2
L]

‘€i|'! ﬂv
(' In !‘br‘m ation Society
Technoligies

S>ERXENILY

System Engineering
for Security & Dependability

A5.D2.3 — Patterns and Integration Schemes Language

(Second Version)

S

A. Botella, L. Compagna, P. El Khoury, C. Kloukinas
Pujol, A. Saidane, F. Sanchez-Cid, J. Salvador, D.

Serrano, G. Spanoudakis, S. Sinha

, K. Li, A. Mafa, A. Muioz, G.

Document Number

A5.D2.3

Document Title

Patterns and Integration Schemes Languages (Second
Version)

Version 1.0
Status Final
Work Package WP 5.2
Deliverable Type Report

Contractual Date of Delivery

31 December 2007

Actual Date of Delivery

15 February 2008

Responsible Unit

UMA

Contributors

SAP, CUL, UTN

Keyword List

Dissemination level

PU

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

|| bl
Change History
Version Date Status Author (Unit) Description
0.1 09/02/08 Draft Francisco Sanchez-Ciddded new sections. Document
(UMA) revised
1.0 13/02/08 Final Francisco Sanchez-CidRevised from Quality Check
(UMA)
SERENITY - 027587 Version 1.0

Page 2 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

Executive Summary

This document is a precise description of the modghrtefacts used in the description of S&D
Solutions. These artefacts range fr8&D Patterns(andintegration SchemgandS&D Classeso
S&D Implementations This document describes their conceptual meanegsd proposes a
structured language for expressing them, along vaith XML-based representation for this
language. The second version of the language, mezse this document, provide the readers with
guidance on how to correctly use the modellingfacts to describe generic S&D Solutions. Thus,
every field in the artefacts is concisely descrinadsome cases coming with an example of use.
Finally, with the aim of building an illustrativeugle for those novels to the Serenity approach, the
document also introduces some basic concepts @ehenity Architecture.

This particular release contains some importanbhgéa from the Initial Version of the Language. A
briefing of the major additions is listed below:

[0 There is a new proposal for the analysis and gpatidn of “Pre-conditions”: Section 4.1.2.
presents the structure and the syntax of the pdatoms as well as the guidelines for their
creation and later evaluation.

[0 For the S&D Patterns, it was necessary to formddifine the structure and syntax for (i) the
declaration of Operations and (ii) the Class Adap#idter studying several approaches,
ASL has been selected as the most suitable onerASpecification Language (ASL) is a
pseudo-language independent of (i) the targetqgotatiind (ii) the implementation language.
It is strongly related to xXUML, but it can be usadependently. It provides a simple way to
define the operations inside the patterns. Theligeigture about it [2], but nevertheless, a
short description of ASL including the minimum knledge necessary to codify the
Pattern’s has been created and made availablatieal use [1]. Sections 4.3. and 4.3.1.
cover this issue.

[0 We have introduced the concept of “role” in the S&Iass definition: Two Patterns
belonging to the same Class, can play “differetgg’bin the application. E.g. Server/Client
role. Section 4.2. deals with this issue.

Some of the concepts already presented in Firgidehave been clarified:

[0 The “timestamp” field has been formally defined foe three S&D Artefacts (sections 4.2. ,
4.3.and 4.4.).

[0 The “Naming Scheme” for the identification of S&DaSses, Patterns and Implementation
Is now formalized and standardized (section 4)1.1.

[0 The “Creator” field (common to all the three Artefs) now contains the “Name” of the
creator and the “Date” of creation.

0 A“Comments” field has been added to the S&D Artefa
[0 “System Patterns” are now known as “Event ObsePatterns”.

Some elements of the language had a vague definldlew and more detailed descriptions have
been included and, in some cases, new names hadibee to avoid confusion:

0 There is no “Executable Implementation” now, bukéEutable Component”.

SERENITY - 027587 Version 1.0 Page 3 of 94

O

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

IEREMITY

“Components” of the S&D Patterns are now namedPasts”.

Initial Version of the language did not provide laar distinction between Parameters and
Components (“Parts” from now on). This issue haanteddressed in the revision.

The “Interface Adaptor” is now a “Class Adaptor’eamt to adapt from Class’ Calls to
Patterns’ Operations.

And finally, and as a consequence of the previtasnges:

0

N

Section 5. has been carefully revised to inclugertawly defined fields, to update the name
of some elements here and there, etc... This inclydesevising figures/tables containing
XML Schemes and (ii) revising S&D Artefacts definedXML language.

The same applies to section 6. , where (i) allembkpresenting the structure of the S&D
Artefacts have been revised and (ii) the appersixtion Appendix A) now includes full-
revised XML Schemes expressed in XML.

Upcoming versions of the language will include dethdescriptions of the following issues:

N

O 0O o0Ooogoogd

O O O d

Final definition of Integration Schemes: how toateethem. Examples of use.
Final definition of S&D Implementations: referendesheExecutable Components
Study of possible Post-Conditions.

Key Features: structure, representation, and use.

Definition of Global IDs for S&D Artefacts.

Parameters: specification, data structure, and use.

Static Tests Performed: evidences, formal proo&ifigcation of S&D Artefacts Threat
Models considered.

Trust Mechanisms.

System Configuration.

Define a version control system for S&D Artefacts.
Update of monitoring fields.

SERENITY - 027587 Version 1.0 Page 4 of 94

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

T
Table of Contents
I [011 o To [1 [1 o TP 7
I I Y/ ToTo =1 1 g o o0 1= P 7
1.2. Artefacts for modelling S&D SOIUtIONScooviiiiiiiiiiiiiii s 8
1.3. SERENITY RUNtME MOAEL ...t eeeeme e 12
1.4. SERENITY Development TiIMme MOElcoueiiiiiiiiiiiiiiieeeeeii e 13
1.5. S&D Patterns and Integration SChEMEScccceeviiiiiiiiiiiiiiiiii e eeeeeee e 16
1.6, SE&D ClaSSES ... uuiii ittt eeeemme s e e e e e e ettt ettt ee e e e e e e e e e e e e e e eeeeerrrraaaa 19
1.7. S&D IMPIemMeENntatiONSuuuuuiueeimmmmmmae e e e e e e e e eeee e e e eeeera s e e e e e eeeaeeseeeeaeaeeeeeeeennnnes 20
2. CONCEPLUAI MOAEL.... . e e e e e e e e e e eeeaearaees 21
3. Architectural MOEL...... ..o et a e e e e e e 23
3.1, SERENITY LIBIary.....oooooi ettt rree e e e et e e e eanaaas 23
3.2, ArchiteCture DESCIIPLIONeuvvres e seeeeeeeeeeeeeeeeeeesssesannnnnnsnnnaaaaaaaeeaaeeees 25
3.2.1. Internal EIBMENTS ..o 26
3.2.2. EXternal EIBMENTSoooiii oot e e e e e 27
4. A Language for Describing S&D SOIULIONScceviiiiiiiiiiiiiiieaae e eeeeeeeeieeeeee e 28
4.1. CommoN CONSIAEIAIONScciiiiiii bbb e e e e e e e e e e e e e e e s s s sanr e e e e e e e e aaeaeeeas 28
4.1.1. NAMING SCREMIE ... e e e e e e e ae e e e e e e e e e eeeeeraanees 28
4.1.2. Study Of PreCONAItIONSiiii i e e e e e e e e ennar e eeeeas 29
4.1.2.1. Structure and Sintaxis of PreconditionS.............ccoovviiiiiiiiiiiiiiiineeeeeeeeenn 30
4.1.2.2. Creation and Evaluation of PreconditiQnS.............ccoooviiiiiiiiiiiiiiiiiiiiieeeenn. 33
4.2. Detailed description Of S&D CIlaSSEScoeaeeriiiiiiiiiieiee s 35
4.3. Detailed description Of S&D Patternscceceevveiviiiiiiiiiiieeeeeececeeeeei e 36
4.3.1. Rationale for ASL AJOPLIONoeuimeiimiiiiiiiiiiiiiieea s e e e e e eeeeieeeeeeeeeeeeeenane 39
4.4. Detailed description of S&D Implementations.............ccooeeeviviieeeiiiiiieee e 40
4.5. Specifying Monitoring Rules in S&D PatternS..........cccoooeeiiiiiiiiiiiiiiii e 42
4.5.1 Specification of Monitoring Rules in EVENtI€LAUSoovvveviviiiiiiiiie e, 42
5. XML Representation of the [anguage.........uiiieiiiii e 44
5.1.1. XML Schema for S&D CIaSSESuummmmeeeeeeeeeeaaiiiiiiiiiiiiiirbeeeeeeeeees e 44
5.1.2. XML Schema for S&D PAtternsccocceceeiiiiiiiieeeeeei e 47
5.1.3. XML Schema for S&D Implementationscccccooiieieeeiiiiieeeeeee e, 51
5.1.4. XML Schema for Monitoring RUIES ... 54

SERENITY - 027587 Version 1.0 Page 5 of 94

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

e
6. EXAMPIES Of AESCIIPLIONSuuuuueeei s s e e e e e e e eeeeeeeeeeeaaeasanaa s e s e s eeeeaassaaaaaaaaaeeeeeeesnssnnnnns 61
6.1.1. Confidential TranSMISSIONcccuiiiiiiuiiiiiiiaare et 62
6.1.1.1. S&D Class: SimpleTransmissionConfiden§fabo.orgcccccevvvvvveciieenennn. 62
6.1.1.2. S&D Pattern: TransmissionConfidentialitflS Encryption.iso.org.............. 63
6.1.1.3. S&D Implementation: UMA_Crypt.giSUM.UMA.ES.......cuuiiiiieeeeeeeereeereeeeenannnns 66
6.1.1.4. S&D Implementation: TPMDES.INfINEON.COM..........uuuuiiiiiiiiieeeeiiieeeeeeeiiiiines 66
6.1.2. Confidentiality DY DES.........coiiiiiiiiiie e e e e e e e e e e e e eeea e e e e e e e eeaannane 68
6.1.2.1. S&D Pattern: ConfidentialityByDES_Encrgptirsa-labs.com............ccccceeeenn... 68
6.1.2.2. S&D Implementation: CryptoJ BSafeDES.RBAIC.............cevvvvvriiiiiiiieeeeeenn. 72
6.2. S&D Patterns expressed in XML: @n @XamMpPlu . ..ccoveeeiiriiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee 73
6.3. Monitoring rules expressed in XML: an eXample.........ccoovvvrvmriiiiiiiiiiiiniee e eeeeeeneenns 75
7. APPIYING the [aNQUAGEo eee e e e e e e e e e e arrraaaae 79
7.1. A Pattern for Fair EXCNANQE eeeeeeeeeeeeeeeeeeeeeeesiiiaesns s sseseesnns s s e e e aaaaeaeeeees 79
7.2. Pattern Description EXamPIe.........o oo 82
APPENIX A, XML SCNEMAScceeiiiiieeeeene s s e s e e e e e eeeeaeeeeeeeessassan s s e e s e s eeaaaasaaaaaaaaeeeeeeennnnes 84
A.1l. XML Schema Of S&D ClaSSES.....cccuuuuuuuuiiiiieee ettt 84
A.2. XML Schema of S&D PAtternsS..........cccceeeeeieiiiiiiiee e e e e 86
A.3. XML Schema of S&D IMpPlemMeENtatioNS....... e rieeeeeieeiiiiiiiiiiiiiiiiiie e 89
A4, XML Schema Of EC-ASSEITIONoii ettt et e e e e et eeeeee s 90

SERENITY - 027587 Version 1.0 Page 6 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

1. Introduction

The modelling and representation of security amueddability solutions (S&D Solutions) is one of
the biggest challenges in SERENITY. This repregemtas strongly related to the SERENITY
Conceptual Model [3], to the design of the RuntiArehitecture and to the Runtime Monitoring
activity. This introduction tries to put it all tether by first, presenting the main concepts thex us
should get familiar with, then introducing the Setg modelling artefacts, eventually showing how
these artefacts fit in the Serenity Runtime anddlggyment time architecture.

1.1. Modelling context

Before we start dealing with the artefacts thatwilé use for modelling S&D Solutions, we must
describe our envisaged scenario and define some teans. We must emphasize that our work is
focused on the modelling of S&D Solutions for Amitiéntelligence (Aml) scenarios. In fact, the
new scenarios of Ambient Intelligence, their ungeg pervasive technology, and their notion of
mobile services —where the IT environment moulgslfitaround the user’s needs, raise the bar for
what is a satisfactory security and dependabildjutson well beyond standard IT security
technology. For this reason we expect our resoltbet applicable in many other (probably less
demanding) scenarios.

The scenarios of Ambient Intelligence introducesa/ rtcomputing paradigm and set new challenges
for the design and engineering of secure and dejfi@edystems. In these scenarios the concepts of
system and application as we know them today wdlagpear, evolving from static architectures
with well-defined pieces of hardware, software, cmmication links, limits and owners, to
architectures that will be sensitive, adaptive,teghiaware and responsive to users’ needs and
habits. We will refer to these architecturesias ecosystemd heseAml ecosystemsvill offer highly
distributed dynamic services in environments thait lve heterogeneous, large scale and nomadic,
where computing nodes will be omnipresent and comaation infrastructures will be dynamically
assembled. This is the scenario where our work odetiing security and dependability solutions
will be applied. The most important aspects to take account in this scenario are the highly
distributed nature of the computing model and tbmlgination of heterogeneity, dynamism and
large number of computing and communication elesjastntrolled by different entities. All these
characteristics make matters worse when it comeégesgning and operating the necessary security
mechanisms. For this reason, it is essential tiestet security mechanisms can adapt themselves to
the ever-changing Aml context. Consequently, ouinngoal in the modelling of security and
dependability solutions becomes the ability to wke models forautomated selectiorand
adaptationof the security and dependability mechanisms lhgraated means.

Before we proceed, some terms are defined in aodiacilitate subsequent explanations.

[0 Aml ecosystem: We define an Aml ecosystem as the composition wfipte systems
controlled by multiple authorities (usually the ®m owner). In particular, this means that
for every system that is part of the ecosystemetieran authority that is responsible for its
security and dependability.

0 S&D Authority: Entity that is responsible for the security ancatelability of a
system or set of related systems.

[0 S&D Realm: A set of systems controlled by one S&D Authorgycalled an S&D Realm.
In practice it is frequent for an authority to amhtmore than one system. This happens for

SERENITY - 027587 Version 1.0 Page 7 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

instance in the case of a corporate network congpase multiple computing and
communication devices. We call SERENITY Realm 8EERENITY-enabled S&D Realm.
It is possible for a realm to have nested realms.

[0 S&D Property: An S&D Property is a quality of a system that evdes its security or
dependability in some way.

[0 S&D Requirement: An S&D Requirement is the expression of the nead dn S&D
Property to hold on a system or part of it.

O S&D Solution: An S&D Solution is defined as a mechanism thatised to realize
some S&D Requirement.

Figure 1 shows a graphical representation of tmeeots defined above. It depicts a fictional Aml
environment composed by six realn$&D Realm lis composed by four systems—managed by
S&D Authority 1 and other two realms$S&D Realm 4and5 —managed by different authorities.
Considering “Computing Department” 8&D Realm 1we can think oS&D Realm 4as a laptop
owned by a lecturer. Although the laptop remairssda the Computing Department, the lecturer is
the one with administrative privileges on his owaptbp and, consequently, the lecturer is also the
S&D Authority for what concerns the laptop (i%D Realm 4. The lecturer —as S&D Authority—,
must comply with the policies imposed BgD Authority 1 but to any extent the lecturer is the
unique authority with capacity to manage ®ERENITY Runtime Framework (SRF)the S&D
Realm 4

Aml Environment

Figure 1 — Relations between the modelling artefast

1.2. Artefacts for modelling S&D Solutions

The representation of S&D Solutions in SERENITYsigported by three main artefacts: S&D
Classes, S&D Patterns and S&D Implementationshis $ection we will define them, describe
them in detail, and justify their structure andfubeess. Before continuing, the three main concepts
must be introduced:

O S&D Patterns represent abstract S&D solutions. These solutiores \aell-defined
mechanisms that provide one or more S&D Properiibsre is a special type of S&D Pattern
that represents the combination of several S&DeRadt This type of S&D Patterns is called

SERENITY - 027587 Version 1.0 Page 8 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

Integration Schemes. The popular Needham-Schrged@ic key protocol is an example of an
S&D solution that can be represented asS&D Pattern. One important aspect of the
solutions represented &&D Patterns and Integration Schemess that they can be statically
analysed usin@&D Engineering Tool$in particular, Activities 1, 2 and 3 of the SERHNI
project will produce such tools). However, the liations of the static analysis tools introduce
the need to support the dynamic validation of tle@dviour of the described solutions by
means of monitoring mechanisms.

[S&D Classesrepresent abstractions of a setS#D Patterns characterized for providing
the same S&D Properties and complying with a commterface. This artefact is mainly used
at development time by tf®ERENITY Development Toads will be described in section 2. of
this document. An example of an S&D Pattern Classhi Confidentiality Clas$, which
defines an interface that includes ®endConfidential(Data, Recipierapstract method. S&D
Patterns and Integration Schemes that belong t8&in Class can have different interfaces,
but they must describe how these specific intesanap into the S&D Class interface. The
way to express this correspondence is sectionsadd4.3.1. later in this document. The main
purpose of introducing this artefact is to facthtathe dynamic substitution of the S&D
mechanisms at runtime. This is a basic pillar behire idea of the Artefacts: first, select an
abstract definition at development time (i.e. aagtrmethods from Classes); second, have
several patterns complying to this definition (byans of their Class Adaptor); and third, at
runtime, the patterns will be selectable and iftangeable because (though having different
interfaces) they all comply with the same abstomet. Given that interoperability is a key issue
at this level, with this approach it is possiblecteate an application bound to S&D Class, as
this artefact defines the high-level interface. (i@ set of functions, calls, or methods that form
the functionality offered by an artefact).

Thus, given that artefacts in an S&D Library havefgrence to the higher level artefact they
belong to, it is always possible to track back framExecutable Component to its S&D Class
in three backward steps maximum. In conclusionS&D Patterns (and their respective S&D
Implementations) belonging to an S&D Class willde¢ectable by the framework at runtime.

[S&D Implementations represent working S&D Solutions. It is importaatriote that the
expression “working solutions” refers here to amgalf solution (e.g. component, web service,
library, etc.) that has been implemented and testbdse solutions are made accessible to
applications thanks to tHeERENITY Runtime Framework (SRFhe description of either a
specific dynamic library providing encryption semw$ or a web service providing
timestamping services (both including a referencgstcorresponding Executable Component),
are examples of S&D Implementations. At this stages important to note that the physical
implementation (either software or hardware) oS&D Patterns corresponds to Brecutable
Componenpointed by an S&D Implementation, and not to theDSi&nplementation itself. In
fact, an S&D Implementation describes not just rmplementation of the S&D Solution, but
describes an implementation of an S&D Pattern. feans that all S&D Implementations of
an S&D Pattern must conform directly to the inteefamonitoring capabilities, and any other
characteristic described in the S&D Pattern. Howetreey may have differences, such as the
specific context conditions that must be met be&gmelying one specific S&D Implementation,

! This class is described in detail in section Béf Hocument

SERENITY - 027587 Version 1.0 Page 9 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

their performance, target platform, programmingglaage or any other feature not fixed at
pattern’s level.

cmp Modelling artefacts /

«specification»
S&DClass «specification»
S&DProperty
| InterfaceDefinition | | ProvidedPropertyReference

«realize»
Source

e Target
«specification»

S&DPattern

PatternClass ProvidedPropertyReference
S&DClassReference InterfaceAdaptor
Preconditions
«specification»
S&DPropertyRelation

MonitoringRules Parameters

EventCapturing SolutionDescription InterfaceDefinition
1
T
1
1
1
1
i
1 .

«specification» ! «realize»
S&DImplementation H

i
1
|

S&DPatternReference ImplementationDescription

Implementationinterface
Preconditions ImplementationReference ExecutableComponent

Figure 2 — Relations between the modelling artefast

All these artefacts are represented in Figure @ngalwith their composing elements and their
interrelations. The rationale for introducing théisese artefacts is based on the following reasons:

O S&D Patternscan be verifiedusing theSERENITY S&D Engineering Toplwhile S&D
Classes and S&D Implementations cannot. Theretorg wise to separate their definitions,
since all information referring to the provided pesties and the available proofs concern only
the abstract solution (i.e. the S&D Pattern) anttine interface (i.e. S&D Class) or the specific
implementation (i.e. S&D Implementation).

O S&D Patterns are verified by S&D experts (usualynbeans of formal methods) while the
S&D Implementations are tested by their produdarepposition to the case of S&D Patterns,

SERENITY - 027587 Version 1.0 Page 10 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

which will be frequently produced by people who dit created the S&D Solutions described
in such S&D Patterns, the creators of S&D Impleratans will frequently be the creators of
the corresponding Executable Components. FinallgD SClasses are mainly interface

definitions that are meant to facilitate applicataevelopment.

[S&D Classes will be defined by entities mainly netged in interoperability (e.g. industry
associations, standardization bodies). S&D Pattasfidoe produced by independent entities
interested in security and dependability (e.g. S&Dmpanies and Experts, but maybe
standardization bodies as well). However, pattemié not only enhance security and
dependability, but also interoperability, as allplementations of an S&D Pattern will be
required to conform to the pattern specificationnally S&D Implementations will be
produced by entities interested in the creationwofking solutions (commercial solution
providers, open source communities, etc).

All these definitions, concepts and characteristitsnodelling artefacts are revised and extended
from sections 1.5. to 1.7.

SERENITY - 027587 Version 1.0 Page 11 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

1.3. SERENITY Runtime Model

SERENITY covers all aspects of the lifecycle of S&Dlutions. It addresses both (i) the creation
of new solutions and their characterization as SRédterns; and (ii) the description of their real
executable implementations (i.e. Executable Compshieas S&D Implementations. In addition,
SERENITY supports the development process of thgliGgiion assisting developers in the
selection and use the most appropriate solutiottefpa fulfilling their requirements (making it
clear that is their responsibility to take the fidacision).

The dynamic selection and use of S&D Implementatiancording to the requirements and the
context conditions is also part of this model. Thgato the elicitation of S&D Requirements, S&D
Classes can be found that fulfil them. From S&DsSé&s, the next step is to make a selection from
the pool of all available Patterns that belonghtese Classes. The purpose of this selection is to
discard those Patterns that (despite they belon@ tealid Class) are not valid given the
requirements specified by developer. This proceskBased on the features made explicit in the
Patterns: the developer specifies the key featieess looking for, so the last remaining artefacts
will be those that fulfil both (i) the S&D Requiremts and (ii) the features specified by the
developer. From this refined list of artefacts,yahlose whose preconditions hold can be eventually
selected and in turn, only the S&D Implementatisrieose preconditions hold can be eventually
deployed. To end with, SERENITY model provides ngefor monitoring the correct execution of
these implementations, which is necessary becaluieeanteraction with external systems that
might not be under the control of the local S&D Kaity. In this section we will concentrate on
the runtime support.

SERENITY anticipates a distributed, dynamic ancet@eneous scenario where systems interact
and collaborate forming spontaneously Aml ecosystem our scheme S&D Realms have a
component that is responsible for the enforceméther security and dependability requirements.
We call these reaimSERENITY Realmsand the inner component tH8ERENITY Runtime
Framework (SRF). To be precise, what SERENITY Realms integia an instance of the
SERENITY Runtime Framework. Given the diversity ddvices that may have SRF Instances,
these instances must be platform-specific impleatemts of the generic SRF, some of them
explicitly designed for mobile phones, some otHersweb servers, and so on. For the sake of
simplification, both the abstract framework and imstances will be referred as SERENITY
Runtime Framework now on.

We must note, however, that it is not mandatoryd@ystem or S&D Realm to contain an SRF
instance. In other words, because the SRF hasdeBiled interfaces (a Negotiation and a
Monitoring interface, both described in the SEREXI&rchitecture), it is possible for other non
SERENITY-enabled systems to interact with SERENIRéalms. There is at least one SRF
instance in each SERENITY Realm. For simplicity @@ work under the assumption that every
SERENITY Realm has one and only one SRF.

Each SRF has an S&D Library composed of the S&Ds$€da, S&D Patterns and S&D
Implementations that are available in this pardacuSRF instance. At runtime, the SRF is
responsible for fulfilling S&D Requirements by seliag and using the most appropriate S&D
Implementations. In this sense, we caladtivation referring to the complex process of loading,
integrating, initializing and using (including thrantime monitoring of its correct execution) an
S&D Implementation. Once an S&D Implementation c$iveated, the corresponding Executable
Component is deployed. Thus, the Executable Comyanast include everything that is needed to
execute the solution, going from the configuratigtails, to the code for deploying it.

SERENITY - 027587 Version 1.0 Page 12 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

The S&D Authority of the SERENITY Realm is respdaisifor defining the S&D Configuration of
the SRF. This configuration includes different agpesuch as preferences, or system-wide S&D
Requirements. This configuration can be considersethe security and dependabilitylicy of the
realm. In any SRF instance, there are two typesctife S&D Patterns: on the one hand, “Event
Observer Patterns” are activated as a result ofS&B Configuration; and on the other hand,
“Application Patterns” are activated as a resultief S&D Requirements coming from a specific
application. For a more detailed description osthelements, see Deliverable A6.D3.1.

1.4. SERENITY Development Time Model

SERENITY supports system developers at developrieat by (i) helping them to express their
S&D Requirements; and (ii) supporting them in tleéestion and use of S&D Solutions fulfilling
those requirements. Precisely, we have introduce&&D Class artefact in order to support (ii).

When creating a new system, developers build théetsmf the system. Later, the analysis of these
models helps them in the elicitation of the S&D Riegments of the system. The most important
guestions arise at this point: What are the posssalutions fulfilling the requirements? How
should we deploy them? What are their restrictiamsl limits? Are they applicable in our
environment? Furthermore, can all the solutionsajmglied together avoiding the risk of harmful
interactions? These are just a few of the manyeextiy-hard-to-answer questions they may ask
themselves. By having well-defined and precise mgsans of the possible solutions, especially
covering details such as the applicability, conipbity or the interoperability, developers will be
able to create better systems because they wableto make informed decisions about the S&D
Solutions that they include in their systems.

But what happens when we do not know the possitabl@ms in advance? What happens if we do
not know in advance how the system will be or wi#lhave? Maybe these questions seem a bit
unrealistic if we focus on traditional systems, khat is precisely the situation in Aml
environments. In this case we need something marel this something is the ability for
applications developers to delay the decisions talwbich are the appropriate S&D solutions to use
until the moment when we have enough informatioddoide correctly. That is, until runtime. Of
course, developers need tools to control and cedtré decisions that will be taken by automated
means at runtime. For the previous reasons SEREMBeds to be extremely flexible in supporting
system developers. The solution we propose isddluge complementary artefacts: S&D Classes,
S&D Patterns, and S&D Implementations.

When system developers identify an S&D Requiremigraly can decide to leave the selection of
the actual solution for runtime. In this case thel use a particular S&D Class providing the S&D
Properties that they need in order to fulfil thguieements. S&D Classes fix only the minimum
amount of information for developers in order togeed with the development of their system. In
particular, S&D Classes contain “the problem” (tisathe S&D Property provided) and a definition
of an interface that must be used by the develdpeosder to access these services. S&D Classes
do not have a defined behaviour, and therefore tloeyot need to be proven, validated or verified
by any means.

All S&D Patterns belonging to an S&D Class needdoform to the class interface. However, each
specific S&D Solution, and therefore each speci&D Pattern, may have a different interface.
This is so because interfaces are strongly reltietthe details of the solution. Therefore, S&D
Patterns also contain a specification that allolmes $RF to map the abstract calls defined in the
S&D Class into the specific calls defined in the[S&attern. Thus, the Executable Component can
either rigorously follow this interface when implenting its own functionality, or provide —

SERENITY - 027587 Version 1.0 Page 13 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

through its S&D Implementation, a wrapper that mé&psn the Pattern calls to the Executable
Component functions.

In case developers select an S&D Class to fill ibguirements, the SRF will be able to select
among all the S&D Implementations that correspanélt the S&D Patterns that belong to that
class. On the other hand, if developers decide &kemthe runtime selection process more
restrictive, then they can select an S&D Pattested of an S&D Class. This way, although the
S&D Pattern is fixed at development time, develepare still allowing the SRF to dynamically
select among the possible S&D Implementations gwant to the selected S&D Pattern. This
selection is based on the information taken from thntime context. Although not all S&D
Implementations of an S&D Pattern have exactlydhme characteristics and applicability, all of
them share exactly the same interface and behaviour

An S&D Implementation represents a working solutaod therefore it contains a reference to the
correspondind=xecutable ComponeniVhile an S&D Implementation is only a formal deston

of an implementation, the Executable Componenhésdctual implementation as an executable
code or entity. There is a one to one relation betwS&D Implementations (the descriptions of the
working solutions) and Executable Components (& korking solutions), so that no S&D
Implementation is possible without an Executablenfonent associated. Therefore, it is also
possible for developers to choose a specific S&Pplémentation for their system. In this case the
advantages of dynamism are reduced, but not coetpl@bsent. In fact, the SRF will still be able to
monitor the behaviour of the Executable Componentesponding to that S&D Implementation
even if it cannot be changed.

object Object modell

S&DClass Elements
S&DPattern Elements

| S&DImplementation Elements |

ExecutableComponent Elements

SimpleTransmisionConfidentiality.iso.org :
S&DClass

ConfidentialityByDES _Encryption.iso.org :S&DPattern |

AN

ConfidentialityBySecureChannel.ieee.org :
S&DPattern

NokiaDES :
Sé&DImplementation

SAPDES :
Sé&DImplementation

ThalesDES :
S&DImplementation

ATCSecureChannel :

SAPDES :
ExecutableComponent

NokiaDES :
ExecutableComponent

S&DImplementation

SetcceSecureChannel :

S&DImplementation

ATCSecureChannel :
ExecutableComponent

ThalesDES :
ExecutableComponent

SetcceSecureChannel :

ExecutableComponent

Figure 3 — Example of related S&D Classes, S&D Patns and S&D Implementations

Summarizing, the developers have been support€d development time selection of the most
appropriate solution and at (ii) runtime monitorin§ the correct operation of the Executable

SERENITY - 027587 Version 1.0 Page 14 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

Components. Figure 3 depicts an object diagram stgpan example of the relations between S&D
Classes, S&D Patterns, S&D Implementations (anil doeresponding Executable Components).

Each SERENITY Framework instance will incorporate $&D Library composed of different
types of artefacts (S&D Classes, S&D Patterns a&bD 8nplementations) that will enhance the
correct selection and use of the available workiolgtions (i.e. Executable Components).

It is important to remark that two S&D Pattern’sstantiating the same S&D Class can play
different roles in a system. For instance, an S&idtd?n for secure transmission over untrusted
networks can play on client or on server sidesevtie associated functionality is notably different
Consequently, as the use of the interface dependferole that an S&D Pattern plays in the
system, it is necessary for each possible rolepdicitly describe its functionality. The S&D Class
includes a description of each possible role tremmay an S&D Pattern that belongs to that S&D
Class.

The Interface Definition at Class level, clearlgtthguish the functionality offered by the diffeten
roles. This info can be extrapolated at Patterellawsing the Class Adaptor. Using it, we know the
Pattern methods that belong to a particular rols. ah Executable Components rigorously
implements the interface of the Pattern, the fumetiity of each the role is perfectly available whe
using Executable Components.

id Example of roles' use /
classA:S&DClass
Serenity Run-Time Framework 1 Serenity Run-Time Framework 2
(SERVER ROLE) (CLIENT ROLE)
al:patternA patternA:S&DPattern az:patternA
T
1
I
1
Both SRFs share the same
i i S&D Pattern, but use
implementationAl: different instances implementationA2:
S&DImplementation Sé&DImplementation
N N

1 1
'
' :
«implelmems» «implements»
1
1

The "patterninterface” to

use dependson the role
ExecutableComponent that patterns plays. ExecutableComponent
Al - A2

serverRoIelmerfacé —————————— - JD(:IienIRolelmerface
\l/Sen/erInlerface Clientinterface \lJ

Server Client application
application

Figure 4 — The S&D Pattern “patternA” plays two different roles in each SRF

Figure 4 shows an example of the S&D Pattern belavibased on the roles they play in the
system. In our example, two SRFs have their owtainte &1 anda2) of the same S&D Pattern
(patternA. For patternal in SRF 1, the S&D Implementatio®l is applied and the
ExecutableComponerAl is running under a server role. For pattad in SRF 2, the S&D

SERENITY - 027587 Version 1.0 Page 15 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

ImplementatiorA2 is applied and thExecutableComponeAZ is running under a client role. Thus,

each side in the communication channel is playiddfarent role: the SRF 1, on the left hand side,
is providing an S&D Solution to a server applicathile the SRF 2, on the right hand side, is
providing the same S&D Solution to a client appgima. Following this scheme, both applications
are using the same S&D Solution (represented bys#me S&D Pattern), but with sensitively

different functionalities.

Given that each instance of the S&D Pattern isiptag different role, it is necessary to equip the
S&D Pattern with the means to distinguish betwéentivo different functionalities. This feature is
provided by means of th@les’ section Included in the S&D Class definition and applieaht
development time, it makes it possible the guiddoc@rogrammers during the development phase
of Serenity-enabled applications. When an S&D attis selected and then applied, the
appropriate role is selected.

This roles’ sectionshows explicitly, in the S&D Class definition, whatctions are available for
each role identified. For example, the use of aeftanctionality may not be necessary for one role,
while it may be strictly necessary for another okreover, given two roles that share some
function calls (e.g. both encrypt/descript the information usihg samecall in the S&D Pattern),
the sequence of those actions depends on the &ithe communication channel where the S&D
Pattern is being used.

In absence of an explicit role’s section, develspead to “manually” separate the functionality
associated to the role of interest, and apply tbeespondingcalls on their own discretion.
Basically, this means that without the roles’ smttiwe would have to use the pattern’s interface as
we use, for instance, a Java Lib: we read the deatation, and then we learn which Class and
Functions to apply for my “hello world” application

1.5. S&D Patterns and Integration Schemes

S&D Patterns are detailed descriptions of abs®&D Solutions. These descriptions must contain
all the information necessary for the selectiostantiation and adaptation, and dynamic application
of the solution represented in the S&D Patternt dgsone S&D Solution provides one or more
properties, also one S&D Pattern refers to oneaer8&D Properties.

A special type of S&D Pattern is called Integrat®®ocheme. An Integration Scheme is an S&D
Pattern that describes a complex S&D Solution. &/B&D Patterns are independent or atomic
descriptions of S&D Solutions, Integration Schendsscribe solutions for complex S&D
Requirements achieved by the combination of somB S&lutions.

Note that the difference rests on the descriptimt, on the solution itself. Therefore a complex
S&D Solution can be represented as an S&D Pattatnsi described in an atomic or independent
way (i.e. it does not refer to other descriptiol@). the other hand, if we describe the same solutio
by making references to the S&D Patterns that amebtned to achieve the complex property, or
combination of properties, then we are represertiagolution as an Integration Scheme.

In general, Integration Schemes are more diffitulanalyse and to model, but in return they are
more flexible and have better properties regardivey dynamic application. Let us consider the
following example: one solution that provides At&®n Identification keys using a TPM. An
S&D Pattern would require a TPM module as a preitimmd Otherwise, the solution would be not
applicable. On the other hand, an Integration Sehepresenting the same solution would have no
preconditions: it will combine both the Pattern tweating the Attestation Identification Keys and
the Pattern for accessing and managing the TPM laobtuthis example, the main difference rests

SERENITY - 027587 Version 1.0 Page 16 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

in the preconditions: while the S&D Pattern hasTR#M as a precondition, the Integration Scheme
has no precondition, given that it provides the TBRAMtself.

From the point of view of the SRF, an Integratia@h&nes plays the role of an application. This is
to say that once the Integration Scheme has bdamtad and deployed, it acts as an application,
asking the SRF for the activation of the S&D Paiteneeded. Figure 5 shows the sequence of
activation of an Integration Scheme:

sd Activatingan IS~/
App_A: App SRE_A: App
T T
1 1
i i
H req(artefact_1) H
set:= select_and_order(artefact_1)
"boolean:= eval_precond(set.first())
activate(set.first())
IS_A: App L
B et e L LT
e o | ____retum(S Ahandlen]

IS_A.start

SR

req(artefact_2, artefact 3)

set:= select_and_order(artefact_2)

boolean:= eval_precond(artefact_2)

PatternX:App

set:=select_and_order(artefact3)

boolean:= eval_precond(artefact3)

PatternY:App

mmmmmm]

H
return(artefact_2.handler, artefact:

<

+

function(param)

1
functionl(paraml)

]
function2(paramz2) |
L E;|

X X

y

e]

Figure 5 — Activating an Integration Scheme

SERENITY - 027587 Version 1.0 Page 17 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

In the example, App_A request the SRFdrtefact I. The SRF creates a list of the possible
Patterns belonging to this artefact, extracts iis¢ &f them, and then evaluates its preconditiéis.
this point, it is important to remark that the SREst check the preconditions of the S&D Pattern
and, in case they hold, check the preconditionthefselected S&D Implementation. If both hold,
then, the corresponding Executable Component cadeptoyed and its handler put app_ A
disposal.

In the example, the first Pattern of the list iplagable and it turns to be an Integration Scheme.
The IS is activated (named aks* &) and the SRF returns the IS handler fpp_A (message
“return(IS_A.handlef). As stated before, now that the IS has beervaigd, it starts acting as an
application, both for being accessed frofpp_A and to access the SRF by its own.

Now that application App_A has fully access to the IS functionality, it callhe IS to start
(message IS_A.start()). The IS must activate its Patterns, so it askes ERF for a couple of
artefacts to be activated and deployetéfact Z and “artefact_3. When the process of selecting
and activating the artefacts is finished, the SRmes back toIS_A with the handlers of the
Executable Components adirtefact 2 and*“artefact_3, respectively. Now the IS accesses these
artefacts usingdrtefact_2.handlérand “artefact_3.handléet

Eventually, the definitions for the previous contsegtate as follows:

S&D Pattern: A self-contained description of an S&D Solutioneaning that it does not refer to
(or depends on) other S&D Solutions.

Integration Scheme: A description of a composed S&D Solution that refeo (or depends on)
other S&D Solutions. In some cases, Integratione8ws will be used to represent ways of
correctly combining S&D Solutions with the obje@iof avoiding that they badly interfere.

The description of the S&D Pattern contains maifffigint elements. The most important are:

S&D Pattern: A self-contained description of an S&D Solutioneaning that it does not refer to
(or depends on) other S&D Solutions.

Integration Scheme: A description of a composed S&D Solution that refeo (or depends on)
other S&D Solutions. In some cases, Integratione8ws will be used to represent ways of
correctly combining S&D Solutions with the objediof avoiding that they badly interfere.

The description of the S&D Pattern contains maifffgint elements. The most important are:

[0 ProvidedPropertiesThis element is used to point to the descriptioitthe S&D Properties
provided by the S&D Pattern. One S&D Pattern casvige one or more properties. It is
natural for one Pattern to provide several Propgrtgiven that the Pattern can belong to
more than one Class.

[0 Preconditions Every S&D Pattern represents a specific S&D SatutFor this reason, we
assume that they are not universally applicablés €ement contains the specification of
the conditions under which the S&D Pattern is ablprovide the mentioned properties.

[0 MonitoringRules Because S&D Patterns are not expected to refrpseiect solutions, and
because the solutions will frequently depend onhbtbleaviour of external components that
will not be under our control, the solution mustrbenitored during its execution in order to
guarantee that it works correctly. This elementtams instructions for an external
monitoring mechanism to perform this activity. Wesame that every solution is
responsible for capturing the events that are msacgsfor monitoring it. Therefore, this
element declares this events and how to capture.the

SERENITY - 027587 Version 1.0 Page 18 of 94

1.6.

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

IEREMITY

Parameters This element allows us to build more generic sohs. Parameters (for
instance, the length of the keys in an encryptigorghm) can change without affecting the
general behaviour of the solution. They can alwagsepresented by a 2-tuple with a name
and a value.

PartDescription Sometimes a solution makes use of external elentleat can be replaced,
but that need to comply with some conditioBarts (for instance, a camera in a surveillance
system) are a special type of parameters thatseptravorking parts of the solution. They
can be replaced as long as the neart conforms to the conditions expressed in this
element. APart, in contrast to a simple parameter, does not septea single value, but a
component that: (i) is a piece of the solution dgimdhave an associated behaviour and
specific characteristics.

Tests PerformecdEvery S&D Pattern represents a proven solutitrer&fore, this element is
used to specify the proofs that have been appledrder to claim that the pattern
description is sound.

SolutionDescriptionThis element is used to represent the solution.

InterfaceDefinition This element describes the native interface & 8&D Solution
described by the S&D Pattern. More specificallyallows to: (i) adapt the native interface
coming from the Class to the interface of the S&iuBon and (ii) precisely describing the
interface of the S&D Solution.

PatternClass This element represents references to the clagsei® the pattern belongs. It
is divided into two components: &&DClassReferencis the reference itself; andGass
Adaptoris the description of the adaptation of the patiaterface in order to conform to
the class interface.

S&D Classes

S&D Classes are introduced to solve the need desyslevelopers of knowing at development
time the way to access the services related tadésered S&D Property, while maintaining the
maximum flexibility in the dynamic selection of tlepecific S&D Solution (in this case S&D

Implementation).

An application developer needs a minimum amoumbfoirmation about the S&D Solutions (in the
form of S&D Implementations) that will be used wdfil its S&D Requirements. Therefore, this
artefact is designed to provide this minimum amoahtinformation, while maximizing the
flexibility and the number of possible solutionsttican be selected and applied at runtime.

The description of an S&D Class contains:

O

O

ProvidedPropertiesThis element points to the descriptions of theDS&roperties provided
by the S&D Patterns that belong to this S&D Clddete that the S&D Class does not
provide properties. One S&D Class can point to @n@ore properties.

InterfaceDefinition This element describes the native interface ef 8&D Class. This
interface must be designed in order to be simpteganeric enough for many solutions to
be able to comply with it.

Roles’ definition. The previous interface, whichfides a set of available operations, is
refined into one or several sequences of operatiash sequence is defined for the
different roles that an S&D Class can play whemezf as an S&D Pattern. The benefit of

SERENITY - 027587 Version 1.0 Page 19 of 94

1.7.

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

IEREMITY

this distinction is straigthforward. Let us consida Pattern providing Confidential
Transmision. All functionality is already defineNMow consider a sender and a receptor
using that Pattern. Both are using the same fumality, but in a different way. While one
encrypts, the other decrypts. Each side (thatash eole) must have a clear vision of its
functionality defined first at Class level, andrhefined at Pattern level.

S&D Implementations

S&D Implementations describe executable mechanifiaisconform to an S&D Pattern. In other
words, and S&D Implementation precisely depictsraplementation of the S&D Pattern, and not
the abstract S&D Solution represented by the patfBne description of an S&D Implementation
includes:

0]
0]
0]

O

ImplementationDescriptionThis element is used to represent the implemientdetails.
ImplementationReferenc&his element points to the actual Executable Gomapt.

Preconditions Frequently, an implementation will have some #mepreconditions that
join the pattern preconditions making more restrec{but also more precise) the process of
selecting the most suitable implementation.

S&DPatternReference This element is a reference to the pattern the S&D
Implementation implements.

We must highlight that there is no specificationttid S&D Implementation interface because all
S&D Implementations of a given S&D Pattern mustehaxactly the same interface that the pattern

has.

SERENITY - 027587 Version 1.0 Page 20 of 94

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

IEREMITY

2. Conceptual Model

The objective of this section is to formally remmes the conceptual elements that are used in
SERENITY. For the Use Case view, the reader caar dction 2.2 from the previous version of
the deliverable [4].

The following class diagram shows the differentaaptual elements that are used in SERENITY
as well as their relations.

We can observe that S&D Patterns and Integratidrer@es $&DPatternsin Figure 6) refer to
solutions §&DSolutiony and contain the semanticS&DSolutionSemantigshat describe such
solution. The semantics are described in termshefsemanticsS&DPropertySemanti¢sof the
particular propertiesS&DProperty provided by the solution. Solutiof$&DSolutions)can be
monitored by the monitor servig@onitorServicg. Solutions Semantics provide a monitoring
specification(MonitoringSpecification}that describes politics and events involved in itooimg
tasks. Solution§S&DSolutions)may have different implementatio(8&DImplementations)

class Logical Model

Q
Pt ! L " b i
i rovides
/'\ CertifiedS&DPattem S&DLibrary %
FulfillledBy - — L
S&DSOIU“O" S&DPropeny S&DConfiguration

Pane mCertifi a‘e
RefersTo

DescrlbedBy DescnbedBy
PartSemanti
» RelatedTo
DescrlbedlnTermsOl

cs Certlfles
Provides Zl
c * * S&DConfigurationElement

Patt | terf .
atterninteriace Belon STo S&DSulutlunSemantlcs S&DPropertySemantics |
S&DPatlern
EnforcedFor
! |
N

Implements

Complies

S&DClass MomtorableBy DescnbedBy
\Defmes * SystemElement
Semantic elements
E Monitors

o
@

alizes

siomaae [wonitring refated enties]
MonitoringSpecification MonitorService Pattemns definition related entities,
RefersTo
Implementation entities
_ SRF Instance entities
Provides Checks
0.% Realworld entities

Implementationinterface ExecutableComponent EventCapturer

ClassInterface

Figure 6 — Logical model

An S&D Implementation is a description of an impkamation that fits a solution. An
ExecutableComponent is a tangible element (e.gftavare application or a cryptography library)
that supplies a particular implementation. Différ8&D Implementations for the same solution are
the result of having a number of solutions for dame problem but fitting different context
conditions or requirements. Each ExecutableCompongrovides a particular Interface

SERENITY - 027587 Version 1.0 Page 21 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

(Implementationinterface) Implementationinterfaces must realize the wholattdPninterface.
Patterninterface helps to maintain similar (but eqtial) interfaces for all ExecutableComponent.
For monitoring purposes ExecutableComponents peokientCapturers. Serenity Framework will
use the S&D Implementation in order to choose tloerect one among all the possible
implementations of a specific pattern. The desionptof a pattern should be a more general
definition than implementation description is.

S&D Patterns and Integrations Schemes are certifigda special type of digital certificate
(PatternCertificatg. The library of S&D Artefacs§&DLibrary) is composed of S&D Patterns and
Integration Schemes that hold a certificate, theadted certified patternertifiedS&DPatteri.

S&D Patterns providenterfaces(Patterninterfacesthat are used by Serenity Runtime Framework
in order to establish the criteria for pattern’&.usll implementations§&DImplementationsof a
pattern must comply with the interface of the inmpéated pattern. It is possible to have more than
one implementation for each pattern. S&D Classeso aprovide interfaces named as
ClassinterfacesClassinterfaces are not the same than Patterfaoés, given that Patterninterfaces
must comply with the Classinterfaces definiticB&DClassesare used to group a set of
S&DPatterns All patterns that define the same interface cameer the same umbrella: an
S&DClass At some extent, the concept®&DClassis close to the concept of class in orient object
programming.

Finally, users define the security and dependgbriquirements §&DConfiguratior) for their
systems, grouping a set of specific requiremei@&DConfigurationElemeft Each specific
requirement is specified by means of a set of ptseS&DProperty that must be enforced for a
particular element of the syste®@yStemElementAll this elements are shown in Figure 6.

SERENITY - 027587 Version 1.0 Page 22 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

3. Architectural Model

The aim of this section is to depict and describe ¢components of the architectural view of
SERENITY, as well as the relations established ambem. As every single SERENITY-aware
device will run this multifaceted architecture,istimportant to underline the main components,
their role, and criticalness in the whole proceksezuring a device. Among all the components,
one of them rises as the core one since it hokl&tlbwledge and the experience of security experts
in form of S&D Patterns: the SERENITY library. Thiemponent is described in section 3.1. , just
before the description of the whole picture givesection 3.2. .

3.1. SERENITY Library

SERENITY Library is the result of the effort to repent, in a general and machine-readable
format, the solutions developed by security expéstsa wide range of security problems. It
contains patterns that describe, at different kevafl abstraction, security solutions that solve
specific security problems. However, the patterosanly hold the description of the solution but
also how to use it, the conditions needed for psliaation and how to monitor the correctness of
the process.

Obviously, from an Aml point of view, every singtievice has different security needs and is
surrounded by a different working context that gales SERENITY to instantiate the library for
every particular situation. Given an instance dafifgrconcrete solutions, the correctness for the
concrete device and problems is assured; howevsrcorrectness can not be assured in the event
of a change in the application context. As soméefapplied solutions can be no longer valid in
the new context conditions, the library offers thbeannel for SERENITY Framework to
dynamically react and update/change the existihgieas in order to fit with the new applicability
conditions. For the time being, if some changeearia the context that makes a solution no longer
valid, this solution is deactivated. Then, a segvobcess starts that looks for the most suitable
solution from those available and, if found, ad®sit.

Today devices offer a variety of internally complax, on the other hand, easy-to-use applications
coming with different hardware/system requiremehtsAml context, applications will also come
along with security requirements expressed by meémsecurity properties to provide in order to
safely achieve the intended functionality. At tetage we can use the information we usually get
from the manufacturer; for instance, an exampléese requirements might go like: “the use of my
brand-new chat application is fully secure whendus@mong ACME devices, but no confidentiality
is assured if any of the parties in chat is nohgian ACME device”. This assertion makes clear
that in case you really need confidentiality, sofugher functionality has to be added to the
original application. However, frequently at thigimt the developer has not enough information to
select the most appropriate S&D Solution. Therefthre developer takes the final decision, assisted
by the SDF (Serenity Development Framework) usiegegic solutions to their requirements,
represented by S&D Classes.

S&D Classesare abstract classes that group sev8&D Patternswith one common trait: all of
them offer a solution for the problem specifiecamS&D Class.Reasoning the previous example,
the S&D Classto look for is the one talking about the problem adnfidentiality when
communicating two principals. Obviously, a numbksautions —each one with some peculiarities,
advantages and drawbacks, have been offered iidreture to provide this property. For each one

SERENITY - 027587 Version 1.0 Page 23 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

of these solutions, aB&D Patternis the appropriate artefact to represent and dest¢hem in a
machine-readable way.

As a solution for a concrete problem, 38D Patternrefers to ar&D Class As several solutions
can be proposed for the same problem, seB8&&8 Patternscan refer to the san®&D Class In
this way we can symbolize SSL and TLS as diffeteritappropriate solutions for the problem of
confidentiality. Apart from the reference to thestbct class each S&D Pattern includes
information about the context in which it can belegrl, a description of the solution, and some
useful information about monitoring that can bedusemonitor the execution of the pattern during
its lifetime. Figure 7 represents all the elemeat@scribed in this section as part of the SERENITY
Library.

SERENITY Library

@&D Classes \ @gend: \

S&D S&D S&D
Class 1 Class 2 Class N

Ll

S&D
Class

S&D
Pattern

@

“s&p
Implementation

A

@&D Patterns

0 @

inherits

v Implementation
S&D Pattern1 S&D Pattern2 S&D Pattern N
\C A A)
e Library of S&D Implementatiorg

Implements
Implements Implements

t%e .

B 095 20 Wb
Impl 1 D /
me Impl 2 S&D

S&D
s&D s&D;
impl[3 mpl 4 cag ™I
_ mpls)
/ Y A \
Ad
X 8fartCarty Y& g o
X NN
~J(.class @’ " TPM N
\\ Executable Componew

Figure 7 — Representation of SERENITY Library

Not only each problem can have different solutifm$ also each solution may have different
implementations. As a mere example, SSL or TLS riesca protocol that has different
implementations depending on the provider (e.g.n3% from BSD and JSSE from Java are just
two of the most popular implementations of SSL).

SERENITY - 027587 Version 1.0 Page 24 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

For each available implementation, a differ&&D Implementatiordocument is included in the
library, describing: the specific system requiretsgthe necessary interface to use when calling the
implementation, and the location of theecutable ComponeritachS&D Implementatiomefers to
one concrete implementation —its own Executable @omant, so that once a solution is selected by
the framework, a handler for that component is mead#lable for the application. A solution can
be not only a software solution but also includedheare elements such as a TPM (Trusted
Platform Module) or a SmartCard. In any case, ikesano difference from the application point of
view. For instance, if the Executable Componentkaorith a TPM, the SRF will return to the
application not a direct link to the TMP, but ratllee handler of the driver that manages the TPM.

In our discussion, the path from the problem todbecrete solution is the path that goes through
the library and includes tH&&D Classfor confidentiality, theS&D Patternoffering SSL for secure
communications, and tH&&D Implementatiomlescribing the interface and the specific mecmasis
of the concrete Executable Component, such as C§lenSnally, once a pattern is found and
selected as the most suitable one, it is activammiuded among théctive Patternsand used by
the Serenity FrameworkFrom an architectural point of view, a patterrmarg from theS&D
Library and subsequently activated is known asAaplication Pattern The concept ofActive
PatternandApplication Patterrwill be more extendedly described in next section.

3.2. Architecture Description

As the S&D Library represents the static knowledgeracted from security experts, the
architecture as a whole represents the dynamiomeas that takes the knowledge and makes it
available to the final user/application. Figureepitts the main architectural elements as welas t
interactions among them.

Serenity Enabled Device

Serenity Framework

S&D Manager
S&D Framework Configuration @

Event Observer
Pattens » TPM

Application Event <§\ Low Level Events
Patterns ’ < J(lass)

Active Patterns, —

Applications

Executable Implementation

S&D Library

S&D Classes

S&D Patterns

S&D Implementations

Figure 8 — Main elements of the SERENITY Architectue

SERENITY - 027587 Version 1.0 Page 25 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

3.2.1. Internal Elements

Along with the S&D Library —described in the previous sectidhe Serenity Frameworks the
other basic pillar of the architecture embeddedeaSerenity Enabled Devic&he framework is
composed of three elements, namely:

[0 S&D Manager: this is the core of the framework. Argather duties, it has to (i) manage
all the parameters concerning the user configura(i) deal with the patterns specifically
designed for the device (embedded patterns indtaldependently of the applications
running on top); and (iii) interact with the S&DHrary, the applications running on the
device, and the Monitoring Service. Inside the SlBnager, two artefacts coexist:

» Active Patterns: it contains the set of Patternsaaly working in the system, along with
data about the date of activation, the foresee datkeactivation, the application that is
using the Pattern, and so on.

» S&D Framework Configuration: in order to grant sofftexibility to the user, some
degree of configuration is permitted. For instariaking into account that the monitoring
service may consume resources from the device ifppstegrading the performance),
the user may prefer to switch off the monitoringceftain rules in specific contexts. E.g.
if the user considers that the office environmergure enough to trust on the underlying
connection, some monitoring mechanisms can be tduliia

[0 Serenity Console: this element acts as the mahenxtiddle between the Serenity
Framework and the user. The information that fldesveen both parties is bidirectional.
On one side, whenever the user has to deal witlirdémeework configuration and specify
some preference or configuration parameter, thanmdtion is retrieved through the console
and sent to the S&D Framework Configuration elemént the other side, whenever the
framework has to send some warning or indicate sostevant event to the user, the
information is presented throughout the console.iRstance, if one of the solutions is no
longer valid due to an unforeseen change in théeggnapart from starting a series of
reactions, the user is alerted of the incident sache of the subsequent decisions will
depend on his elections. All this input/output m®ex is made by means of the Serenity
Console.

[0 Event Interpreter: it receives all the low leveleets generated by the patterns (i.e. the
implementation of the patterns). The Monitoring\&®¥ should receive these events from
the Framework in order to analyse them and sendti@toring results back. However, the
Monitoring Service is not well suited for low leveVents, so that the Serenity Framework
offers this interpreter in order to translate thamo abstract events, appropriate for the
service to check them against the monitoring rules.

Some devices come with specific security needsltaaé nothing to do with the application layer
but with the underlying hardware, OS or the envinent in which the device is used. We can not
rely on the availability of third party applicati®smo capture and monitor some relevant information
such as the connection to a trusted/untrusted mktWwor instance, we can not assume the existence
of an application running on every smart phone &blaonitor whether the device is connected to a
European GSM network or an American CDMA networkisTenvironment-related information
has some important security implications that dange the assumptions made on the basis of the
external context. These assumptions are basichodéfinition and later evaluation of Artefacts’
Preconditions and consequently, if these assungtiary, the applicability of the existing patterns

SERENITY - 027587 Version 1.0 Page 26 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

should be revised. In this sense, the SRF prowadest of Event Observer Patterns to cover these
relevant events that are not covered by the gepearglose, application-specific Patterns.

The S&D Library contains all the artefacts made available forSRé&, while theActive Patternss

a list of the Patterns already active. For eaclva®attern, there is an Executable Component that
has been installed and deployed. In order for fh@i@ation to use the Executable Components,
they need the handler that points to them. Thiglleains available in théctive Patterndist, and it

can point either to a web service, a programminglutey and applet, and so on, making it
transparent for the application. There is no restm regarding the implementation mechanism, as
far as it is in accordance with the interface amel functionality described in the corresponding
S&D Implementationdocument. Consequently, the language and the daéxdw used in each
implementation may be different from the others.

As every implementation has a well-defined integfaapplications running in the device make use
of them by means of simple calls, following the safashion used in Web Services technology.
The Serenity Frameworis the one in charge of informing the applicatiah®ut the interface they
have to use as well as the correct sequence o siepllow when using the interface. Apart from
that, theSerenity Frameworlkeeps information about the context to ensurectireectness and
validity of the implementations that are in useaify of the patterns (and thereby the corresponding
implementation) is not valid in a new context, theplication is informed and the framework
provides a new solution (if applicable) or a waghmessage for the user if no solution is available
at the moment. As stated in previous paragraphg, cammunication to or from the user is
conducted through theerenity Console

3.2.2. External Elements

All the elements described above are integratetthenuser device, namel§&D Library —where
the knowledge in security is storegkerenity Frameworkwhere this knowledge is analysed and put
at applications’ disposal; tHexecutable Componerbffering the functionality formally described
in the patterns; and finally the applications tiakies advantages of the whole infrastructure.

Nevertheless, in order to fully understand the qrembnce of the Serenity Architecture it is
necessary to add one new element, peripheral tostes device: th#lonitoring ServiceWhen an
S&D Patternis activated, particular monitoring informatiorcimded in the pattern specification is
sent to the Monitoring Service. This informatioensfrom theActive Patternsartefact, includes:
what to monitor —in form of abstract events, and h@ monitor it —in form of monitoring rules.

A rule is part of a monitor and is used to det@&ctasn events that relate to the values of a manito

In case of a ping monitor, used to test whetheardiqular host is reachable across an IP network,
the rule states the predefined critical value @f tesponse time. If this critical value is exceeded

action is required. There are plenty of situatiarieere this can be applied. For instance, a web
server having access problems can be easily ddtdateway without constant surveillance. When

the critical value for the response time is excdeda alert will be displayed.

Without detailed knowledge of how to use a rules iuite difficult to specify a rule properly. Ttha

is the reason why all this knowledge is embeddedhe pattern specification and sent to the
monitoring service when required. As soon as thesrare triggered, the following actions can be
defined: popup message, e-mail message, pager/&igvent, execute command line, SNMP
trap, start/stop services, terminate process, hattiswn the device. In any case all these reactions
are sent from th#onitoring Serviceand received by th8&D Manager who redirects the message
to theSerenity Consola order for the user to get informed.

SERENITY - 027587 Version 1.0 Page 27 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

4. A Language for Describing S&D Solutions

In this section the reader will find a precise dgdion of the elements that internally compose the
different S&D Artefacts, as well as a set of corsadions common to all the three S&D Artefacs.

4.1. Common Considerations

4.1.1. Naming scheme

In order to standardize the naming method for tlueletling artefacts we define a simple syntax
similar to the URL syntax for Internet protocoldréady described in the document, three are the
artefacts present in SERENITY architecture: S&D s8&s, S&D Patterns and S&D
Implementations. In all the three cases, the nasthgme states as follows:

<art ef act Nane>. <i ssuer Nane>

,where each element follows Backus Naur Form (BFjdtation, defined as follows (Table 1):

artefactName = alphadigit | alphadigit *[alphadigit | "-" | "_"] alphadigit
i ssuer Nane = 1*[domainlabel "."] topl abel
donai nl abel = alphadigit | alphadigit *[alphadigit | "-" | " "] al phadigit
t opl abel = alpha| alpha *[alphadigit | "-" | " "] alphadigit
al pha = lowal pha | hial pha
digit = "o" | "2* | "2"] "3 | "4" | "5 | "e" | "7 |"8 | "9
al phadigit = alpha| digit
| owal pha = "a" | "b" | "c¢" | "d" | "e" | "f" | "g" | "h" |
SR O R R R
¢ T S - R S A A A e
"yl
hial pha = | "B C| D] CE | CF] MG H |

A B C "D I
e B B A B A A R B A
ST CTT U TV W X Y |

Table 1 — Name Scheme in BNF notation

Note thatin this BNF notation the charactét is used to designate alternatives, and bradkeise
used to indicate optional or repeated elements.eSatfer considerations are: literals are quoted
with ™" ; optional elements are enclosed in bracKetand elements may be preceded witk»* to
designaten or morerepetitions of the element that follows; n defauti O (see RFC 1738 for more
details).

Some examples are defined below (Table 2) in dalé&acilitate the understanding of the notation:

SERENITY - 027587 Version 1.0 Page 28 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

Cl ass Nane
<art ef act Name>

Si npl eTransm ssi onConfidentiality.iso.org
S npl eTransm ssi onConfidentiality

<i ssuer Nanme> iso.org
domai nl abel i so
t opl abel Qg

Pattern Nane
<art ef act Name>
<i ssuer Nane>
domai nl abel
t opl abel

Gonfidential i tyByDES Encrypti on. rsa-| abs. com
GonfidentialityByDES Encryption

rsa-1 abs. com

rsa-| abs

com

| mpl enent ati on Name
<art ef act Name>

Crypt 0J_BSaf eDES. r sa. com
Crypt 0J_BSaf eDES

<i ssuer Nane> rsa. com
donmai nl abel rsa
t opl abel com

Table 2 — Examples of use of the naming scheme

4.1.2. Study of Preconditions

Preconditions are classified depending on the clpeokess performed, falling into two different
categoriesSRF context preconditiormdExternal preconditions

SRF context preconditions This group includes all preconditions relatedthie information
collected by the Context Manager of the SRF. Theegfthe basic facts and events related with
these preconditions are observed and captured bySIRF. In particular, it deals with
information related to the following elements:

[0 Pattern History During the lifetime of an SRF instance, artefamte deployed, activated
and deactivated as the context and the S&D reqemé&nevolve. The Context Manager
records the information relative to these activadioand deactivations of S&D
Implementations, along with additional informatilke the parameters used, the reason for
deactivation, etc. In particular, it keeps trackS&D Implementations that are currently
active, including the applications that are usihgrhanks to this information we can, for
instance, check the preconditions of a particuléefact that is incompatible with some
specific artefact. In some other case, an artafactiot applicable unless one particular
pattern had been applied before. Both cases retherspecification of preconditions that
refer to thePattern History.

[0 Event history This element of the Context Manager stores tke dif relevant events
occurred in the past under the supervision of tR&.SThese events can refer to a wide
variety of incidents or circumstances, and are rglaguse when expressing the pattern
preconditions. For instance, a precondition may faskan implementation of that pattern
not been deactivated in the past as a result aftank.

[0 SRF Configuration element3¥he SRF Configuration is also stored in the SRintéxt
Manager. This is probably the most heterogeneottsopahe Context Manager, because it
is highly dependent on the specific characteristiche SRF instance considered. It stores
information about the Operating System, the typ@latform of the device, and so on. In
general, the SRF Configuration is not very relevahtthe level of S&D Pattern’s

SERENITY - 027587 Version 1.0 Page 29 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

preconditions, but it is of great use when definitige preconditions of S&D
Implementations. One configuration element can émed as SRF.library.is_dynamic
which defines whether it is allowed for the SRFEltavnload and install new S&D Solutions
in the library on demand at runtime.

External preconditions. This group includes all preconditions that rafeaspects that are not
under the direct control of the SRF. The basicsféot these conditions are not known by the
framework; otherwise these would become SRF comtesdonditions. Typical examples of this
category are those solutions that rely on somewsal element that must be present (or active)
in the system (e.g. “the TMP device must be acjiv€&ther example might be a pattern
requiring a wired connection along with a battengrge not under 30%.

4.1.2.1. Structure and Sintaxis of Preconditions

As suggested in previopus paragraphs, precondiaonexpressed both for S&D Patterns and for
S&D Implementations. In the former case, precondgiinclude queries on tiattern History the
EventHistory and the events recorded for tadernal preconditiondn the later case, preconditions
are far more focussed on implementation and targgtem details, so that most of the queries target
the SRF Configuratiorelements.

In both cases, Xquery [6] is the language propdseslicit the Preconditions. XQuery is a query
language developed by W3C and used (in short) Mt Xnformation retrieval. It relies on XPath
and XML Schema Datatypes for finding and extractelgments and attributes from XML
documents. Under the scope of the language of pditons, XQuery is used to query the SRF
database and extract the information of the evibrsiismust be checked prior to the deployment of
an S&D Artefact.

Let us consider the following example: an S&D RattmalledSecCriptis selected to achieve secure
encryption in my system. This solution needs teratt with a TPM. This TMP is controled by a
Pattern calledTMPManager so previous to the application @&ecCript, it asks for the
TMPManagerto be active. Otherwis&ecCriptwill not be applicable. As stated before, the SRF
stores the information about the active PatteraglentheContext Managem a table calledictive
Patterns List The following aims to be an illustrative exampdé a possible instance of
ActivePatternsListable, filled with fictional data:

<activepatternslist>
<execComponentld>0</execComponentld>
<SDpattern>TPMManager</SDpattern>
<SDImplementation>implementation_sample</SDImplementation>
<activationDate>2008-01-30</activationDate>
<activationTime>13:00:00</activationTime>
<deactivationDate>2008-08-01</deactivationDate>
<deactivationTime>00:00:00</deactivationTime>
<handler>http://url_sample.com</handler>
<isActive>true</isActive>

</activepatternslist>

Table 3 — Example of ActivePatternList tuple

SERENITY - 027587 Version 1.0 Page 30 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

Important elements in previous example tuple &Bpattern>TPMManager</SDpattern> Where the
Pattern ID is stored, angsActivestrue</isActive> wWhere the value remainsue if the Pattern is active
andfalseotherwise.

The precondition irBecCriptwould include a simple XQuery like the one belavihere the query
accesses thactivePatternListable and looks for a tuple in whi§DPatterncolumn has the value
“TPMManaget and theisActivecolumn containing the valuartie”. The XQuery returns whether
a tuple like this exists or not (i.teue or falsg:

xquery version "1.0" encoding "UTF-8";

for

$w in //contextmanager
let

$precl = $w/activepatternslist/SDpattern="TPMManager' and $w/activepatternslist/isActive='"true'
return

<result>

{$prec1}
</result>

Table 4 — Xquery example

If the XQuery is executed against the exanpbmtext Managerit would answer true”, returning
the following structure:

<result>
true

</result>

Table 5 — Xquery result example

The previous example was a simple preconditiortesinlaunched a query on a single tuple of the
ActivePatternListable. Thus, all the logic operators for the pretitton where located in theet”
statement.

Now, let us suppose that in addition to the neetdading “TPMManaget active, our Pattern is
incompatible with the SuperSecCript Pattern, launched by an industry competitor. The
preconditions would go like this:

for
$w in //contextmanager,
$r in //contextmanager
let
$precl := $w/activepatternslist/'SDpattern="TPMManager' and $w/activepatternslist/isActive="true’,
$prec? := $w/activepatternslist/'SDpattern='SuperSecCript'
return
<result>
{$precl and not($prec2)}
</result>

Table 6 — Xquery example: two simple preconditions

SERENITY - 027587 Version 1.0 Page 31 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

In this particular case, some additional logicsespgn the feturn” statement. That is because the
final precondition is in fact the logicaind of two simple preconditions: the first one askiog
“TPMManaget; and the second one asking for the absenc&opérSecCript

We can even go one step futher and make the prii@onds logically complex as it is needed. Let
us consider the tabldVentsHistory, in which the SRF stores the events that aregogionitored,
such as the availability of network conection, ling battery charge, and so on. This information is
represented as shown below (Table 7):

<eventshistory>
<eventld>lowBatteryCharge</eventld>
<execComponentld>batteryMonitor</execComponentld>
<ruleld>R1</ruleld>
<violationDate>2008-02-04 15:08:53</violationDate>
<meaning>The battery charge of the device is below 30%</meaning>

</eventshistory>

Table 7— Example of EventsHistory tuple
For instance, the following precondition joins #a@mple preconditions into a single expression:

for
$w in //lcontextmanager,
$t in //contextmanager,
$u in //contextmanager
let
$precl := $w/eventshistory/eventld= lowBatteryCharge and $w/eventshistory/execComponentld= batteryObserver,
$prec? := $u/eventshistory/eventld=2
$prec3 := $t/eventshistory/eventld=3 and not($t/eventshistory/execComponentld=29)
return
<result>
{(not($precl) and $prec2) or not($prec3)}

<[result>

Table 8- Xquery example: three preconditions
In the particular case depicted in Table 8, we appreciate three preconditions expressed as
follows:

$precl := $w/eventshistory/eventld= lowBatteryCharge and $w/eventshistory/execComponentld= batteryObserver,

Here, we ask for an event callddwBatteryCharge” that has been produced by the Executable
Component calletbatteryObserver”. Then, we ask for event “2” and event “3” iff ia$1not been
produced by Executable Component “29”. Finally, lagically join these single preconditions in a
common formula:

{(not($precl) and $prec3) or not($prec2)}

This formula will be true if precondition 2 doestnbold, or if precondition 3 holdsand
precondition 1 does not.

To summarize with:
[0 Each single precondition is expressed in thé Statement.

[0 Two or more preconditions can be combined in thauri” statement using the logic
operators considered in XQuery, namely: AND, OR] BIOT, in their usual meaning.

SERENITY - 027587 Version 1.0 Page 32 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

Valid examples of combining simple preconditions:ar

((Precond. and Precond.) and Precond.)
(Not (Precond.))

((Precond. or Precond.) or (Precond. and Precond.))

(Precond. and ((Precond. and Precond.) or (Precond. and Precond.)))

Table 9 — Examples of Preconditions’ definition
4.1.2.2. Creation and Evaluation of Preconditions

Although the preconditions in previous examples lamed made created, it is obvious that the
process for creating preconditions is much moréeand simple with the assistance of the editing
tools developed in Activity 6, and more specifigddSMT tool.

Regarding the creation of Preconditions, we mugthersize that the field “Preconditions” in both
S&D Patterns and S&D Implementations is composeddyp or several simple preconditions. A
simple precondition queries a single event, anday ask for any information on that event. As a
matter of fact, this event can refer to virtuallyyapossible situation that can be captured and
monitored using a computing system. Summarizingh eample precondition relates to one event
of the system, wheter it be about the activationragbattern, the charge of the battery, or the
presence of an human being in front of the computer

ad Building Preconditions /

4 2

Building Pattern Preconditions

New t——moovo-o-—=

Artefact Create new precondition

Select Event

Continue
Building
Integration
Scheme

[eventNotFound]

Create Simple Precondition

Add Logic Connector }%

Artefact
Preconditions

noMorePreconditions]

Continue
Building
Pattern

Figure 9 — Building Pattern Preconditions

SERENITY - 027587 Version 1.0 Page 33 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

The process for specifying preconditions of a giyattern (see Figure 9), starts with a simple
precondition, continues with the addition of theagle preconditions needed and eventually, it ends
up with the combination of them through logic opers. When the security expert has defined all
the simple preconditions that constitute fReeconditions the process of building an Artefact
continues to the next step.

There is a special situation that can arise wheatitrg preconditions that is worth mentioning here,
given that it is closely related with the definiticof Integration Schemes. When creating a
precondition, a list of all possible events to e¢dasis made available to the security expert. &e c
navigate through them and look for the most appatg@rgiven his plan for the precondition. In
some cases, no event is found that fulfils the ireqments of the security expert. In these situation
there is no way out but creating your oewent observethat will capture, monitor and trigger the
specific event you need. Once the necessaeeyt observeis created, we can consider it as a brand
new Artefact. Thus, the only way to link the fulctality of my artefact with the functionality of
my new event observers by means of an Integration Scheme. However,diseussion on the
creation and functioning of Integration Schemesus of the scope of this section, and the reader
will find additional info in subsequent sectionstbis same document.

Concerning the process of evaluating preconditiatrensists of three steps (see Figure 10). First,
when an S&D Artefact is found to be of interestvéy the providedS&D Propertiesand the
Artefact Feature$, the system extracts the XQuery expression tbhtshthe specification of the
Preconditions. Once the SRF has extracted the Xduem the artefact, it launchs the query and
the result is captured. The result coming from eélxecution of the XQuery must be a Boolean,
taking the valudrue when the preconditions holds afadsein any other case. If the result of the
evaluation idrue, then the Artefact is ready for deployment. OthseyPreconditions do not hold
and the artefact is discarded.

Processing Preconditions

Extract XQueries

Launch XQueries

Evaluate Preconditions
Rules

Evaluate
Preconditions

[Preconditions Hold]

(AcceptArtefact) (Discard Artefact)

- /

Figure 10 — Processing Preconditions

SERENITY - 027587 Version 1.0 Page 34 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

4.2. Detailed description of S&D Classes

As a first approach for the language, we have ahtseeduce this description as much as possible
limiting it to the essential elements: the speatiicn of the security properties provided and the
definition of the interface to use the solutionctim 6.1.1.1. describes an example with values for
each one of the fields in Table 10:

S&D Class

1 Creator

1.1 Name

1.2 Date

2 Timestamp

3 TrustMechanisms

4 Provided Properties
4.1 Property

4.1.1 iD

4.1.2 Timestamp

5 SolutionFeatures
5.1 Feature

6 Interface

6.1 Calls

6.2 Sequence

7 Roles

7.1 Role

7.1.1 RoleName
7.1.2 Functionality
7.1.2.1 CallName
8 Comments

Table 10 — High-level data structure for an S&D Clas

1. Creator: This field identifies the creator/provider of thattern. It include®NameandDate
fields to specify the creator of the class desmiptand the date of creation, using the
following format: yyyy-mm-dd.

2. Timestamp: this field represents a “digital proof that objeely enables to detect the
creation time of certain data”. The data storethis field are the milliseconds spent since
January 1, 1970, 00:00:00 GMT. A negative numbeicates a date prior to January 1,
1970, 00:00:00 GMT.

One of the requirements is to create a libraryrtéfacts in which you can trust. Together
with signatures, the time-stamp is a valuable prtwt gives us some degree of
trustworthiness by proving the time of creationtlod S&D Class/Pattern/Implementation.
Thus, the goal of the timestamp is to allow the raseof an S&D

Class/Pattern/Implementation to check not only that document is authentic or has not
been modified since its creation but also that greyworking with the correct version of the
document. The same definition foimeStamroperty applies to sections 4.3. and 4.4. .

3. Trust mechanisms:lIt is a digital signature meant to guarantee thatdlass description has
been produced indeed by the creator, and that ribfication has been done to the original
Class.

4. Provided Properties The main idea is to offer the user a solutionifersecurity problems
taking as input the security properties that onentvao achieve. Extracted from the
application/device requirements, the security prige reduce the search for an

SERENITY - 027587 Version 1.0 Page 35 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

appropriated S&D Class. Once found, the S&D Class/ides the interface to use its
functionality (nterfacefield in S&D Class definition).

5. Solution Features a list of the main features of the solution chmogeaccomplish a security
property. This is a valuable hint for the serenisgr to select the most appropriated class to
solve his/her problem at development time.

6. Interface: In this field the class developer can include dperations offered by the class
(i.e. thecalls) and the recommendasgquencéo use these calls.

7. Roles:When applications make use of Patterns, the usettifunality is strongly dependent
on the communication side in which they are appliEgen, it is important for the S&D
Classes to provide the S&D Patterns with the guidslon how to apply the functionality
depending on the role they play (e.g. Server/Cliemhis information is necessary for
developers when creating Serenity-aware applicatibor instance, an IDE would be able
to identify the available operations for an S&DtPat for each role and thus, show them up
in order to simplify the development process. Tgngposal takes shape in thaes section
of the S&D Class definition. This section is comgbdy a set of roles. For each role in the
set, a sequence of the available operations idat@i The main goal of this section is to
provide developers guidance to facilitate their kvor

Note that this section is included as a part ofS&® Class definition and not as part of the
S&D Pattern. As an S&D Pattern always belongs tde@st) one S&D Class, the relation
between Pattern’s functionality and the role ityslacan be automatically derived from the
S&D Class.

A developer can follow two approaches to apply sgcisolutions in a Serenity-aware
application. On the one hand, the developer calyappS&D Class to model the solution.
Following this approach the roles are clearly dedin the S&D Class roles section so that
at runtime, the role is selected and applied whenS8&D Pattern is instantiated. On the
other hand, if the developer decides to use an Bé&fern at development time to model the
solution, when it comes to runtime, the informatimm the role’s functionality will not be
directly available. Instead, as the relation betwae S&D Pattern and its S&D Class was
made explicit when creating the S&D Pattern, theessary information can be easily
derived from the S&D Class.

8. Comments: Here the creator can include any relevant inforomatiegarding the Class
definition, the functionality, the expected behawricapplicability, etc.

4.3. Detailed description of S&D Patterns

The language used in order to describe an S&D fRatiéth the objective of being used by
automated means in dynamic environments require#fefent aspects to be included. All of them
are enumerated in Table 11, and the most relevesd are detailed afterwards:

S&D Pattern

Creator

1 Name

2 Date
Timestamp
TrustMechanisms
PatternFeatures

1 Feature
Provided Properties

Ul:h-hWNHHH

SERENITY - 027587 Version 1.0 Page 36 of 94

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

..3l-ll'-l.t'l'
5.1 Property
5.1.1 D
5.1.2 Timestamp
6 Interface
6.1 Operations
6.1.1 Operation
7 ClassAdaptors
7.1 Class
71.1 Adaptor
7.1.2 Description
8 Parts
8.1 Part
9 Parameters
9.1 Parameter
10 Pre-Conditions
10.1 SRFContext-pre-conditions
10.1.1 SRFContext pre-condition
10.2 External pre-conditions
10.2.1 External pre-condition
11 Static Tests Performed
11.1 Test
11.1.1 Conditions of test
11.1.2 Attack models considered
12 System Configuration
13 Monitoring
13.1 Monitor
13.1.2 Type
13.2 Monitoring Formulae
13.2.1 Rule-1
13.2.1.1 Event
14 Comments

Table 11 — High-level data structure for an S&D Paern

1. Creator: Identity of the creator/provider of the patternintludesNameandDate fields to
specify the creator of the pattern description #red date of creation, using the following
format: yyyy-mm-dd.

2. Timestamp: this field represents a “digital proof that objeely enables to detect the
creation time of certain data”. The data storethis field are the milliseconds spent since
January 1, 1970, 00:00:00 GMT. A negative numbeicates a date prior to January 1,
1970, 00:00:00 GMT.

3. Trust mechanisms: Digital signatures and other mechanisms to guaeatitat the pattern
description corresponds to the pattern/solutioat ithhas been produced by the creator, and
that it has not been modified.

4. Pattern Features In this field when can find a list of the mairafares of the pattern. This
is a hint to help to software developers to sedepattern of the library once he has selected
the class to get the needed functionality. Furtloeemit will be very valuable for the SRF to
choose, at runtime, the most appropiated patterording to the enviroment.

5. Provided Properties: Reference to the properties provided by the patferoperties have a
timestamp and refer to descriptions provided byahtty that defines the property (this can
be the creator itself, an independent certificagatity or even the SERENITY post-project
organization). For the moment it is important topdasize that these descriptions contain
formal descriptions given by security experts aedaiibe the relations between different

SERENITY - 027587 Version 1.0 Page 37 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

properties, therefore enabling the interoperatiosystems referring to properties defined by
different sources.

6. Interface: It includes every operation that integrates theerface of the pattern. This
interface describes the public functionality of t&&D Pattern; in other words, the
functionality made available for the applicatiorss use the S&D Pattern’®perations
(element 6.1 in Table 11). All the semantics, paters and types of the S&D Pattern
interface are defined in this element. The syntseduto specify the operations will follow
the one from ASL language, given that it is a platf independent and easy to use
language. Section 4.3.1. exposes the rationalinéoadoption of ASL.

7. Class Adaptor. It is also necessary to count on a mechanism ffroan the original high-
level interface —coming the S&D Class, to the medlavel interface —used in the S&D
Pattern. The translation is not direct since passible for a single operation at S&D Class
level, to be mapped into a sequence of operatioB&B Pattern level, and thus, we have to
provide some mapping from one interface to anotiereover, as it is feasible for an S&D
Pattern to belong to more than one S&D Class, thenpossible to find sever@ldaptors
for the same S&D Pattern’s Interface (each adapt&ed to the S&D Class that adapts).
Consequently, eadilassAdaptoiincludes a set dflass one for each adapted S&D Class.
EachClasshas a reference to the S&D Class adapted; andi@ecof elements that define
the interface: (i) théAdaptor, where Class calls are mapped to Pattern’ opastiand (ii)
an optionalDescription of the adaptor. Summarizing, element 7 describesadequate
sequence of S&D Pattern level operations for emehad the S&D Class level operations.

8. Parts: in order to achieve its full functionality, sometesnal components may be used by
the Pattern. These componenRaits from now on) are elements that have specific
behaviour and features that complement the S&DeRafunctionality. As &art provides
its own functionality and has an associated deoripthe reader may confuse it with an
S&D Pattern. However, there is a crucial distinctietween both concepts: while an S&D
Patterns do provide specific S&D Propertieartsdo not. As an example, in the case study
described in the next section, the cameralad. The requirements for the application of
thePartsare included in their description.

9. Parameters: An S&D Solution has some variables whose valuesaamsigned when the
solution is instantiated for particular scenaritie¥e instantiable elements are called S&D
Patterns’ parameters. At some extent, they allovd $&tterns to act as overloaded operator
in a programming language: their precise behav®uaot known before execution time, and
it depends on the types of values given when cptle operator. For instance, the length of
a cryptographic key might be defined as a paramélete that Parameters can always be
defined using a simple tuple (name, value) wRiets can not.

Associated to parameters, there must be also draons’ field describing the restrictions
that an element must meet in order to be usedtaalgmarameter. One important aspect of
these constraints is that they are internal t&Si&B Solution.

10. Pre-Conditions: they describe general conditions that the target systaerat meet before
applying a pattern. A pattern is not necessariyiaersal solution. This means that in order
for the pattern to be successfully used to prowuide declared properties, some pre-
conditions must be met. In most cases, these pdécors will be derived from the analysis
of the solutions made by security engineers. Pritions are classified depending on the
check process performed, falling in two differeategoriesSRF context preconditiorend
External preconditions

SERENITY - 027587 Version 1.0 Page 38 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

11. Static Tests Performed:Security engineers will be responsible for theistasting of the
pattern. This section will describe all relevanformation regarding the static tests
performed. We foresee that it might be necessadget@lop mechanisms for the description
of the tests, in a similar way to the descriptidrin@ properties. This section will be useful
for the end user because it will facilitate theesbn of the appropriate pattern and for the
monitoring mechanism because some monitoring cdasbe derived from it. It is important
to note that the monitoring activity might have immpact on the S&D Solution. Therefore,
the static test should explicitly consider thisenatction.

12.System Configuration: In addition to the instantiation and integratidrttee pattern in the
system it will be sometimes necessary to performesactions prior to the integration of the
pattern in the system. Likewise, when the patteiio ibe removed, some actions may also be
necessary. We will use the teamtivateto refer to the process of instantiating the paite
integrating it in the running system and initiahigi it, so that it is ready to provide the
properties declared. Similarly, the teweactivatewill be used to refer to the process of
removing the pattern from the system, which mayiregsome “closing-up” procedure. In
summary, the system configuration section of thecdption will describe the initialization
and closing up processes, along with any othevaakesystem-specific information. This
other system-specific information includes, fortamce, the type of connections used. An
important aspect to be considered in the systerfigtoation set-up isvhenthe monitor
should be initialized. In this sense, the admiatsir of the system could set upnanitoring
priority policy. N.B. that in this section we do not include theadiggion of the monitor and
the monitoring rules.

13.Monitoring: This row describes all information necessary @ monitoring of the pattern.
In particular, it must include which monitor to usad the configuration of such monitor
(events to monitor, rules, reactions, etc.). Sacdot. of this document gives a complete
study on the monitoring information to be includedhis row.

14.Comments: Here the creator can include any relevant inforamatiegarding the Pattern
definition, the functionality, the expected behawricapplicability, etc.

4.3.1. Rationalefor ASL Adoption

At S&D Pattern’s level, no information about thefta@re execution platform, hardware or
programming language is available. Consequenteyjnterface specification may be considered as
a Platform Independent Model (PIM) in the sens®BIG’s Model Driven Architecture, given that:

[0 The S&D Pattern that specify the S&D Solution bebaw can be ported without change
even if the target platform changes,

(0 All the solution features that are unique to theyed platform must be declared at S&D
Implementation level,

[0 The translation from the S&D Pattern’s level (PIkb) the S&D Implementation’s level
(Platform Specific Model, or PSM), should be strafigrward.

For those not familiar with MDA Models, MDA definég/o primary sets of model, the Platform
Independent Model and the Platform Specific Modidre the ternplatform is used to refer to
technology and engineering details that are iraasévto the fundamental functionality of the
software. These model types are a key concepeiMiDA architecture; it mandates the separation-
of-concerns of analysis (the PIM) from its reali@aaton a particular computing platform and

SERENITY - 027587 Version 1.0 Page 39 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

technology (the PSM) and recognizes that the referd relationship between the two types of
model should be achieved by applyingrapping The parallelism with our concepts of S&D
Pattern, S&D Implementation and Executable Compbiseapparent and reinforced by the need of
a platform independent language to express thditnadity of the S&D Pattern (the definition of
the Operation$. This brings us to the next element in theerfacedefinition, which exposes the
need of an implementation independent languagsgecifying processing within the context of the
S&D Patterns: th€lass Adaptor.

At this stage, it is mandatory the selection ofagpropriate language for expressing the Interface
Operationsdefinition as well as th€lass Adaptar Following the parallelism with MDA, there is
an emerging technology that merges the Unified MiodeLanguage and the concepts of PIM and
PSM: eXecutable UML (XUML). The idea was simpler fdML to be executable, we must have
rules that define the dynamic semantics of theipaton. That is when xXUML snaps into action.
Executable UML is designed to produce a comprekerand comprehensible model of a solution
without making decisions about the organizatiorthef software implementation. And to do that,
XUML is supported by a UML compliant Action Langwagthe ASL or Action Specification
Language.

The ASL definition is independent of any particularplementation and can be freely used by
modellers and developers. It provides an unambigucancise and readable definition of the
processing to be carried out by an object-oriesystiem within the context of an Executable UML
(XxUML) model, and it is easily applicable to thefidgion of the S&D Pattern’dnterfaceand the
Class Adaptorsin addition, different techniques have been dgwedl for mapping the ASL into the
chosen software architecture and implementatioguage. This means that the translation from an
Class Adaptor definition to the Executable Companieat realizes that functionality can be semi-
automatic. The translation techniques range fralg &futomatic generation to manual coding using
a defined set of rules. Target languages havededu, c++, Objective ¢, Ada, Java, Fortran, and
SQL.

4.4. Detailed description of S&D Implementations
At this point, we foresee the following componeuitshis description (Table 12):

S&DImplementation
1 Creator
1.1 Name
Date
TimeStamping
TrustMechanisms
SandDPatternReference
Preconditions
Precondition
ImplementationDescription
ImplementationReference
Reference
ComplianceProofs
Proof
Comments

[y
N

[

[

[

© |0 (0|N|N|o U1l H (W (N

Table 12 — High-level data structure for an S&D Impementation

SERENITY - 027587 Version 1.0 Page 40 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

1. Creator: Identity of the creator/provider of the S&D Implentation. It includesNameand
Datefields to specify the creator of the pattern digdion and the date of creation, using the
following format: yyyy-mm-dd.

2. Time-stamp: Analogous to the one used in the S&D Patternstates the milliseconds
spent since January 1, 1970, 00:00:00 GMT. A negatumber indicates a date prior to
January 1, 1970, 00:00:00 GMT.

3. Trust mechanisms:These are analogous to the ones used in the S&BriFa

4. Reference to the S&D Pattern Implemented:Each implementation references the S&D
Pattern it implements.

5. Particular Preconditions of this implementation: In addition to the preconditions related
to the solution (S&D Pattern), each implementatimay have some additional preconditions
derived from the implementation details.

6. Description of the Implementation: This description is meant to be useful for thestbn
of a particular implementation.

7. Reference to the actual implementationTheremust be a secure (probably cryptographic)
reference to the actual implementation, in ordeavoid this description to be erroneously
associated to a different implementation.

8. Compliance Proofs: Opposed to the S&D Patterns, where the formalyarsaland other
validation tools are very useful, in the case oplementations, the important aspect is to
have proofs of the compliance of the implementatmthe S&D Pattern description.

9. Comments: Here the creator can include any relevant inforomatregarding the
Implementation definition, the functionality, thepected behaviour, applicability, etc.

SERENITY - 027587 Version 1.0 Page 41 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

4.5. Specifying Monitoring Rules in S&D Patterns

In this section we describe the language usedXpressing the monitoring rules within the S&D
Patterns. The exact position within the S&D Patenmere these rules will be described is under
the Monitoring Formulaeclause that is part of the more gendviinitoring clause (see pattern
description example in section 7.2.). This languégan extension of EC-Assertion — an event
calculus (EC [4]) based language defined by an XKEC-Assertion has been developed at City
University to support the specification of gendtadctional and quality requirements that should be
monitored during the execution of service basedesys as part of the SECSE project [8][9]. For
the purposes of SERENITY, we have introduced aeegaiensions to this language and generated a
new version of EC-Assertion that we describe below.

The extensions that we have introduced=t@-Assertionin order to support the specification of
security and dependability properties that couldnomitored at runtime are:

[0 The introduction of a generic scheme for specifyifierent types of monitorablevents

[0 The introduction of a generic scheme for the spmtibn of fluents (i.e. conditions about
the state of a system) including fluents signifythg authentication and authorisation of
agents to issue and accept events requesting gwiteon of operations or responding to
operation calls

The extended version &C-Assertiorhas been defined as an XML schema [5] in orderdeide a
standard way of expressing the event calculus (&@)ulas that will be monitored. This schema is
described in Section 1.1. of this report and it definition is provided in Appendix A. In the
following, we describe the extended form of EC-A8ea and give an example of using it to
express a rule for monitoring a security propeityis description follows an overview of Event
Calculus that provides the logic based foundatioouo language.

4.5.1 Specification of Monitoring Rulesin Event Calculus

Event calculus (EC) is a first-order temporal forfaaguage that can be used to specify properties
of dynamic systems which change over time. Suclpegates are specified in terms efentsand
fluents

An event in EC is something that occurs at a spedaistance of time (e.g., invocation of an
operation) and may change the state of a systementd are conditions regarding the state of a
system which are initiated and terminated by eveftfluent may, for example, signify that a
specific system variable has a particular value apecific instance of time or that a specific
relation between two objects holds.

The occurrence of an event is represented by tbdiqgateHappens(e,,/(t;,t;)). This predicate
signifies that an instantaneous evemccurs at some timewithin the time range/(t;,t;). The
boundaries of /(t1,t;) can be specified by using either time constanerithmetic expressions over
the time variables of other predicates in an E@ifda. The initiation of a fluent is signified byeh
EC predicatdnitiates(e,f,t)whose meaning is that a fludrdtarts to hold after the evemat timet.
The termination of a fluent is signified by the p@dicateTerminates(e,f,tjvhose meaning is that
a fluentf ceases to hold after the evembccurs at timg. An EC formula may also use the
predicatednitially(f) andHoldsAt(f,t)to signify that a fluent holds at the start of the operation of a
system and thdtholds at time, respectively. An EC formula can also specify addidl constraints
about the time variables of predicates using tleelipates < and =. For example, t1 <t2 is trué if t
occurred at a time instance before t2; and t1=tRiesif t1 occurred at the same time instancas t

SERENITY - 027587 Version 1.0 Page 42 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

Our EC based language uses special types of exedtuents to specify monitorable properties of
systems. More specifically, fluents can be defitwdthe user as relations between objects as
follows:

relation(Object, ..., Objegi) (1)

,whererelation is the name of the relation that takes as argusmeabjects (Objegt ..., Object)
that can be fluents or terms. A pre-defined retatar fluents that is commonly used is:

valueOf(variable, value_exgpl)

whose meaning igariable has the valugalue_expIn (1), variable denotes a typed variable or a
list of typed variables which may be:

[0 System variables A system variable is a variable of the system thdieing monitored
whose value can be captured at any time duringnbatoring process, or

[0 Monitoring variables— A monitoring variable is introduced by the usefshe monitoring
framework to represent the deduced states of themsyat runtime (i.e. states which the
system itself might not be aware of but the mondbthe system uses in order to reason
about the system).

[0 value_expis a term that either represents an EC variable¢valr signifies a call to an
operation that returns an object of the same typtha variable. This operation may be a
built-in operation of the monitoring engine (e.g.@peration that computes the average of a
set of values) or an operation that is invoked nneaternal party. Whewmalue_expis an
operation call, then effectively the return valuetlee operation becomes the value of
variable

Events in our framework represent exchanges of agessbetween the agents that constitute a
system. A message can invoke an operation in amt ageeturn results following the execution of
an operation. Events are described in EC by tenaishave the following generic form:

event(_id, _sender, _receiver, _status, _oper,rced(lll)
where:
[0 _ID is a unique identifier of the event
[0 _sendelis the identifier of the agent that sends the nggssa
[0 _receiveris the identifier of the agent that receives thssage.
O

_statusrepresents the processing status of an eventstéhes of the event can be: (i) REQ-
B, that is a request for the invocation of an openathat has been received but whose
processing has not started yet; (i) REQ-A, thataisequest for the invocation of an

operation that has been received and whose progebsis started; (iii) RES-B, that is a

response generated upon the completion of an epeitatat has not been dispatched yet; or
(iv) RES-A, that is a response generated upon éhgptetion of an operation that has been
dispatched.

[0 _operis the signature of operation that the event ingakereports the results of.

[0 _sources the name of the agent that provided informaéibaut the event.

SERENITY - 027587 Version 1.0 Page 43 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

5. XML Representation of the language

5.1.1. XML Schemafor S&D Classes

The structure of an S&D Class is defined by the mlem XML type calledS_and_DClass.
Graphically represented in Figure 19,and_DClas$as no attributes but includes the following
child elements:

1. One creator element, which is of typereatorType a complex type that consists of the
following child elements:

I. Name String used to specify information about the autbf the S&D Class. The
creator can be a person, a software company onizajén, etc.

[I. Date String used to store information about the datemthe S&D Class was created.
The format used to specify that date will be: yyyy-dd.

2. Onetimestampinglement, stored as proof to detect the creatroa bf the S&D Class. The
format used will be of type long, where the usen specify the milliseconds spent since
January 1, 1970, 00:00:00 GMT. A negative nhumbdicates a date prior to January 1, 1970,
00:00:00 GMT.

3. OnetrustMechanism&lement. This element is used in order to stogialisignatures or
any other trust mechanism well suited to guararkes the pattern description (i) really
corresponds to the pattern/solution it describ@shé&s been produced by the defined creator,
and (iii) has not been modified during its lifeayclit is of typetrustMechanismsTypea
complex type that consists of the following seq@eotcchild elements:

I. SignatureTypelt is of typeString and it is used to define the sign algorithm, the
parameters necessary to verify it, and any othemeht related with the type of
signature scheme used.

II. Signer:lt is used to define the entity that has signeési@hass

4. OneprovidedPropertieelement. ProvidedProperties Element is of type@riesType and
is meant to hold the security properties offeredthmsy adoption of this S&D Class. The type
propertiesType consists of the following elements:

l. Property: This element is of typpropertyTypePropertyTypas a complex type that
consists of the following sequence of elements:

I.Id: This is the identification for a concrete secumptpperty. The user can
map from this ID to the complete description of thecurity property
provided by the S&D Class.

ii. timestampthe timestamp for this property.

5. OnesolutionFeatureglement. This element is of type solutionFeatuypsTand is meant to
hold the main features to describe the solution ppsed for the S&D Class.
SolutionFeaturesType is a complex type that camsisteature elements of string type.

SERENITY - 027587 Version 1.0 Page 44 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

6. Oneinterfaceelement. This element is used to describe thefate provided by this S&D
Class. All the S&D Patterns have to comply with thierface of the S&D Class from which
they inherit. It is of typenterfaceTypeTheinterfaceTypeaype is a complex type that consists
of the following elements:
|. Calls: This element is of typeallsType described later in this paragraph. The aim of
calls element is to provide the way in which the S&D Glakould be invoked. In some
sense, is a set of interfaces corresponding to kegdl functions available to interact
with the S&D Class.
i. callsType callsType Type consists of one element callet(o&type String),
which includes the format (i.e. name, parametefra) ancrete call.

II. SequenceThis element is of typsequenceTypdt allows the user to specify the
correct sequence of callings when invoking the SaIBss.

I. SequenceTypeit is a complex type that storesequenceelements,
described below.

ii. Sequence: Sequenements are composed by a sestafp Elements. It
allows the creator to specify the sequence tohsedlls.

lll. Constrains This element exposes the contraints of the semuentake on account
when the developer is using toalls at the development time.

7. Oneroleselement. This element is of typalesTypeand it is used to describe the sequence
of calls of the interface definition set for each role. Siwomplex type is composed by a
sequence of elements of tyymeType This type contains the two following fields:

I. roleNamelt is of type String and it defines the name & tble.

II. funcionality: It is of type functionalityType and represents a sequence of
functionNameelements, each one of type String.. ThHesetionNameslements refer to
the functions available for the role representedhieyoleNamefield.

8. Onecommentslement. This element can be used to specify angrgl comment regarding
the S&D Class specification.

SERENITY - 027587 Version 1.0 Page 45 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

| I |E|—| schema |E|——| SandDClass |E|——@E|—

timestamping

trustMechanisms

8I

providedProperties

solutionFeatures

(O creatorType JE-—— =eee)@
(O _trustMechanismsType) E——{ weee)

signatureType

signer

[eropertiesType El—@ =
1,.co

(e (e [e
—([seclutionFeaturesType) El—@
(e (e e
(O e (e [s

1..

==}
(e (e [e
1..c0
(e (e e
1..00

] roleType E—(m—-j roleMame |
Functionality

\-—([FfunctionalityType)E—(-—-—-—-j E|——| functionMame |

1..c0

Figure 11 — Representation of XML Schema for S&D Clsses

SERENITY - 027587 Version 1.0 Page 46 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

5.1.2. XML Schema for S&D Patterns

The structure of an S&D Pattern, as shown in Fidizeis defined by the complex XML type
calledS_and_DPatternlt has one attributename a String used to store the name of the pattern.
TheS_and_DPatterms composed of the following child elements:

1. One creator element, whick is of typereatorType a complex type that consists of the
following child elements:

a. Name String used to specify information about the autbf the S&D Pattern. The
creator can be a person, a software company onizaén, etc.

b. Date String used to store information about the datemthe S&D Pattern was created.
The format used to specify that date will be: yyyy-dd.

2. One timestamping element, stored as proof to débtectreation time of the S&D Pattern.
The format used will be of type long, where therwsa specify the milliseconds spent since
January 1, 1970, 00:00:00 GMT. A negative numbeicates a date prior to January 1,
1970, 00:00:00 GMT.

3. TrustMechanismglements. Apart from sharing the same name, tieent plays the same
role in S&D Patterns that trustMechanisms elemdagsin S&D Classes. It is of complex
type trustMechanismsType. The trustMechanismsTgpe complex type composed of the
following child elements:

a. One or moresignelements. This element is of typignTypethat is a complex type
composed by:

i. OnesignatureTypgof type String.
il. A signerthat is used to store, in a String, the signer.

lii. This type will probably have some more elements this issue stills in
discussion.

4. OnepatternFeaturexlement. This element is of type patternFeaturpsTand is meant to
hold the main features to describe the S&D PatteatternFeaturesType is a complex type
that consists of feature elements of String typehEone of this features will be decisive to
select an appropriate S&D Pattern among all theepwst that comply with the S&D
Requirements.

5. OneProvidedPropertieelement. This element plays the same role thati(RedProperties
element plays for S&D Classes. Several Propertiasbe defined. Properties element is of
type propertiesType. The PropertiesType complex tigopcomposed by a set of property
elements, which is an element of type propertyTgpejposed of:

a. An ID element of type String. It is used to store thaidieation of the property.
b. A timestampelement. It is of type String.

6. OneParts element suited for describing the Parts that aesl by the S&D Pattern. It is of
complex type partsType, which is a set of part elei®m of complex type partType,
composed of the following attributes and elements.

a. Anid attribute of type String to store the identificatiof the representdéart.
b. A url attribute of type String, used to reference thd.lWRthe Part.

SERENITY - 027587 Version 1.0 Page 47 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

c. A typeattribute It is a String for defining the type of the Part.
d. A descriptionelement of type String. Describes et element itself.

7. One interface element that describes all the fonetity of the S&D Pattern. The interface
element is of the type InterfaceType. The Interfage is a complex type composed of the
following child elements:

a. Oneoperationselement, of typ®perationsTypeThis operationsTypes a complex
type that contains one or mangperation element, each one of the type
operationTypeTheoperationTypeis a complex type that contains:

i. One attribute callethame of the typeString to specify the name of the
operation.

ii. A definition element to describe the operation interface usimey ASL
syntax.

b. OneclassAdaptorelement to describe the adaptation from SandD sGpsrations
to SandD Pattern operations. This element dafsAdaptorsTypg/pethat contains
one or manyadaptorelements. This is because a SandD Pattern canawffadaptor
for different SandD Classes. The adaptor elememfisype adaptorType that
contains:

i. An attribute,classReferencao specify the SandD Class adapted. It is of
type String

ii. An operation element for describing, using ASL syntax, the &além.
The type of th@perationis theoperationTypealescribed above.

8. One Parameterselement. This element is used to store data atbh@uparameters of the
pattern. These parameters are especially relevaahwhe pattern is instantiated, as some
concrete value has to be assigned to them at iretiag time. Several Parameters can be
defined. It is of type parametersType, a compl@etthat consists of a set of following child
element:

a. Parameterelement is of type String.

9. Preconditionselement. It is planned to have a Preconditionsnefd for each pattern
precondition. Several Preconditions can be defileds of type preconditionsType, a
complex type that consists of a sequence the fallgwlements:

a. ParameterPreconditionss of complex typgyarameterPreconditionsTypthat is a
sequence gbarameterPreconditioelements. Th@arameterPreconditios of type
parameterPreconditionTyp&his type is not defined yet.

b. SolutionPreconditionsis of complex typesolutionPreconditionsTypdhat is a
sequence ofkolutionPreconditionelements. ThesolutionPreconditionis of type
solutionPreconditionType€This type is not defined yet.

10. StaticTestsPerformeglement. This is the element specially suitedépresenting the static
test performed to probe the solution described Hey gattern. The StaticTestsPerformed
element is of complex type staticTestsPerformedTipeis a sequence of test elements. A
Test element is of complex type testType that maattibute called name that is a String.
Test elements consist of a sequence of the follpwiaments:

a. conditionsTesta String that is used in order to describe testlitimms.

SERENITY - 027587 Version 1.0 Page 48 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

b. attackModeldor representing attack models. This element ty@é String.

11. SystemConfiguration element is used to describestistem configuration of the target
system. It includes a textual description with thehnical details. The reader can consult
section 4.3. (Detailed description of S&D Patterf) more information about system
configuration issues. It is of type systemConfigiaralype. This complex type is not
defined yet in this version of the pattern defontianguage.

12.Monitoring elements, these elements are intendeanfinitoring purposes. Section 4.5. of
this document gives a complete study on the manganformation to be included in this
row.

13.0ne comments element. This element can be usgretiigany general comment regarding
the S&D Pattern specification.

| / |EI—| schema |EI——{ <= import: htkp: | fwww lec.uma. es/gimena/Schemas/MonitoringRules, xsd |

o S o (=) S G

1

creataor |

timestamping

trustMechanisms

patternFeatures

providedFroperties

nterface

classAdaptors

parts

;

parameters

preconditions

1

staticTestsPerformed |

systemConfiguration

monitoring

omments

I

1,00

A I S e S
1.0

Figure 12 — Partial representation of XML Schema fo S&D Patterns (1)

SERENITY - 027587 Version 1.0 Page 49 of 94

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

IEREMITY

[] propertyType EI—(-—-—-—-)

timestamp

E—(-—-—-—-ja—-—' operations |
(O o —()e— (s o

gt o

e [
4([] preconditionsType)El—(-—-—-—-j El—[: parametersPrecondition |

solutionsPreconditions |

—(D palametmsPlecondltlonsTvpejEl—(-—-—-—-jEl—-—{ parameterPrecondition |
—(D solutionsPr econdltlonsTvpe E—(I—I—I—Ij SD|LItIL‘.|nPI econdition |
4(|:| staticTestsPerFormedT*_\-’pejE—(H_-_-)E——| test |

1..c0
— [] testType

conditionsTest |

attackModels

Figure 13 — Partial representation of XML Schema fo S&D Patterns (11)

SERENITY - 027587 Version 1.0 Page 50 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

—([systemCenfigurationType j E,_r(..._._.)

—{ @ description |@
bsmsssssasssannnnsmand

(@ o) (H)Tm

1.0

(rsafami Jo

0.1

Figure 14 — Partial representation of XML Schema fo S&D Patterns (and III)

5.1.3. XML Schemafor S&D Implementations

The structure of an S&D Implementation is defineg the complex XML type -called
S_and_DImplementatioand represented in Figure 15. and_DImplementationonsists of the
following child elements:

1. One creator element, which is of typereatorType a complex type that consists of the
following child elements:

a. Name String used to specify information about the authof the S&D
Implementation. The creator can be a person, avamtcompany or organization,
etc.

b. Date String used to store information about the coeatdate of the S&D
Implementation. The format used to specify thae dsityyyy-mm-dd.

2. One timestamping element, stored as proof to deteet creation time of the S&D
Implementation. The format used will be of type dpwhere the user can specify the
milliseconds spent since January 1, 1970, 00:0GRMOI. A negative number indicates a
date prior to January 1, 1970, 00:00:00 GMT.

3. TrustMechanisms element. Similar TrustMechanisnesnehts are described in the two
previous sections and incorporated into their XMih&mnas.

4. An S_and_DPatternReference element refers to tHe Bé&ttern implemented by this S&D
Implementation. It is of type S_and_DPatternRefeediype, a complex type that consists of
the following child elements:

a. ld: Identification for the corresponding S&D Pattern.
b. Signatureit includes a signature to verify the authenyi@t this reference.

SERENITY - 027587 Version 1.0 Page 51 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

5. Preconditions, It is planned to have a preconditedement for each implementation
precondition. The preconditions element is of a jgl@x type, which consists of a sequence
of one or more precondition elements.

a. Thepreconditionelement is of type String and will to store datawt preconditions.

6. ImplementationDescription element is used to stibve description of the Executable
Component pointed by the S&D Implementation. kasnposed by a complex type that has
only one element:

Description: a String where the textual descriptostored.

8. An implementationReference element that is of typplementationReferenceType. This
element is used to establish a reference to thelarhplementation, in order to avoid this
description to be erroneously associated to a rdifite implementation. The
implementationReferenceType is a complex type tuwausists of a sequence of property
elements. The property complex type consists ofdhewing elements:

a. url: which stores a String
b. signature to check the validity of this element.

9. One or more complianceProofs elements. They aredabm store proofs of the compliance
of the implementation to the corresponding S&D étatt This element has a complex type
with only one element: proof. This element is qie\5tring.

10.0ne comments element. This element can be usguetiigany general comment regarding
the S&D Implementation specification.

SERENITY - 027587 Version 1.0 Page 52 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

| | |E|—| schema |E|——| S_and_DImplementation |E|-—('-'-'-'jE|-

1

creator |

timestamping

trustMechanisms

8

1

5_and_DPatternReference |

preconditions

implementationDescription |

11

implementationReference |

complianceProofs

comments

o (e (e
—([trustMechanismsType)B—(-—-—-—-) =

signatureType |

signer

signature

—([] implementationReferanceType jEl—(-—-—-—-) El——| reference |
1,.co
—([] typeReference ja—(-—-—-—-j =

URL |

signature

[preconditionType B—@ =
1,.m0
\—([complianceProofsType jE—(I—I—I—I) E|——| proof |
1,.m0

Figure 15 — Representation of XML Schema for S&D Implementations

SERENITY - 027587 Version 1.0 Page 53 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

5.1.4. XML Schemafor Monitoring Rules

The structure of a monitoring rule is defined bg tomplex XML type calleormulaTypelt has
two attributes: formulaid for identifying the formula, andorChecking,a Boolean used to
distinguish between assumptions and ril@snulaTypeconsists of the following child elements:

1. At least one quantification element, which is use@pecify the quantification of variables
in an EC formula. It is of type quantificationTypehich is a complex type and consists of a
guantifier element, to represent the quantifiez. (existential or universal), and a choice of
variables that can be quantified, i.e. regularMdea(all other variables except for time
variables) or timeVariables.

2. Zero or one body element, which specifies the esgiom on the Right Hand Side (RHS) of
the implication (if any), i.e. the body of the fauta. It is of type bodyHeadType, a complex
type that consists of the following sequence oldceiements:

a. A predicateelement that is used to define the predicate irffdhraula and whose type is
predicateType predicateTypeis a complex type that has two attributeggated a
Boolean used to indicate if a predicate is negatetlwhose default value is false, and
unconstraineda Boolean that is true if the predicate is uncaiséd and whose default
value is false. It also consists of the followirtgld elements:

i. happens which is of complex typéappensTypethat consists of the following
sequence of elements:

* eventthat is of typeeventTypdor representing the event. This type is a complex
type and consists of the following child elemergsentID of type String for
identifying uniquely the eventsenderof type variableTypefor specifying the
agent that sends the messagegiverof variableTypefor specifying the agent that
receives the messagatatusof type String for representing the processing status of
an eventpper of typeoperationTypdor representing the operation signature that
the event invokes or reports the result of andrceof type String for specifying
the agent that provided information about the evehbhe complex type
variableType is explained later (see™8bullet point). The complex type
operationTypeconsists of the following sequence of child eletaeopNameof
type String for defining the name of the operation and zerorwop_argsof type
Stringfor defining the possible argument of an operati®ee Figure 16.

» timeVaris of complex typdimevariableTypéhat represents the time variablde
type timevariableTypeconsists of the following child elementgarName for
specifying the name of the variabl@rTypefor specifying the type of the variable,
and zero or onealueelement for specifying the value of the variable.

« fromTimeis of type TimeExpressiorand represents the starting time of the time
range within which the formula should hold. TimeEegsion consists of: @me
element that is of typéimevariableTypehat has been described above; and a
choice of time operators, nameplusTimethat is of typetimevariableTypge
minusTimethat is of typetimevariableTypgeplus and minus which are both of
decimaltype.

SERENITY - 027587 Version 1.0 Page 54 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

» toTimeis of type TimeExpressiorand represent the finishing time of the time
range within which the formula should holdmeExpressioas been described in
detail above.

ii. initiates,which is of complex typénitiatesTypethat consists of the following child
elements:

» eventthat is of typeeventTypdor representing the event, as described above.

« fluentis of typefluentTypeand it distinguishes between the different typés o
fluents that can be described in the forméllzentTypeis a complex type and has
the following child elements:

— author that is of typeauthorisationFluentTypand is used to represent that
an authorised agenafthorisedAgenthas been authorised by an authorising
agent (authorisingAgent) to receive and processvant or to send an event;

— exp that is of typeexposesFluentTypand is used to represent that the
response generated from the execution of an opar@ven) will disclose
an information termigfoTern) which belongs to the agent owner.

— authenthat is of typeauthenticationFluentTypand that is used to represent
that an agentagen) is authenticated when a specific eventefn) has been
processed.

— valueofthat is of typevalueofTypeThis represents a predefined relation for
fluents where a variable that is given at thmet (i.e. the first argument) is
updated with the value or either a variable at sbarce (i.e. the second
argument) or with the return value of an operatiaat is called. The complex
type valueofTypetherefore consists of: target and asourceelement. The
types of these elements consequently consistvafiable element, and in the
case of the source, or aperationCallelement.

» timeVaris of complex typgimevariableTypehat represents the time variable.
lii. holdsAtis of typeholdsatTypehat consists of the following sequence of elestent

» fluentthat is of typdluentTypgas described for the initiated predicate).

» timeVarthat is of typdimevariableTypés described for the initiated predicate).
iv. initially is of typeholdsatTypewhich is described above.

v. terminatesis of type terminatesTypehat is a complex type that consists of the
following child elements:

* events of typeeventTypehat has been previously described.
» fluentis of typefluentTypehat has been previously described.
» timeVaris of typetimevariableTypehat has been previously described.

b. relationalPredicate is of complex typerelationalPredicateTypethat specifies the
possible relations between two variables in thentda. This type has the following
child elements:

i. a choice of the following elements:

SERENITY - 027587 Version 1.0 Page 55 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

e equalto

* notEqualTo

* lessThan

* greaterThan

* lessThanEqualTo

e greaterThanEqualTo

which are all of complex typevarRelationTypethat consists of two elements:
operandlandoperand2of typeoperandTypeThe complex typ@perandType&onsists
of the following choice of elements (only one oéslk elements will be represented):

» operationCall that is of typeoperationCallTypethat has a sequence of child
elementsnameof type String, zero or ongartner of typeStringand zero or more
(unboundedyariable elements of typgariableTypewhich is described below.

» variable that is of typevariableType.This type is a complex type that has two
attributes:persistentthat indicates whether the value of the variabléghe same
throughout all instances (like static variables Java) andforMatching that
distinguishes between internal and external vagmlfl.e. its value is false for
internal variables). Also, the type consists of tiedowing child elements:
varNamethat is of typeString and either asarTypeandvalue element, both of
type String, or anarray element of typarrayTypewith elements that describe the
array structure: &pe accompanied by zero or oimalex both of typeString, and
zero or morevalueelements of typarrayValueType

» constanthat is of typeconstantTypéor describing constant$his type consists of
two elementsnameandvalueelements which are both of type String.

ii. timeVaris of typetimevariableTypehat has been previously described.
c. a possible sequence of aperatorand a choice of either:
I. apredicatethatis of typepredicateTypéhat has been explained earlier,

ii. atimePredicateghat is of typetimepredicateTypeThis element is used to express a
relation between two time variables in the formuldhas a choice of the following
child elements:timeEqualTo, timeNotEqualTo, timeLessThan, timeterdhan,
timeLessThanEqualTo, timeGreaterThanEquaBlopf complex typelimeRelation
that consist of two elementimeVarlandtimeVar2 of type TimeExpressiorhat
has been described earlier. Or

iii. a relationPredicatethat is of typerelationPredicateTypdhat has been explained
earlier.

3. A head element which is of type bodyHeadType, wisatlescribed above.

SERENITY - 027587 Version 1.0 Page 56 of 94

IEREMITY

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

| i |E|—| schema |E|——| Formmulas |

SERENITY - 027587

—([formulaType) =5

relationalPredicate

[] predicateType |ER

(e (] oy e
'

\"—| timeGreaterThanEqualTa |

—([holdsatType)EI—(-—-—-—-) = Fluerit

timevtar [E

—(|:| initiatesType jEI—(-—-—-—-j = event

Figure 16 — XML Formula Representation Schema (1)

Version 1.0 Page 57 of 94

IEREMITY

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

—([J happensType)EI—(-—-—-—-) =

kimear

FromTime:

taTime

—(|:| terminatesType j E—(-—-—-—-) = event

Fluent

timear

authen

walueof

—([] authorisationFluent Type j EI—(-—-—-—-) =

autharisingfgent

[] exposesFluentType E—@

authorisedigent

3
[=}

) diiias

[hotem |

—([] authenticationFlusntTyps jEI—(-—-—-—-j = agent

evenk

—([walusafType jEI—('v'—-—-) =

[] gquantificationType E—(:)

= iabl
=@ (]
operationCall

= [] restricts: xs:string

regular\-‘arlable
t|me\1'ar|able

quantifier

—([] wariableType j B——(-—-—-—-J vatMame [E

varType |H
value
array

Figure 17 — XML Formula Representation Schema (I1)

SERENITY - 027587

Version 1.0 Page 58 of 94

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

IEREMITY

[7 logicalOperatorType |2 [><] restricks: xsiskring
—(D TimeExpression jEI—('-'—'—':[

— [] TimeRelation E—(-—-—-—-j kimetarl

—(] warRelationType)E—(-—n—n—-j = operandl

—([] relationalFredicateType jE—(-—-—-—-}EI— =

wariable

0,

Figure 18 — XML Formula Representation Schema (I11)

SERENITY - 027587 Version 1.0 Page 59 of 94

N A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

—(|:| canstantType :[E—(H—-—-j = narne

value

] arrayType EI—@

—([array¥alueType j E—(-—-—-—-j indextalus

E—(:)El——' eventlD [
e
T
L(D opetationType)El—(l—-+-) = ophame

0.1

Figure 19 — XML Formula Representation Schema (andV)

SERENITY - 027587 Version 1.0 Page 60 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

6. Examples of descriptions

In this section we present an example that is desido provide a global vision of the modelling
artefacts in practice. The example shows someel&&D Classes, S&D Patterns and S&D
Implementations. We also include in a separateesaios an example of monitoring rules.

As shown in Figure 20 below, the example includesilyo one S&D Class
(SimpleTransmisionConfidentiality.iso.org). Then we propose two patterns called
ConfidentialityByDES_Encryption.iso.organd ConfidentialityByDES_Encryption.rsa-labs.com
which belong to the mentioned S&D Class. Each S&litdPn provides a description allowing an
automatic mechanism to make the transformation fileeninterface declared in the S&D Class to
the native interface provided by the S&D Patterrhe Tinterface declared by an S&D
Implementation must realize (match exactly) theeriaice provided by the corresponding S&D
Pattern.

In this example, there are three S&D Implementatiohvo of them(UMA_Crypt.gisum.uma.es
and TPMDES.infieon.comare implementations of th€onfidentialityByDES Encryption.iso.org
pattern while the last one CryptoJ_BSafeDES.rsa.com realizes the

ConfidentialityByDES _Encryption.rsa-labs.cqattern

cd Object model2

| S&DClass Elements | SimpleTransmissionConfidentiality.iso.org :
Sé&DClass

| S&DPattern Elements |

| S&DImplementation Elements |

ConfidentialityByDES _Encryption.iso.org : ConfidentialityByDES _Encryption.rsa-labs.com :
S&DPattern S&DPattern
UMA_Crypt.gisum.uma.es : TPMDES.infineon.com : CryptoJ_BSafeDES.RSA.com :
S&DImplementation S&DImplementation S&DImplementation

Figure 20 — Relation between the elements in theaxple

SERENITY - 027587 Version 1.0 Page 61 of 94

IEREMITY

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

6.1.1. Confidential Transmission
6.1.1.1. S&D Class: SimpleTransmissionConfidentiality.isg.or

S&D Class: SimpleTransmissionConfidentiality.iso.org
1 Creator
Name: iso.org
Date: 2007-05-04
2 Timestamp: 1178307611
3 TrustMechanisms: ...signature...
4 Provided Properties
Property
ID: TransmissionConfidentiality.iso.org
Timestamp: 1146771611
5 SolutionFeatures
Feature: Shared key
6 Interface
Calls
SendConfidential(Conf_data:raw; Recipient:raw)
ReceiveConfidential(Conf_data:raw; Sender: raw)
Sequence
Sender.SendConfidential(x1,Receiver)
Receiver.ReceiveConfidential(x1,Sender)
7 Roles
Role
RoleName: Sender
Functionality
CallName: SendConfidential
CallName: ReceiveConfidential
Role
RoleName: Receiver
Functionality
CallName: SendConfidential
CallName: ReceiveConfidential
8 Comments
The sender starts the transmission.,encrypts some data and sends it
The receiver waits for the sender to send the data. After reception, decrypts the data.

Table 13 — Definition of S&D Class SimpleTransmissnConfidentiality

This is a very simple class that shows the simpietgrface for confidential communication,
composed of two calls:

[0 SendConfidential(Conf_data:raw; Recipient:raw); and

[0 ReceiveConfidential(Conf_data:raw; Sender: raw);

It also shows that it is possible to specify theect sequence of calls.

SERENITY - 027587 Version 1.0

Page 62 of 94

IEREMITY

6.1.1.2. S&D Pattern: TransmissionConfidentialityByDES Ermtfgn.iso.org

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

S&D Pattern: TransmissionConfidentialityByDES_Encryption.iso.org

1 Creator

Name: iso.org
Date: 2007-05-07

Timestamp: 1178521503

TrustMechanisms: ...signature...

HWIN

PatternFeatures

Feature: encryption
Feature: DES

5 Provided Properties

Property
ID: TransmissionConfidentiality.iso.org
Timestamp: 1146985503

6 Interface

Operations

Operation: encrypt

Definition:
define function encrypt
input plainData:text, key:text
output encryptedData:text
#returns the plainData encrypted with the key
enddefine

Operation: decrypt

Definition:
define function decrypt
input encryptedData:text, key:text
output plainData:text
#returns the cypheredData decrypted with the key
enddefine

Operation: getKey

Definition:
define function getKey
input userID:text,
output key:text
#returns the key requested by the user
enddefine

Operation: send

Definition:
define function send
input recipient:text, encryptedData:text
output sentOK:boolean
#sends some encrypted data to the user
#“recipient” parameter.
#returns TRUE if everything goes right. FALSE
#otherwise
enddefine

Operation:receive

Definition:
define function receive
input sender:text, encryptedData:text
output receiveOK:boolean
#receives some encrypted data from the user specified in
#"sender” parameter
#returns TRUE if everything goes right. FALSE otherwise
enddefine

Table 14 — Definition of S&D Pattern Confidentiality by DES (I)

SERENITY - 027587 Version 1.0

Page 63 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

ClassAdaptors
Class: SimpleTransmissionConfidentiality.iso.org
Adaptor:
define function sendConfidential
input data:text, recipient:text
output sentOK:Boolean
key:text
encrypted:text
result:boolean
key = getKey [recipient]
encryptedData = encrypt [data, key]
result = send [encryptedData, recipient]
If result then
#log the event and possible cause
endif
return result
enddefine

define function receiveConfidential
input encryptedData:text, sender:text
output receptionOK:Boolean
key:text
plainData:text
result:boolean
result = receive [encryptedData, sender]
If result then
key = getKey [sender]
plainData = decrypt [encryptedData, key]

else
#log the event and possible cause
Endif
return result
enddefine
7 Parts
Part: CommunicationNetwork
8 Parameters

Parameter: User_A
Parameter: User_B
Parameter: Key
Parameter: Data
Parameter: ClearTextType
Parameter: CipherTextType
Parameter: KeyType
Parameter: UserIDType
9 Pre-Conditions
Parameter pre-conditions
Parameter pre-condition: Key /s known and confidential for User A and User B
Solution pre-conditions
Solution pre-condition: ...
10 Static Tests Performed
Test
Conditions of test: ...
Attack models considered: ...
11 System Configuration:
A description based on BPEL, UML... It should include all necessary initializations of the
parts, framework, initialization of the monitor, etc.

Table 15 — Definition of S&D Pattern Confidentiality by DES (lI)

SERENITY - 027587 Version 1.0 Page 64 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

12 Monitoring

Monitor: (constraints, or even explicit reference)
Type: Asynchronous

Monitoring Formulae:
Rule-1:

Event:

13 Comments: ...

Table 16 — Definition of S&D Pattern Confidentiality by DES (and I111)

The previous description corresponds to an S&DeRatthat belongs to the previous described
S&D Class (SimpleTransmissionConfidentiality.isgjor The third field of the S&D Pattern

includes information about the properties that fuiélled by the solution represented in this
pattern.

Two important fields in Table 16 are the Interfamed the Class Adaptointerface defines
functions that this pattern provides. T@ass Adaptorcontains the rules for automatic translation
between calls to S&D Clagsterfaceinto calls to S&D Pattermterface

Usually S&D Pattern interfaces are closer to sofutletails than S&D Class interfaces because this
S&D Patterns interfaces include lower level funetioField number three of S&D Pattern includes

information about the Properties that fulfils tRattern. The S&D Pattern shows also information

about thePartsrequired. In this case, a communication networledgiired.

Parameters include some variable data from onernnoet of the pattern to other. This Pattern

requires information about the transmission soarue target, the key, the data and the data types
used in the Parameters. At last, preconditionstal the key used in the transmission must be
shared by the two principals and confidential.

SERENITY - 027587 Version 1.0 Page 65 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

6.1.1.3. S&D Implementation: UMA_Crypt.gisum.uma.es

S&DImplementation: UMA_Crypt.gisum.uma.es
1 Creator
Name: uma.es
Date: 2007-05-09
TimeStamping: 1178535559
Trust mechanisms: signed by rsa.com
S&DPatternReference: TransmissionConfidentialityByDES_Encryption.iso.org
Preconditions
Precondition: KeyType = 64_Bit_ DES_Key_Type
Precondition:: JDK (Sun) v1.4 or later installed
Precondition: Valid Platforms (WIN32, Solaris 10, RedHat 7.0)
Precondition:ConfidentialityByDESEncryption.iso.org/CommunicationNetwork/
access_method= TCP/IP
6 ImplementationDecription
Description: Fullfils FIPS140-2
Description: Software Implemented
Description: Only suitable for short-term storage keys

ul|h(WN

7 ImplementationReference

Reference: uma-crypt.jar + Hash of the code
8 ComplianceProofs

Proof: validated and signed by cmvp.csrc.nist.gov
9 Comments:...

Table 17 — Definition of S&D Implementation UMA_Crypt.gisum.uma.es

6.1.1.4. S&D Implementation: TPMDES.infineon.com

S&DImplementation: TPMDES.infineon.com
1 Creator
Name: infineon.com
Date: 2007-05-09
TimeStamping: 1178536658
Trust mechanisms: signed by infineon.com
S&DPatternReference: TransmissionConfidentialityByDES_Encryption.iso.org
Preconditions
Precondition: KeyType = 64_Bit_DES_Key_Type
Precondition: 7PM v1.1 or newer installed
6 ImplementationDecription
Description: Fullfils FIPS46-3
Description: Hardware + Software Implemented

uh(WN

7 ImplementationReference

Reference: Infineon_TPM_Manager.exe + Hash of the code
8 ComplianceProofs

Proof: validated and signed by iacs.cesg.gov.uk
9 Comments:...

Table 18 — Definition of S&D Implementation TPMDESinfineon.com

The S&D Implementation of TransmissionConfidenti@iyDES Encryption is shown in Table 18
and named as TPMDES. Concerning preconditions tivinem are declared. First precondition
refers to the key needed in DES algorithm. Thes @&} bits length. Second one refers to a TPM v1.1
or higher is needed to be installed. Third pointelsited to the description of the implementation.

SERENITY - 027587 Version 1.0 Page 66 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

Two descriptions are declared, first one descritted this S&D Implementation fulfils with
FIPS46-3 description [7]. Second description déssrithat this Implementation is a combination of
hardware and software solution. The reference ofpldmentation executable file is
Infineon_TPM_Manager.exe plus a Hash of the cod&der to test the integrity of this executable
code. Some Compliance proofs have been performedh s validated and signed by

iacs.cesg.gov.uk [8]. Finally the last elementn®fe Trust mechanisms and describes that is signed
by infineon.com [9].

SERENITY - 027587 Version 1.0 Page 67 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)
[] e
6.1.2. Confidentiality by DES

6.1.2.1. S&D Pattern: ConfidentialityByDES_Encryption.rsd$acom

S&D Pattern: ConfidentialityByDES_Encryption.rsa-labs.com
1 Creator:

Name: rsa-labs.com

Date: 2007-05-10
Timestamp: 1178537748
Trust Mechanisms: signed by rsa-labs.com
Pattern Features

Feature: Confidentiality

Feature: Encription

Feature: DES

A WIN

3 Provided Properties
Property:
ID: TransmissionConfidentiality.iso.org
Timestamp: 20060621100230
4 Interface
Operations
Operation: Session
Definition:
define function Session
input userld:userIdType
output session: sessionType
#The function receives an userld parameter and stablish a session among both
#users
enddefine

Operation: KeyAgree
Definition:
define function KeyAgree
input session: sessionType
output key: KeyType
#returns the key that sender and receiver will use to encrypt the communications
enddefine

Operation: SymetricCipher
Definition:
define function SymetricCipher
input cleartext:ClearTextType , key: KeyType
output ciphertext: CipherTextType
#The function gets a key and a plain text and generates cipher text using that key
enddefine

Operation: SymetricDecipher
Definition:
define function SymetricDecipher
input ciphertext: CipherTextType, key: KeyType
output cleartext:ClearTextType
This is the reverse function above, it gets a key and an encrypted text and gets
#the plain text ciphered before
enddefine

Table 19 — Definition of S&D Pattern ConfidentialityByDES_Encryption (1)

SERENITY - 027587 Version 1.0 Page 68 of 94

IEREMITY

Operation: send
Definition:

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

define function send

input encryptedData:text, recipient:text
output sentOK:boolean

#sends some encrypted data to the user
#“recipient” parameter.

#returns TRUE if everything goes right. FALSE
#otherwise

enddefine

Operation: receive
Definition:

define function receive

input sender:text, encryptedData:text

output receiveOK:boolean

#receives some encrypted data from the user specified in
#“sender” parameter

#returns TRUE if everything goes right. FALSE otherwise

Enddefine

ClassAdaptors
Class: SimpleTransmissionConfidentiality.iso.org
Adaptor:

define function sendConfidential
input data:text, recipient:text
output sentOK:Boolean
s:long
key:text
msg:text
result:boolean
s = Session[recipient]
key = KeyAgree[s]
msg = SymmetricCipher[data, key]
result = Send[msg, s]
If Iresult then
#log the event and possible cause
endif
return result
enddefine
define function sendConfidential
input data:text, sender:text
output sentOK:Boolean
s:long
key: text
msg: text
plainText: text
result: boolean
s = Session[sender]
result = receive [msg, sender]
If Iresult then
#log the event and possible cause
else
key = KeyAgree [sender]
plainText = SymetricCipher [msg, k]
endif
return result

enddefine

Table 20 — Definition of S&D Pattern ConfidentialityByDES_Encryption (11)

SERENITY - 027587

Version 1.0

Page 69 of 94

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

..3!.!“‘!9
6 Parts
Part: CommunicationNetwork
7 Parameters

Parameter: User_A
Parameter: User_B
Parameter: Key
Parameter: Data
Parameter: ClearTextType
Parameter: CipherTextType
Parameter: KeyType
Parameter: UserIDType
8 Pre-Conditions
Parameter pre-conditions
Parameter pre-condition: Key /s agreed once a session is started between the
principals, User A and User B

Solution pre-conditions
Solution pre-condition: ...
9 Static Tests Performed
Test: ...
Conditions of test:
Attack models considered:

10 System Configuration: A description based on BPEL, UML... It should include all necessary

Initializations of the parts, framework, initialization of the monitor, etc.

11 Monitoring
Monitor: (constraints, or even explicit reference)
Type: Asynchronous
Monitoring Formulae:
Rule-1:
event:
13 Comments: ...

Table 21 — Definition of S&D Pattern ConfidentialityByDES_Encryption (and III)

The encryption service described by this patterainsed to protect data that is sent between hosts
across a network. Encryption services, such as [AB§ use a reversible algorithm to convert
plain-text data into an unintelligible form, thusofecting data from being used by unauthorized
parties, providing confidentiality for hosts.

An acronym for Data Encryption Standard, DES wagetiped by IBM. The algorithm expands a
single message by up to 8 bytes. DES is a blodkecithat encrypts data in blocks of 64 bits by
using a 56-bit key. Using this algorithm, this pattprovidesIransmission Confidentialityonform
the 1ISO standard.

The interface of the pattern provides the followaadjs:

0 JSAFE_Session(userID: UserIDType): it starts aigasbetween the two principals. As
specified in the patterpreconditions after starting the session a shared key has to be
agreed.

0 JSAFE_KeyAgree(key: KeyType, userlD: UserlDTypejice the session is started, the
principals can agree on the key they will use torgpt/decrypt the data

0 JSAFE_SymetricCipher(in cleartext:ClearTextType; key: KeyType; out ciphertext:
CipherTextType): it takes the clear text as inpud gives the cipher text as output. It uses
the key given byySAFE_KeyAgret encrypt/decrypt the data

SERENITY - 027587 Version 1.0 Page 70 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

[0 JSAFE_SymetricCipher(in ciphertext: CipherTextTypan key: KeyType; out
cleartext:ClearTextType): it generates the clesrftem the cipher text

Apart from the cryptographic functions, this S&D ttean includes two calls focused on
communication between two principals. Batend and receive functions are provided by the
Communication NetworkPart, given that the implementation of the Pattdeals with the

encryption algorithm and not with the underlyingwerk.

[0 Send(data: CipherTextType; recipient: UserlDTyjpedends the cipher text to the specified
recipient

[0 Receive(data: CipherTextType; Sender: UserIDTyperepares the recipient to receive the
cipher text from the sender

The Class Adaptorgives the exact sequence of calls to follow ineortb correctly execute
SendConfidentigAndReceiveConfidentidunctions. The parameters specified in these eadls

User_A: the sender

User_B: the recipient

Key: the key used to encrypt/decrypt the data

Data: the information exchanged between the users

ClearTextType: data in clear

CipherTextType: cipher data

KeyType: the type of the key, including the keyd#n validity period, etc.

O O o0oogogogd

UserIDType: the format used to identify the user

SERENITY - 027587 Version 1.0 Page 71 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

6.1.2.2. S&D Implementation: CryptoJ BSafeDES.RSA.com

S&DImplementation: Crypto] BSafeDES.RSA.com

1 Creator
Name: RSA.com
Date: 2007-05-11

Timestamping: 1178536658

Trust mechanisms: signed by rsa.com

S&DPatternReference: ConfidentialityByDES_Encryption.rsa-labs.com

Preconditions
Precondition: KeyType = 64_Bit_ DES_Key_Type
Precondition: JDK (Sun, HP, IBM) v1.1 or later installed
Precondition: Valid Platforms (WIN,Solaris, HP-UX,RedHat AIX)
Precondition: ConfidentialityByDESEncryption.rsa-
labs.com/CommunicationNetwork/access_method= TCP/IP

6 ImplementationDecription

Description: Fullfils FIPS140-2

Description: Software Implemented

Description: Only suitable for short-term storage keys

7 ImplementationReference

Reference: jsafeCEFIPS.jar + Hash of the code

Reference: jsafeFIPS.jar + Hash of the code

ul|h(WN

8 ComplianceProofs
Proof: validated and signed by cmvp.csrc.nist.gov
9 Comments:...

Table 22 — Definition of S&D Implementation CryptoJ BSafeDES.RSA.com

This S&D Implementationrefers to theConfidentialityByDES_Encryption.rsa-labs.co8&D
Pattern.RSA BSAFE cryptography products [6] are desigredllow state-of-the-art privacy and
authentication features to be built into virtuaigy application for optimized performance. The
RSA BSAFE Crypto J Toolkit Module versions 3.5 aBdb.2 (Crypto J Module) is a non
proprietary cryptographic module. It includes a avidange of data encryption and signing
algorithms, including DES, Triple-DES, the highfeeming RC5, the RSA Public Key
Cryptosystem, and more.

The Crypto J Module is software implemented andtmtee security requirements of FIPS 140-2.
The distribution includes two API interfaces, désed in Table 22 aBnplementationReference

[0 jsafeFIPS.jar JISAFE Application Programmer Intezfacthe Crypto J Module
[0 jsafeJCEFIPS.jar JCE Application Programmer Intafim the Crypto J Module.

FIPS 140-3 (Federal Information Processing Standards Pulicat40-2 — Security Requirements
for Cryptographic Modules) details the U.S. Goveentirequirements for cryptographic modules.

As preconditions the Crypto J module requires JDK running on Hrget device and is only valid
for the platforms described in the table above. DES algorithm for Crypto J requires at least a 64
bit key and is only valid if TCP/IP is the netwarttmmunication protocol used on the device.

2 More information about the FIPS 140-2 standard \aiilation program is available on the NIST websit
http://csrc.nist.gov/cryptvall.

SERENITY - 027587 Version 1.0 Page 72 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

6.2. S&D Patterns expressed in XML: an example

The usage of patterns within the Serenity framevetidknges the traditional view of “patterns” from
the software engineering perspective. Since Sergutterns are not directly related with design
patterns but with concrete, ready-to-apply soligjadhe connection between Serenity patterns and
both software and hardware components is tightcante common. For this reason we needed a
new and common syntax, resulting in the definitoddra new XML-based language. We chose the
definition of some easy-to-understand tags in otderepresent all the information described in
section 4.3. . The selection of XML as the metalegyg for defining the S&D patterns takes
advantage of its ability to perform data migratiasks in an easy and flexible way.

<?xml version="1.0" encoding="UTF-8"?>
<SandDPattern xmlIns:ns1="http://tempuri.org/ec/formula"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="S%26Dpatterns_monitoringRules.xsd"
name="TransmissionConfidentialityByDES_Encryption.iso.org">
<creator>
<name>iso.org</name>
<date>2007-05-07</date>
</creator>
<timestamping>1178521503</timestamping>
<trustMechanisms>
<signatureType>http://www.w3.0rg/2000/09/xmldsig#shal</signatureType>
<signer>iso.org</signer>
<signature>j6lwx3rvEPOOvVKtMup4NbeVu8nk=</signature>
</trustMechanisms>
<patternFeatures>
<feature>confidentiality</feature>
<feature>encryption</feature>
<feature>DES</feature>
</patternFeatures>
<providedProperties>
<property>
<id>TransmissionConfidentiality.iso.org</id>
<timestamp>1146985503</timestamp>
</property>
</providedProperties>
<interface>
<operations>
<operation name="encrypt">
<definition>
define function encrypt
input plainData:text, key:text
output encryptedData:text
#returns the plainData encrypted with the key
enddefine
</definition>
</operation>
<operation name="decrypt">
<definition>
define function decrypt
input encryptedData:text, key:text
output plainData:text
#returns the cypheredData decrypted with the key
enddefine
</definition>
</operation>

Table 23 — Definition of an S&D Pattern in XML language (1)

SERENITY - 027587 Version 1.0 Page 73 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

<?xml version="1.0" encoding="UTF-8"?>
<SandDPattern xmlIns:ns1="http://tempuri.org/ec/formula"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="S%26Dpatterns_monitoringRules.xsd"
name="TransmissionConfidentialityByDES_Encryption.iso.org">
<creator>
<name>iso.org</name>
<date>2007-05-07</date>
<[creator>
<timestamping>1178521503</timestamping>
<trustMechanisms>
<signatureType>http://www.w3.0rg/2000/09/xmldsig#shal</signatureType>
<signer>iso.org</signer>
<signature>j6lwx3rvEPOOvVKtMup4NbeVu8nk=</signature>
</trustMechanisms>
<patternFeatures>
<feature>confidentiality</feature>
<feature>encryption</feature>
<feature>DES</feature>
</patternFeatures>
<providedProperties>
<property>
<id>TransmissionConfidentiality.iso.org</id>
<timestamp>1146985503</timestamp>
</property>
</providedProperties>
<interface>
<operations>
<operation name="encrypt">
<definition>
define function encrypt
input plainData:text, key:text
output encryptedData:text
#returns the plainData encrypted with the key
enddefine
</definition>
</operation>
<operation name="decrypt">
<definition>
define function decrypt
input encryptedData:text, key:text
output plainData:text
#returns the cypheredData decrypted with the key
enddefine
</definition>
</operation>

Table 24 — Definition of an S&D Pattern in XML language (II)

SERENITY - 027587 Version 1.0 Page 74 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

<parts>
<part id="id3" url="http://localhost" type="CommunicationNetwork"/>
</parts>
<parameters>
<parameter>User_A</parameter>
<parameter>User_B</parameter>
<parameter>Data</parameter>
<parameter>ClearTextType</parameter>
<parameter>CipherTextType</parameter>
<parameter>KeyType</parameter>
<parameter>User|DType</parameter>
</parameters>
<preconditions>
<parametersPrecondition>
<parameterPrecondition>Key is known and confidential for User_A and User_B</parameterPrecondition>
</parametersPrecondition>
<solutionsPreconditions>
<solutionPrecondition> </solutionPrecondition>
</solutionsPreconditions>
</preconditions>
<staticTestsPerformed>
<test name="TestName">
<conditionsTest>conditionsTestO</conditionsTest>
<attackModels>attackModelsO</attackModels>
</test>
</staticTestsPerformed>
<systemConfiguration description="description0"/>
<monitoring>
<monitor>
<localization>localizationO</localization>
<type>type3</type>
<inicialization>inicializationO</inicialization>
</monitor>
</monitoring>
<comments>comments0</comments>
</SandDPattern>

Table 25 — Definition of an S&D Pattern in XML language (and Ill)

6.3. Monitoring rules expressed in XML: an example

In this section, we consider the pattern for a Metém for Optimistic Fair Exchange with Trusted
Third Party (TTP), which is described in section #.this deliverable, and give an example of a
rule that can be monitored for this pattern. The imooing rule is derived from the requirement that
TTP must be available. It should consider two casesthe case when Alice tries to communicate
with TTP and the case when Bob tries to communic@te TMP. Therefore, two rules are required.
We illustrate the second case, more specificdllob sends a “solve” message to TTP, then TTP
should respond with “send_item” message within stime limit (t1+tu where t1 is the time when
Bob sent the “solve” message). In event calculuexyess this as follows:

O elDl, _elD2, Bob_ID, _TTP_ID: String; t1, t2:Tine

Happens(e(_el D1, Bob_I D, TTP_I D, REQ B, sol ve((ltem A)Kal,ltem B)),Bob_ID),t1, 0O(t1,t1))
=

Happens(e(_el D2, TTP_I D, Bob_I D, RES- A, send_i ten(((I tem A) Kal) Ka2),t2, O(t1,t1+t,)

Table 26 — Event Calculus example for the Fair Exa@nge example

SERENITY - 027587 Version 1.0 Page 75 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

The XML document that describes the above mentianeditoring rule is given in Table 27.
Firstly, the quantification of the variables in tfeemula is represented in lines 7-32. Two types of
variables are quantified, namely regular varialfées/ variable except for time variables) and time
variables. Next, the body of the formula is repnésd in lines 33-78, i.e. the expression on the RHS
of the implication. The body consists of tHappens predicate and its arguments, i.e. an event, a
time variable and a time range. The event is reptesl in lines 36-55.

The time variable has been specified in lines 5&&@ the time range in lines 60-75. Finally, the
head of the formula (i.e. the expression on the ldfi8e implication) is represented in lines 79-
120. This also consists oftéappenspredicate with an event, a time variable and & tienge, and
thus is represented similarly to the body of theniala.

SERENITY - 027587 Version 1.0 Page 76 of 94

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

IEREMITY

<?xml version="1.0" encoding="UTF-8"?>

<formulas xmIns="http://tempuri.org/ec/formula" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://tempuri.org/ec/formula file:/Z:/Serenity/A5%20contribution%20-%20September06/EC-

Assertion6.xsd" formulald="">
<quantification>

<quantifier>universal</quantifier>

<regularVariable>

<varName>Bob_ID</varName>
<varType>String</varType>

</regularVariable>
<regularVariable>

<varName>TTP_ID</varName>
<varType>String</varType>

</regularVariable>
<regularVariable>

<varName>_elD1</varName>
<varType>String</varType>

</regularVariable>
<regularVariable>

<varName>_elD2</varName>
<varType>String</varType>

</regularVariable>
<timeVariable>

<varName>tl</varName>
<varType>Time</varType>

</timeVariable>
<timeVariable>

<varName>t2</varName>
<varType>Time</varType>

</timeVariable>
</quantification>
<body>
<predicate>
<happens>
<event>

</event>

<eventID>_elD2</eventID>
<sender>
<varName>TTP_|D</varName>
<varType>String</varType>
</sender>
<receiver>
<varName>Bob_|D</varName>
<varType>String</varType>
</receiver>
<status>RES-A</status>
<oper>
<opName>send_item</opName>
<op_args>
<varName>(((Item_A)Kal)Ka2)</varName>
<varType>String</varType>
</op_args>
</oper>
<source>TTP_ID</source>

<timeVar>

<varName>t2</varName>
<varType>Time</varType>

</timeVar>

<fromTime>

<time>
<varName>tl</varName>
<varType>Time</varType>
</time>

</fromTime>

Table 27 — XML document representing the rule thathecks the availability of TTP (1)

SERENITY - 027587

Version 1.0

Page 77 of 94

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

| rhieeny
<toTime>
<time>
<varName>tl</varName>
<varType>Time</varType>
</time>
<plusTime>
<varName>tu</varName>
<varType>Time</varType>
</plusTime>
</toTime>
</happens>
</predicate>
</body>
<head>
<predicate>
<happens>
<event>
<eventID>_elD1</eventID>
<sender>
<varName>Bob_|D</varName>
<varType>String</varType>
</sender>
<receiver>
<varName>TTP_|D</varName>
<varType>String</varType>
<[receiver>
<status>REQ-B</status>
<oper>
<opName>Solve</opName>
<op_args>
<varName>((Item_A)Kal,ltem_B))</varName>
<varType>String</varType>
</op_args>
</oper>
<source>Bob_ID</source>
</event>
<timeVar>
<varName>tl</varName>
<varType>Time</varType>
</timeVar>
<fromTime>
<time>
<varName>tl</varName>
<varType>Time</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>tl</varName>
<varType>Time</varType>
</time>
</toTime>
</happens>
</predicate>
</head>
</formulas>

Table 28 — XML document representing the rule thathecks the availability of TTP (and II)

SERENITY - 027587 Version 1.0 Page 78 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

7. Applying the language

7.1. A Pattern for Fair Exchange

A complete scenario with the guidelines for speaniyof S&D Solutions and the construction of
Artefacts using this can be found in section 7 1ii][Based on this scenario, what follows is a
revision of the previous work.

Intuitively, a fair exchange mechanism allows twartjes to exchange items in a fair way, so that
either each party gets the other’s item, or neifanty does. A typical way to solve the fair
exchange problem is to introduce a semi-trustedratbr (Charlie) to the model. Alice will first
register her key with Charlie. This registratiorpexformed only once and, as a result, Charlie may
possibly learn some part of Alice’s secret. Upam¢bmpletion of the one-time registration process,
Alice can perform many fair exchanges with différererchants.

In any such exchange, Alice and Bob want to excbawg pieces of informatios andr.

Alice first issues some verifiable “partial signatc' to Bob. Bob verifies the validity of this
partial signature and fulfils his obligation by dérg Alice the required informatiot) after which
Alice sends her “full signature3 to complete the transaction. Thus, if no problerueg;, Charlie
does not participate in the protocol (such prote@sk called optimistic). However, if Alice refuses
to send her full signature at the end, Bob will send' to Charlie (and a proof of fulfilling his
obligation, including the informatiohthat should be sent to Alice), and Charlie wilheerts' into

o, sendingoc to Bob andl to Alice. Informally, we wish to achieve the folMing security
guarantees:

(0 Alice should not be able to produce a valid pagighatures' which Charlie cannot convert
into a full signatures.

[0 Bob should not be able to produce a valid parighaures’ which he did not get from
Alice.

(0 Bob should not be able to produce a valid full aignec which he did not get from Alice
(or Charlie provided Bob possessfs

[0 Charlie should not be able to produce a valid $ighatures without seeing a valid partial
signatures' computed by Alice.

While the first three properties are clearly impottto prevent parties from cheating, the last
property is equally crucial: we do not want theitaalbor Charlie to make signatures without Alice’s
consent. Indeed, otherwise Charlie would have todmepletely trusted. Moreover, if one is willing
to have a completely trusted arbitrator, then theblem becomes technically trivial, and no
elaborate protocols are needed at all: Alice mayarsy signature scheme and simply give Charlie
her entire secret key during registration. Figuter@resents the whole process as a collaboration
diagram.

SERENITY - 027587 Version 1.0 Page 79 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

cd Colaboracion (Main scenario) /

1: start_Transaction((ltem_A)Kal, contract) —§» A
Charlie

(from Interactions)

2: send_item((Item_A)Kal, contract) —§>

<4— 3: send_ltem(ltem_B)

‘Alice 4: send_ltem(((Item_A)Kal)Ka2) —p» Bob

(from Interactions) (from Interactions)

Figure 21 — Collaboration diagram of Fair Exchangeprotocol

Next Sequence Diagram (Figure 22) is an extensioth® previous collaboration diagram. It
represents the case in which Alice tries to chexdt. Bob is waiting the reception of the item uatil
timeout exception is triggered. Bob sends a requeette arbitratorqolve request and Charlie (as
arbitrator) sends back the Iltem to Bob, after chmecBob’s request.

sd Interactions (Extension Alice try to cheat) /

X X

>0

Alice Charlie Bob
i i i
i i i
| 1:start_Transaction((Item_A)Kal, contract) 1 1
1
. i
2:send_Item((Item_A)Kal, contract) > H
!
3:send_ltem(Item_B)
-t T
i
H 4A:TimeOut
1
i [
' 4A.1:solve((Iitem_A)Kal,ltem_B)
4A.2:send_Item(((Item_A)Kal)Ka2) >

.
1
1
1
1
1
1
1

Figure 22 — Sequence diagram of Fair Exchange: Akctries to cheat

SERENITY - 027587 Version 1.0 Page 80 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

Figure 23 represents Bob trying to cheat Alice. Beteives Alice’s item but he does not sent his
item in response. Alice asks Charlie (Trusted Thad\p to solve the situation so that Charlie ends
up sending Alice the un-received item.

sd Interactions (Extension Bob try to cheat) /

x X X

Alice Charlie B
1

1
1
1:start_Transaction((ltem_A)Kal, contract)_ |

o)

1
2:send_Item((Item_A)Kal, contract)

3A:solve((Item_A)Kal,ltem_B)

H< 3A.1:send_ltem(((Item_A)Kal)Ka2)

3A.2:TimeOut

3A.3:solve((Item_A)Kal)

3A.4:send_ltem(Item_B)

\

Figure 23 — Sequence diagram of Fair Exchange: Bdles to cheat

SERENITY - 027587 Version 1.0 Page 81 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

7.2. Pattern Description Example

In this section an example of pattern descriptisnpresented. This example consists on a
Mechanism for Optimistic Fair Exchange with Trus@édrd Party, expressed as an S&D Pattern.
This means that for instance, the digital signabperations are embedded into the fair exchange
mechanism. Note that it does provide fair exchdangenot confidentiality.

S&D Pattern: TTPOptimisticFairExchange.acme.com
1 Creator:

Name: acme.com
Date:2007-05-20

2 TimeStamp: 1178676437
3 Trust Mechanisms: signed by acme.com
4 Pattern Features
Feature:...
5 Provided Properties
Property:

ID: fair_exchange.acme.com
Timestamp: 20060621100230

6 Interface

Operations
Operation:...
Definition:...

ClassAdaptors
Class:...
Adaptor:..

7 Parts

Part: TTP
Part: CommunicationNetwork

8 Parameters:
Parameter: User_A
Parameter: User_B
Parameter: Item_A
Parameter: Item_B
Parameter: Contract
9 Pre-Conditions:
Parameter pre-conditions:
Parameter pre-condition: User A is registered with TTP (has a partial
signature key...)
Parameter pre-condition: User B recognises TTP (has the public key of
TTP..)
Parameter pre-condition: User_B has the public key of User_A
Solution pre-conditions:
Solution pre-condition: 7he validity of Item_A can be verified with the

contents of Contract
Solution pre-condition: 7he validity of Item_B can be verified with the
contents of Contract

10 Static Tests Performed:

Test: APA-Based_FormalTest.sit.fraunhofer.de
Conditions of test:
Attack models considered:

Test: SDL-Based_FormalTest.lcc.uma.es
Conditions of test:

Attack models considered:

SERENITY - 027587 Version 1.0 Page 82 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

||
1 System Configuration: A description based on BPEL, UML... It should include all necessary
initializations of the parts, framework, initialization of the monitor, efc.
12 Monitoring:
Monitor (constraints, or even explicit reference)
Location: localhost/SERENITY/async-mon
Type: Asynchronous
Monitoring Formulae
Rule-1: 77P registers contract
event: Registered contract: /ntercepted from TTP
Rule-2: 77P js available
event: TTP available: requested from TTP
13 Comments:...
Table 29 — S&D Pattern definition for TTP example
SERENITY - 027587 Version 1.0

Page 83 of 94

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

IEREMITY

Appendix A. XML Schemas

A.1. XML Schema of S&D Classes

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<l-- -->
<xsd:element name="SandDClass">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="creator" type="creatorType"/>
<xsd:element name="timestamping" type="xsd:long"/>

<xsd:element name="trustMechanisms" type="trustMechanismsType" maxOccurs="unbounded"/>

<xsd:element name="providedProperties" type="propertiesType"/>
<xsd:element name="solutionFeatures" type="solutionFeaturesType"/>
<xsd:element name="interface" type="interfaceType"/>
<xsd:element name="roles" type="rolesType"/>
<xsd:element name="comments" type="xsd:string"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>
</xsd:element>
<l-- -->
<xsd:complexType name="creatorType">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="date" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<l-- ->
<xsd:complexType name="trustMechanismsType">
<xsd:sequence>
<xsd:element name="signatureType" type="xsd:string"/>
<xsd:element name="signer" type="xsd:string"/>
<xsd:element name="signature" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<l-- -->
<xsd:complexType name="propertiesType">
<xsd:sequence>
<xsd:element name="property" type="propertyType" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="propertyType">
<xsd:sequence>
<xsd:element name="id" type="xsd:string"/>
<xsd:element name="timestamp" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<l-- -->
<xsd:complexType name="solutionFeaturesType">
<xsd:sequence>
<xsd:element name="feature" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

<l-- ->
<xsd:complexType name="interfaceType">
<xsd:sequence>
<xsd:element name="calls" type="callsType"/>
<xsd:element name="sequence" type="sequenceType"/>
<xsd:element name="constraint" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<l-- -->

Table 30 — XML Schema proposal for S&D Classes (1)

SERENITY - 027587 Version 1.0

Page 84 of 94

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

IEREMITY

<l-- ->
<xsd:complexType name="callsType">
<xsd:sequence>
<xsd:element name="call" type="xsd:string" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<l-- -->
<xsd:complexType name="sequenceType">
<xsd:sequence>
<xsd:element name="step" type="xsd:string" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<l-- -->
<xsd:complexType name="rolesType">
<xsd:sequence>
<xsd:element name="role" type="roleType" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<l-- ->
<xsd:complexType name="roleType">
<xsd:sequence>
<xsd:element name="roleName" type="xsd:string" />
<xsd:element name="functionality" type="functionalityType" />
</xsd:sequence>
</xsd:complexType>
<l-- -->
<xsd:complexType name="functionality Type">
<xsd:sequence>
<xsd:element name="functionName" type="xsd:string" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
<l-- -->

</xsd:schema>

Table 31 — XML Schema proposal for S&D Classes (anid)

SERENITY - 027587 Version 1.0

Page 85 of 94

SEREMNTY
(] e

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

A.2. XML Schema of S&D Patterns

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmIns:MonitoringRule="http://tempuri.org/ec/formula”

elementFormDefault="qualified">

<xsd:import namespace="http://tempuri.org/ec/formula"
schemal.ocation="http://www.lcc.uma.es/gimena/Schemas/MonitoringRules.xsd" id="MonitoringRule"/>
<xsd:element name="SandDPattern">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="creator" type="creatorType"/>

<xsd:element name="timestamping" type="xsd:long"/>

<xsd:element name="trustMechanisms" type="trustMechanismsType"/>
<xsd:element name="patternFeatures" type="patternFeaturesType"/>
<xsd:element name="providedProperties" type="propertiesType"/>
<xsd:element name="interface" type="interfaceType"/>

<xsd:element name="parts" type="partsType"/>

<xsd:element name="parameters" type="parametersType"/>

<xsd:element name="preconditions" type="preconditionsType"/>

<xsd:element name="staticTestsPerformed" type="staticTestsPerformedType"/>
<xsd:element name="systemConfiguration" type="systemConfigurationType"/>
<xsd:element name="monitoring" type="monitoringType"/>

<xsd:element name="comments" type="xsd:string"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>

<l

<xsd:complexType name="creatorType">

<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="date" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

>

<l--

<xsd:complexType name="trustMechanismsType">

<xsd:sequence>

<xsd:element name="signatureType" type="xsd:string"/>
<xsd:element name="signer" type="xsd:string"/>
<xsd:element name="signature" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

<l

<xsd:complexType name="patternFeaturesType">

<xsd:sequence>

<xsd:element name="feature" type="xsd:string" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

>

<l

<xsd:complexType name="propertiesType">

<xsd:sequence>

<xsd:element name="property" type="propertyType" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="propertyType">

<xsd:sequence>

<xsd:element name="id" type="xsd:string"/>
<xsd:element name="timestamp" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

>

<l

Table 32 —

SERENITY - 027587

>

XML Schema proposal for S&D Patterns (1)

Version 1.0 Page 86 of 94

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

IEREMITY

<xsd:complexType name="interfaceType">
<xsd:sequence>
<xsd:element name="operations" type="operationsType" />
<xsd:element name="interfaceAdaptors" type="interfaceAdaptorsType" />
</xsd:sequence>
</xsd:complexType>
<l-- -->
<xsd:complexType name="operationsType">
<xsd:sequence>
<xsd:element name="operation" type="operationType" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<l-- -->
<xsd:complexType name="operationType">
<xsd:sequence>
<xsd:element name="definition" type="xsd:string" />
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>
<l-- ->
<xsd:complexType name="interfaceAdaptorsType">
<xsd:sequence>
<xsd:element name="adaptor" type="adaptorType" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
<l-- ->
<xsd:complexType name="adaptorType">
<xsd:sequence>
<xsd:element name="operation" type="operationType" maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="classReference" type="xsd:string" use="required"/>
</xsd:complexType>
<l-- -
<xsd:complexType name="partsType">
<xsd:sequence>
<xsd:element name="part" type="partType" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<l-- -
<xsd:complexType name="partType">

<xsd:attribute name="id" type="xsd:string" use="required"/>
<xsd:attribute name="url" type="xsd:string" use="required"/>
<xsd:attribute name="type" type="xsd:string" use="required"/>
</xsd:complexType>
<l-- -
<xsd:complexType name="parametersType">
<xsd:sequence>
<xsd:element name="parameter" type="xsd:string" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<l-- -->
<xsd:complexType name="preconditionsType">
<xsd:sequence>

<xsd:element name="parametersPrecondition” type="parametersPreconditionsType"/>

<xsd:element name="solutionsPreconditions" type="solutionsPreconditionsType"/>
</xsd:sequence>
</xsd:complexType>
<l-- ->

Table 33 — XML Schema proposal for S&D Patterns (I)

SERENITY - 027587 Version 1.0

Page 87 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

<xsd:complexType name="parametersPreconditionsType">
<xsd:sequence>
<xsd:element name="parameterPrecondition" type="xsd:string" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="solutionsPreconditionsType">
<xsd:sequence>
<xsd:element name="solutionPrecondition" type="xsd:string" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<l-- -->
<xsd:complexType name="staticTestsPerformedType">
<xsd:sequence>
<xsd:element name="test" type="testType" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<l-- -->
<xsd:complexType name="testType">
<xsd:sequence>
<xsd:element name="conditionsTest" type="xsd:string"/>
<xsd:element name="attackModels" type="xsd:string"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>
<l-- -->
<xsd:complexType name="systemConfigurationType">
<xsd:sequence>
<l-- include all necesary inicialiation of the components, frameworks,etc.) -->
</xsd:sequence>
<xsd:attribute name="description" type="xsd:string" use="required"/>
</xsd:complexType>
<l-- -->
<xsd:complexType name="monitoringType">
<xsd:sequence>
<xsd:element name="monitor" type="monitorType" maxOccurs="unbounded"/>
<xsd:element name="monitorFormulae" type="MonitoringRule:formulaType" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="description" type="xsd:string"/>
</xsd:complexType>
<l-- ->
<xsd:complexType name="monitorType">
<xsd:sequence>
<xsd:element name="localization" type="xsd:string"/>
<xsd:element name="type" type="xsd:string"/>
<xsd:element name="inicialization" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<l-- ->
</xsd:schema>

Table 34 — XML Schema proposal for S&D Patterns (ad I11)

SERENITY - 027587 Version 1.0 Page 88 of 94

IEREMITY

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

A.3. XML Schema of S&D Implementations

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema">

<l-- -
<xsd:element name="S_and_DImplementation">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="creator" type="creatorType"/>
<xsd:element name="timestamping" type="xsd:long"/>

<xsd:element name="trustMechanisms" type="trustMechanismsType" maxOccurs="unbounded"/>

<xsd:element name="S_and_DPatternReference" type="xsd:string" />
<xsd:element name="preconditions" type="preconditionType"/>
<xsd:element name="implementationDescription" type="xsd:string"/>

<xsd:element name="implementationReference" type="implementationReferenceType"/>

<xsd:element name="complianceProofs" type="complianceProofsType"/>
<xsd:element name="comments" type="xsd:string"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>
</xsd:element>
<l-- ->
<xsd:complexType name="creatorType">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="date" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

<l-- -
<xsd:complexType name="trustMechanismsType">
<xsd:sequence>
<xsd:element name="signatureType" type="xsd:string"/>
<xsd:element name="signer" type="xsd:string"/>
<xsd:element name="signature" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

<l-- -
<xsd:complexType name="implementationReferenceType">
<xsd:sequence>
<xsd:element name="reference" type="typeReference" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="typeReference">
<xsd:sequence>
<xsd:element name="URL" type="xsd:string"/>
<xsd:element name="signature" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<l-- -->
<xsd:complexType name="preconditionType">
<xsd:sequence>
<xsd:element name="precondition" type="xsd:string" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<l-- -->
<xsd:complexType name="complianceProofsType">
<xsd:sequence>
<xsd:element name="proof" type="xsd:string" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<l-- -->

</xsd:schema>

Table 35 — XML Schema proposal for S&D Implementatbns

SERENITY - 027587 Version 1.0

Page 89 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

A.4. XML Schema of EC-Assertion

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://tempuri.org/ec/formula" xmIns="http://tempuri.org/ec/formula"
xmlins:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified">
<!-- define formulas -->
<xs:element name="formulas" type="formulaType"/>
<I-- definition of complex types -->
<xs:complexType name="formulaType">
<xs:sequence>
<xs:element name="quantification" type="quantificationType" minOccurs="1" maxOccurs="unbounded"/>
<xs:element name="body" type="bodyHeadType" minOccurs="0"/>
<xs:element name="head" type="bodyHeadType"/>
</xs:sequence>
<xs:attribute name="formulald" type="xs:string" use="required"/>
<xs:attribute name="forChecking" type="xs:boolean" default="true"/>
</xs:complexType>
<xs:complexType name="bodyHeadType">
<xs:sequence>
<xs:choice>
<xs:element name="predicate" type="predicateType"/>
<xs:element name="relationalPredicate" type="relationalPredicate Type"/>
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="operator" type="logicalOperatorType"/>
<xs:choice>
<xs:element name="predicate" type="predicateType"/>
<xs:element name="timePredicate" type="timePredicateType"/>
<xs:element name="relationalPredicate" type="relationalPredicate Type"/>
</xs:choice>
<Ixs:sequence>
</xs:choice>
</xs:sequence>
</xs:complexType>
<xs:complexType name="predicateType">
<xs:choice>
<xs:element name="happens" type="happensType"/>
<xs:element name="initiates" type="initiatesType"/>
<xs:element name="holdsAt" type="holdsAtType"/>
<xs:element name="initially" type="holdsAtType"/>
<xs:element name="terminates" type="terminatesType"/>
</xs:choice>
<xs:attribute name="negated" type="xs:boolean" default="false"/>
<xs:attribute name="unconstrained" type="xs:boolean" default="false"/>
</xs:complexType>
<xs:complexType name="timePredicateType">
<xs:choice>
<xs:element name="timeEqualTo" type="TimeRelation"/>
<xs:element name="timeNotEqualTo" type="TimeRelation"/>
<xs:element name="timeLessThan" type="TimeRelation"/>
<xs:element name="timeGreaterThan" type="TimeRelation"/>
<xs:element name="timeLessThanEqualTo" type="TimeRelation"/>
<xs:element name="timeGreaterThanEqualTo" type="TimeRelation"/>
</xs:choice>
</xs:complexType>
<xs:complexType name="holdsAtType">
<xs:sequence>
<xs:element name="fluent" type="fluentType"> </xs:element>
<xs:element name="timeVar" type="timeVariableType"> </xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="initiatesType">
<xs:sequence>
<xs:element name="event" type="eventType"> </xs:element>
<xs:element name="fluent" type="fluentType"/>
<xs:element name="timeVar" type="timeVariableType"/>
<Ixs:sequence>
</xs:complexType>

Table 36 — XML Schema proposal for EC-Assertion (1)

SERENITY - 027587 Version 1.0 Page 90 of 94

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)
|

IEREMITY

<xs:complexType name="happensType">
<xs:sequence>
<xs:element name="event" type="eventType"> </xs:element>
<xs:element name="timeVar" type="timeVariableType"/>
<xs:element name="fromTime" type="TimeExpression"/>
<xs:element name="toTime" type="TimeExpression"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="terminatesType">
<xs:sequence>
<xs:element name="event" type="eventType"> </xs:element>
<xs:element name="fluent" type="fluentType"/>
<xs:element name="timeVar" type="timeVariableType"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="fluentType">

<xs:choice>
<xs:element name="author" type="authorisationFluentType"> </xs:element>
<xs:element name="exp" type="exposesFluentType"> </xs:element>
<xs:element name="authen" type="authenticationFluentType"> </xs:element>
<xs:element name="valueof" type="valueofType"> </xs:element>

</xs:choice>

</xs:complexType>

<xs:complexType name="authorisationFluentType">
<xs:sequence>

<xs:element name="authorisingAgent" type="variableType"> </xs:element>
<xs:element name="authorisedAgent" type="variableType"> </xs:element>
<xs:element name="event" type="eventType"> </xs:element>

<Ixs:sequence>
</xs:complexType>
<xs:complexType name="exposesFluentType">
<xs:sequence>
<xs:choice>
<xs:element name="event" type="eventType" minOccurs="1" maxOccurs="unbounded"></xs:element>
</xs:choice>
<xs:element name="infoTerm" type="variableType"> </xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="authenticationFluentType">
<xs:sequence>
<xs:element name="agent" type="variableType"> </xs:element>
<xs:element name="event" type="eventType"> </xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="valueofType">
<xs:sequence>
<xs:element name="target">
<xs:complexType>
<xs:sequence>
<xs:element name="variable" type="variableType"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="source">
<xs:complexType>
<xs:choice>
<xs:element name="variable" type="variableType"/>
<xs:element name="operationCall" type="operationCallType"/>
</xs:choice>
</xs:complexType>
</xs:element>
<Ixs:sequence>
</xs:complexType>

Table 37 — XML Schema proposal for EC-Assertion (1)

SERENITY - 027587 Version 1.0 Page 91 of 94

— A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

<xs:complexType name="quantificationType">
<xs:sequence>
<xs:element name="quantifier">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="forall"/>
<xs:enumeration value="existential"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:choice>
<xs:element name="regularVariable" type="variableType"/>
<xs:element name="timeVariable" type="timeVariableType"/>
</xs:choice>
</xs:sequence>
</xs:complexType>
<xs:complexType name="variableType">
<xs:sequence>
<xs:element name="varName" type="xs:string"/>
<xs:choice>
<xs:sequence>
<xs:element name="varType" type="xs:string"/>
<xs:element name="value" type="xs:string" minOccurs="0"/>
</xs:sequence>
<xs:element name="array" type="arrayType"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="persistent" type="xs:boolean" default="false"/>
<xs:attribute name="forMatching" type="xs:boolean" default="true"/>
</xs:complexType>
<xs:complexType name="timeVariableType">
<xs:sequence>
<xs:element name="varName" type="xs:string"/>
<xs:element name="varType" type="xs:string" fixed="TimeVariable"/>
<xs:element name="value" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:simpleType name="logicalOperatorType">
<xs:restriction base="xs:string">
<xs:enumeration value="and"/>
<xs:enumeration value="or"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="TimeExpression">
<xs:sequence>
<xs:element name="time" type="timeVariableType"/>
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:choice>
<xs:element name="plusTime" type="timeVariableType"/>
<xs:element name="minusTime" type="timeVariableType"/>
<xs:element name="plus" type="xs:decimal"/>
<xs:element name="minus" type="xs:decimal"/>
</xs:choice>
</xs:sequence>
</xs:sequence>
</xs:complexType>
<xs:complexType name="TimeRelation">
<xs:sequence>
<xs:element name="timeVarl" type="TimeExpression"/>
<xs:element name="timeVar2" type="TimeExpression"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="varRelationType">
<xs:sequence>
<xs:element name="operandl" type="operandType"/>
<xs:element name="operand2" type="operandType"/>
</xs:sequence>
</xs:complexType>

Table 38 — XML Schema proposal for EC-Assertion (Il

SERENITY - 027587 Version 1.0 Page 92 of 94

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

IEREMITY

<xs:complexType name="relationalPredicate Type">
<xs:sequence>
<xs:choice>
<xs:element name="equalTo" type="varRelationType"/>
<xs:element name="notEqualTo" type="varRelationType"/>
<xs:element name="lessThan" type="varRelationType"/>
<xs:element name="greaterThan" type="varRelationType"/>
<xs:element name="lessThanEqualTo" type="varRelationType"/>
<xs:element name="greaterThanEqualTo" type="varRelationType"/>
</xs:choice>
<xs:element name="timeVar" type="timeVariableType"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="operandType">
<xs:choice>
<xs:element name="operationCall" type="operationCallType"/>
<xs:element name="variable" type="variableType"/>
<xs:element name="constant" type="constantType"/>
</xs:choice>
</xs:complexType>
<xs:complexType name="operationCallType">
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="partner" type="xs:string" minOccurs="0"/>
<xs:element name="variable" type="variableType" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="constantType">
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="value" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="arrayType">
<xs:sequence>
<xs:element name="type" type="xs:string"/>
<xs:element name="index" type="xs:string" minOccurs="0"/>
<xs:element name="value" type="arrayValueType" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="arrayValueType">
<xs:sequence>
<xs:element name="indexValue" type="xs:string"/>
<xs:element name="cellValue" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="eventType">
<xs:sequence>
<xs:element name="eventID" minOccurs="1" maxOccurs="1" type="xs:string"/>

<xs:element name="sender" type="variableType"> </xs:element>
<xs:element name="receiver" type="variableType"> </xs:element>
<xs:element name="status" type="xs:string"> </xs:element>
<xs:element name="oper" type="operationType"> </xs:element>
<xs:element name="source" type="xs:string"> </xs:element>

</xs:sequence>
</xs:complexType>
<xs:complexType name="operationType">
<xs:sequence>
<xs:element name="opName" type="xs:string"> </xs:element>
<xs:element name="op_args" minOccurs="0" maxOccurs="1" type="variableType"> </xs:element>
</xs:sequence>
</xs:complexType>
</xs:schema>

Table 39 — XML Schema proposal for EC-Assertion (ath IV)

SERENITY - 027587 Version 1.0 Page 93 of 94

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

A5.D2.3 — Patterns and Integration Schemes Langug@grond Version)

IEREMITY

References

Botella, A. and Mafa, A. An Introduction to Actiddpecification Language (ASL) for Serenity.
https://bscw.sit.fraunhofer.de/bscw/bscw.cgi/d9@ERroduction%20t0%20ASL%20for%20SEREN
ITY.pdf. SERENITY Project. Internal Report. 2007.

Wilkie 1., King A., Clarke M., Weaver C., RaistridR. and Francis P. The UML Action Specification
Language Reference Guide. December, 2006.

Mafa A., Mufioz A., Sanchez-Cid F., Serrano D., 2@B8iverable A5.D0.1: SERENITY Conceptual
Model. SERENITY Project. Internal Report. April.

Mana A., Presenza D., Pifiuela A., Serrano D., SBriand Sotiriou D. Deliverable A6.D3.1 —
Specification of SERENITY Architecture. SERENITYdpect.31 December 2006.

Marcotty M. and Ledgard H., The World of Programghlrtanguages, Springer-Verlag, Berlin 1986.,
pages 41 and following.

W3C XML Query (XQuery). See http://www.w3.org/XMLI@ry/.

Shanahan, M.P., 1999: The Event Calculus Explaimedirtificial Intelligence Today, LNAI no.
1600:409-430, Springer

Spanoudakis G. Mahbub K, 2006: Non Intrusive Mainiig of Service Based Systems , International
Journal of Cooperative Information Systems, Vol.[6. 3, 325-358

Mahbub K., Spanoudakis G., November 2004: A Franmkviar Requirements Monitoring of Service
Based Systems, 2nd International Conference oricee@riented Computing, New York

W3C. XML Schema Reference from the XML Schema Wugki Group.
http://www.w3.org/XML/Schema.html.

RSA Security. Information about RSA BSAFE® Encrgpti Signature and Privacy solutions
available at http://www.rsasecurity.com/node.aspPad?2.

NIST Computer Security: Federal Information Progess Standards (FIPS) page:
http://csrc.nist.gov/publications/fips/index.html.

Infosec Assurance and Certification Services (IACEp://www.cesg.gov.uk/site/iacs/index.cfm.
Infineon Technologies. http://www.infineon.com/.

Data Encryption Standard (DES) conforming with FIPS 46-3.
http://csrc.nist.gov/publications/fips/fips46-3-3. pdf.

W3C. XML Schema Reference from the XML Schema Wuagki Group.
http://www.w3.org/XML/Schema.html.

Mafa A., Mufioz A., Sanchez-Cid F., Serrano D., $pdakis G., Androutsopoulos K., Compagna L..
Deliverable A5.D2.1 — Patterns and Integration ke Languages (Initial Version). SERENITY
Project. 30 September 2006.

SERENITY - 027587 Version 1.0 Page 94 of 94

