

A5.D2.5 – Patterns and Integration Schemes

Languages (Final Version)
 A. Botella, L. Compagna, P. El Khoury, C. Kloukinas, K. Li, A. Maña, A. Muñoz, G. Pujol,

A. Saidane, F. Sanchez-Cid, J. Salvador, D. Serrano, G. Spanoudakis, S. K. Sinha

Document Number A5.D2.3

Document Title Patterns and Integration Schemes Languages (Second
Version)

Version 1.0

Status Final

Work Package WP 5.2

Deliverable Type Report

Contractual Date of Delivery 31 September 2008

Actual Date of Delivery 15 November 2008

Responsible Unit UMA

Contributors SAP, CUL, UTN

Keyword List

Dissemination level PU

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 2 of 80

Change History

Version Date Status Author (Unit) Description

0.1 10/10/08 Draft Daniel Serrano, Gimena
Pujol, José Ruiz, Rajesh
Harjani, Antonio Maña

Integration of A5.D2.3
(previous version of this

deliverable), A5.R8 (artefact
language 1.0), and A5.R9
(preconditions language).

0.2 11/10/08 Draft Daniel Serrano, Gimena
Pujol, José Ruiz, Rajesh
Harjani, Antonio Maña

Review and updated of A5.D2.3
sections.

Final 12/11/08 Draft Paul El Khoury, Keqin Li,
Smriti K. Sinha

Reviewed and updated A5.D2.5

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 3 of 80

Executive Summary

This document is a precise description of the modelling artefacts used in the description of S&D
Solutions. These artefacts range from S&D Patterns (and Integration Schemes) and S&D Classes
to S&D Implementations. This document describes their conceptual meanings and proposes a
structured language for expressing them, along with an XML-based representation for this
language. The second version of the language, presented in this document, provide the readers
with guidance on how to correctly use the modelling artefacts to describe generic S&D Solutions.
Thus, every field in the artefacts is concisely described, in some cases coming with an example of
use. Finally, with the aim of building an illustrative guide for those novels to the Serenity
approach, the document also introduces some basic concepts of the Serenity Architecture.

This particular release contains some important changes from the Initial Version of the Language.
A briefing of the major additions is listed below:

 New S&D Artefact languages (called version 1.0).

 There is a new language for the specification of “Preconditions”. This deliverable presents
the structure and the syntax of the preconditions as well as the guidelines for their creation.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 4 of 80

Table of Contents

1. Introduction .. 5

1.1. Modelling context .. 5

1.2. Artefacts for modelling S&D Solutions ... 6

1.3. SERENITY Runtime Model .. 9

1.4. SERENITY Development Time Model ... 10

1.5. S&D Patterns and Integration Schemes ... 14

1.6. S&D Classes .. 15

1.7. S&D Implementations .. 16

2. Conceptual Model... 17

3. Architectural Model .. 19

3.1. SERENITY Library .. 19

3.2. Architecture Description ... 22

3.2.1. Internal Elements ... 22

3.2.2. External Elements ... 23

4. A Language for Describing S&D Solutions ... 25

4.1. Informational vs. Operational content ... 25

4.2. Enhancements to Monitoring representation .. 25

4.3. Representing Roles .. 26

4.4. Naming scheme .. 28

4.5. Detailed description of S&D Classes .. 30

4.6. Detailed description of S&D Patterns ... 32

4.6.1. Representing Integration Schemes ... 41

4.6.2. Specifying Monitoring Rules in S&D Patterns ... 42

4.6.3. Specification of Monitoring Rules in Event Calculus .. 43

4.6.4. XML Schema for Monitoring Rules .. 44

4.7. Detailed description of S&D Implementations ... 51

4.8. Language used for expressing preconditions .. 53

5. Example .. 60

5.1. S&D Class ... 61

5.2. S&D Pattern .. 62

5.3. S&D Implementation ... 64

6. Apendix A: S&D artefacts XML Schemas Definition .. 66

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 5 of 80

1. Introduction

The modelling and representation of security and dependability solutions (S&D Solutions) is one of
the biggest challenges in SERENITY. This representation is strongly related to the SERENITY
Conceptual Model [1], to the design of the Runtime Architecture and to the Runtime Monitoring
activity. This introduction tries to put it all together by first, presenting the main concepts the user
should get familiar with, then introducing the Serenity modelling artefacts, eventually showing how
these artefacts fit in the Serenity Runtime and Development time architecture.

1.1. Modelling context

Before we start dealing with the artefacts that we will use for modelling S&D Solutions, we must
describe our envisaged scenario and define some basic terms. We must emphasize that our work
is focused on the modelling of S&D Solutions for Ambient Intelligence (AmI) scenarios. In fact, the
new scenarios of Ambient Intelligence, their underlying pervasive technology, and their notion of
mobile services –where the IT environment moulds itself around the user’s needs, raise the bar for
what is a satisfactory security and dependability solution well beyond standard IT security
technology. For this reason we expect our results to be applicable in many other (probably less
demanding) scenarios.

The scenarios of Ambient Intelligence introduce a new computing paradigm and set new
challenges for the design and engineering of secure and dependable systems. In these scenarios
the concepts of system and application as we know them today will disappear, evolving from static
architectures with well-defined pieces of hardware, software, communication links, limits and
owners, to architectures that will be sensitive, adaptive, context-aware and responsive to users’
needs and habits. We will refer to these architectures as AmI ecosystems. These AmI ecosystems will
offer highly distributed dynamic services in environments that will be heterogeneous, large scale
and nomadic, where computing nodes will be omnipresent and communication infrastructures will
be dynamically assembled. This is the scenario where our work on modelling security and
dependability solutions will be applied. The most important aspects to take into account in this
scenario are the highly distributed nature of the computing model and the combination of
heterogeneity, dynamism and large number of computing and communication elements, controlled
by different entities. All these characteristics make matters worse when it comes to designing and
operating the necessary security mechanisms. For this reason, it is essential that these security
mechanisms can adapt themselves to the ever-changing AmI context. Consequently, our main goal
in the modelling of security and dependability solutions becomes the ability to use the models for
automated selection and adaptation of the security and dependability mechanisms by automated
means.

Before we proceed, some terms are defined in order to facilitate subsequent explanations.

 AmI ecosystem: We define an AmI ecosystem as the composition of multiple systems
controlled by multiple authorities (usually the system owner). In particular, this means that
for every system, that is part of the ecosystem there is an authority that is responsible for
its security and dependability.

 S&D Authority: Entity that is responsible for the security and dependability of a
system or set of related systems.

 S&D Realm: A set of systems controlled by one S&D Authority is called an S&D Realm. In
practice it is frequent for an authority to control more than one system. This happens for
instance in the case of a corporate network composed of multiple computing and

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 6 of 80

communication devices. We call SERENITY Realm to a SERENITY-enabled S&D Realm. It is
possible for a realm to have nested realms.

 S&D Property: An S&D Property is a quality of a system that enhances its security or
dependability in some way.

 S&D Requirement: An S&D Requirement is the expression of the need for an S&D
Property to hold on a system or part of it.

 S&D Solution: An S&D Solution is defined as a mechanism that is used to realize
some S&D Requirement.

Figure 1 shows a graphical representation of the concepts defined above. It depicts a fictional AmI
environment composed by six realms. S&D Realm 1 is composed by four systems––managed by
S&D Authority 1, and other two realms: S&D Realm 4 and 5 –managed by different authorities.
Considering “Computing Department” as S&D Realm 1, we can think of S&D Realm 4 as a laptop
owned by a lecturer. Although the laptop remains inside the Computing Department, the lecturer
is the one with administrative privileges on his own laptop and, consequently, the lecturer is also
the S&D Authority for what concerns the laptop (i.e. S&D Realm 4). The lecturer –as S&D
Authority–, must comply with the policies imposed by S&D Authority 1, but to any extent the
lecturer is the unique authority with capacity to manage the SERENITY Runtime Framework (SRF)
of the S&D Realm 4.

Figure 1 – Relations between the modelling artefacts

1.2. Artefacts for modelling S&D Solutions

The representation of S&D Solutions in SERENITY is supported by three main artefacts: S&D
Classes, S&D Patterns and S&D Implementations. In this section we will define them, describe
them in detail, and justify their structure and usefulness. Before continuing, the three main
concepts must be introduced:

 S&D Patterns represent abstract S&D Solutions. These solutions are well-defined
mechanisms that provide one or more S&D Properties. There is a special type of S&D
Pattern that represents the combination of several S&D Patterns. This type of S&D Patterns
is called Integration Schemes. The popular Needham-Schroeder public key protocol is an
example of an S&D Solution that can be represented as an S&D Pattern. One important

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 7 of 80

aspect of the solutions represented as S&D Patterns and Integration Schemes is that
they can be statically analysed using S&D Engineering Tools (in particular, Activities 1, 2
and 3 of the SERENITY project will produce such tools). However, the limitations of the
static analysis tools introduce the need to support the dynamic validation of the behaviour
of the described solutions by means of monitoring mechanisms.

 S&D Classes represent abstractions of a set of S&D Patterns characterized for providing
the same S&D Properties and complying with a common interface. This artefact is mainly
used at development time by the SERENITY Development Tools, as will be described in
section 3 of this document. The main purpose of introducing this artefact is to facilitate the
dynamic substitution of the S&D mechanisms at runtime. This is a basic pillar behind the
idea of the Artefacts: first, select an abstract definition at development time (i.e. abstract
methods from Classes); second, have several patterns complying to this definition (by
ffmeans of their Class Adaptor); and third, at runtime, the patterns will be selectable and
interchangeable because (though having different interfaces) they all comply with the same
abstract one. Given that interoperability is a key issue at this level, with this approach it is
possible to create an application bound to S&D Class, as this artefact defines the high-level
interface (i.e. the set of functions, calls, or methods that form the functionality offered by
an artefact).

Thus, given that artefacts in an S&D Library have a reference to the higher level artefact they
belong to, it is always possible to track back from an Executable Component to its S&D Class in
three backward steps maximum. In conclusion, all S&D Patterns (and their respective S&D
Implementations) belonging to an S&D Class will be selectable by the framework at runtime.

 S&D Implementations represent working S&D Solutions. It is important to note that the
expression “working solutions” refers here to any final solution (e.g. component, Web
service, library, etc.) that has been implemented and tested. These solutions are made
accessible to applications- thanks to the SERENITY Runtime Framework (SRF). The
description of either a specific dynamic library providing encryption services or a Web
service providing time-stamping services (both including a reference to its corresponding
Executable Component), are examples of S&D Implementations. At this stage, it is
important to note that the physical implementation (either software or hardware) of an
S&D Patterns corresponds to an Executable Component pointed by an S&D
Implementation, and not to the S&D Implementation itself. In fact, an S&D Implementation
describes not just an implementation of the S&D Solution, but describes an implementation
of an S&D Pattern. This means that all S&D Implementations of an S&D Pattern must
conform directly to the interface, monitoring capabilities, and any other characteristic
described in the S&D Pattern. However, they may have differences, such as the specific
context conditions that must be met before applying one specific S&D Implementation,
their performance, target platform, programming language or any other feature not fixed
at pattern’s level.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 8 of 80

cmp Modelling artefacts

«speci fication»

S&DImplementation

«speci fication»

S&DPattern

MonitoringRules

InterfaceDefini tion

Parameters

Precondi tions

ProvidedPropertyReferencePatternClass

InterfaceAdaptorS&DClassReference

«specification»

S&DClass

ProvidedPropertyReferenceInterfaceDefinition

«speci fication»

S&DProperty

«speci fication»

S&DPropertyRelation

EventCapturing SolutionDescription

S&DPatternReference

Precondi tions ImplementationReference

ImplementationDescription

ExecutableComponent

ImplementationInterface

«real ize»

Target

Source

«real ize»

Figure 2 – Relations between the modelling artefacts

All these artefacts are represented in Figure 2, along with their composing elements and their
interrelations. The rationale for introducing these three artefacts is based on the following reasons:

 S&D Patterns can be verified using the SERENITY S&D Engineering Tools, while S&D
Classes and S&D Implementations cannot be. Therefore it is wise to separate their
definitions, since all information referring to the provided properties and the available
proofs concern only the abstract solution (i.e. the S&D Pattern) and not the interface (i.e.
S&D Class) or the specific implementation (i.e. S&D Implementation).

 S&D Patterns are verified by S&D experts (usually by means of formal methods) while the
S&D Implementations are tested by their producers. In opposition to the case of S&D
Patterns, which will be frequently produced by people who did not created the S&D
Solutions described in such S&D Patterns, the creators of S&D Implementations will
frequently be the creators of the corresponding Executable Components. Finally, S&D

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 9 of 80

Classes are mainly interface definitions that are meant to facilitate application
development.

 S&D Classes will be defined by entities mainly interested in interoperability (e.g. industry
associations, standardization bodies). S&D Patterns will be produced by independent
entities interested in security and dependability (e.g. S&D Companies and Experts, but
maybe standardization bodies as well). However, patterns will not only enhance security
and dependability, but also interoperability, as all implementations of an S&D Pattern will
be required to conform to the pattern specification. Finally S&D Implementations will be
produced by entities interested in the creation of working solutions (commercial solution
providers, open source communities, etc).

All these definitions, concepts and characteristics of modelling artefacts are revised and extended
in sections 2, 3 and 4.

1.3. SERENITY Runtime Model

SERENITY covers all aspects of the lifecycle of S&D Solutions. It addresses both (i) the creation of
new solutions and their characterization as S&D Patterns; and (ii) the description of their real
executable implementations (i.e. Executable Components) as S&D Implementations. In addition,
SERENITY supports the development process of the application assisting developers in the
selection and use the most appropriate solution (pattern) fulfilling their requirements (making it
clear that is their responsibility to take the final decision).

The dynamic selection and use of S&D Implementations according to the requirements and the
context conditions is also part of this model. Thanks to the elicitation of S&D Requirements, S&D
Classes can be found that fulfil them. From S&D Classes, the next step is to make a selection from
the pool of all available Patterns that belong to these Classes. The purpose of this selection is to
discard those Patterns that (despite they belong to a valid Class) are not valid given the
requirements specified by developer. This process is based on the features made explicit in the
Patterns: the developer specifies the key features he is looking for, so the last remaining artefacts
will be those that fulfil both (i) the S&D Requirements and (ii) the features specified by the
developer. From this refined list of artefacts, only those whose preconditions hold can be
eventually selected and in turn, only the S&D Implementations whose preconditions hold can be
eventually deployed. To end with, SERENITY model provides means for monitoring the correct
execution of these implementations, which is necessary because of the interaction with external
systems that might not be under the control of the local S&D Authority. In this section we will
concentrate on the runtime support.

SERENITY anticipates a distributed, dynamic and heterogeneous scenario where systems interact
and collaborate forming spontaneously AmI ecosystems. In our scheme S&D Realms have a
component that is responsible for the enforcement of their security and dependability
requirements. We call these realms SERENITY Realms, and the inner component the SERENITY
Runtime Framework (SRF). To be precise, what SERENITY Realms integrate is an instance of the
SERENITY Runtime Framework. Given the diversity of devices that may have SRF Instances, these
instances must be platform-specific implementations of the generic SRF, some of them explicitly
designed for mobile phones, some others for web servers, and so on. For the sake of
simplification, both the abstract framework and its instances will be referred as SERENITY Runtime
Framework now on.

We must note, however, that it is not mandatory for a system or S&D Realm to contain an SRF
instance. In other words, because the SRF has well-defined interfaces (a Negotiation and a
Monitoring interface, both described in the SERENITY architecture), it is possible for other non

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 10 of 80

SERENITY-enabled systems to interact with SERENITY Realms. There is at least one SRF instance
in each SERENITY Realm. For simplicity we can work under the assumption that every SERENITY
Realm has one and only one SRF.

Each SRF has an S&D Library composed of the S&D Classes, S&D Patterns and S&D
Implementations that are available in this particular SRF instance. At runtime, the SRF is
responsible for fulfilling S&D Requirements by selecting and using the most appropriate S&D
Implementations. In this sense, we call it activation referring to the complex process of loading,
integrating, initializing and using (including the runtime monitoring of its correct execution) an
S&D Implementation. Once an S&D Implementation is activated, the corresponding Executable
Component is deployed. Thus, the Executable Component must include everything that is needed
to execute the solution, going from the configuration details, to the code for deploying it.

The S&D Authority of the SERENITY Realm is responsible for defining the S&D Configuration of the
SRF. This configuration includes different aspects, such as preferences, or system-wide S&D
Requirements. This configuration can be considered as the security and dependability policy of the
realm. In any SRF instance, there are two types of active S&D Patterns: on the one hand, “Event
Observer Patterns” are activated as a result of the S&D Configuration; and on the other hand,
“Application Patterns” are activated as a result of the S&D Requirements coming from a specific
application. For a more detailed description of these elements, see Deliverable A6.D3.1.

1.4. SERENITY Development Time Model

SERENITY supports system developers at development time by (i) helping them to express their
S&D Requirements; and (ii) supporting them in the selection and use of S&D Solutions fulfilling
those requirements. Precisely, we have introduced the S&D Class artefact in order to support (ii).

When creating a new system, developers build the models of the system. Later, the analysis of
these models helps them in the elicitation of the S&D Requirements of the system. The most
important questions arise at this point: What are the possible solutions fulfilling the requirements?
How should we deploy them? What are their restrictions and limits? Are they applicable in our
environment? Furthermore, can all the solutions be applied together avoiding the risk of harmful
interactions? These are just a few of the many extremely-hard-to-answer questions they may ask
themselves. By having well-defined and precise descriptions of the possible solutions, especially
covering details such as the applicability, compatibility or the interoperability, developers will be
able to create better systems because they will be able to make informed decisions about the S&D
Solutions that they include in their systems.

But what happens when we do not know the possible problems in advance? What happens if we
do not know in advance how the system will be or will behave? May be these questions seem a bit
unrealistic if we focus on traditional systems, but that is precisely the situation in AmI
environments. In this case we need something more. And this something is the ability for
applications developers to delay the decisions about which are the appropriate S&D Solutions to
use until the moment when we have enough information to decide correctly. That is, until runtime.
Of course, developers need tools to control and restrict the decisions that will be taken by
automated means at runtime. For the previous reasons SERENITY needs to be extremely flexible
in supporting system developers. The solution we propose is to use three complementary
artefacts: S&D Classes, S&D Patterns, and S&D Implementations.

When system developers identify an S&D Requirement, they can decide to leave the selection of
the actual solution for runtime. In this case they will use a particular S&D Class providing the S&D
Properties that they need in order to fulfil the requirements. S&D Classes fix only the minimum
amount of information for developers in order to proceed with the development of their system. In

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 11 of 80

particular, S&D Classes contain “the problem” (that is, the S&D Property provided) and a definition
of an interface that must be used by the developers in order to access these services. S&D Classes
do not have a defined behaviour, and therefore they do not need to be proven, validated or
verified by any means.

All S&D Patterns belonging to an S&D Class need to conform to the class interface. However, each
specific S&D Solution, and therefore each specific S&D Pattern, may have a different interface.
This is so because interfaces are strongly related to the details of the solution. Therefore, S&D
Patterns also contain a specification that allows the SRF to map the abstract calls defined in the
S&D Class into the specific calls defined in the S&D Pattern. Thus, the Executable Component can
either rigorously follow this interface when implementing its own functionality, or provide –through
its S&D Implementation, a wrapper that maps from the Pattern calls to the Executable Component
functions.

In case developers select an S&D Class to fill the requirements, the SRF will be able to select
among all the S&D Implementations that correspond to all the S&D Patterns that belong to that
class. On the other hand, if developers decide to make the runtime selection process more
restrictive, then they can select an S&D Pattern instead of an S&D Class. This way, although the
S&D Pattern is fixed at development time, developers are still allowing the SRF to dynamically
select among the possible S&D Implementations that point to the selected S&D Pattern. This
selection is based on the information taken from the runtime context. Although not all S&D
Implementations of an S&D Pattern have exactly the same characteristics and applicability, all of
them share exactly the same interface and behaviour.

An S&D Implementation represents a working solution and therefore it contains a reference to the
corresponding Executable Component. While an S&D Implementation is only a formal description
of an implementation, the Executable Component is the actual implementation as an executable
code or entity. There is a one to one relation between S&D Implementations (the descriptions of
the working solutions) and Executable Components (the real working solutions), so that no S&D
Implementation is possible without an Executable Component associated. Therefore, it is also
possible for developers to choose a specific S&D Implementation for their system. In this case the
advantages of dynamism are reduced, but not completely absent. In fact, the SRF will still be able
to monitor the behaviour of the Executable Component corresponding to that S&D Implementation
even if it cannot be changed.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 12 of 80

obj ect Obj ect model1

SimpleTransmisionConfidentiality.iso.org :

S&DClass

ConfidentialityByDES_Encryption.iso.org :S&DPattern
ConfidentialityBySecureChannel.ieee.org :

S&DPattern

NokiaDES :

S&DImplementation

SAPDES :

S&DImplementation

ThalesDES :

S&DImplementation ATCSecureChannel :

S&DImplementation

SetcceSecureChannel :

S&DImplementation

ThalesDES :

ExecutableComponent

SAPDES :

ExecutableComponent

NokiaDES :

ExecutableComponent

ATCSecureChannel :

ExecutableComponent

SetcceSecureChannel :

ExecutableComponent

S&DClass Elem ents

S&DImplem entation Elements

S&DPattern Elem ents

ExecutableComponent Elements

Figure 3 – Example of related S&D Classes, S&D Patterns and S&D Implementations

Summarizing, the developers have been supported at (i) development time selection of the most
appropriate solution and at (ii) runtime monitoring of the correct operation of the Executable
Components. Figure 3 depicts an object diagram showing an example of the relations between
S&D Classes, S&D Patterns, S&D Implementations (and their corresponding Executable
Components).

Each SERENITY Framework instance will incorporate an S&D Library composed of different types
of artefacts (S&D Classes, S&D Patterns and S&D Implementations) that will enhance the correct
selection and use of the available working solutions (i.e. Executable Components).

It is important to remark that two S&D Pattern’s instantiating the same S&D Class can play
different roles in a system. For instance, an S&D Pattern for secure transmission over untrusted
networks can play on client or on server sides while the associated functionality is notably
different. Consequently, as the use of the interface depends on the role that an S&D Pattern plays
in the system, it is necessary for each possible role to explicitly describe its functionality. The S&D
Class includes a description of each possible role than can play an S&D Pattern that belongs to
that S&D Class.

The Interface Definition at Class level, clearly distinguish the functionality offered by the different
roles. This info can be extrapolated at Pattern level, using the Class Adaptor. Using it, we know the
Pattern methods that belong to a particular role. As an Executable Components rigorously

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 13 of 80

implements the interface of the Pattern, the functionality of each the role is perfectly available
when using Executable Components.

id Example of roles' use

Serenity Run-Time Framework 2

(CLIENT ROLE)

Serenity Run-Time Framework 1

(SERVER ROLE)

classA:S&DClass

patternA:S&DPattern

Both SRFs share the same

S&D Pattern, but use

different instances

a1:patternA a2:patternA

ExecutableComponent

A1
ExecutableComponent

A2

implementationA1:

S&DImplementation

implementationA2:

S&DImplementation

Serv er

application
Client application

serverRoleInterface

ServerInterface

clientRoleInterface

ClientInterface

The "patternInterface" to

use depends on the role

that patterns plays.

«implements»«implements»

Figure 4 – The S&D Pattern “patternA” plays two different roles in each SRF

Figure 4 shows an example of the S&D Pattern behaviour based on the roles they play in the
system. In our example, two SRFs have their own instance (a1 and a2) of the same S&D Pattern
(patternA). For pattern a1 in SRF 1, the S&D Implementation A1 is applied and the
ExecutableComponent A1 is running under a server role. For pattern a2 in SRF 2, the S&D
Implementation A2 is applied and the ExecutableComponent A2 is running under a client role.
Thus, each side in the communication channel is playing a different role: the SRF 1, on the left
hand side, is providing an S&D Solution to a server application while the SRF 2, on the right hand
side, is providing the same S&D Solution to a client application. Following this scheme, both
applications are using the same S&D Solution (represented by the same S&D Pattern), but with
sensitively different functionalities.

Given that each instance of the S&D Pattern is playing a different role, it is necessary to equip the
S&D Pattern with the means to distinguish between the two different functionalities. This feature is
provided by means of the roles’ section. Included in the S&D Class definition and applicable at
development time, it makes it possible the guidance for programmers during the development
phase of Serenity-enabled applications. When an S&D Pattern is selected and then applied, the
appropriate role is selected.

This roles’ section shows explicitly, in the S&D Class definition, what functions are available for
each role identified. For example, the use of certain functionality may not be necessary for one

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 14 of 80

role, while it may be strictly necessary for another one. Moreover, given two roles that share some
function calls (e.g. both encrypt/descript the information using the same call in the S&D Pattern),
the sequence of those actions depends on the side of the communication channel where the S&D
Pattern is being used.

In absence of an explicit role’s section, developers had to “manually” separate the functionality
associated to the role of interest, and apply the corresponding calls on their own discretion.
Basically, this means that without the roles’ section, we would have to use the pattern’s interface
as we use, for instance, a Java Lib: we read the documentation, and then we learn which Class
and Functions to apply for my “hello world” application.

1.5. S&D Patterns and Integration Schemes

S&D Patterns are detailed descriptions of abstract S&D Solutions. These descriptions must contain
all the information necessary for the selection, instantiation and adaptation, and dynamic
application of the solution represented in the S&D Pattern. Just as one S&D Solution provides one
or more properties, also one S&D Pattern refers to one or more S&D Properties.

A special type of S&D Pattern is called Integration Scheme. An Integration Scheme is an S&D
Pattern that describes a complex S&D Solution. While S&D Patterns are independent or atomic
descriptions of S&D Solutions, Integration Schemes describe solutions for complex S&D
Requirements achieved by the combination of some S&D Solutions.

Note that the difference rests on the description, not on the solution itself. Therefore a complex
S&D Solution can be represented as an S&D Pattern if it is described in an atomic or independent
way (i.e. it does not refer to other descriptions). On the other hand, if we describe the same
solution by making references to the S&D Patterns that are combined to achieve the complex
property, or combination of properties, then we are representing the solution as an Integration
Scheme.

Eventually, the definitions for the previous concepts state as follows:

S&D Pattern: A self-contained description of an S&D Solution, meaning that it does not refer to
(or depends on) other S&D Solutions.

Integration Scheme: A description of a composed S&D Solution that refers to (or depends on)
other S&D Solutions. In some cases, Integration Schemes will be used to represent ways of
correctly combining S&D Solutions with the objective of avoiding that they badly interfere.

The description of the S&D Pattern contains many different elements. The most important are:

 ProvidedProperties. This element is used to point to the descriptions of the S&D Properties
provided by the S&D Pattern. One S&D Pattern can provide one or more properties. It is
natural for one Pattern to provide several Properties, given that the Pattern can belong to
more than one Class.

 Preconditions. Every S&D Pattern represents a specific S&D Solution. For this reason, we
assume that they are not universally applicable. This element contains the specification of
the conditions under which the S&D Pattern is able to provide the mentioned properties.

 MonitoringRules. Because S&D Patterns are not expected to represent perfect solutions,
and because the solutions will frequently depend on the behaviour of external components
that will not be under our control, the solution must be monitored during its execution in
order to guarantee that it works correctly. This element contains instructions for an
external monitoring mechanism to perform this activity. We assume that every solution is

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 15 of 80

responsible for capturing the events that are necessary for monitoring it. Therefore, this
element declares this events and how to capture them.

 Parameters. This element allows us to build more generic solutions. Parameters (for
instance, the length of the keys in an encryption algorithm) can change without affecting
the general behaviour of the solution. They can always be represented by a 2-tuple with a
name and a value.

 PartDescription. Sometimes a solution makes use of external elements that can be
replaced, but that need to comply with some conditions. Parts (for instance, a camera in a
surveillance system) are a special type of parameters that represent working parts of the
solution. They can be replaced as long as the new Part conforms to the conditions
expressed in this element. A Part, in contrast to a simple parameter, does not represent a
single value, but a component that: (i) is a piece of the solution and (ii) have an associated
behaviour and specific characteristics.

 Tests Performed. Every S&D Pattern represents a proven solution. Therefore, this element
is used to specify the proofs that have been applied in order to claim that the pattern
description is sound.

 SolutionDescription. This element is used to represent the solution.

 InterfaceDefinition. This element describes the native interface of the S&D Solution
described by the S&D Pattern. More specifically, it allows to: (i) adapt the native interface
coming from the Class to the interface of the S&D Solution and (ii) precisely describing the
interface of the S&D Solution.

 PatternClass. This element represents references to the classes where the pattern belongs.
It is divided into two components: an S&D ClassReference is the reference itself; and a
Class Adaptor is the description of the adaptation of the pattern interface in order to
conform to the class interface.

1.6. S&D Classes

S&D Classes are introduced to solve the need of system developers of knowing at development
time the way to access the services related to the desired S&D Property, while maintaining the
maximum flexibility in the dynamic selection of the specific S&D Solution (in this case S&D
Implementation).

An application developer needs a minimum amount of information about the S&D Solutions (in the
form of S&D Implementations) that will be used to fulfil its S&D Requirements. Therefore, this
artefact is designed to provide this minimum amount of information, while maximizing the
flexibility and the number of possible solutions that can be selected and applied at runtime.

The description of an S&D Class contains:

 ProvidedProperties. This element points to the descriptions of the S&D Properties provided
by the S&D Patterns that belong to this S&D Class. Note that the S&D Class does not
provide properties. One S&D Class can point to one or more properties.

 InterfaceDefinition. This element describes the native interface of the S&D Class. This
interface must be designed in order to be simple and generic enough for many solutions to
be able to comply with it.

 Roles’ definition. The previous interface, which defines a set of available operations, is
refined into one or several sequences of operations. Each sequence is defined for the

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 16 of 80

different roles that an S&D Class can play when refined as an S&D Pattern. The benefit of
this distinction is straigthforward. Let us consider a Pattern providing Confidential
Transmision. All functionality is already defined. Now consider a sender and a receptor
using that Pattern. Both are using the same functionality, but in a different way. While one
encrypts, the other decrypts. Each side (that is, each role) must have a clear vision of its
functionality defined first at Class level, and then refined at Pattern level.

1.7. S&D Implementations

S&D Implementations describe executable mechanisms that conform to an S&D Pattern. In other
words, and S&D Implementation precisely depicts an implementation of the S&D Pattern, and not
the abstract S&D Solution represented by the pattern. The description of an S&D Implementation
includes:

 ImplementationDescription. This element is used to represent the implementation details.

 ImplementationReference. This element points to the actual Executable Component.

 Preconditions. Frequently, an implementation will have some specific preconditions that
join the pattern preconditions making more restrictive (but also more precise) the process
of selecting the most suitable implementation.

 S&D PatternReference. This element is a reference to the pattern that the S&D
Implementation implements.

We must highlight that there is no specification of the S&D Implementation interface because all
S&D Implementations of a given S&D Pattern must have exactly the same interface that the
pattern has.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 17 of 80

2. Conceptual Model

The objective of this section is to formally represent the conceptual elements that are used in
SERENITY. For the Use Case view, the reader can refer section 2.2 from the first version of the
deliverable [3].

The following class diagram shows the different conceptual elements that are used in SERENITY as
well as their relations.

We can observe that S&D Patterns and Integration Schemes (S&D Patterns in Figure 5) refer to
solutions (S&D Solutions) and contain the semantics (S&D SolutionSemantics) that describe such
solution. The semantics are described in terms of the semantics (S&D PropertySemantics) of the
particular properties (S&D Property) provided by the solution. Solutions (S&D Solutions) can be
monitored by the monitor service (MonitorService). Solutions Semantics provide a monitoring
specification (MonitoringSpecification) that describes politics and events involved in monitoring
tasks. Solutions (S&D Solutions) may have different implementations (S&D Implementations).

class Logical Model

S&DPattern

S&DProperty

S&DPropertySemantics

S&DSolution

S&DSolutionSemantics

S&DConfiguration

MonitoringSpeci fication

S&DConfigurationElement

SystemElement

PartSemantics

S&DImplementation

ExecutableComponent

S&DClass

ClassInterface

PatternInterface

ImplementationInterface

Patterns defini tion related enti ties

Monitoring related enti ties

Implementation enti ties

Semantic elements

SRF Instance enti ties

EventCapturer

MonitorService

Realworld enti ties

S&DLibrary
CertifiedS&DPattern

PatternCerti ficate

Part

EnforcedFor

1..*

RefersT o

Provides

Implements

*

BelongsT o

*

*

DescribedBy

1..*

Provides

* 1..*

*

* RelatedTo

*

*

DescribedBy

*

DescribedInT ermsOf

*

*

DescribedBy

*

1..*

*

Monitors

1..* *

Certi fies

Ful fi l l ledBy

Defines

Compl ies

Real izes

RefersT o

Provides

0..*

Checks

*

MonitorableBy

*

Figure 5 – Logical model

An S&D Implementation is a description of an implementation that fits a solution. An
ExecutableComponent is a tangible element (e.g. a software application or a cryptography library)
that supplies a particular implementation. Different S&D Implementations for the same solution
are the result of having a number of solutions for the same problem but fitting different context
conditions or requirements. Each ExecutableComponent provides a particular Interface
(ImplementationInterface). ImplementationInterfaces must realize the whole PatternInterface.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 18 of 80

PatternInterface helps to maintain similar (but not equal) interfaces for all ExecutableComponent.
For monitoring purposes ExecutableComponents provide EventCapturers. Serenity Framework will
use the S&D Implementation in order to choose the correct one among all the possible
implementations of a specific pattern. The description of a pattern should be a more general
definition than implementation description is.

S&D Patterns and Integrations Schemes are certified by a special type of digital certificate
(PatternCertificate). The library of S&D Artefacs (S&D Library) is composed of S&D Patterns and
Integration Schemes that hold a certificate, the so-called certified patterns (CertifiedS&D Pattern).

S&D Patterns provide interfaces (PatternInterfaces) that are used by Serenity Runtime Framework
in order to establish the criteria for pattern’s use. All implementations (S&D Implementations) of a
pattern must comply with the interface of the implemented pattern. It is possible to have more
than one implementation for each pattern. S&D Classes also provide interfaces, named as
ClassInterfaces. ClassInterfaces are not the same than PatternInterfaces, given that
PatternInterfaces must comply with the ClassInterfaces definition. S&D Classes are used to group
a set of S&D Patterns. All patterns that define the same interface come under the same umbrella:
an S&D Class. At some extent, the concept of S&D Class is close to the concept of class in orient
object programming.

Finally, users define the security and dependability requirements (S&D Configuration) for their
systems, grouping a set of specific requirements (S&D ConfigurationElement). Each specific
requirement is specified by means of a set of properties (S&D Property) that must be enforced for
a particular element of the system (SystemElement). All this elements are shown in Figure 5.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 19 of 80

3. Architectural Model

The aim of this section is to depict and describe the components of the architectural view of
SERENITY, as well as the relations established among them. As every single SERENITY-aware
device will run this multifaceted architecture, it is important to underline the main components,
their role, and criticalness in the whole process of securing a device. Among all the components,
one of them rises as the core one since it holds the knowledge and the experience of security
experts in form of S&D Patterns: the SERENITY library. This component is described in section 3.1,
just before the description of the whole picture given in section 3.2

3.1. SERENITY Library

SERENITY Library is the result of the effort to represent, in a general and machine-readable
format, the solutions developed by security experts for a wide range of security problems. It
contains patterns that describe, at different levels of abstraction, security solutions that solve
specific security problems. However, the patterns not only hold the description of the solution but
also how to use it, the conditions needed for its application and how to monitor the correctness of
the process. There are two different implementations of the SERENITY Library.

Firstly, the SERENITY Development-time Framework (SDF) S&D Library is oriented to support
development processes of S&D Solutions and secure applications. This S&D Library has the
following features: Large-scale database of S&D Solutions, supporting development-oriented
queries, accessible through WebServices-based application (client tools for using and managing
on-line S&D libraries). The SDF includes tools for S&D Patterns developers and tools for application
developers.

Secondly, the SERENITY Run-time Framework (SRF) S&D Library supports the run-time S&D
Solution selection process. The SRF S&D Library is a Small-scale (device specific implementation),
optimized to context-oriented queries, and it is an internal component of the SRF being accessible
only from the SRF through an integrated interface.

The main reason for having a particular implementation of the SERENITY Library in the SRF is that
from an AmI point of view, every single device has different security needs and is surrounded by a
different working context that obligates SERENITY to instantiate the library, by means of the SRF
S&D Library, for every particular situation. Given an instance offering concrete solutions, the
correctness for the concrete device and problems is assured; however, this correctness can not be
assured in the event of a change in the application context. As some of the applied solutions can
be no longer valid in the new context conditions, the SRF S&D Library offers the channel for the
SRF to dynamically react and update/change the existing solutions in order to fit with the new
applicability conditions. For the time being, if some change arises in the context that makes a
solution no longer valid, this solution is deactivated. Then, a search process starts that looks for
the most suitable solution from those available and, if found, activates it.

Today devices offer a variety of internally complex but, on the other hand, easy-to-use
applications coming with different hardware/system requirements. In AmI context, applications will
also come along with security requirements expressed by means of security properties to provide
in order to safely achieve the intended functionality. At this stage we can use the information we
usually get from the manufacturer; for instance, an example of these requirements might go like:
“the use of my brand-new chat application is fully secure when used among ACME devices, but no
confidentiality is assured if any of the parties in chat is not using an ACME device”. This assertion
makes clear that in case you really need confidentiality, some further functionality has to be added

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 20 of 80

to the original application. However, frequently at this point the developer has not enough
information to select the most appropriate S&D Solution. Therefore, the developer takes the final
decision, assisted by the SDF using generic solutions to their requirements, represented by S&D
Classes.

S&D Classes are abstract classes that group several S&D Patterns with one common trait: all of
them offer a solution for the problem specified in an S&D Class. Reasoning the previous example,
the S&D Class to look for is the one talking about the problem of confidentiality when
communicating two principals. Obviously, a number of solutions –each one with some peculiarities,
advantages and drawbacks, have been offered in the literature to provide this property. For each
one of these solutions, an S&D Pattern is the appropriate artefact to represent and describe them
in a machine-readable way.

As a solution for a concrete problem, an S&D Pattern refers to an S&D Class. As several solutions
can be proposed for the same problem, several S&D Patterns can refer to the same S&D Class. In
this way we can symbolize SSL and TLS as different but appropriate solutions for the problem of
confidentiality. Apart from the reference to the abstract class, each S&D Pattern includes
information about the context in which it can be applied, a description of the solution, and some
useful information about monitoring that can be used to monitor the execution of the pattern
during its lifetime. Figure 6 represents all the elements described in this section as part of the
SERENITY Library.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 21 of 80

SERENITY Library

Library of S&D Implementations

...

S&D Classes

S&D
Class 1

S&D
Class 2

S&D
Class N

...

S&D Patterns

...

S&D Pattern1 S&D Pattern2 S&D Pattern N

inherits inherits

Executable Component

SmartCard

J(.class)

C#
Ada

TPM

(.php)

Implements

Implements

Implements

S&D

Impl 1

S&D

Impl 6

S&D

Impl 4 S&D

Impl 5

S&D

Impl 3

S&D

Impl 2

Legend:

S&D
Class

S&D

Pattern

Implementation

S&D

Implementation

Figure 6 – Representation of SERENITY Library

Not only each problem can have different solutions but also each solution may have different
implementations. As a mere example, SSL or TLS describe a protocol that has different
implementations depending on the provider (e.g. OpenSSL from BSD and JSSE from Java are just
two of the most popular implementations of SSL).

For each available implementation, a different S&D Implementation document is included in the
library, describing: the specific system requirements, the necessary interface to use when calling
the implementation, and the location of the Executable Component. Each S&D Implementation
refers to one concrete implementation –its own Executable Component, so that once a solution is
selected by the framework, a handler for that component is made available for the application. A
solution can be not only a software solution but also include hardware elements such as a TPM
(Trusted Platform Module) or a SmartCard. In any case, it makes no difference from the
application point of view. For instance, if the Executable Component works with a TPM, the SRF
will return to the application not a direct link to the TMP, but rather the handler of the driver that
manages the TPM.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 22 of 80

In our discussion, the path from the problem to the concrete solution is the path that goes through
the library and includes the S&D Class for confidentiality, the S&D Pattern offering SSL for secure
communications, and the S&D Implementation describing the interface and the specific
mechanisms of the concrete Executable Component, such as OpenSSL. Finally, once a pattern is
found and selected as the most suitable one, it is activated (included among the Active Patterns)
and used by the Serenity Framework. From an architectural point of view, a pattern coming from
the S&D Library and subsequently activated is known as an Application Pattern. The concept of
Active Pattern and Application Pattern will be more extendedly described in next section.

3.2. Architecture Description

As the SERENITY Library (SDF S&D Library and SRF S&D Library) represents the static knowledge
extracted from security experts, the architecture as a whole represents the dynamic reasoning that
takes the knowledge and makes it available to the final user/application. Figure 7 depicts the main
architectural elements as well as the interactions among them. The architecture of the SRF can be
consult in [3].

cmp Component Model

Serenity Run-Time Framework

Negotiation

Monitoring

S&D Manager

«executable»

Application

Ev ent Manager

«executable»

Executable

Component

S&D Library

Console

S&D Authority

S&D Query

Event receiver Ev ent

dispatcher

Context Manager

S&D Framework

configuration

Ev ent history

Activ e patterns list

«ext»

Monitor Serv ice

Ev ent collector

Executable

Component

Handler

Create/Starts

EventsExec. Component. Handler

S&D Service Request

Events

Events

Events

Events

Figure 7 – Main elements of the SERENITY Architecture

3.2.1. Internal Elements

Along with the SRF S&D Library –described in the previous section, the Serenity Run-time
Framework is the other basic pillar of the architecture embedded inside a Serenity Enabled Device.
This framework is composed of three elements, namely:

 The S&D Manager is the core of the system. It controls the rest of the components of the
system. It processes SDrequests from Serenity-aware applications returning back
ExecutableComponents. It is responsible for the activation and deactivation of the
ExecutableComponents; it also takes the necessary recovery actions when it is informed by

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 23 of 80

the monitoring services of a monitoring rule violation. The S&D Manager component
manages monitoring services by sending the monitoring rules to the Monitoring Service.

 The Context Manager Component records the data related to the context (S&D Framework
configuration, active patterns, events history). The context is used by the S&D Manager to
select the most appropriate S&D Solution for a given scenario. Inside the Context Manager,
two artefacts coexist:

Active Patterns: it contains the set of Patterns already working in the system, along with data
about the date of activation, the foresee date of deactivation, the application that is using the
Pattern, and so on.

S&D Framework Configuration: in order to grant some flexibility to the user, some degree of
configuration is permitted. For instance, taking into account that the monitoring service may
consume resources from the device (possibly degrading the performance), the user may prefer to
switch off the monitoring of certain rules in specific contexts. E.g. if the user considers that the
office environment is sure enough to trust on the underlying connection, some monitoring
mechanisms can be obviated.

Event history: This element keeps the history of monitoring rules satisfied. Monitoring Services
sends this information as result of events and monitoring rules analysis.

 The Console is the main interface through which the S&D Manager contacts with the SRF
administrator and vice versa. Different implementations of this console provide ways of
defining, viewing and changing the S&D Configuration through a user-friendly interface.

 Event Manager: it receives all the events generated by the patterns (these events are
generated by the Executable Components implementing patterns), and it sends them to
Monitoring Services. Monitoring Services should receive these events from the SRF in order
to analyse them and send the monitoring results back.

The SRF S&D Library contains all the artefacts made available for the SRF, while the Active
Patterns is a list of the Patterns already active. For each active Pattern, there is an Executable
Component that has been installed and deployed. In order for the application to use the
Executable Components, they need the handler that points to them. This handler is available in the
Active Patterns list, and it can point either to a web service, a programming module, and applet,
and so on, making it transparent for the application. There is no restriction regarding the
implementation mechanism, as far as it is in accordance with the interface and the functionality
described in the corresponding S&D Implementation document. Consequently, the language and
the technology used in each implementation may be different from the others.

As every implementation has a well-defined interface, applications running in the device make use
of them by means of simple calls. Deliverable [4] introduces how applications interact with
Executable Components. The SRF is the one in charge of keeping information about the context to
ensure the correctness and validity of the implementations that are in use. If any of the patterns
(and thereby the corresponding implementation) is not valid in a new context, the application is
informed and the framework provides a new solution (if applicable) or a warning message for the
user if no solution is available at the moment.

3.2.2. External Elements

From the outside point of view, every instance of the SRF, as a system, provides interfaces in
order to allow interaction with other systems, or other SRFs instances. The SRF provides two main
interfaces. Begin with the negotiation interface. It is used in order to establish the configuration of
the interacting SRFs. This interaction makes sense when two applications supported by different

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 24 of 80

SRFs need to agree on the use of the same S&D Solution. Secondly, SRFs offer a monitoring
interface. External systems interacting with an instance of the SRF are able to monitor that the
behaviour of the framework is correct. These interfaces provide support for the dynamic
supervision and adaptation of the system's security to the transformations in ever-changing AmI
ecosystems.

Outside of the SRF, but very related to it, we find Serenity-aware applications, Executable
Components and Monitoring Services. Every time an application needs a security service (provided
by an S&D Solution) it sends an SDrequest to the SRF. The SRF responds with a ready to use
Executable Component, if and only if there is an S&D Solution meeting the SDrequest. Monitoring
services are external entities having the responsibility of performing dynamic analysis of the
properly operation of S&D Solutions. They count on monitoring rules associated to each S&D
Solution. Monitoring services operation is based on event calculus [5], the events are collected
from events collectors implemented as part of the ExecutableComponents. The SRF reacts
performing recovery task taking into account the information provided by monitoring services.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 25 of 80

4. A Language for Describing S&D Solutions

In this section the reader will find a precise description of the elements that internally compose the
different S&D Artefacts, as well as a set of considerations common to all the three S&D Artefacts.
This deliverable introduces a new version of the S&D Artefact languages. This new version of the
language introduces several changes worth to be highlighted. One of the minor changes is a new
field corresponding to the version of the artefact language used is added. This version number
does not describe the artefact version but the artefact language used to describe it.

One of the most radical changes is the separation of almost all fields in Operational and
Informational sets of fields. Besides, we have included a new field to indicate the validity periods
of time for artefacts. In this version roles appear grouped and containing all role-related data. As
aforementioned, all S&D artefacts information has been split into two sets (operational and
informational), we have included one section devoted to roles in each one language part (note
that not always is applicable). Other remarcable change consists on new fields devoted to
Monitoring services and monitoring services polling times. Finally, we have merged
“ExternalPreconditions” and “ContextPreconditions” fields into a field called “preconditions”.

4.1. Informational vs. Operational content

One of the most important enhancements is to categorize all fields in the artefacts’ descriptions
into two different sets: the Informational part and the Operational one. On the one hand, the
informational part includes all fields containing information meant to be used by system
developers. On the other hand, the operational part is intended to contain all fields directly used at
run-time. Figure 8 presents how in previous S&D artefacts languages all information was non
categorized and how the version 1.0 of the language categorizes all information into
“Informational” and “Operational” parts.

Figure 8: Separation of Operational and Informational components.

4.2. Enhancements to Monitoring representation

This language version includes a section devoted to describe all monitoring services used by the
pattern (due to the current state of S&D artefacts research, monitoring services are applicable only
for S&D Patterns and for Integration Schemes). The new monitoring services declaration section
includes the list of monitoring services related with this artefact. Indeed, this section is used to link
an identifier to each monitoring service, as well as some information about the monitoring service,
such as type and optionally location. This identifier is intended to be used in the monitoring rules
sections for linking each monitoring rule to a monitoring service.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 26 of 80

4.3. Representing Roles

In order to manage the role representation, we propose the structure presented in Figure 9. This
approach is based on grouping the elements related to each role in a role section. Every role
section contains the role declaration (with fields such as, role name, cardinality, etc.) plus all
elements that are related to that role (interface, class adaptors, preconditions, monitoring rules,
etc.). In the case of S&D Classes the role section has no sense in the operational part.
Consequently, a role section appears only in the informational part. On the contrary, in the case of
S&D Patterns, there is a role section in both the operational and the informational parts. Besides,
only in the case of S&D Patterns, the role declaration section includes one or more class adaptors.

Figure 9: Each part includes a role subsection.

In order to provide some examples, Figure 10 presents a scenario composed by one S&D Pattern
(P1) and three S&D Classes (C1, C2 and C3). The P1 S&D Pattern belongs to C1, C2 and C3 S&D
Classes.

cd Three S&DClasses and one S&DPattern

C1 :S&DClass C2 :S&DClass C3 :S&DClass

P1 :S&DPattern

Belongs-to

Belongs-to

Belongs-to

Figure 10: One S&D Pattern belonging to more than one S&D Class.

The Class Adaptor sections (informational part � role section) are used in order to create
associations between S&D Patterns and S&D Classes. That is, class adaptors do not adapt S&D
Classes to S&D Patterns, but they adapt S&D Classes roles to S&D Patterns roles.

Figure 11 presents the relations between P1, C1 and C2. This diagram shows that P1 has two roles
(PR1 and PR2). The C1 S&D Class has one role CR1, and C2 has to roles CR2 and CR3. The

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 27 of 80

adaptation between PR1 and CR1 is done by means of the Class Adator CA1-1. Next S&D Class,
C2, has two roles (CR2 and CR3) that are implemented by roles PR1 and PR2 in the P1 S&D
Pattern. Because of this, PR1 has a Class Adator (CA1-2) that adapts PR1 interface to CR2
interface, and PR2 has a Class Adaptor (CA2-3) adapting it to CR3.

cd S&DClass-S&DPatterns Associations

P1 :S&DPattern

C1 :S&DClass

C2 :S&DClass

PR1 :Role

PR2 :Role

CR1 :Role

CR2 :Role

CR3 :Role

CA1-1 :

ClassAdaptor

CA1-2 :

ClassAdaptor

CA2-3 :

ClassAdaptor adapts

adapts

adapts

Figure 11: One S&D Pattern belonging to more than one S&D Class.

For those cases, in which two (or more) S&D Class roles are implemented by means of only one
S&D Pattern role, a new role at the level of the S&D Pattern needs to be developed. In these
cases, the new role contains a classAdaptor performing the adaptation of S&D Class roles. The
S&D Class C3 has two roles (CR4 and CR5) to be adapted to only one P1 role (PR3). That is to say,
the PR3 role implements both CR4 and CR5 functionallities. This scenario is presented in Figure 12,
where the role PR3 has been added in order to implement both CR4 and CR5 role of the C3 S&D
Class. The PR3 role mix PR1 and PR2 functinallities. An example of this scenario could be a S&D
Class representing a security solution based on an asymmetric communication (for instance, client-
server) implemented by a S&D Pattern implementing for sides of the communication.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 28 of 80

cd S&DClass-S&DPatterns Associations2

P1 :S&DPattern

PR1 :Role

PR2 :Role

CR5 :Role

CA45-3 :

ClassAdaptor

C3 :S&DClass

CR4 :Role

PR3 :Role

adapts

adapts

Figure 12: An S&D Pattern role implementing the funcionallities of two S&D Classes roles.

4.4. Naming scheme

In order to standardize the naming method for the modelling artefacts we define a simple syntax
similar to the URL syntax for Internet protocols. Already described in the document, three are the
artefacts present in SERENITY architecture: S&D Classes, S&D Patterns and S&D Implementations.
In all the three cases, the naming scheme states as follows:

<artefactName>.<issuerName>

where each element follows Backus Naur Form (BNF Erreur ! Source du renvoi introuvable.)
notation, defined as follows (Table 1):

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 29 of 80

artefactName = alphadigit | alphadigit *[alphadigit | "-" | "_"] alphadigit

issuerName = 1*[domainlabel "."] toplabel

domainlabel = alphadigit | alphadigit *[alphadigit | "-" | "_"] alphadigit

toplabel = alpha | alpha *[alphadigit | "-" | "_"] alphadigit

alpha = lowalpha | hialpha

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |"8" | "9"

alphadigit = alpha | digit

lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" |

 "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" |

 "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" |

 "y" | "z"

hialpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |

 "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |

 "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"

Table 1 – Name Scheme in BNF notation

Note that in this BNF notation the character "|” is used to designate alternatives, and brackets []
are used to indicate optional or repeated elements. Some other considerations are: literals are
quoted with ""; optional elements are enclosed in brackets [], and elements may be preceded with
<n>* to designate n or more repetitions of the element that follows; n defaults to 0 (see RFC
1738 for more details).

Some examples are defined below (Table 2) in order to facilitate the understanding of the
notation:

Class Name = SimpleTransmissionConfidentiality.iso.org

<artefactName> = SimpleTransmissionConfidentiality

<issuerName> = iso.org

domainlabel = iso

toplabel = Org

Pattern Name = ConfidentialityByDES_Encryption.rsa-labs.com

<artefactName> = ConfidentialityByDES_Encryption

<issuerName> = rsa-labs.com

domainlabel = rsa-labs

toplabel = com

Implementation Name = CryptoJ_BSafeDES.rsa.com

<artefactName> = CryptoJ_BSafeDES

<issuerName> = rsa.com

domainlabel = rsa

toplabel = com

Table 2 – Examples of use of the naming scheme

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 30 of 80

4.5. Detailed description of S&D Classes

This section details the XML structure for the language used for representing S&D Classes. Among
the most important changes of this new version of the S&D Class language we highlight the
separation of the all fields in two sections; informational and operational parts. All fields belonging
to operational part are suitable to be used at runtime. However, fields belonging to the
informational part will not be used at runtime. Next figure depicts a general view of the structure
of the S&D Class language. At this level, an S&D Class is composed by name, domain, version,
informationalPart and operationalPart.

Next picture shows the informationalPart elements of the S&D Class language. Concretely, we
highlight the creator field. A field is dedicated to describe the provided properties. Finally, there is
a field describing the different roles related to the S&D Solution represented in the S&D Class.

Next figure depicts in detail the creator field; it is composed by the creator name and the date of
creation.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 31 of 80

The “providedProperties” field stores all information regarding to the properties provided by the
S&D Class. It is composed by several “property” elements. The structure “property” elements can
be check in the following figure.

The “solutionFeatures” elements represents the S&D Solution features, it is composed by one or
more “feature” elements of type String.

Concerning the roles, next figure depicts in detail the structure of the role representation in the
informationalPart. As aforementioned, the informationalPart is not used at run-time, at least
directly. This role section is composed by several (0 or more) “role” elements of type “roleType”.
Every “role” element is composed by the name of the role, a description of it and the interface of
this role. This interface is composed by the calls provided and the sequence required to be
invoked.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 32 of 80

The role interface is of “interfaceType”. The following figure details the structure of the
“interfaceType” type.

Similarly to the previous description of the informationalPart, the rest of this subsection presents
the operationalPart of the S&D Class language. The operationalPart section is composed by two
elements a list of trustmechanisms, and the artefact validity period of time. Currently, the
trustMechanisms structure is not defined. The “validity” element is of type “validityType”, which is
composed by two elements of type String: “validFrom” and “validUntil”.

4.6. Detailed description of S&D Patterns

This section presents the XML language to be used for S&D Patterns. Similarly to the S&D Class
language, in this case there is a separation of fields in two different sets: the operational part and
the informational part. Next figure depics a global view of S&D Pattern language showing the fields
at a first glance. It presents a simplified view showing the name, domain and version of the S&D
Pattern. And, two more sections sections one of them it is the “informationalPart” element, used to
store the informational part, and the other it is the “operationalPart” element.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 33 of 80

The following figure presents the informational part elements. The informational part is composed
by the information related with the creation of the S&D Pattern. Also, a label field and a comments
field are available. Other needed fields are the related with the provided properties, the field
related with the static tests performed, the field concerning with the roles and an element storing
the model of the S&D Pattern.

Next figure depicts in detail the “creator” field. The “creator” is of type “creatorType” and this type
is composed by two elements: the name of the creator and the date of creation.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 34 of 80

Next figure shows how providedProperties field is composed by a list from 1 to “more than 1”
property elements. Every “property” element is composed by name, domain, version and a
timestamp.

The “StaticTestPerformed” field is depicted in next figure. Reader can appreciate that these are
composed by a list of “tests”. These tests are composed by the name, the description, the
attackModels, the result, the comments and the date of the test.

Next figure depicts the “features”. This element is composed by a list of features, at least of
feature is needed.

The following figure presents the roles subsection in the informational part section. This element is
of type “rolesInformationalType”, and it is composed of a list of role elements. Role elements are
composed of roleName, description and the interface.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 35 of 80

Next figure depicts in detail the “interface” field in the “role” elements. Interface is of type
“interfaceType” and it is composed of a list of calls and a sequence element. Every “call” is
composed of callName, description and signature. The signature element describes the call by
expressing it using the Java standard format. The sequence element is composed of a list of steps.
Every step is composed of the order and the callName.

Next figure depicts in detail the model field from the informational part of S&D Pattern language.
This field is intended to store information about a TROPOS or a UML model of the S&D Pattern.
The “ModelType” element is of type String, but can contain only the strings “UML” or “TROPOS”.
The element “modelData” is used in order to store the model; it is of type XMI model. The XML
Metadata Interchange (XMI) is an OMG standard for exchanging metadata information via
Extensible Markup Language (XML). It can be used for any metadata whose metamodel can be
expressed in Meta-Object Facility (MOF). The most common use of XMI is as an interchange
format for UML models, although it can also be used for serialization of models of other languages
(i.e. TROPOS).

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 36 of 80

Next figure presents a brief description of the operational part of the S&D Pattern language. This
depicts that the operational part is composed by a field for trust mechanisms, other field for the
validity period, and a new field for monitors. Finally, there is a section devoted to roles operational
information.

As in the S&D Class language, the validity of S&D Patterns is represented using two elements
indicating the period of time in which the S&D Pattern is valid.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 37 of 80

The definition of monitors is located in the operational part of the S&D Pattern language. We can
see how a list of monitors is declared. These monitors are composed by an identifier, a location,
the type of monitor and some initialization data.

Next figure presents a complete description of the role in the operational part section. This field is
composed by the name, a list of required roles, a list of parameters, a list of preconditions to be
checked, a list for system configuration, a list of “monitoring” elements (for storing the monitoring
rules associated to the role), and finally a list of class adaptors.

The “requiredRoles” element is of type “reqRolesList”. This type is a list of “role” elements; in this
case a role is a string. The requiredRoles element is used to describe the complementary roles that
need the application of this specific role. For instance, the role “client” in a particular S&D Pattern
may require the role “server” in order to operate. Note that from a S&D Pattern role you can
require roles from the same S&D Pattern, since an S&D Pattern can only interact with a different
instance of itself.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 38 of 80

Next figure depicts the parameters field. This is composed by a list from 0 to more than one
parameter elements. These parameters are name, description, domain and defaultValue. These
elements are used in order to represent the parameters that a S&D Pattern accepts at instantiation
time.

Next figure details the preconditions associated to an S&D Pattern role. Preconditions are
composed of a list of 0 to more than 1 precondition elements. Every precondition is composed of a
description and a query.

Next figure shows a detailed description of queries. Because of queries description is the same
that monitoring formulaes reaction conditions, a further description of queries can be found in
“A4.R6 - Draft Schema for Recovery Actions to be Taken Upon Potential or Definite Violations of
Monitoring Rules”.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 39 of 80

SystemConfiguration field is shown in next figure. These are composed by a list from 0 to more
than 1 of systemConfigurationElements. These elements are composed by a description element
and a value element. The SystemConfiguration elements allow S&D Patterns developers to store
some configuration options in the SRF configuration table.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 40 of 80

Next figure depicts the monitoring field in detail. This field is composed by a list from 0 to * of
monitoringRules. A monitoringRule is a monitorId, a monitorFormulae, a pollingType and a
pollingValue. A detailed description of the formulaType can be found in the “A4.R6 - Draft Schema
for Recovery Actions to be Taken Upon Potential or Definite Violations of Monitoring Rules” report.

The classAdaptor element is composed by a list of at least one “class” element. A “class” element
is composed by a “classReference”, a “classRole” and an “adaptor” element.

The adaptor element is composed by the following fields: name, imports, headerClass,
globalVariables a classes. Classes are composed by a list of classes, at least one is required. A
class field is a header and a codeLines field. The adaptor element is intended to describe the Java
code implementing the translation between the S&D Class interface to the S&D Pattern interface.
We have included tags in order to separate this Java code.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 41 of 80

4.6.1. Representing Integration Schemes

Integrations Schemes are a special type of S&D Pattern. Integration Schemes are used in order to
describe a complex S&D Solution. While S&D Patterns are independent or atomic descriptions of
S&D Solutions, Integration Schemes describe solutions for complex S&D Requirements achieved by
the combination of some S&D Solutions.

From S&D Solution developer point of view, the development of an Integration Scheme follows the
same process than the development of S&D Patterns. This is since both artefacts use the same
XML schema definition. At the implementation level of Integration Schemes (and consequently, in
the executable component implementing it) is where the composition of solutions S&D Is
performed. Doing this, from the point of view of the SRF, an executable component implementing
an integration Scheme plays the role of an application. This is to say that, once the Integration
Scheme has been activated and deployed, it acts as an application, requesting to the SRF for the
S&D Patterns needed. These executable components implement both the requests to the SRF and
the use of the corresponding S&D Patterns. On one hand, they offer to applications the integration
Scheme interface, and in the other hand, they make use of the interfaces provided by the S&D
Patterns that they are composing. It is important to remark that an integration scheme may
combine S&D Patterns, S&D Classes and even Integration Schemes. Figure 5 presents a sequence
diagram showing the activation of an integracion scheme that composes two patterns.

Firstly, the application, in the left side of the diagram, sends an SDRequest to the SRF. Note, that
in this case the application has requested an artefacts of type pattern (P:). This is because,
applications ask for S&D Solutions but they are not aware if the S&D Solutions are implemented by
a S&D Pattern or by an Integration Scheme. In any case, from both, SRF and application, point of
view S&D Patterns and Integration Schemes have the same behaviour. Secondly, the SRF analyses
the SDRequest and performs the selection algorithm, this results in the activation of an Executable
Component implementing the Integration Scheme. Once that the Integration Scheme
implementing Executable is running, it sends SDRequests when it needs to use the S&D Patterns
under combination. This issue is depicted in the diagram by two SDRequests sent by the
Integration Scheme Executable Component to the SRF. Each of the SDRequests, results in the
activation of an Executable Component implementing an S&D Pattern. Finally, the Integration
Scheme Executable Component accesses to the S&D Patterns functionalities.

There are three points worth to be highlighted. First, the Integration Scheme presented in the
diagram shown in Figure 13 starts its execution by requesting the two patterns that it combines.
As a general rule, Integration Schemes request S&D Patterns when they need them. Second, S&D
Patterns preconditions are checked when they are requested. Consequently, it is possible that an
Integration Scheme tries to use an S&D Pattern which is not applicable for the given context

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 42 of 80

conditions. Doing this, there is a clear separation between Integration Scheme preconditions,
which corresponds to preconditions of the S&D Solution they represent and S&D Patterns under
combination preconditions. These latter ones need to be fulfilled by the atomic components of the
S&D Solutions represented by the Integration Scheme. And third, Integration Schemes could be
used to create S&D Solutions combining S&D Classes, S&D Patterns, S&D Implementations and
event Integration Schemes.

sd temporal

Application

Pattern 2 : EC

SRF

Pattern 1 : EC

Integration

Scheme : EC

ECHander= SDRequest(P:myIntegrationScheme)

create

ECHandler= SDRequest(P:pattern1)

create

ECHander= SDRequest(P:pattern2)

create

OperationCall

OperationCall

OperationCall

Figure 13: Sequence diagram showing an Integration Scheme that combines two S&D

Patterns (Pattern 1 and Pattern 2)

4.6.2. Specifying Monitoring Rules in S&D Patterns

In this section we describe the language used for expressing the monitoring rules within the S&D
Patterns. The exact position within the S&D Patterns where these rules will be described is under
the Monitoring Formulae clause that is part of the more general Monitoring clause (see pattern
description example in section 5). This language is an extension of EC-Assertion – an event

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 43 of 80

calculus (EC Erreur ! Source du renvoi introuvable.) based language defined by an XML. EC-
Assertion has been developed at City University to support the specification of general functional
and quality requirements that should be monitored during the execution of service based systems
as part of the SECSE project Erreur ! Source du renvoi introuvable. and Erreur ! Source du
renvoi introuvable.. For the purposes of SERENITY, we have introduced certain extensions to
this language and generated a new version of EC-Assertion that we describe below.

The extensions that we have introduced to EC-Assertion in order to support the specification of
security and dependability properties that could be monitored at runtime are:

 The introduction of a generic scheme for specifying different types of monitorable events

 The introduction of a generic scheme for the specification of fluents (i.e. conditions about
the state of a system) including fluents signifying the authentication and authorisation of
agents to issue and accept events requesting the execution of operations or responding to
operation calls

The extended version of EC-Assertion has been defined as an XML schema [10] in order to provide
a standard way of expressing the event calculus (EC) formulas that will be monitored. This schema
is described in this section and its full definition is provided in Appendix A. In the following, we
describe the extended form of EC-Assertion and give an example of using it to express a rule for
monitoring a security property. This description follows an overview of Event Calculus that
provides the logic based foundation of our language.

4.6.3. Specification of Monitoring Rules in Event Calculus

Event calculus (EC) is a first-order temporal formal language that can be used to specify properties
of dynamic systems which change over time. Such properties are specified in terms of events and
fluents.

An event in EC is something that occurs at a specific instance of time (e.g., invocation of an
operation) and may change the state of a system. Fluents are conditions regarding the state of a
system which are initiated and terminated by events. A fluent may, for example, signify that a
specific system variable has a particular value at a specific instance of time or that a specific
relation between two objects holds.

The occurrence of an event is represented by the predicate Happens(e,t,ℜ(t1,t2)). This predicate
signifies that an instantaneous event e occurs at some time t within the time range ℜ(t1,t2). The
boundaries of ℜ(t1,t2) can be specified by using either time constants or arithmetic expressions
over the time variables of other predicates in an EC formula. The initiation of a fluent is signified
by the EC predicate Initiates(e,f,t) whose meaning is that a fluent f starts to hold after the event e
at time t. The termination of a fluent is signified by the EC predicate Terminates(e,f,t) whose
meaning is that a fluent f ceases to hold after the event e occurs at time t. An EC formula may
also use the predicates Initially(f) and HoldsAt(f,t) to signify that a fluent f holds at the start of the
operation of a system and that f holds at time t, respectively. An EC formula can also specify
additional constraints about the time variables of predicates using the predicates < and =. For
example, t1 < t2 is true if t1 occurred at a time instance before t2; and t1=t2 is true if t1 occurred
at the same time instance as t2.

Our EC based language uses special types of events and fluents to specify monitorable properties
of systems. More specifically, fluents can be defined by the user as relations between objects as
follows:

relation(Object1, …, Objectn) (I)

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 44 of 80

,where relation is the name of the relation that takes as arguments n objects (Object1, …, Objectn)
that can be fluents or terms. A pre-defined relation for fluents that is commonly used is:

valueOf(variable, value_exp) (II)

whose meaning is variable has the value value_exp. In (II), variable denotes a typed variable or a
list of typed variables which may be:

 System variables − A system variable is a variable of the system that is being monitored
whose value can be captured at any time during the monitoring process, or

 Monitoring variables − A monitoring variable is introduced by the users of the monitoring
framework to represent the deduced states of the system at runtime (i.e. states which the
system itself might not be aware of but the monitor of the system uses in order to reason
about the system).

 value_exp is a term that either represents an EC variable/value or signifies a call to an
operation that returns an object of the same type as the variable. This operation may be a
built-in operation of the monitoring engine (e.g. an operation that computes the average of
a set of values) or an operation that is invoked in an external party. When value_exp is an
operation call, then effectively the return value of the operation becomes the value of
variable.

Events in our framework represent exchanges of messages between the agents that constitute a
system. A message can invoke an operation in an agent or return results following the execution
of an operation. Events are described in EC by terms that have the following generic form:

event(_id, _sender, _receiver, _status, _oper, _source) (III)

where:

_id is a unique identifier of the event

_sender is the identifier of the agent that sends the message.

_receiver is the identifier of the agent that receives the message.

_status represents the processing status of an event. The status of the event can be: (i) REQ-B,
that is a request for the invocation of an operation that has been received but whose processing
has not started yet; (ii) REQ-A, that is a request for the invocation of an operation that has been
received and whose processing has started; (iii) RES-B, that is a response generated upon the
completion of an operation that has not been dispatched yet; or (iv) RES-A, that is a response
generated upon the completion of an operation that has been dispatched.

 _oper is the signature of operation that the event invokes or reports the results of.

 _source is the name of the agent that provided information about the event.

4.6.4. XML Schema for Monitoring Rules

The structure of a monitoring rule is defined by the complex XML type called formulaType. It has
two attributes: formulaid for identifying the formula, and forChecking, a Boolean used to
distinguish between assumptions and rules. formulaType consists of the following child elements:

1. At least one quantification element, which is used to specify the quantification of variables
in an EC formula. It is of type quantificationType, which is a complex type and consists of a
quantifier element, to represent the quantifier (i.e. existential or universal), and a choice of
variables that can be quantified, i.e. regularVariable (all other variables except for time
variables) or timeVariables.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 45 of 80

2. Zero or one body element, which specifies the expression on the Right Hand Side (RHS) of
the implication (if any), i.e. the body of the formula. It is of type bodyHeadType, a complex
type that consists of the following sequence of child elements:

a. A predicate element that is used to define the predicate in the formula and whose type
is predicateType. predicateType is a complex type that has two attributes: negated, a
Boolean used to indicate if a predicate is negated and whose default value is false, and
unconstrained, a Boolean that is true if the predicate is unconstrained and whose
default value is false. It also consists of the following child elements:

i. happens, which is of complex type happensType, that consists of the following
sequence of elements:

• event that is of type eventType for representing the event. This type is a complex
type and consists of the following child elements: eventID of type String for
identifying uniquely the event, sender of type variableType for specifying the
agent that sends the message, receiver of variableType for specifying the agent
that receives the message, status of type String for representing the processing
status of an event, oper of type operationType for representing the operation
signature that the event invokes or reports the result of and source of type String
for specifying the agent that provided information about the event. The complex
type variableType is explained later (see 8th bullet point). The complex type
operationType consists of the following sequence of child elements: opName of
type String for defining the name of the operation and zero or one op_args of
type String for defining the possible argument of an operation. See Figure 14.

• timeVar is of complex type timevariableType that represents the time variable.
The type timevariableType consists of the following child elements: varName for
specifying the name of the variable, varType for specifying the type of the
variable, and zero or one value element for specifying the value of the variable.

• fromTime is of type TimeExpression and represents the starting time of the time
range within which the formula should hold. TimeExpression consists of: a time
element that is of type timevariableType that has been described above; and a
choice of time operators, namely plusTime that is of type timevariableType,
minusTime that is of type timevariableType, plus and minus which are both of
decimal type.

• toTime is of type TimeExpression and represent the finishing time of the time
range within which the formula should hold. TimeExpression has been described
in detail above.

ii. initiates, which is of complex type initiatesType that consists of the following child
elements:

• event that is of type eventType for representing the event, as described above.

• fluent is of type fluentType and it distinguishes between the different types of
fluents that can be described in the formula. fluentType is a complex type and has
the following child elements:

− author that is of type authorisationFluentType and is used to represent that
an authorised agent (authorisedAgent) has been authorised by an
authorising agent (authorisingAgent) to receive and process an event or to
send an event;

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 46 of 80

− exp that is of type exposesFluentType and is used to represent that the
response generated from the execution of an operation (event) will disclose
an information term (infoTerm) which belongs to the agent owner.

− authen that is of type authenticationFluentType and that is used to
represent that an agent (agent) is authenticated when a specific event
(event) has been processed.

− valueof that is of type valueofType. This represents a predefined relation for
fluents where a variable that is given at the target (i.e. the first argument) is
updated with the value or either a variable at the source (i.e. the second
argument) or with the return value of an operation that is called. The
complex type valueofType, therefore consists of: a target and a source
element. The types of these elements consequently consist of a variable
element, and in the case of the source, or an operationCall element.

• timeVar is of complex type timevariableType that represents the time variable.

iii. holdsAt is of type holdsatType that consists of the following sequence of elements:

• fluent that is of type fluentType (as described for the initiated predicate).

• timeVar that is of type timevariableType(as described for the initiated predicate).

iv. initially is of type holdsatType, which is described above.

v. terminates is of type terminatesType that is a complex type that consists of the
following child elements:

• event is of type eventType that has been previously described.

• fluent is of type fluentType that has been previously described.

• timeVar is of type timevariableType that has been previously described.

b. relationalPredicate is of complex type relationalPredicateType that specifies the possible
relations between two variables in the formula. This type has the following child
elements:

i. a choice of the following elements:

• equalto

• notEqualTo

• lessThan

• greaterThan

• lessThanEqualTo

• greaterThanEqualTo

which are all of complex type varRelationType that consists of two elements:
operand1 and operand2 of type operandType. The complex type operandType
consists of the following choice of elements (only one of these elements will be
represented):

• operationCall that is of type operationCallType that has a sequence of child
elements: name of type String, zero or one partner of type String and zero or

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 47 of 80

more (unbounded) variable elements of type variableType, which is described
below.

• variable that is of type variableType. This type is a complex type that has two
attributes: persistent that indicates whether the value of the variable is the same
throughout all instances (like static variables in Java) and forMatching that
distinguishes between internal and external variables (i.e. its value is false for
internal variables). Also, the type consists of the following child elements:
varName that is of type String, and either a varType and value element, both of
type String, or an array element of type arrayType with elements that describe
the array structure: a type accompanied by zero or one index, both of type String,
and zero or more value elements of type arrayValueType.

• constant that is of type constantType for describing constants. This type consists
of two elements: name and value elements which are both of type String.

ii. timeVar is of type timevariableType that has been previously described.

c. a possible sequence of an operator and a choice of either:

i. a predicate that is of type predicateType that has been explained earlier,

ii. a timePredicate that is of type timepredicateType. This element is used to express a
relation between two time variables in the formula. It has a choice of the following
child elements: timeEqualTo, timeNotEqualTo, timeLessThan, timeGreaterThan,
timeLessThanEqualTo, timeGreaterThanEqualTo, all of complex type TimeRelation
that consist of two elements: timeVar1 and timeVar2 of type TimeExpression that
has been described earlier. Or

iii. a relationPredicate that is of type relationPredicateType that has been explained
earlier.

d. A head element which is of type bodyHeadType, which is described above.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 48 of 80

Figure 14 – XML Formula Representation Schema (I)

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 49 of 80

Figure 15 – XML Formula Representation Schema (II)

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 50 of 80

Figure 16 – XML Formula Representation Schema (III)

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 51 of 80

Figure 17 – XML Formula Representation Schema (and IV)

4.7. Detailed description of S&D Implementations

This section presents the S&D Implementation language. As in the rest of artefact languages this
language is structured in two sets of fields: the informational part and the operational part. At a
first glance the S&D Implementation language is composed by name, domain and version. The
rest of fields are separated in the aforementioned two parts.

A global view of the informational part is in the next figure. Thus, it shows that this field is
composed by the creator, label, comments and a field for complianceProofs.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 52 of 80

Next figure depicts in detail the creator field.

The following picture shows the complianceProofs field composition.

The next figure presents an overview of the operational part of the S&D Implementation language.
It is composed of the following elements: validity, SandDPatternReference, trustMechanisms,
preconditions, and implementation reference.

The validity of the S&D Implementation is stored in the validity element. As in the rest of the
artefact language this element is composed of two elements.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 53 of 80

The SandDPatternReference element is used in roder to reference to the pattern implemented by
this S&D Implementation. It contains the name, the domain, and the version of the pattern, and a
list of the implemented roles.

Next figure presents the preconditions field. It has the same meaning and the same structure than
in the S&D Pattern language.

Finally, the next figure presents the “implementationReference” element. This element is used in
order to reference the ExecutableComponent implementing this S&D Implementation.

4.8. Language used for expressing preconditions

Preconditions contain the specification of the context conditions under which an S&D artefact (S&D
Patterns and S&D Implementations) is applicable or not. Consequently, preconditions express
particular conditions that can be check by evaluating the content of the SRF's context manager
database. S&D Pattern & S&D Implementation languages include fields for expressing
preconditions. Since preconditions are evaluated at run-time by the SRF, this field is part of the
operational information in the artefacts language, its structure is the following:

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 54 of 80

Figure 18: The preconditions field is a list of preconditions.

The precondition field is a of type preconditionsType, this type is a list of elements of type

preconditionType. The preconditionType type has to elements. On the one hand, description of
type string and containing a description of the precondition (just to make it more human-
readable). On the other hand, query of type logicalExpressionType, containing the actual
precondition.

Figure 19: LogicalExpressionType type structure.

The logicalExpressionType type has an attribute expressing if the query is negated or not. It is of
type list containing one element condition (of conditionType type) or logicalExpression (of
logicalExpressionType type) plus a list of zero or more pairs composed by a logicalOperatior (of
logicalOperatorType) and a logicalExpression (of logicalExpressionType) Figure 2 presents the
structure of the conditionType type. The structure of the relationType type is presented in figure 3.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 55 of 80

Figure 20: relationType type.

The relationalType type is presented in Figure 4. The document element of documentType type is
reserved for future uses. The type logicalExpressionType is also used for the guard conditions of
monitoring rules specification, [11] presents a more detailed description of it. It is important to
note that the name element of the constantType represents the type of the constant, its possible
values are: “NUMERICAL”, “STRING”, “BOOLEAN”, and “UNDEFINED”.

Figure 21: relationalOperandType type.

As aforementioned, preconditions have a close relation to the Context Manager database. Figure 5
presents this database structure. It is composed of seven tables, but the most important ones,
from the preconditions point of view, are the ActivePatternList and the EventsHistory tables. The
ActivePatternList stores the list of current active S&D Patterns, it also stores S&D Patterns
activated in the past. The EventsHistory table keeps a record of the monitoring rules that have
been violated. Following the relation between the EventHistory table and the ActivePatternList is
possible to derive which S&D Pattern has generated every monitoring rule violation. S&D Pattern
developers may use the rest of the tables in their preconditions. Consequently, they can create as
complex preconditions as they need.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 56 of 80

cd ContextMangerDB

activepatternslist

colum n

*PK execCom ponenid: INT EGER

 SDpattern: VARCHAR(200)

 SDIm plem entation: VARCHAR(200)

 activationDate: T IM EST AM P

 deactivationDate: T IM EST AM P

 handler: VARCHAR(100)

 isActive: BOOL

configuration

colum n

*PK id: INT EGER

 param eter: VARCHAR(100)

 value: VARCHAR(100)

 descrip tion: VARCHAR(200)

eventshistory

colum n

*PK eventid: BIGINT

 FK execCom ponentid: INT EGER

 ruleID: VARCHAR(50)

 vio lationDate: T IM EST AM P

 m eaning: VARCHAR(200)

execcomponentsxmonitoringservices

colum n

 FK m oni torid : INT EGER

 FK execCom ponentid: INT EGER

monitoringservices

co lum n

*PK m onitorid: INT EGER

 isActive: SM ALLINT

 address: VARCHAR(30)

 description: VARCHAR(200)

 user: VARCHAR(45)

 password : VARCHAR(45)

 type: VARCHAR(45)

 pol l Interval : INT EGER

patternpreferencerules

colum n

*PK id: INT EGER

 patternFie ld: VARCHAR(250)

 type : VARCHAR(50)

 fie ldValue: VARCHAR(200)

 priori ty: INT EGER

 isM andatory: BOOL

parameters

colum n

*PK id: INT EGER

 FK execCom ponentid: INT EGER

 param eterNam e: VARCHAR(100)

 param eterValue: VARCHAR(250)

(execCom ponentid = execCom ponenid)

«FK»

(execCom ponentid = execCom ponenid)

«FK»

(m oni torid = m oni torid)

«FK»

(execCom ponentid =

execCom ponenid)

«FK»

Figure 22: Logical model of the Context Manager database.

According to S&D artefact languages preconditions are expressed using xpath syntax. The Serenity
Run-time Framework uses the following XML view of the context manager database. Because of
this xpath queries in preconditions may be compliant to this XMLShema (figures 6 and 7).

Figure 23: XML schema definition of context manager database (part 1 of 2).

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 57 of 80

Figure 24: XML schema definition of context manager (part 2 of 2).

In these XML files, table_data elements have an attribute which is the name of the table
represented by the node. Possible values for this attribute can be consulted in Figure 5. Also, this
figure includes possible values for the name attribute in row elements.

The following code presents an example XML representing a partial view of a context manager.

<?xml version="1.0"?>

<mysqldump xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<database name="contextmanager">

 <table_data name="activepatternslist">

 <row>

 <field name="execComponentId">41</field>

 <field name="SDpattern">TextAuthenticationJava</field>

 <field name="SDImplementation">TextAuthentication</field>

 <field name="activationDate">2008-03-05 18:24:50</field>

 <field name="deactivationDate">2002-12-31 23:00:00</field>

 <field name="handler"></field>

 <field name="isActive">1</field>

 </row>

 <row>

 <field name="execComponentId">466</field>

 <field name="SDpattern">TripleDESEncryptJava.uma.es</field>

 <field name="SDImplementation">TripleDESEncrypt.uma.es</field>

 <field name="activationDate">2008-06-26 13:08:08</field>

 <field name="deactivationDate">2002-12-31 23:00:00</field>

 <field name="handler"></field>

 <field name="isActive">1</field>

 </row>

 </table_data>

 <table_data name="eventshistory">

 <row>

 <field name="eventId">32</field>

 <field name="execComponentId">812</field>

 <field name="ruleId">1111222</field>

 <field name="violationDate">2008-09-23 03:08:08</field>

 <field name="meaning">SmartCardConnected</field>

 </row>

 </table_data>

</database>

</mysqldump>

The rest of this section introduces some examples. Firstly, we provide some examples of Xpath
queries. Secondly, we show how these Xpath queries are integrated into XML formatted
preconditions.

 1) A rule with the ruleId id has been violated.

 //table_data[@name="eventshistory"]/row/field[@name="ruleId"]/text()="ruleId"

 2) This query returns true or false depending on the violation of the rule ruleId with the
STATUS status.

 //table_data[@name="eventshistory"]/row[field[@name="ruleId"]/text()="ruleId"]/field[@
name="meaning"]="status"

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 58 of 80

 3) This query returns the STATUS resulting in the last violation of rule ruleId.

 //table_data[@name="eventshistory"]/row[field[@name="ruleId"]/text()="ruleId"][last()]/
field[@name="meaning"]/text()

 4) This query returns the ECid of the Executable component responsible of the violation of
the monitoring rule ruleId.

 //table_data[@name="eventshistory"]/row[field[@name="ruleId"]/text()="ruleId"][last()]/
field[@name="execComponentId"]/text()

 5) This query return the SDPattern name given a Executable Componend Ecid.

 //table_data[@name="activepatternslist"]/row[field[@name="execComponentId"]/text()="
ECid"]/field[@name="SDpattern"]/text()

 6) This query return the SDImplementation name given a Executable Componend Ecid.

 //table_data[@name="activepatternslist"]/row[field[@name="execComponentId"]/text()="
ECid"]/field[@name="SDImplementation"]/text()

 7) This query return true if the given SDPattern name is active.

 //table_data[@name="activepatternslist"]/row[field[@name="SDpattern"]/text()="SDPatte
rnName"]/field[@name="isActive"]/text()=1

 8) This query return true if the given SDImplementation name is active.

 //table_data[@name="activepatternslist"]/row[field[@name="SDImplementation"]/text()=
"SDImplementation"]/field[@name="isActive"]/text()=1

 9) This query returns true if the given SDPattern was active in the past.

 //table_data[@name="activepatternslist"]/row[field[@name="SDpattern"]/text()="SDPatte
rnName"][last()]/field[@name="isActive"]="0"

 10) This query returns true if the given SDImplementation was active in the past.

 //table_data[@name="activepatternslist"]/row[field[@name="SDImplementation"]/text()=
"SDImplementationName"][last()]/field[@name="isActive"]="0"

These xpath queries are integrated into XML formatted preconditions as presented in the following
example:

 <precondition>

 <description>

 This precondition is satisfied if there is no instances of the

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 59 of 80

 smartCardConnected.uma.es pattern running in the system.

 </description>
 <query negated="1">

 <condition negated="0">
 <equalTo>

 <operand1>

 <constant>

 <name></name>

 <value>true</value>

 </constant>

 </operand1>

 <operand2>

 <queryOperand>

 <document>

 <name>NA</name>

 <type>NA</type>

 </document>

 <xpath>

 //table_data[@name="activepatternslist"]/row[field[@name="SDpattern"]
 /text()="smartCardConnected.uma.es"]/field[@name="isActive"]/text()=1

 </xpath>

 </queryOperand>

 </operand2>

 </equalTo>

 </condition>

 </query>

 </precondition>

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 60 of 80

5. Example

This section presents as example some artefacts developed using the languages introduced in this
deliverable. Figure 25 depicts some S&D artefacts implementing user authentications S&D
solutions. The example proposed in this section is based on the development of the left side
artefacts (those painted in blue).

The first level, on top of the figure, is composed by two S&D Classes. Firstly the
“UserAuthentication” S&D Class represents an abstract S&D Solution for user authentication.
Secondly, the “Observer” S&D Class represent a special S&D Solution that does not provide any
security service but accountability. This S&D Class is used to group all S&D Patterns performing
only context checking tasks. All S&D Patterns send events during its execution, but observers S&D
Patterns only send events and they do not perform more actions. They are used in order to check
particular context conditions.

The second level is composed by four entities, three S&D Patterns and an Integration Scheme.
There are two S&D Patterns that represent particular implementations of the S&D Solution
represented by the “UserAuthentication” S&D Class (“TextAuthentication” and
“smartCardAuthentication”). These S&D Patterns provide user authentication by means of different
ways. “TextAuthentication” S&D Pattern requests login and password from user to be
authenticated by means of a small GUI window. Nevertheless, “SmartCardAuthentication” S&D
Pattern performs a smartcard based authentication. In this case, a Personal Identification Number
(PIN) is requested to the user and then the smartcard processes the authentication. The
“smartCardConnected” S&D Pattern represents a S&D Solution consisting on checking whether a
smartcard is properly connected to the system, and it belongs to the “Observers” S&D Class. This
pattern is able to generate two different events; concretely they are called “SmartCardConnected”
and “SmartCardDisconnected”. Finally, the smartCardAuthenticationIS Integration Scheme belongs
to the “UserAuthentication” S&D Class, since it implements the same S&D Solution, but in this case
by means of the combination of two S&D Patterns. This Integration Scheme combines the
“smartCardConnected” and “SmartCardAuthentication” S&D Patterns, doing this we guarantee that
these S&D Patterns will run together just in those cases where the SRF does not run the
“smartCardConnected” S&D Pattern automatically (S&D Patterns can be ran automatically by SRFs
depending on the SRF configuration).

The rest of the figure presents an S&D Implementation for every S&D Pattern and an Executable
Component for every S&D Implementation. This section presents an implementation by means of
tables of the “UserAuthentication” S&D Class, “TextAuthentication” S&D Pattern, and
“TextAuthenticationJava” S&D Implementation.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 61 of 80

cd DemoArtefacts

UserAuthentication

:S&DClass

SmartCardAuthentication

:S&DPattern

TextAuthentication

:S&DPattern

SmartCardAuthenticationJava

:S&DImplementation

TextAuthenticationJava

:S&DImplementation

«ExecutableComponent»

SmartCardAuthenticationJava

«ExecutableComponent»

TextAuthenticationJava

Observers

:S&DClass

smartCardConnected.uma.es

:S&DPattern

«ExecutableComponent»

smartCardConnectedJava

smartCardConnectedJava

:S&DImplementation

SmartCard

AuthenticationIS

:Integration Scheme

SmartCard

Authentication

ISJava

:S&DImplementation

«ExecutableComponent»

SmartCardAuthenticationISJava

Uses Uses

Figure 25: Set of artefacts developed for the examples section.

5.1. S&D Class

In this section a complete example of an S&D Class is presented with the new version of the
language. Next table describes the structure of the S&D Class representing an authentication S&D
solution. The “UserAuthentication.uma.es” S&D Class represents the authentication security
mechanism providing the authentication.uma.es S&D property. This S&D Class offers an interface
with only one call: “Authentication”.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 62 of 80

S&D Class: UserAuthentication.uma.es

1 Name: UserAuthentication

2 Domain:uma.es

3 Version:2.0

4 InformationalPart

4.1 Creator

4.1.1 Name: uma.es
4.1.2 Date: 1214750275
4.2 Label: This class provides a simple way to authenticate users, it has only one function that

results in a Boolean value indicating if the authentication was successfully or not.
4.3 Comments:TODO, text explaining more additional information
4.4 Provided Properties

4.4.1 Property
4.4.1.1 Name: authentication
4.4.1.2 Domain: uma.es
4.4.1.3 Version:1.0
4.4.1.4 Timestamp: 1214750275
4.5 Solution Features

4.5.1 Feature:Authentication
4.6 Roles

4.6.1 Role
4.6.1.1 Name: authentication
4.6.1.2 Description: uma.es
4.6.1.3 Interface

4.6.1.3.1 Calls

4.6.1.3.1.1 Call

4.6.1.3.1.1.1 callName:authentication
4.6.1.3.1.1.2 Signature:boolean authentication(void);
4.6.1.3.1.1.3 Description:--
4.6.1.3.2 Sequence

4.6.1.3.2.1 step

4.6.1.3.2.1.1 Order:1
4.6.1.3.2.1.2 callName:authentication
5 OperationalPart

5.1 trustMechanisms:TOBE defined
5.2 validity

5.2.1 validFrom:1214750275
5.2.2 validUntil:1449550800

Table 3 –S&D Classes.

5.2. S&D Pattern

This Section presents the TextAuthentication.uma.es S&D Pattern. This pattern consists on a
simple authentication by means of a login process.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 63 of 80

S&D Pattern: TextAuthentication.uma.es

1 Name: TextAuthentication

2 Domain: uma.es

3 Version: 2.0

4 InformationalPart

4.1 Creator:

4.1.1 Name: uma.es
4.1.2 Date: 1214752024
4.2 Label: This pattern provides a simple way to authenticate users by means of a login

method.
4.3 comments: --

4.4 Provided Properties

4.4.1 property: Strong authentication
4.4.1.1 Name: authentication
4.4.1.2 Domain: uma.es
4.4.1.3 Version:1.0
4.4.1.4 Timestamp: 1214752496
4.5 Static Tests Performed
4.5.1 Test

4.5.1.1 Description:--

4.5.1.2 attackModels:man in the middle attack
4.5.1.3 Result: ok
4.5.1.4 Date: 1214752740
4.5.1.5 Comments: --

4.6 Roles

4.6.1 Role
4.6.1.1 roleName:authenticator
4.6.1.2 Description:--

4.6.1.3 Interface:

4.6.1.3.1 Calls

4.6.1.3.1.1 Call

4.6.1.3.1.1.1 CallName:authentication
4.6.1.3.1.1.2 Description:--

4.6.1.3.1.1.3 Signature:boolean authentication(void);
4.6.1.3.2 Sequence

4.6.1.3.2.1 Step

4.6.1.3.2.1.1 Order:1
4.6.1.3.2.1.2 callName:authentication
4.7 Models

4.7.1 Model

4.7.1.1 ModelType

4.7.1.2 Description

4.7.1.3 ModelData:XML description

Table 4 –S&D Pattern I/II.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 64 of 80

4.8 Features
4.8.1 Feature: Authentication
5 OperationalPart
5.1 Trustmechanisms

5.2 validity:

5.2.1 validFrom:1214750275
5.2.2 validUntil:1449550800
5.3 Monitors

5.3.1 Monitor

5.3.1.1 Id:1

5.3.1.2 Localization:localhost:5050
5.3.1.3 Type:syncronous
5.3.1.4 Initialization:--
5.4 Roles
5.4.1 Role
5.4.1.1 roleName: authenticator
5.4.1.2 requiredRoles

5.4.1.2.1 Role:--

5.4.1.3 Parameters
5.4.1.3.1 Parameter:--
5.4.1.4 Preconditions
5.4.1.4.1 Precondition
5.4.1.4.1.1 Description: --

5.4.1.4.1.2 Query:--

5.4.1.4.1.2.1 Condition:

5.4.1.4.1.2.2 logicalExpression:

5.4.1.4.1.2.3 logicalOperator:

5.4.1.4.1.2.4 negated:not
5.4.1.5 systemConfiguration: to be discussed
5.4.1.5.1 systemConfigurationElement

5.4.1.5.1.1 Description:

5.4.1.5.1.2 field:

5.4.1.5.1.3 value:

5.4.1.6 Monitoring

5.4.1.6.1 MonitoringRule

5.4.1.6.1.1 monitorID: 1

5.4.1.6.1.2 monitorFormulae: defined by CITY
5.4.1.6.1.3 pollingType:minimum, mandatory
5.4.1.6.1.4 pollingValue:2
5.4.1.7 classAdaptor

5.4.1.7.1 Class

5.4.1.7.1.1 classReference: UserAuthentication.uma.es
5.4.1.7.1.2 classRole: authenticator
5.4.1.7.1.3 Adaptor:

 Boolean Class.authentication () {
 Return pattern.authentication();
 }

Table 5 –S&D Pattern II/II.

5.3. S&D Implementation

This Section presents the TextAuthenticationJava.uma.es S&D Implementation. This artefact is an
implementation of the previous S&D Pattern.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 65 of 80

S&D Implementation TextAuthenticationJava.uma.es

1 Name: TextAuthenticationJava

2 Domain: uma.es

3 Version: 2.0

4 InformationalPart

4.1 Creator:

4.1.1 Name: uma.es
4.1.2 Date: 1214752024
4.2 Label: This pattern provides a simple way to authenticate users by means of a login

method.
4.3 comments: --

4.4 ComplianceProofs

4.4.1 Proof:

4.4.1.1 Name:

4.4.1.2 Description:
4.4.1.3 Result:

5 OperationalPart
5.1 Trustmechanisms

5.2 validity:

5.2.1 validFrom:1214750275
5.2.2 validUntil:1449550800
5.3 S&DpatternReference:

5.3.1 Name:InteractiveTextAuthentication
5.3.2 Domain:uma.es
5.3.3 Version:2.0
5.3.4 role:authenticator
5.4 Preconditions
5.4.1 Description

5.4.2 Query:--

5.4.1.4.1.2.1 Condition:

5.4.1.4.1.2.2 logicalExpression:

5.4.1.4.1.2.3 logicalOperator:

5.4.1.4.1.2.4 negated:not
5.5 implementationReference

5.5.1 URL:/home/anto/Desktop/Enlace hacia DATOS
ANTO/Proyectos/Serenity/Lenguaje/nueva version/TextAuthentication.jar

5.5.2 Type: java file
5.5.3 signature:

Table 6 –S&D Implementation.

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 66 of 80

6. Apendix A: S&D artefacts XML Schemas Definition

XMS Schema Definition for the representation of S&D Classes

<?xml version="1.0" encoding="utf-8" ?>

<!-- Created with Liquid XML Studio 1.0.8.0 (http://www.liquid-technologies.com) -->

<xsd:schema elementFormDefault="qualified" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:attribute fixed="1" name="languageVersion" type="xsd:string" />

 <xsd:element name="SandDClass">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="informationalPart" type="informationalPartType" />

 <xsd:element name="operationalPart" type="operationalPartType" />

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:string" />

 <xsd:attribute name="domain" type="xsd:string" />

 <xsd:attribute name="version" type="xsd:string" />

 </xsd:complexType>

 </xsd:element>

 <xsd:complexType name="informationalPartType">

 <xsd:sequence>

 <xsd:element minOccurs="1" maxOccurs="1" name="creator" type="creatorType" />

 <xsd:element minOccurs="1" maxOccurs="1" name="label">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:length value="50" />

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="comments" type="xsd:string" />

 <xsd:element name="providedProperties" type="propertiesType" />

 <xsd:element name="solutionFeatures" type="solutionFeaturesType" />

 <xsd:element name="roles" type="rolesType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="operationalPartType">

 <xsd:sequence>

 <xsd:element xmlns:q1="http://www.w3.org/2000/09/xmldsig#" minOccurs="1"

 maxOccurs="unbounded" name="trustMechanisms" type="ToDefine" />

 <xsd:element name="validity" type="validityType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="classInfoType">

 <xsd:sequence>

 <xsd:element minOccurs="1" maxOccurs="1" name="name" type="xsd:string" />

 <xsd:element minOccurs="1" maxOccurs="1" name="domain" type="xsd:string" />

 <xsd:element name="version" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="creatorType">

 <xsd:sequence>

 <xsd:element minOccurs="1" maxOccurs="1" name="name" type="xsd:string" />

 <xsd:element minOccurs="1" maxOccurs="1" name="date" type="xsd:long" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="propertiesType">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" name="property" type="propertyType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="propertyType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="domain" type="xsd:string" />

 <xsd:element name="version" type="xsd:string" />

 <xsd:element name="timestamp" type="xsd:long" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="solutionFeaturesType">

 <xsd:sequence>

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 67 of 80

 <xsd:element minOccurs="1" maxOccurs="unbounded" name="feature" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="validityType">

 <xsd:sequence>

 <xsd:element name="validFrom" type="xsd:long" />

 <xsd:element name="validUntil" type="xsd:long" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="rolesType">

 <xsd:sequence>

 <xsd:element minOccurs="0" maxOccurs="unbounded" name="role" type="roleType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="roleType">

 <xsd:sequence>

 <xsd:element name="roleName" type="xsd:string" />

 <xsd:element name="description" type="xsd:string" />

 <xsd:element name="interface" type="interfaceType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="interfaceType">

 <xsd:sequence>

 <xsd:element name="calls" type="callsType" />

 <xsd:element name="sequence" type="sequenceType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="callsType">

 <xsd:sequence>

 <xsd:element minOccurs="0" name="call" type="callType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="callType">

 <xsd:sequence>

 <xsd:element name="callName" type="xsd:string" />

 <xsd:element name="description" type="xsd:string" />

 <xsd:element name="signature" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="sequenceType">

 <xsd:sequence>

 <xsd:element minOccurs="0" maxOccurs="unbounded" name="step" type="stepType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="stepType">

 <xsd:sequence>

 <xsd:element name="order" type="xsd:integer" />

 <xsd:element name="callName" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="ToDefine">

 <xsd:simpleContent>

 <xsd:extension base="xsd:string" />

 </xsd:simpleContent>

 </xsd:complexType>

</xsd:schema>

XMS Schema Definition for the representation of S&D Patterns

<?xml version="1.0" encoding="utf-8" ?>

<!-- Created with Liquid XML Studio 1.0.8.0 (http://www.liquid-technologies.com) -->

<xsd:schema xmlns:ns0=http://www.omg.org/XMI

 xmlns:MonitoringRule="http://tempuri.org/ec/formula" elementFormDefault="qualified"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:import schemaLocation="MonitoringRules.xsd" id="MonitoringRule"

 namespace="http://tempuri.org/ec/formula" />

 <xsd:import schemaLocation="xmi.xsd" namespace="http://www.omg.org/XMI" />

 <xsd:attribute fixed="1" name="languageVersion" type="xsd:string" />

 <xsd:element name="SandDPattern">

 <xsd:complexType>

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 68 of 80

 <xsd:sequence>

 <xsd:element name="informationalPart" type="informationalPartType" />

 <xsd:element name="operationalPart" type="operationalPartType" />

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:string" use="required" />

 <xsd:attribute name="domain" type="xsd:string" />

 <xsd:attribute name="version" type="xsd:string" />

 </xsd:complexType>

 </xsd:element>

 <xsd:complexType name="creatorType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="date" type="xsd:long" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="patternFeaturesType">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" name="feature" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="classAdaptorsType">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" name="class" type="classType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="classType">

 <xsd:sequence>

 <xsd:element name="classReference" type="xsd:string" />

 <xsd:element name="classRole" type="xsd:string" />

 <xsd:element name="adaptor" type="ClassAdaptorType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="validityType">

 <xsd:sequence>

 <xsd:element name="validFrom" type="xsd:long" />

 <xsd:element name="validUntil" type="xsd:long" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="parametersType">

 <xsd:sequence>

 <xsd:element minOccurs="0" maxOccurs="unbounded" name="parameter" type="parameterType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="preconditionsType">

 <xsd:sequence>

 <xsd:element minOccurs="0" maxOccurs="unbounded" name="precondition"

 type="preconditionType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="staticTestsPerformedType">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" name="test" type="testType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="testType">

 <xsd:sequence>

 <xsd:element name="description" type="xsd:string" />

 <xsd:element name="attackModels" type="xsd:string" />

 <xsd:element name="result" type="xsd:string" />

 <xsd:element name="comments" type="xsd:string" />

 <xsd:element name="date" type="xsd:long" />

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:string" use="required" />

 </xsd:complexType>

 <xsd:complexType name="systemConfigurationType">

 <xsd:sequence>

 <xsd:annotation>

 <xsd:documentation />

 </xsd:annotation>

 <xsd:element minOccurs="0" maxOccurs="unbounded" name="systemConfigurationElement"

 type="systemConfigurationElem" />

 </xsd:sequence>

 </xsd:complexType>

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 69 of 80

 <xsd:complexType name="monitoringType">

 <xsd:sequence>

 <xsd:element minOccurs="0" maxOccurs="unbounded" name="monitoringRule"

 type="monitoringRuleType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="monitorType">

 <xsd:sequence>

 <xsd:element name="id" type="xsd:integer" />

 <xsd:element name="localization" type="xsd:string" />

 <xsd:element name="type" type="xsd:string" />

 <xsd:element name="initialization" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="informationalPartType">

 <xsd:sequence>

 <xsd:element name="creator" type="creatorType" />

 <xsd:element name="label">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:length value="50" />

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="comments" type="xsd:string" />

 <xsd:element name="providedProperties" type="propertiesType" />

 <xsd:element name="staticTestsPerformed" type="staticTestsPerformedType" />

 <xsd:element name="features" type="patternFeaturesType" />

 <xsd:element name="roles" type="rolesInformationalType" />

 <xsd:element name="models" type="modelsType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="operationalPartType">

 <xsd:sequence>

 <xsd:element name="trustMechanisms" type="ToDefine" />

 <xsd:element name="validity" type="validityType" />

 <xsd:element name="monitors" type="monitorsType" />

 <xsd:element name="roles" type="rolesOperationalType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="monitorsType">

 <xsd:sequence>

 <xsd:element minOccurs="0" maxOccurs="unbounded" name="monitor" type="monitorType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="rolesOperationalType">

 <xsd:sequence>

 <xsd:element minOccurs="1" maxOccurs="unbounded" name="role" type="roleOperationalType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="roleOperationalType">

 <xsd:sequence>

 <xsd:element name="roleName" type="xsd:string" />

 <xsd:element name="requiredRoles" type="reqRolesList" />

 <xsd:element name="parameters" type="parametersType" />

 <xsd:element name="preconditions" type="preconditionsType" />

 <xsd:element name="systemConfiguration" type="systemConfigurationType" />

 <xsd:element name="monitoring" type="monitoringType" />

 <xsd:element name="classAdaptors" type="classAdaptorsType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="interfaceType">

 <xsd:sequence>

 <xsd:element name="calls" type="callsType" />

 <xsd:element name="sequence" type="sequenceType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="callsType">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" name="call" type="callType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="callType">

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 70 of 80

 <xsd:sequence>

 <xsd:element name="callName" type="xsd:string" />

 <xsd:element name="description" type="xsd:string" />

 <xsd:element name="signature" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="sequenceType">

 <xsd:sequence>

 <xsd:element minOccurs="0" maxOccurs="unbounded" name="step" type="stepType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="stepType">

 <xsd:sequence>

 <xsd:element name="order" type="xsd:integer" />

 <xsd:element name="callName" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="parameterType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="description" type="xsd:string" />

 <xsd:element name="domain" type="xsd:string" />

 <xsd:element name="defaultValue" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="preconditionType">

 <xsd:sequence>

 <xsd:element name="description" type="xsd:string" />

 <xsd:element name="query" type="logicalExpressionType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="systemConfigurationElem">

 <xsd:sequence>

 <xsd:element name="description" type="xsd:string" />

 <xsd:element name="field" type="xsd:string" />

 <xsd:element name="value" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="monitoringRuleType">

 <xsd:sequence>

 <xsd:element name="monitorId" type="xsd:integer" />

 <xsd:element name="monitorFormulae" type="MonitoringRule:formulaType" />

 <xsd:element name="pollingType" type="xsd:string" />

 <xsd:element name="pollingValue" type="xsd:integer" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="ToDefine">

 <xsd:simpleContent>

 <xsd:extension base="xsd:string" />

 </xsd:simpleContent>

 </xsd:complexType>

 <xsd:complexType name="reqRolesList">

 <xsd:sequence>

 <xsd:element minOccurs="0" maxOccurs="unbounded" name="role" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="rolesInformationalType">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" name="role" type="roleInformationalType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="roleInformationalType">

 <xsd:sequence>

 <xsd:element name="roleName" type="xsd:string" />

 <xsd:element name="description" type="xsd:string" />

 <xsd:element name="interface" type="interfaceType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="propertiesType">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" name="property" type="propertyType" />

 </xsd:sequence>

 </xsd:complexType>

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 71 of 80

 <xsd:complexType name="propertyType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="domain" type="xsd:string" />

 <xsd:element name="version" type="xsd:string" />

 <xsd:element name="timestamp" type="xsd:long" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="modelsType">

 <xsd:sequence>

 <xsd:element minOccurs="0" maxOccurs="unbounded" name="model" type="modelType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="modelType">

 <xsd:sequence minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="ModelType">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="UML" />

 <xsd:enumeration value="TROPOS" />

 <xsd:enumeration value="OTHER" />

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="description" type="xsd:string" />

 <xsd:element name="modelData" type="ns0:XMI" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="logicalExpressionType">

 <xsd:sequence>

 <xsd:choice>

 <xsd:element name="condition" type="conditionType" />

 <xsd:element name="logicalExpression" type="logicalExpressionType" />

 </xsd:choice>

 <xsd:sequence minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="logicalOperator" type="logicalOperatorType" />

 <xsd:element name="logicalExpression" type="logicalExpressionType" />

 </xsd:sequence>

 </xsd:sequence>

 <xsd:attribute name="negated" type="xsd:boolean" />

 </xsd:complexType>

 <xsd:complexType name="conditionType">

 <xsd:choice>

 <xsd:element name="equalTo" type="relationType" />

 <xsd:element name="notEqualTo" type="relationType" />

 <xsd:element name="lessThan" type="relationType" />

 <xsd:element name="greaterThan" type="relationType" />

 <xsd:element name="lessThanEqualTo" type="relationType" />

 <xsd:element name="greaterThanEqualTo" type="relationType" />

 </xsd:choice>

 <xsd:attribute name="negated" type="xsd:boolean" />

 </xsd:complexType>

 <xsd:complexType name="relationType">

 <xsd:sequence>

 <xsd:element name="operand1" type="relationalOperandType" />

 <xsd:element name="operand2" type="relationalOperandType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:simpleType name="logicalOperatorType">

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="and|or" />

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:complexType name="relationalOperandType">

 <xsd:choice>

 <xsd:element name="queryOperand" type="xpathExpressionType" />

 <xsd:element name="constant" type="constantType" />

 </xsd:choice>

 </xsd:complexType>

 <xsd:complexType name="xpathExpressionType">

 <xsd:sequence>

 <xsd:element name="document" type="documentType" />

 <xsd:element name="xpath" type="xsd:string" />

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 72 of 80

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="documentType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="type" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="constantType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="value" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="ClassAdaptorType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="imports" type="xsd:string" />

 <xsd:element name="headerClass" type="xsd:string" />

 <xsd:element name="globalVariables" type="xsd:string" />

 <xsd:element name="classes">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" name="class">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="header" type="xsd:string" />

 <xsd:element name="codeLines" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

XMS Schema Definition for the representation of S&D Implementations

<?xml version="1.0" encoding="utf-8" ?>

<!-- Created with Liquid XML Studio 1.0.8.0 (http://www.liquid-technologies.com) -->

<xsd:schema elementFormDefault="qualified" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:attribute fixed="1" name="languageVersion" type="xsd:string" />

 <xsd:element name="SandDImplementation">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="informationalPart" type="informationalPartType" />

 <xsd:element name="operationalPart" type="operationalPartType" />

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:string" use="required" />

 <xsd:attribute name="domain" type="xsd:string" />

 <xsd:attribute name="version" type="xsd:string" />

 </xsd:complexType>

 </xsd:element>

 <xsd:complexType name="creatorType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="date" type="xsd:long" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="validityType">

 <xsd:sequence>

 <xsd:element name="validFrom" type="xsd:long" />

 <xsd:element name="validUntil" type="xsd:long" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="preconditionsType">

 <xsd:sequence>

 <xsd:element minOccurs="0" maxOccurs="unbounded" name="precondition"

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 73 of 80

 type="preconditionType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="complianceProofType">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" name="proof" type="proofType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="proofType">

 <xsd:sequence>

 <xsd:element name="description" type="xsd:string" />

 <xsd:element name="result" type="xsd:string" />

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:string" use="required" />

 </xsd:complexType>

 <xsd:complexType name="informationalPartType">

 <xsd:sequence>

 <xsd:element name="creator" type="creatorType" />

 <xsd:element name="label">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:length value="50" />

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="comments" type="xsd:string" />

 <xsd:element name="complianceProofs" type="complianceProofType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="operationalPartType">

 <xsd:sequence>

 <xsd:element name="validity" type="validityType" />

 <xsd:element name="SandDPatternReference" type="SandDPatternReferenceType" />

 <xsd:element name="trustMechanisms" type="ToDefine" />

 <xsd:element name="preconditions" type="preconditionsType" />

 <xsd:element name="implementationReference" type="implementationReferenceType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="preconditionType">

 <xsd:sequence>

 <xsd:element name="description" type="xsd:string" />

 <xsd:element name="query" type="logicalExpressionType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="systemConfigurationElem">

 <xsd:sequence>

 <xsd:element name="description" type="xsd:string" />

 <xsd:element name="field" type="xsd:string" />

 <xsd:element name="value" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="monitoringRuleType">

 <xsd:sequence>

 <xsd:element name="monitorId" type="xsd:integer" />

 <xsd:element name="monitorFormulae" />

 <xsd:element name="pollingType" type="xsd:string" />

 <xsd:element name="pollingValue" type="xsd:integer" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="ToDefine">

 <xsd:simpleContent>

 <xsd:extension base="xsd:string" />

 </xsd:simpleContent>

 </xsd:complexType>

 <xsd:complexType name="reqRolesList">

 <xsd:sequence>

 <xsd:element minOccurs="0" maxOccurs="unbounded" name="role" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="rolesInformationalType">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" name="role" type="roleInformationalType" />

 </xsd:sequence>

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 74 of 80

 </xsd:complexType>

 <xsd:complexType name="roleInformationalType">

 <xsd:sequence>

 <xsd:element name="roleName" type="xsd:string" />

 <xsd:element name="description" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="propertiesType">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" name="property" type="propertyType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="propertyType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="domain" type="xsd:string" />

 <xsd:element name="version" type="xsd:string" />

 <xsd:element name="timestamp" type="xsd:long" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="SandDPatternReferenceType">

 <xsd:sequence minOccurs="1" maxOccurs="1">

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="domain" type="xsd:string" />

 <xsd:element name="version" type="xsd:string" />

 <xsd:element minOccurs="0" maxOccurs="unbounded" name="role" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="implementationReferenceType">

 <xsd:sequence>

 <xsd:element name="URL" type="xsd:anyURI" />

 <xsd:element name="type" type="xsd:string" />

 <xsd:element name="signature" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="logicalExpressionType">

 <xsd:sequence>

 <xsd:choice>

 <xsd:element name="condition" type="conditionType" />

 <xsd:element name="logicalExpression" type="logicalExpressionType" />

 </xsd:choice>

 <xsd:sequence minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="logicalOperator" type="logicalOperatorType" />

 <xsd:element name="logicalExpression" type="logicalExpressionType" />

 </xsd:sequence>

 </xsd:sequence>

 <xsd:attribute name="negated" type="xsd:boolean" />

 </xsd:complexType>

 <xsd:complexType name="conditionType">

 <xsd:choice>

 <xsd:element name="equalTo" type="relationType" />

 <xsd:element name="notEqualTo" type="relationType" />

 <xsd:element name="lessThan" type="relationType" />

 <xsd:element name="greaterThan" type="relationType" />

 <xsd:element name="lessThanEqualTo" type="relationType" />

 <xsd:element name="greaterThanEqualTo" type="relationType" />

 </xsd:choice>

 <xsd:attribute name="negated" type="xsd:boolean" />

 </xsd:complexType>

 <xsd:complexType name="relationType">

 <xsd:sequence>

 <xsd:element name="operand1" type="relationalOperandType" />

 <xsd:element name="operand2" type="relationalOperandType" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:simpleType name="logicalOperatorType">

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="and|or" />

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:complexType name="relationalOperandType">

 <xsd:choice>

 <xsd:element name="queryOperand" type="xpathExpressionType" />

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 75 of 80

 <xsd:element name="constant" type="constantType" />

 </xsd:choice>

 </xsd:complexType>

 <xsd:complexType name="xpathExpressionType">

 <xsd:sequence>

 <xsd:element name="document" type="documentType" />

 <xsd:element name="xpath" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="documentType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="type" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="constantType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="value" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

XMS Schema Definition for the representation of EC-Assertion

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://tempuri.org/ec/formula" xmlns="http://tempuri.org/ec/formula"

xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

 <!-- define formulas -->

 <xs:element name="formulas" type="formulaType"/>

 <!-- definition of complex types -->

 <xs:complexType name="formulaType">

 <xs:sequence>

 <xs:element name="quantification" type="quantificationType"

 minOccurs="1" maxOccurs="unbounded"/>

 <xs:element name="body" type="bodyHeadType" minOccurs="0"/>

 <xs:element name="head" type="bodyHeadType"/>

 </xs:sequence>

 <xs:attribute name="formulaId" type="xs:string" use="required"/>

 <xs:attribute name="forChecking" type="xs:boolean" default="true"/>

 </xs:complexType>

 <xs:complexType name="bodyHeadType">

 <xs:sequence>

 <xs:choice>

 <xs:element name="predicate" type="predicateType"/>

 <xs:element name="relationalPredicate"

 type="relationalPredicateType"/>

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:element name="operator" type="logicalOperatorType"/>

 <xs:choice>

 <xs:element name="predicate" type="predicateType"/>

 <xs:element name="timePredicate"

 type="timePredicateType"/>

 <xs:element name="relationalPredicate"

 type="relationalPredicateType"/>

 </xs:choice>

 </xs:sequence>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="predicateType">

 <xs:choice>

 <xs:element name="happens" type="happensType"/>

 <xs:element name="initiates" type="initiatesType"/>

 <xs:element name="holdsAt" type="holdsAtType"/>

 <xs:element name="initially" type="holdsAtType"/>

 <xs:element name="terminates" type="terminatesType"/>

 </xs:choice>

 <xs:attribute name="negated" type="xs:boolean" default="false"/>

 <xs:attribute name="unconstrained" type="xs:boolean" default="false"/>

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 76 of 80

 </xs:complexType>

 <xs:complexType name="timePredicateType">

 <xs:choice>

 <xs:element name="timeEqualTo" type="TimeRelation"/>

 <xs:element name="timeNotEqualTo" type="TimeRelation"/>

 <xs:element name="timeLessThan" type="TimeRelation"/>

 <xs:element name="timeGreaterThan" type="TimeRelation"/>

 <xs:element name="timeLessThanEqualTo" type="TimeRelation"/>

 <xs:element name="timeGreaterThanEqualTo" type="TimeRelation"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="holdsAtType">

 <xs:sequence>

 <xs:element name="fluent" type="fluentType"></xs:element>

 <xs:element name="timeVar" type="timeVariableType"></xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="initiatesType">

 <xs:sequence>

 <xs:element name="event" type="eventType"></xs:element>

 <xs:element name="fluent" type="fluentType"/>

 <xs:element name="timeVar" type="timeVariableType"/>

 </xs:sequence>

 </xs:complexType>

<xs:complexType name="happensType">

 <xs:sequence>

 <xs:element name="event" type="eventType"> </xs:element>

 <xs:element name="timeVar" type="timeVariableType"/>

 <xs:element name="fromTime" type="TimeExpression"/>

 <xs:element name="toTime" type="TimeExpression"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="terminatesType">

 <xs:sequence>

 <xs:element name="event" type="eventType"> </xs:element>

 <xs:element name="fluent" type="fluentType"/>

 <xs:element name="timeVar" type="timeVariableType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="fluentType">

 <xs:choice>

 <xs:element name="author" type="authorisationFluentType"></xs:element>

 <xs:element name="exp" type="exposesFluentType"></xs:element>

 <xs:element name="authen" type="authenticationFluentType"></xs:element>

 <xs:element name="valueof" type="valueofType"></xs:element>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="authorisationFluentType">

 <xs:sequence>

 <xs:element name="authorisingAgent" type="variableType"></xs:element>

 <xs:element name="authorisedAgent" type="variableType"></xs:element>

 <xs:element name="event" type="eventType"></xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="exposesFluentType">

 <xs:sequence>

 <xs:choice>

 <xs:element name="event" type="eventType" minOccurs="1"

 maxOccurs="unbounded"></xs:element>

 </xs:choice>

 <xs:element name="infoTerm" type="variableType"> </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="authenticationFluentType">

 <xs:sequence>

 <xs:element name="agent" type="variableType"></xs:element>

 <xs:element name="event" type="eventType"></xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="valueofType">

 <xs:sequence>

 <xs:element name="target">

 <xs:complexType>

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 77 of 80

 <xs:sequence>

 <xs:element name="variable" type="variableType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="source">

 <xs:complexType>

 <xs:choice>

 <xs:element name="variable" type="variableType"/>

 <xs:element name="operationCall"

 type="operationCallType"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

<xs:complexType name="quantificationType">

 <xs:sequence>

 <xs:element name="quantifier">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="forall"/>

 <xs:enumeration value="existential"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:choice>

 <xs:element name="regularVariable" type="variableType"/>

 <xs:element name="timeVariable" type="timeVariableType"/>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="variableType">

 <xs:sequence>

 <xs:element name="varName" type="xs:string"/>

 <xs:choice>

 <xs:sequence>

 <xs:element name="varType" type="xs:string"/>

 <xs:element name="value" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 <xs:element name="array" type="arrayType"/>

 </xs:choice>

 </xs:sequence>

 <xs:attribute name="persistent" type="xs:boolean" default="false"/>

 <xs:attribute name="forMatching" type="xs:boolean" default="true"/>

 </xs:complexType>

 <xs:complexType name="timeVariableType">

 <xs:sequence>

 <xs:element name="varName" type="xs:string"/>

 <xs:element name="varType" type="xs:string" fixed="TimeVariable"/>

 <xs:element name="value" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="logicalOperatorType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="and"/>

 <xs:enumeration value="or"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="TimeExpression">

 <xs:sequence>

 <xs:element name="time" type="timeVariableType"/>

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:choice>

 <xs:element name="plusTime" type="timeVariableType"/>

 <xs:element name="minusTime" type="timeVariableType"/>

 <xs:element name="plus" type="xs:decimal"/>

 <xs:element name="minus" type="xs:decimal"/>

 </xs:choice>

 </xs:sequence>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="TimeRelation">

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 78 of 80

 <xs:sequence>

 <xs:element name="timeVar1" type="TimeExpression"/>

 <xs:element name="timeVar2" type="TimeExpression"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="varRelationType">

 <xs:sequence>

 <xs:element name="operand1" type="operandType"/>

 <xs:element name="operand2" type="operandType"/>

 </xs:sequence>

 </xs:complexType>

<xs:complexType name="relationalPredicateType">

 <xs:sequence>

 <xs:choice>

 <xs:element name="equalTo" type="varRelationType"/>

 <xs:element name="notEqualTo" type="varRelationType"/>

 <xs:element name="lessThan" type="varRelationType"/>

 <xs:element name="greaterThan" type="varRelationType"/>

 <xs:element name="lessThanEqualTo" type="varRelationType"/>

 <xs:element name="greaterThanEqualTo" type="varRelationType"/>

 </xs:choice>

 <xs:element name="timeVar" type="timeVariableType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="operandType">

 <xs:choice>

 <xs:element name="operationCall" type="operationCallType"/>

 <xs:element name="variable" type="variableType"/>

 <xs:element name="constant" type="constantType"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="operationCallType">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="partner" type="xs:string" minOccurs="0"/>

 <xs:element name="variable" type="variableType" minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="constantType">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="value" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="arrayType">

 <xs:sequence>

 <xs:element name="type" type="xs:string"/>

 <xs:element name="index" type="xs:string" minOccurs="0"/>

 <xs:element name="value" type="arrayValueType" minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="arrayValueType">

 <xs:sequence>

 <xs:element name="indexValue" type="xs:string"/>

 <xs:element name="cellValue" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="eventType">

 <xs:sequence>

 <xs:element name="eventID" minOccurs="1" maxOccurs="1" type="xs:string"/>

 <xs:element name="sender" type="variableType"></xs:element>

 <xs:element name="receiver" type="variableType"></xs:element>

 <xs:element name="status" type="xs:string"></xs:element>

 <xs:element name="oper" type="operationType"></xs:element>

 <xs:element name="source" type="xs:string"></xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="operationType">

 <xs:sequence>

 <xs:element name="opName" type="xs:string"></xs:element>

 <xs:element name="op_args" minOccurs="0" maxOccurs="1" type="variableType">

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 79 of 80

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

A5.D2.5 – Patterns and Integration Schemes Languages (Final Version)

SERENITY - 027587 Version 0.2 Page 80 of 80

References

[1] Maña A., Muñoz A., Sanchez-Cid F., Serrano. D.A5.D0.1: “SERENITY Conceptual Model.

SERENITY Project”. Internal Report 2006.

[2] Antonio Maña, Antonio Muñoz, Francisco Sanchez-Cid, Daniel Serrano, George Spanoudakis, Kelly

Androutsopoulos, Luca Compagna. A5.D2.1: “Patterns and Integration Schemes Languages (First

Version)”. SERENITY Project 2006.

[3] Maña A., Presenza D., Piñuela A., Serrano D., Soria P. Sotiriou D. A6.D3.1: “Specification of

SERENITY Architecture”. SERENITY Project 2006.

[4] P. El Khoury, B. Gallego-Nicasio, S. K. Sinha, K. Li, A. Maña, A. Muñoz J.F. Ruiz, A. Saidane, D.

Serrano. A5.D4.1: “End-user requirements specification language (initial version)”. SERENITY

Project 2008.

[5] Kloukinas C., Spanoudakis G. “A Pattern-Driven Framework for Monitoring Security and

Dependability” In proceedings of 4th International Conference on Trust, Privacy and Security in

Digital Business (TrustBus`07).

[6] Richard E. Pattis. “Technical Symposium on Computer Science Education archive”. Proceedings of

the twenty-fifth SIGCSE symposium on Computer science education (1994). Phoenix, Arizona,

United States. Pages: 300 – 303 (ISBN:0-89791-646-8).

[7] K. Androutsopoulos, C.Ballas, C. Kloukinas, K. Mahbub, G. Spanoudakis. A4.D3.1: “V1 of Dynamic

Validation Prototype”. SERENITY Project 2006.

[8] Spanoudakis G. Mahbub K. “Non Intrusive Monitoring of Service Based Systems”. International

Journal of Cooperative Information Systems, Vol. 15, No. 3, 325-358. 2006

[9] Mahbub K., Spanoudakis G. “A Framework for Requirements Monitoring of Service Based Systems”.

2nd International Conference on Service Oriented Computing, New York. 2004.

[10] W3C. XML Schema Reference from the XML Schema Working Group.

http://www.w3.org/XML/Schema.html.

[11] Christos Kloukinas, George Spanoudakis, Theocharis Tsigritis. A4.R6: “Draft Schema for Recovery

Actions to be Taken Upon Potential or Definite Violations of Monitoring Rules”. SERENITY Project

2008. https://bscw.sit.fraunhofer.de/bscw/bscw.cgi/1035484.

