature:...

5 Provided Properties

 Property:

 ID: fair_exchange.acme.com
 Timestamp: 20060621100230

6 Interface

Operations

 Operation:...
 Definition:...

ClassAdaptors
 Class:...

 Adaptor:..

7 Parts

 Part: TTP
 Part: CommunicationNetwork

8 Parameters:

 Parameter: User_A

 Parameter: User_B
 Parameter: Item_A

 Parameter: Item_B
 Parameter: Contract

9 Pre-Conditions:

 Parameter pre-conditions:
 Parameter pre-condition: User_A is registered with TTP (has a partial
 signature key…)
 Parameter pre-condition: User_B recognises TTP (has the public key of
 TTP…)
 Parameter pre-condition: User_B has the public key of User_A
 Solution pre-conditions:
 Solution pre-condition: The validity of Item_A can be verified with the
 contents of Contract
 Solution pre-condition: The validity of Item_B can be verified with the
 contents of Contract

10 Static Tests Performed:

 Test: APA-Based_FormalTest.sit.fraunhofer.de
 Conditions of test:

 Attack models considered:
 Test: SDL-Based_FormalTest.lcc.uma.es

 Conditions of test:
 Attack models considered:

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 83 of 94

11
System Configuration: A description based on BPEL, UML... It should include all necessary
initializations of the parts, framework, initialization of the monitor, etc.

12 Monitoring:

 Monitor (constraints, or even explicit reference)
 Location: localhost/SERENITY/async-mon

 Type: Asynchronous
 Monitoring Formulae

 Rule-1: TTP registers contract
 event: Registered contract: intercepted from TTP

 Rule-2: TTP is available
 event: TTP available: requested from TTP

13 Comments:...

Table 29 – S&D Pattern definition for TTP example

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 84 of 94

Appendix A. XML Schemas

A.1. XML Schema of S&D Classes

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <!-- ** -->
 <xsd:element name="SandDClass">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="creator" type="creatorType"/>
 <xsd:element name="timestamping" type="xsd:long"/>
 <xsd:element name="trustMechanisms" type="trustMechanismsType" maxOccurs="unbounded"/>
 <xsd:element name="providedProperties" type="propertiesType"/>
 <xsd:element name="solutionFeatures" type="solutionFeaturesType"/>
 <xsd:element name="interface" type="interfaceType"/>
 <xsd:element name="roles" type="rolesType"/>
 <xsd:element name="comments" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <!-- ** -->
 <xsd:complexType name="creatorType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="date" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="trustMechanismsType">
 <xsd:sequence>
 <xsd:element name="signatureType" type="xsd:string"/>
 <xsd:element name="signer" type="xsd:string"/>
 <xsd:element name="signature" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="propertiesType">
 <xsd:sequence>
 <xsd:element name="property" type="propertyType" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="propertyType">
 <xsd:sequence>
 <xsd:element name="id" type="xsd:string"/>
 <xsd:element name="timestamp" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="solutionFeaturesType">
 <xsd:sequence>
 <xsd:element name="feature" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- ** -->
 <xsd:complexType name="interfaceType">
 <xsd:sequence>
 <xsd:element name="calls" type="callsType"/>
 <xsd:element name="sequence" type="sequenceType"/>
 <xsd:element name="constraint" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->

Table 30 – XML Schema proposal for S&D Classes (I)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 85 of 94

 <!-- ** -->
 <xsd:complexType name="callsType">
 <xsd:sequence>
 <xsd:element name="call" type="xsd:string" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="sequenceType">
 <xsd:sequence>
 <xsd:element name="step" type="xsd:string" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="rolesType">
 <xsd:sequence>
 <xsd:element name="role" type="roleType" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="roleType">
 <xsd:sequence>
 <xsd:element name="roleName" type="xsd:string" />
 <xsd:element name="functionality" type="functionalityType" />
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="functionalityType">
 <xsd:sequence>
 <xsd:element name="functionName" type="xsd:string" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->

</xsd:schema>

Table 31 – XML Schema proposal for S&D Classes (and II)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 86 of 94

A.2. XML Schema of S&D Patterns

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:MonitoringRule="http://tempuri.org/ec/formula"
elementFormDefault="qualified">
 <xsd:import namespace="http://tempuri.org/ec/formula"
schemaLocation="http://www.lcc.uma.es/gimena/Schemas/MonitoringRules.xsd" id="MonitoringRule"/>
 <xsd:element name="SandDPattern">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="creator" type="creatorType"/>
 <xsd:element name="timestamping" type="xsd:long"/>
 <xsd:element name="trustMechanisms" type="trustMechanismsType"/>
 <xsd:element name="patternFeatures" type="patternFeaturesType"/>
 <xsd:element name="providedProperties" type="propertiesType"/>
 <xsd:element name="interface" type="interfaceType"/>
 <xsd:element name="parts" type="partsType"/>
 <xsd:element name="parameters" type="parametersType"/>
 <xsd:element name="preconditions" type="preconditionsType"/>
 <xsd:element name="staticTestsPerformed" type="staticTestsPerformedType"/>
 <xsd:element name="systemConfiguration" type="systemConfigurationType"/>
 <xsd:element name="monitoring" type="monitoringType"/>
 <xsd:element name="comments" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <!-- ** -->
 <xsd:complexType name="creatorType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="date" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="trustMechanismsType">
 <xsd:sequence>
 <xsd:element name="signatureType" type="xsd:string"/>
 <xsd:element name="signer" type="xsd:string"/>
 <xsd:element name="signature" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="patternFeaturesType">
 <xsd:sequence>
 <xsd:element name="feature" type="xsd:string" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="propertiesType">
 <xsd:sequence>
 <xsd:element name="property" type="propertyType" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="propertyType">
 <xsd:sequence>
 <xsd:element name="id" type="xsd:string"/>
 <xsd:element name="timestamp" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->

Table 32 – XML Schema proposal for S&D Patterns (I)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 87 of 94

 <xsd:complexType name="interfaceType">
 <xsd:sequence>
 <xsd:element name="operations" type="operationsType" />
 <xsd:element name="interfaceAdaptors" type="interfaceAdaptorsType" />
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="operationsType">
 <xsd:sequence>
 <xsd:element name="operation" type="operationType" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="operationType">
 <xsd:sequence>
 <xsd:element name="definition" type="xsd:string" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="interfaceAdaptorsType">
 <xsd:sequence>
 <xsd:element name="adaptor" type="adaptorType" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="adaptorType">
 <xsd:sequence>
 <xsd:element name="operation" type="operationType" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="classReference" type="xsd:string" use="required"/>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="partsType">
 <xsd:sequence>
 <xsd:element name="part" type="partType" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="partType">

 <xsd:attribute name="id" type="xsd:string" use="required"/>
 <xsd:attribute name="url" type="xsd:string" use="required"/>
 <xsd:attribute name="type" type="xsd:string" use="required"/>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="parametersType">
 <xsd:sequence>
 <xsd:element name="parameter" type="xsd:string" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="preconditionsType">
 <xsd:sequence>
 <xsd:element name="parametersPrecondition" type="parametersPreconditionsType"/>
 <xsd:element name="solutionsPreconditions" type="solutionsPreconditionsType"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->

Table 33 – XML Schema proposal for S&D Patterns (II)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 88 of 94

 <xsd:complexType name="parametersPreconditionsType">
 <xsd:sequence>
 <xsd:element name="parameterPrecondition" type="xsd:string" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="solutionsPreconditionsType">
 <xsd:sequence>
 <xsd:element name="solutionPrecondition" type="xsd:string" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="staticTestsPerformedType">
 <xsd:sequence>
 <xsd:element name="test" type="testType" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="testType">
 <xsd:sequence>
 <xsd:element name="conditionsTest" type="xsd:string"/>
 <xsd:element name="attackModels" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="systemConfigurationType">
 <xsd:sequence>
 <!-- include all necesary inicialiation of the components, frameworks,etc.) -->
 </xsd:sequence>
 <xsd:attribute name="description" type="xsd:string" use="required"/>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="monitoringType">
 <xsd:sequence>
 <xsd:element name="monitor" type="monitorType" maxOccurs="unbounded"/>
 <xsd:element name="monitorFormulae" type="MonitoringRule:formulaType" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="description" type="xsd:string"/>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="monitorType">
 <xsd:sequence>
 <xsd:element name="localization" type="xsd:string"/>
 <xsd:element name="type" type="xsd:string"/>
 <xsd:element name="inicialization" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
</xsd:schema>

Table 34 – XML Schema proposal for S&D Patterns (and III)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 89 of 94

A.3. XML Schema of S&D Implementations

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <!-- ** -->
 <xsd:element name="S_and_DImplementation">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="creator" type="creatorType"/>
 <xsd:element name="timestamping" type="xsd:long"/>
 <xsd:element name="trustMechanisms" type="trustMechanismsType" maxOccurs="unbounded"/>
 <xsd:element name="S_and_DPatternReference" type="xsd:string" />
 <xsd:element name="preconditions" type="preconditionType"/>
 <xsd:element name="implementationDescription" type="xsd:string"/>
 <xsd:element name="implementationReference" type="implementationReferenceType"/>
 <xsd:element name="complianceProofs" type="complianceProofsType"/>
 <xsd:element name="comments" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <!-- ** -->
 <xsd:complexType name="creatorType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="date" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- ** -->
 <xsd:complexType name="trustMechanismsType">
 <xsd:sequence>
 <xsd:element name="signatureType" type="xsd:string"/>
 <xsd:element name="signer" type="xsd:string"/>
 <xsd:element name="signature" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- ** -->
 <xsd:complexType name="implementationReferenceType">
 <xsd:sequence>
 <xsd:element name="reference" type="typeReference" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="typeReference">
 <xsd:sequence>
 <xsd:element name="URL" type="xsd:string"/>
 <xsd:element name="signature" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="preconditionType">
 <xsd:sequence>
 <xsd:element name="precondition" type="xsd:string" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
 <xsd:complexType name="complianceProofsType">
 <xsd:sequence>
 <xsd:element name="proof" type="xsd:string" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- ** -->
</xsd:schema>

Table 35 – XML Schema proposal for S&D Implementations

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 90 of 94

A.4. XML Schema of EC-Assertion
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://tempuri.org/ec/formula" xmlns="http://tempuri.org/ec/formula"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <!-- define formulas -->
 <xs:element name="formulas" type="formulaType"/>
 <!-- definition of complex types -->
 <xs:complexType name="formulaType">
 <xs:sequence>
 <xs:element name="quantification" type="quantificationType" minOccurs="1" maxOccurs="unbounded"/>
 <xs:element name="body" type="bodyHeadType" minOccurs="0"/>
 <xs:element name="head" type="bodyHeadType"/>
 </xs:sequence>
 <xs:attribute name="formulaId" type="xs:string" use="required"/>
 <xs:attribute name="forChecking" type="xs:boolean" default="true"/>
 </xs:complexType>
 <xs:complexType name="bodyHeadType">
 <xs:sequence>
 <xs:choice>
 <xs:element name="predicate" type="predicateType"/>
 <xs:element name="relationalPredicate" type="relationalPredicateType"/>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="operator" type="logicalOperatorType"/>
 <xs:choice>
 <xs:element name="predicate" type="predicateType"/>
 <xs:element name="timePredicate" type="timePredicateType"/>
 <xs:element name="relationalPredicate" type="relationalPredicateType"/>
 </xs:choice>
 </xs:sequence>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="predicateType">
 <xs:choice>
 <xs:element name="happens" type="happensType"/>
 <xs:element name="initiates" type="initiatesType"/>
 <xs:element name="holdsAt" type="holdsAtType"/>
 <xs:element name="initially" type="holdsAtType"/>
 <xs:element name="terminates" type="terminatesType"/>
 </xs:choice>
 <xs:attribute name="negated" type="xs:boolean" default="false"/>
 <xs:attribute name="unconstrained" type="xs:boolean" default="false"/>
 </xs:complexType>
 <xs:complexType name="timePredicateType">
 <xs:choice>
 <xs:element name="timeEqualTo" type="TimeRelation"/>
 <xs:element name="timeNotEqualTo" type="TimeRelation"/>
 <xs:element name="timeLessThan" type="TimeRelation"/>
 <xs:element name="timeGreaterThan" type="TimeRelation"/>
 <xs:element name="timeLessThanEqualTo" type="TimeRelation"/>
 <xs:element name="timeGreaterThanEqualTo" type="TimeRelation"/>
 </xs:choice>
 </xs:complexType>
 <xs:complexType name="holdsAtType">
 <xs:sequence>
 <xs:element name="fluent" type="fluentType"> </xs:element>
 <xs:element name="timeVar" type="timeVariableType"> </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="initiatesType">
 <xs:sequence>
 <xs:element name="event" type="eventType"> </xs:element>
 <xs:element name="fluent" type="fluentType"/>
 <xs:element name="timeVar" type="timeVariableType"/>
 </xs:sequence>
 </xs:complexType>

Table 36 – XML Schema proposal for EC-Assertion (I)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 91 of 94

 <xs:complexType name="happensType">
 <xs:sequence>
 <xs:element name="event" type="eventType"> </xs:element>
 <xs:element name="timeVar" type="timeVariableType"/>
 <xs:element name="fromTime" type="TimeExpression"/>
 <xs:element name="toTime" type="TimeExpression"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="terminatesType">
 <xs:sequence>
 <xs:element name="event" type="eventType"> </xs:element>
 <xs:element name="fluent" type="fluentType"/>
 <xs:element name="timeVar" type="timeVariableType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="fluentType">
 <xs:choice>
 <xs:element name="author" type="authorisationFluentType"> </xs:element>
 <xs:element name="exp" type="exposesFluentType"> </xs:element>
 <xs:element name="authen" type="authenticationFluentType"> </xs:element>
 <xs:element name="valueof" type="valueofType"> </xs:element>
 </xs:choice>
 </xs:complexType>
 <xs:complexType name="authorisationFluentType">
 <xs:sequence>
 <xs:element name="authorisingAgent" type="variableType"> </xs:element>
 <xs:element name="authorisedAgent" type="variableType"> </xs:element>
 <xs:element name="event" type="eventType"> </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="exposesFluentType">
 <xs:sequence>
 <xs:choice>
 <xs:element name="event" type="eventType" minOccurs="1" maxOccurs="unbounded"></xs:element>
 </xs:choice>
 <xs:element name="infoTerm" type="variableType"> </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="authenticationFluentType">
 <xs:sequence>
 <xs:element name="agent" type="variableType"> </xs:element>
 <xs:element name="event" type="eventType"> </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="valueofType">
 <xs:sequence>
 <xs:element name="target">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="variable" type="variableType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="source">
 <xs:complexType>
 <xs:choice>
 <xs:element name="variable" type="variableType"/>
 <xs:element name="operationCall" type="operationCallType"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

Table 37 – XML Schema proposal for EC-Assertion (II)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 92 of 94

 <xs:complexType name="quantificationType">
 <xs:sequence>
 <xs:element name="quantifier">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="forall"/>
 <xs:enumeration value="existential"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:choice>
 <xs:element name="regularVariable" type="variableType"/>
 <xs:element name="timeVariable" type="timeVariableType"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="variableType">
 <xs:sequence>
 <xs:element name="varName" type="xs:string"/>
 <xs:choice>
 <xs:sequence>
 <xs:element name="varType" type="xs:string"/>
 <xs:element name="value" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 <xs:element name="array" type="arrayType"/>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="persistent" type="xs:boolean" default="false"/>
 <xs:attribute name="forMatching" type="xs:boolean" default="true"/>
 </xs:complexType>
 <xs:complexType name="timeVariableType">
 <xs:sequence>
 <xs:element name="varName" type="xs:string"/>
 <xs:element name="varType" type="xs:string" fixed="TimeVariable"/>
 <xs:element name="value" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="logicalOperatorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="and"/>
 <xs:enumeration value="or"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="TimeExpression">
 <xs:sequence>
 <xs:element name="time" type="timeVariableType"/>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:choice>
 <xs:element name="plusTime" type="timeVariableType"/>
 <xs:element name="minusTime" type="timeVariableType"/>
 <xs:element name="plus" type="xs:decimal"/>
 <xs:element name="minus" type="xs:decimal"/>
 </xs:choice>
 </xs:sequence>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="TimeRelation">
 <xs:sequence>
 <xs:element name="timeVar1" type="TimeExpression"/>
 <xs:element name="timeVar2" type="TimeExpression"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="varRelationType">
 <xs:sequence>
 <xs:element name="operand1" type="operandType"/>
 <xs:element name="operand2" type="operandType"/>
 </xs:sequence>
 </xs:complexType>

Table 38 – XML Schema proposal for EC-Assertion (III)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 93 of 94

 <xs:complexType name="relationalPredicateType">
 <xs:sequence>
 <xs:choice>
 <xs:element name="equalTo" type="varRelationType"/>
 <xs:element name="notEqualTo" type="varRelationType"/>
 <xs:element name="lessThan" type="varRelationType"/>
 <xs:element name="greaterThan" type="varRelationType"/>
 <xs:element name="lessThanEqualTo" type="varRelationType"/>
 <xs:element name="greaterThanEqualTo" type="varRelationType"/>
 </xs:choice>
 <xs:element name="timeVar" type="timeVariableType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="operandType">
 <xs:choice>
 <xs:element name="operationCall" type="operationCallType"/>
 <xs:element name="variable" type="variableType"/>
 <xs:element name="constant" type="constantType"/>
 </xs:choice>
 </xs:complexType>
 <xs:complexType name="operationCallType">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="partner" type="xs:string" minOccurs="0"/>
 <xs:element name="variable" type="variableType" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="constantType">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="value" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="arrayType">
 <xs:sequence>
 <xs:element name="type" type="xs:string"/>
 <xs:element name="index" type="xs:string" minOccurs="0"/>
 <xs:element name="value" type="arrayValueType" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="arrayValueType">
 <xs:sequence>
 <xs:element name="indexValue" type="xs:string"/>
 <xs:element name="cellValue" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="eventType">
 <xs:sequence>
 <xs:element name="eventID" minOccurs="1" maxOccurs="1" type="xs:string"/>
 <xs:element name="sender" type="variableType"> </xs:element>
 <xs:element name="receiver" type="variableType"> </xs:element>
 <xs:element name="status" type="xs:string"> </xs:element>
 <xs:element name="oper" type="operationType"> </xs:element>
 <xs:element name="source" type="xs:string"> </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="operationType">
 <xs:sequence>
 <xs:element name="opName" type="xs:string"> </xs:element>
 <xs:element name="op_args" minOccurs="0" maxOccurs="1" type="variableType"> </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Table 39 – XML Schema proposal for EC-Assertion (and IV)

A5.D2.3 – Patterns and Integration Schemes Languages (Second Version)

SERENITY - 027587 Version 1.0 Page 94 of 94

References

[1] Botella, A. and Maña, A. An Introduction to Action Specification Language (ASL) for Serenity.
https://bscw.sit.fraunhofer.de/bscw/bscw.cgi/d904220/Introduction%20to%20ASL%20for%20SEREN
ITY.pdf. SERENITY Project. Internal Report. 2007.

[2] Wilkie I., King A., Clarke M., Weaver C., Raistrick C. and Francis P. The UML Action Specification
Language Reference Guide. December, 2006.

[3] Maña A., Muñoz A., Sanchez-Cid F., Serrano D., 2006: Deliverable A5.D0.1: SERENITY Conceptual
Model. SERENITY Project. Internal Report. April.

[4] Maña A., Presenza D., Piñuela A., Serrano D., Soria P.,and Sotiriou D. Deliverable A6.D3.1 –
Specification of SERENITY Architecture. SERENITY Project.31 December 2006.

[5] Marcotty M. and Ledgard H., The World of Programming Languages, Springer-Verlag, Berlin 1986.,
pages 41 and following.

[6] W3C XML Query (XQuery). See http://www.w3.org/XML/Query/.

[7] Shanahan, M.P., 1999: The Event Calculus Explained, in Artificial Intelligence Today, LNAI no.
1600:409-430, Springer

[8] Spanoudakis G. Mahbub K, 2006: Non Intrusive Monitoring of Service Based Systems , International
Journal of Cooperative Information Systems, Vol. 15, No. 3, 325-358

[9] Mahbub K., Spanoudakis G., November 2004: A Framework for Requirements Monitoring of Service
Based Systems, 2nd International Conference on Service Oriented Computing, New York

[10] W3C. XML Schema Reference from the XML Schema Working Group.
http://www.w3.org/XML/Schema.html.

[11] RSA Security. Information about RSA BSAFE® Encryption, Signature and Privacy solutions
available at http://www.rsasecurity.com/node.asp?id=1202.

[12] NIST Computer Security: Federal Information Processing Standards (FIPS) page:
http://csrc.nist.gov/publications/fips/index.html.

[13] Infosec Assurance and Certification Services (IACS). http://www.cesg.gov.uk/site/iacs/index.cfm.

[14] Infineon Technologies. http://www.infineon.com/.

[15] Data Encryption Standard (DES) conforming with FIPS 46-3.
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.

[16] W3C. XML Schema Reference from the XML Schema Working Group.
http://www.w3.org/XML/Schema.html.

[17] Maña A., Muñoz A., Sanchez-Cid F., Serrano D., Spanoudakis G., Androutsopoulos K., Compagna L..
Deliverable A5.D2.1 – Patterns and Integration Schemes Languages (Initial Version). SERENITY
Project. 30 September 2006.

